| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * net/sched/ematch.c		Extended Match API | 
|  | 3 | * | 
|  | 4 | *		This program is free software; you can redistribute it and/or | 
|  | 5 | *		modify it under the terms of the GNU General Public License | 
|  | 6 | *		as published by the Free Software Foundation; either version | 
|  | 7 | *		2 of the License, or (at your option) any later version. | 
|  | 8 | * | 
|  | 9 | * Authors:	Thomas Graf <tgraf@suug.ch> | 
|  | 10 | * | 
|  | 11 | * ========================================================================== | 
|  | 12 | * | 
|  | 13 | * An extended match (ematch) is a small classification tool not worth | 
|  | 14 | * writing a full classifier for. Ematches can be interconnected to form | 
|  | 15 | * a logic expression and get attached to classifiers to extend their | 
|  | 16 | * functionatlity. | 
|  | 17 | * | 
|  | 18 | * The userspace part transforms the logic expressions into an array | 
|  | 19 | * consisting of multiple sequences of interconnected ematches separated | 
|  | 20 | * by markers. Precedence is implemented by a special ematch kind | 
|  | 21 | * referencing a sequence beyond the marker of the current sequence | 
|  | 22 | * causing the current position in the sequence to be pushed onto a stack | 
|  | 23 | * to allow the current position to be overwritten by the position referenced | 
|  | 24 | * in the special ematch. Matching continues in the new sequence until a | 
|  | 25 | * marker is reached causing the position to be restored from the stack. | 
|  | 26 | * | 
|  | 27 | * Example: | 
|  | 28 | *          A AND (B1 OR B2) AND C AND D | 
|  | 29 | * | 
|  | 30 | *              ------->-PUSH------- | 
|  | 31 | *    -->--    /         -->--      \   -->-- | 
|  | 32 | *   /     \  /         /     \      \ /     \ | 
|  | 33 | * +-------+-------+-------+-------+-------+--------+ | 
|  | 34 | * | A AND | B AND | C AND | D END | B1 OR | B2 END | | 
|  | 35 | * +-------+-------+-------+-------+-------+--------+ | 
|  | 36 | *                    \                      / | 
|  | 37 | *                     --------<-POP--------- | 
|  | 38 | * | 
|  | 39 | * where B is a virtual ematch referencing to sequence starting with B1. | 
|  | 40 | * | 
|  | 41 | * ========================================================================== | 
|  | 42 | * | 
|  | 43 | * How to write an ematch in 60 seconds | 
|  | 44 | * ------------------------------------ | 
|  | 45 | * | 
|  | 46 | *   1) Provide a matcher function: | 
|  | 47 | *      static int my_match(struct sk_buff *skb, struct tcf_ematch *m, | 
|  | 48 | *                          struct tcf_pkt_info *info) | 
|  | 49 | *      { | 
|  | 50 | *      	struct mydata *d = (struct mydata *) m->data; | 
|  | 51 | * | 
|  | 52 | *      	if (...matching goes here...) | 
|  | 53 | *      		return 1; | 
|  | 54 | *      	else | 
|  | 55 | *      		return 0; | 
|  | 56 | *      } | 
|  | 57 | * | 
|  | 58 | *   2) Fill out a struct tcf_ematch_ops: | 
|  | 59 | *      static struct tcf_ematch_ops my_ops = { | 
|  | 60 | *      	.kind = unique id, | 
|  | 61 | *      	.datalen = sizeof(struct mydata), | 
|  | 62 | *      	.match = my_match, | 
|  | 63 | *      	.owner = THIS_MODULE, | 
|  | 64 | *      }; | 
|  | 65 | * | 
|  | 66 | *   3) Register/Unregister your ematch: | 
|  | 67 | *      static int __init init_my_ematch(void) | 
|  | 68 | *      { | 
|  | 69 | *      	return tcf_em_register(&my_ops); | 
|  | 70 | *      } | 
|  | 71 | * | 
|  | 72 | *      static void __exit exit_my_ematch(void) | 
|  | 73 | *      { | 
|  | 74 | *      	return tcf_em_unregister(&my_ops); | 
|  | 75 | *      } | 
|  | 76 | * | 
|  | 77 | *      module_init(init_my_ematch); | 
|  | 78 | *      module_exit(exit_my_ematch); | 
|  | 79 | * | 
|  | 80 | *   4) By now you should have two more seconds left, barely enough to | 
|  | 81 | *      open up a beer to watch the compilation going. | 
|  | 82 | */ | 
|  | 83 |  | 
|  | 84 | #include <linux/config.h> | 
|  | 85 | #include <linux/module.h> | 
|  | 86 | #include <linux/types.h> | 
|  | 87 | #include <linux/kernel.h> | 
|  | 88 | #include <linux/sched.h> | 
|  | 89 | #include <linux/mm.h> | 
|  | 90 | #include <linux/errno.h> | 
|  | 91 | #include <linux/interrupt.h> | 
|  | 92 | #include <linux/rtnetlink.h> | 
|  | 93 | #include <linux/skbuff.h> | 
|  | 94 | #include <net/pkt_cls.h> | 
|  | 95 | #include <config/net/ematch/stack.h> | 
|  | 96 |  | 
|  | 97 | static LIST_HEAD(ematch_ops); | 
|  | 98 | static DEFINE_RWLOCK(ematch_mod_lock); | 
|  | 99 |  | 
|  | 100 | static inline struct tcf_ematch_ops * tcf_em_lookup(u16 kind) | 
|  | 101 | { | 
|  | 102 | struct tcf_ematch_ops *e = NULL; | 
|  | 103 |  | 
|  | 104 | read_lock(&ematch_mod_lock); | 
|  | 105 | list_for_each_entry(e, &ematch_ops, link) { | 
|  | 106 | if (kind == e->kind) { | 
|  | 107 | if (!try_module_get(e->owner)) | 
|  | 108 | e = NULL; | 
|  | 109 | read_unlock(&ematch_mod_lock); | 
|  | 110 | return e; | 
|  | 111 | } | 
|  | 112 | } | 
|  | 113 | read_unlock(&ematch_mod_lock); | 
|  | 114 |  | 
|  | 115 | return NULL; | 
|  | 116 | } | 
|  | 117 |  | 
|  | 118 | /** | 
|  | 119 | * tcf_em_register - register an extended match | 
|  | 120 | * | 
|  | 121 | * @ops: ematch operations lookup table | 
|  | 122 | * | 
|  | 123 | * This function must be called by ematches to announce their presence. | 
|  | 124 | * The given @ops must have kind set to a unique identifier and the | 
|  | 125 | * callback match() must be implemented. All other callbacks are optional | 
|  | 126 | * and a fallback implementation is used instead. | 
|  | 127 | * | 
|  | 128 | * Returns -EEXISTS if an ematch of the same kind has already registered. | 
|  | 129 | */ | 
|  | 130 | int tcf_em_register(struct tcf_ematch_ops *ops) | 
|  | 131 | { | 
|  | 132 | int err = -EEXIST; | 
|  | 133 | struct tcf_ematch_ops *e; | 
|  | 134 |  | 
|  | 135 | if (ops->match == NULL) | 
|  | 136 | return -EINVAL; | 
|  | 137 |  | 
|  | 138 | write_lock(&ematch_mod_lock); | 
|  | 139 | list_for_each_entry(e, &ematch_ops, link) | 
|  | 140 | if (ops->kind == e->kind) | 
|  | 141 | goto errout; | 
|  | 142 |  | 
|  | 143 | list_add_tail(&ops->link, &ematch_ops); | 
|  | 144 | err = 0; | 
|  | 145 | errout: | 
|  | 146 | write_unlock(&ematch_mod_lock); | 
|  | 147 | return err; | 
|  | 148 | } | 
|  | 149 |  | 
|  | 150 | /** | 
|  | 151 | * tcf_em_unregister - unregster and extended match | 
|  | 152 | * | 
|  | 153 | * @ops: ematch operations lookup table | 
|  | 154 | * | 
|  | 155 | * This function must be called by ematches to announce their disappearance | 
|  | 156 | * for examples when the module gets unloaded. The @ops parameter must be | 
|  | 157 | * the same as the one used for registration. | 
|  | 158 | * | 
|  | 159 | * Returns -ENOENT if no matching ematch was found. | 
|  | 160 | */ | 
|  | 161 | int tcf_em_unregister(struct tcf_ematch_ops *ops) | 
|  | 162 | { | 
|  | 163 | int err = 0; | 
|  | 164 | struct tcf_ematch_ops *e; | 
|  | 165 |  | 
|  | 166 | write_lock(&ematch_mod_lock); | 
|  | 167 | list_for_each_entry(e, &ematch_ops, link) { | 
|  | 168 | if (e == ops) { | 
|  | 169 | list_del(&e->link); | 
|  | 170 | goto out; | 
|  | 171 | } | 
|  | 172 | } | 
|  | 173 |  | 
|  | 174 | err = -ENOENT; | 
|  | 175 | out: | 
|  | 176 | write_unlock(&ematch_mod_lock); | 
|  | 177 | return err; | 
|  | 178 | } | 
|  | 179 |  | 
|  | 180 | static inline struct tcf_ematch * tcf_em_get_match(struct tcf_ematch_tree *tree, | 
|  | 181 | int index) | 
|  | 182 | { | 
|  | 183 | return &tree->matches[index]; | 
|  | 184 | } | 
|  | 185 |  | 
|  | 186 |  | 
|  | 187 | static int tcf_em_validate(struct tcf_proto *tp, | 
|  | 188 | struct tcf_ematch_tree_hdr *tree_hdr, | 
|  | 189 | struct tcf_ematch *em, struct rtattr *rta, int idx) | 
|  | 190 | { | 
|  | 191 | int err = -EINVAL; | 
|  | 192 | struct tcf_ematch_hdr *em_hdr = RTA_DATA(rta); | 
|  | 193 | int data_len = RTA_PAYLOAD(rta) - sizeof(*em_hdr); | 
|  | 194 | void *data = (void *) em_hdr + sizeof(*em_hdr); | 
|  | 195 |  | 
|  | 196 | if (!TCF_EM_REL_VALID(em_hdr->flags)) | 
|  | 197 | goto errout; | 
|  | 198 |  | 
|  | 199 | if (em_hdr->kind == TCF_EM_CONTAINER) { | 
|  | 200 | /* Special ematch called "container", carries an index | 
|  | 201 | * referencing an external ematch sequence. */ | 
|  | 202 | u32 ref; | 
|  | 203 |  | 
|  | 204 | if (data_len < sizeof(ref)) | 
|  | 205 | goto errout; | 
|  | 206 | ref = *(u32 *) data; | 
|  | 207 |  | 
|  | 208 | if (ref >= tree_hdr->nmatches) | 
|  | 209 | goto errout; | 
|  | 210 |  | 
|  | 211 | /* We do not allow backward jumps to avoid loops and jumps | 
|  | 212 | * to our own position are of course illegal. */ | 
|  | 213 | if (ref <= idx) | 
|  | 214 | goto errout; | 
|  | 215 |  | 
|  | 216 |  | 
|  | 217 | em->data = ref; | 
|  | 218 | } else { | 
|  | 219 | /* Note: This lookup will increase the module refcnt | 
|  | 220 | * of the ematch module referenced. In case of a failure, | 
|  | 221 | * a destroy function is called by the underlying layer | 
|  | 222 | * which automatically releases the reference again, therefore | 
|  | 223 | * the module MUST not be given back under any circumstances | 
|  | 224 | * here. Be aware, the destroy function assumes that the | 
|  | 225 | * module is held if the ops field is non zero. */ | 
|  | 226 | em->ops = tcf_em_lookup(em_hdr->kind); | 
|  | 227 |  | 
|  | 228 | if (em->ops == NULL) { | 
|  | 229 | err = -ENOENT; | 
|  | 230 | goto errout; | 
|  | 231 | } | 
|  | 232 |  | 
|  | 233 | /* ematch module provides expected length of data, so we | 
|  | 234 | * can do a basic sanity check. */ | 
|  | 235 | if (em->ops->datalen && data_len < em->ops->datalen) | 
|  | 236 | goto errout; | 
|  | 237 |  | 
|  | 238 | if (em->ops->change) { | 
|  | 239 | err = em->ops->change(tp, data, data_len, em); | 
|  | 240 | if (err < 0) | 
|  | 241 | goto errout; | 
|  | 242 | } else if (data_len > 0) { | 
|  | 243 | /* ematch module doesn't provide an own change | 
|  | 244 | * procedure and expects us to allocate and copy | 
|  | 245 | * the ematch data. | 
|  | 246 | * | 
|  | 247 | * TCF_EM_SIMPLE may be specified stating that the | 
|  | 248 | * data only consists of a u32 integer and the module | 
|  | 249 | * does not expected a memory reference but rather | 
|  | 250 | * the value carried. */ | 
|  | 251 | if (em_hdr->flags & TCF_EM_SIMPLE) { | 
|  | 252 | if (data_len < sizeof(u32)) | 
|  | 253 | goto errout; | 
|  | 254 | em->data = *(u32 *) data; | 
|  | 255 | } else { | 
|  | 256 | void *v = kmalloc(data_len, GFP_KERNEL); | 
|  | 257 | if (v == NULL) { | 
|  | 258 | err = -ENOBUFS; | 
|  | 259 | goto errout; | 
|  | 260 | } | 
|  | 261 | memcpy(v, data, data_len); | 
|  | 262 | em->data = (unsigned long) v; | 
|  | 263 | } | 
|  | 264 | } | 
|  | 265 | } | 
|  | 266 |  | 
|  | 267 | em->matchid = em_hdr->matchid; | 
|  | 268 | em->flags = em_hdr->flags; | 
|  | 269 | em->datalen = data_len; | 
|  | 270 |  | 
|  | 271 | err = 0; | 
|  | 272 | errout: | 
|  | 273 | return err; | 
|  | 274 | } | 
|  | 275 |  | 
|  | 276 | /** | 
|  | 277 | * tcf_em_tree_validate - validate ematch config TLV and build ematch tree | 
|  | 278 | * | 
|  | 279 | * @tp: classifier kind handle | 
|  | 280 | * @rta: ematch tree configuration TLV | 
|  | 281 | * @tree: destination ematch tree variable to store the resulting | 
|  | 282 | *        ematch tree. | 
|  | 283 | * | 
|  | 284 | * This function validates the given configuration TLV @rta and builds an | 
|  | 285 | * ematch tree in @tree. The resulting tree must later be copied into | 
|  | 286 | * the private classifier data using tcf_em_tree_change(). You MUST NOT | 
|  | 287 | * provide the ematch tree variable of the private classifier data directly, | 
|  | 288 | * the changes would not be locked properly. | 
|  | 289 | * | 
|  | 290 | * Returns a negative error code if the configuration TLV contains errors. | 
|  | 291 | */ | 
|  | 292 | int tcf_em_tree_validate(struct tcf_proto *tp, struct rtattr *rta, | 
|  | 293 | struct tcf_ematch_tree *tree) | 
|  | 294 | { | 
|  | 295 | int idx, list_len, matches_len, err = -EINVAL; | 
|  | 296 | struct rtattr *tb[TCA_EMATCH_TREE_MAX]; | 
|  | 297 | struct rtattr *rt_match, *rt_hdr, *rt_list; | 
|  | 298 | struct tcf_ematch_tree_hdr *tree_hdr; | 
|  | 299 | struct tcf_ematch *em; | 
|  | 300 |  | 
|  | 301 | if (rtattr_parse_nested(tb, TCA_EMATCH_TREE_MAX, rta) < 0) | 
|  | 302 | goto errout; | 
|  | 303 |  | 
|  | 304 | rt_hdr = tb[TCA_EMATCH_TREE_HDR-1]; | 
|  | 305 | rt_list = tb[TCA_EMATCH_TREE_LIST-1]; | 
|  | 306 |  | 
|  | 307 | if (rt_hdr == NULL || rt_list == NULL) | 
|  | 308 | goto errout; | 
|  | 309 |  | 
|  | 310 | if (RTA_PAYLOAD(rt_hdr) < sizeof(*tree_hdr) || | 
|  | 311 | RTA_PAYLOAD(rt_list) < sizeof(*rt_match)) | 
|  | 312 | goto errout; | 
|  | 313 |  | 
|  | 314 | tree_hdr = RTA_DATA(rt_hdr); | 
|  | 315 | memcpy(&tree->hdr, tree_hdr, sizeof(*tree_hdr)); | 
|  | 316 |  | 
|  | 317 | rt_match = RTA_DATA(rt_list); | 
|  | 318 | list_len = RTA_PAYLOAD(rt_list); | 
|  | 319 | matches_len = tree_hdr->nmatches * sizeof(*em); | 
|  | 320 |  | 
|  | 321 | tree->matches = kmalloc(matches_len, GFP_KERNEL); | 
|  | 322 | if (tree->matches == NULL) | 
|  | 323 | goto errout; | 
|  | 324 | memset(tree->matches, 0, matches_len); | 
|  | 325 |  | 
|  | 326 | /* We do not use rtattr_parse_nested here because the maximum | 
|  | 327 | * number of attributes is unknown. This saves us the allocation | 
|  | 328 | * for a tb buffer which would serve no purpose at all. | 
|  | 329 | * | 
|  | 330 | * The array of rt attributes is parsed in the order as they are | 
|  | 331 | * provided, their type must be incremental from 1 to n. Even | 
|  | 332 | * if it does not serve any real purpose, a failure of sticking | 
|  | 333 | * to this policy will result in parsing failure. */ | 
|  | 334 | for (idx = 0; RTA_OK(rt_match, list_len); idx++) { | 
|  | 335 | err = -EINVAL; | 
|  | 336 |  | 
|  | 337 | if (rt_match->rta_type != (idx + 1)) | 
|  | 338 | goto errout_abort; | 
|  | 339 |  | 
|  | 340 | if (idx >= tree_hdr->nmatches) | 
|  | 341 | goto errout_abort; | 
|  | 342 |  | 
|  | 343 | if (RTA_PAYLOAD(rt_match) < sizeof(struct tcf_ematch_hdr)) | 
|  | 344 | goto errout_abort; | 
|  | 345 |  | 
|  | 346 | em = tcf_em_get_match(tree, idx); | 
|  | 347 |  | 
|  | 348 | err = tcf_em_validate(tp, tree_hdr, em, rt_match, idx); | 
|  | 349 | if (err < 0) | 
|  | 350 | goto errout_abort; | 
|  | 351 |  | 
|  | 352 | rt_match = RTA_NEXT(rt_match, list_len); | 
|  | 353 | } | 
|  | 354 |  | 
|  | 355 | /* Check if the number of matches provided by userspace actually | 
|  | 356 | * complies with the array of matches. The number was used for | 
|  | 357 | * the validation of references and a mismatch could lead to | 
|  | 358 | * undefined references during the matching process. */ | 
|  | 359 | if (idx != tree_hdr->nmatches) { | 
|  | 360 | err = -EINVAL; | 
|  | 361 | goto errout_abort; | 
|  | 362 | } | 
|  | 363 |  | 
|  | 364 | err = 0; | 
|  | 365 | errout: | 
|  | 366 | return err; | 
|  | 367 |  | 
|  | 368 | errout_abort: | 
|  | 369 | tcf_em_tree_destroy(tp, tree); | 
|  | 370 | return err; | 
|  | 371 | } | 
|  | 372 |  | 
|  | 373 | /** | 
|  | 374 | * tcf_em_tree_destroy - destroy an ematch tree | 
|  | 375 | * | 
|  | 376 | * @tp: classifier kind handle | 
|  | 377 | * @tree: ematch tree to be deleted | 
|  | 378 | * | 
|  | 379 | * This functions destroys an ematch tree previously created by | 
|  | 380 | * tcf_em_tree_validate()/tcf_em_tree_change(). You must ensure that | 
|  | 381 | * the ematch tree is not in use before calling this function. | 
|  | 382 | */ | 
|  | 383 | void tcf_em_tree_destroy(struct tcf_proto *tp, struct tcf_ematch_tree *tree) | 
|  | 384 | { | 
|  | 385 | int i; | 
|  | 386 |  | 
|  | 387 | if (tree->matches == NULL) | 
|  | 388 | return; | 
|  | 389 |  | 
|  | 390 | for (i = 0; i < tree->hdr.nmatches; i++) { | 
|  | 391 | struct tcf_ematch *em = tcf_em_get_match(tree, i); | 
|  | 392 |  | 
|  | 393 | if (em->ops) { | 
|  | 394 | if (em->ops->destroy) | 
|  | 395 | em->ops->destroy(tp, em); | 
|  | 396 | else if (!tcf_em_is_simple(em) && em->data) | 
|  | 397 | kfree((void *) em->data); | 
|  | 398 | module_put(em->ops->owner); | 
|  | 399 | } | 
|  | 400 | } | 
|  | 401 |  | 
|  | 402 | tree->hdr.nmatches = 0; | 
|  | 403 | kfree(tree->matches); | 
|  | 404 | } | 
|  | 405 |  | 
|  | 406 | /** | 
|  | 407 | * tcf_em_tree_dump - dump ematch tree into a rtnl message | 
|  | 408 | * | 
|  | 409 | * @skb: skb holding the rtnl message | 
|  | 410 | * @t: ematch tree to be dumped | 
|  | 411 | * @tlv: TLV type to be used to encapsulate the tree | 
|  | 412 | * | 
|  | 413 | * This function dumps a ematch tree into a rtnl message. It is valid to | 
|  | 414 | * call this function while the ematch tree is in use. | 
|  | 415 | * | 
|  | 416 | * Returns -1 if the skb tailroom is insufficient. | 
|  | 417 | */ | 
|  | 418 | int tcf_em_tree_dump(struct sk_buff *skb, struct tcf_ematch_tree *tree, int tlv) | 
|  | 419 | { | 
|  | 420 | int i; | 
|  | 421 | struct rtattr * top_start = (struct rtattr*) skb->tail; | 
|  | 422 | struct rtattr * list_start; | 
|  | 423 |  | 
|  | 424 | RTA_PUT(skb, tlv, 0, NULL); | 
|  | 425 | RTA_PUT(skb, TCA_EMATCH_TREE_HDR, sizeof(tree->hdr), &tree->hdr); | 
|  | 426 |  | 
|  | 427 | list_start = (struct rtattr *) skb->tail; | 
|  | 428 | RTA_PUT(skb, TCA_EMATCH_TREE_LIST, 0, NULL); | 
|  | 429 |  | 
|  | 430 | for (i = 0; i < tree->hdr.nmatches; i++) { | 
|  | 431 | struct rtattr *match_start = (struct rtattr*) skb->tail; | 
|  | 432 | struct tcf_ematch *em = tcf_em_get_match(tree, i); | 
|  | 433 | struct tcf_ematch_hdr em_hdr = { | 
|  | 434 | .kind = em->ops ? em->ops->kind : TCF_EM_CONTAINER, | 
|  | 435 | .matchid = em->matchid, | 
|  | 436 | .flags = em->flags | 
|  | 437 | }; | 
|  | 438 |  | 
|  | 439 | RTA_PUT(skb, i+1, sizeof(em_hdr), &em_hdr); | 
|  | 440 |  | 
|  | 441 | if (em->ops && em->ops->dump) { | 
|  | 442 | if (em->ops->dump(skb, em) < 0) | 
|  | 443 | goto rtattr_failure; | 
|  | 444 | } else if (tcf_em_is_container(em) || tcf_em_is_simple(em)) { | 
|  | 445 | u32 u = em->data; | 
|  | 446 | RTA_PUT_NOHDR(skb, sizeof(u), &u); | 
|  | 447 | } else if (em->datalen > 0) | 
|  | 448 | RTA_PUT_NOHDR(skb, em->datalen, (void *) em->data); | 
|  | 449 |  | 
|  | 450 | match_start->rta_len = skb->tail - (u8*) match_start; | 
|  | 451 | } | 
|  | 452 |  | 
|  | 453 | list_start->rta_len = skb->tail - (u8 *) list_start; | 
|  | 454 | top_start->rta_len = skb->tail - (u8 *) top_start; | 
|  | 455 |  | 
|  | 456 | return 0; | 
|  | 457 |  | 
|  | 458 | rtattr_failure: | 
|  | 459 | return -1; | 
|  | 460 | } | 
|  | 461 |  | 
|  | 462 | static inline int tcf_em_match(struct sk_buff *skb, struct tcf_ematch *em, | 
|  | 463 | struct tcf_pkt_info *info) | 
|  | 464 | { | 
|  | 465 | int r = em->ops->match(skb, em, info); | 
|  | 466 | return tcf_em_is_inverted(em) ? !r : r; | 
|  | 467 | } | 
|  | 468 |  | 
|  | 469 | /* Do not use this function directly, use tcf_em_tree_match instead */ | 
|  | 470 | int __tcf_em_tree_match(struct sk_buff *skb, struct tcf_ematch_tree *tree, | 
|  | 471 | struct tcf_pkt_info *info) | 
|  | 472 | { | 
|  | 473 | int stackp = 0, match_idx = 0, res = 0; | 
|  | 474 | struct tcf_ematch *cur_match; | 
|  | 475 | int stack[CONFIG_NET_EMATCH_STACK]; | 
|  | 476 |  | 
|  | 477 | proceed: | 
|  | 478 | while (match_idx < tree->hdr.nmatches) { | 
|  | 479 | cur_match = tcf_em_get_match(tree, match_idx); | 
|  | 480 |  | 
|  | 481 | if (tcf_em_is_container(cur_match)) { | 
|  | 482 | if (unlikely(stackp >= CONFIG_NET_EMATCH_STACK)) | 
|  | 483 | goto stack_overflow; | 
|  | 484 |  | 
|  | 485 | stack[stackp++] = match_idx; | 
|  | 486 | match_idx = cur_match->data; | 
|  | 487 | goto proceed; | 
|  | 488 | } | 
|  | 489 |  | 
|  | 490 | res = tcf_em_match(skb, cur_match, info); | 
|  | 491 |  | 
|  | 492 | if (tcf_em_early_end(cur_match, res)) | 
|  | 493 | break; | 
|  | 494 |  | 
|  | 495 | match_idx++; | 
|  | 496 | } | 
|  | 497 |  | 
|  | 498 | pop_stack: | 
|  | 499 | if (stackp > 0) { | 
|  | 500 | match_idx = stack[--stackp]; | 
|  | 501 | cur_match = tcf_em_get_match(tree, match_idx); | 
|  | 502 |  | 
|  | 503 | if (tcf_em_early_end(cur_match, res)) | 
|  | 504 | goto pop_stack; | 
|  | 505 | else { | 
|  | 506 | match_idx++; | 
|  | 507 | goto proceed; | 
|  | 508 | } | 
|  | 509 | } | 
|  | 510 |  | 
|  | 511 | return res; | 
|  | 512 |  | 
|  | 513 | stack_overflow: | 
|  | 514 | if (net_ratelimit()) | 
|  | 515 | printk("Local stack overflow, increase NET_EMATCH_STACK\n"); | 
|  | 516 | return -1; | 
|  | 517 | } | 
|  | 518 |  | 
|  | 519 | EXPORT_SYMBOL(tcf_em_register); | 
|  | 520 | EXPORT_SYMBOL(tcf_em_unregister); | 
|  | 521 | EXPORT_SYMBOL(tcf_em_tree_validate); | 
|  | 522 | EXPORT_SYMBOL(tcf_em_tree_destroy); | 
|  | 523 | EXPORT_SYMBOL(tcf_em_tree_dump); | 
|  | 524 | EXPORT_SYMBOL(__tcf_em_tree_match); |