| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * net/sched/sch_red.c	Random Early Detection queue. | 
|  | 3 | * | 
|  | 4 | *		This program is free software; you can redistribute it and/or | 
|  | 5 | *		modify it under the terms of the GNU General Public License | 
|  | 6 | *		as published by the Free Software Foundation; either version | 
|  | 7 | *		2 of the License, or (at your option) any later version. | 
|  | 8 | * | 
|  | 9 | * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> | 
|  | 10 | * | 
|  | 11 | * Changes: | 
|  | 12 | * J Hadi Salim <hadi@nortel.com> 980914:	computation fixes | 
|  | 13 | * Alexey Makarenko <makar@phoenix.kharkov.ua> 990814: qave on idle link was calculated incorrectly. | 
|  | 14 | * J Hadi Salim <hadi@nortelnetworks.com> 980816:  ECN support | 
|  | 15 | */ | 
|  | 16 |  | 
|  | 17 | #include <linux/config.h> | 
|  | 18 | #include <linux/module.h> | 
|  | 19 | #include <asm/uaccess.h> | 
|  | 20 | #include <asm/system.h> | 
|  | 21 | #include <linux/bitops.h> | 
|  | 22 | #include <linux/types.h> | 
|  | 23 | #include <linux/kernel.h> | 
|  | 24 | #include <linux/sched.h> | 
|  | 25 | #include <linux/string.h> | 
|  | 26 | #include <linux/mm.h> | 
|  | 27 | #include <linux/socket.h> | 
|  | 28 | #include <linux/sockios.h> | 
|  | 29 | #include <linux/in.h> | 
|  | 30 | #include <linux/errno.h> | 
|  | 31 | #include <linux/interrupt.h> | 
|  | 32 | #include <linux/if_ether.h> | 
|  | 33 | #include <linux/inet.h> | 
|  | 34 | #include <linux/netdevice.h> | 
|  | 35 | #include <linux/etherdevice.h> | 
|  | 36 | #include <linux/notifier.h> | 
|  | 37 | #include <net/ip.h> | 
|  | 38 | #include <net/route.h> | 
|  | 39 | #include <linux/skbuff.h> | 
|  | 40 | #include <net/sock.h> | 
|  | 41 | #include <net/pkt_sched.h> | 
|  | 42 | #include <net/inet_ecn.h> | 
|  | 43 | #include <net/dsfield.h> | 
|  | 44 |  | 
|  | 45 |  | 
|  | 46 | /*	Random Early Detection (RED) algorithm. | 
|  | 47 | ======================================= | 
|  | 48 |  | 
|  | 49 | Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways | 
|  | 50 | for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking. | 
|  | 51 |  | 
|  | 52 | This file codes a "divisionless" version of RED algorithm | 
|  | 53 | as written down in Fig.17 of the paper. | 
|  | 54 |  | 
|  | 55 | Short description. | 
|  | 56 | ------------------ | 
|  | 57 |  | 
|  | 58 | When a new packet arrives we calculate the average queue length: | 
|  | 59 |  | 
|  | 60 | avg = (1-W)*avg + W*current_queue_len, | 
|  | 61 |  | 
|  | 62 | W is the filter time constant (chosen as 2^(-Wlog)), it controls | 
|  | 63 | the inertia of the algorithm. To allow larger bursts, W should be | 
|  | 64 | decreased. | 
|  | 65 |  | 
|  | 66 | if (avg > th_max) -> packet marked (dropped). | 
|  | 67 | if (avg < th_min) -> packet passes. | 
|  | 68 | if (th_min < avg < th_max) we calculate probability: | 
|  | 69 |  | 
|  | 70 | Pb = max_P * (avg - th_min)/(th_max-th_min) | 
|  | 71 |  | 
|  | 72 | and mark (drop) packet with this probability. | 
|  | 73 | Pb changes from 0 (at avg==th_min) to max_P (avg==th_max). | 
|  | 74 | max_P should be small (not 1), usually 0.01..0.02 is good value. | 
|  | 75 |  | 
|  | 76 | max_P is chosen as a number, so that max_P/(th_max-th_min) | 
|  | 77 | is a negative power of two in order arithmetics to contain | 
|  | 78 | only shifts. | 
|  | 79 |  | 
|  | 80 |  | 
|  | 81 | Parameters, settable by user: | 
|  | 82 | ----------------------------- | 
|  | 83 |  | 
|  | 84 | limit		- bytes (must be > qth_max + burst) | 
|  | 85 |  | 
|  | 86 | Hard limit on queue length, should be chosen >qth_max | 
|  | 87 | to allow packet bursts. This parameter does not | 
|  | 88 | affect the algorithms behaviour and can be chosen | 
|  | 89 | arbitrarily high (well, less than ram size) | 
|  | 90 | Really, this limit will never be reached | 
|  | 91 | if RED works correctly. | 
|  | 92 |  | 
|  | 93 | qth_min		- bytes (should be < qth_max/2) | 
|  | 94 | qth_max		- bytes (should be at least 2*qth_min and less limit) | 
|  | 95 | Wlog	       	- bits (<32) log(1/W). | 
|  | 96 | Plog	       	- bits (<32) | 
|  | 97 |  | 
|  | 98 | Plog is related to max_P by formula: | 
|  | 99 |  | 
|  | 100 | max_P = (qth_max-qth_min)/2^Plog; | 
|  | 101 |  | 
|  | 102 | F.e. if qth_max=128K and qth_min=32K, then Plog=22 | 
|  | 103 | corresponds to max_P=0.02 | 
|  | 104 |  | 
|  | 105 | Scell_log | 
|  | 106 | Stab | 
|  | 107 |  | 
|  | 108 | Lookup table for log((1-W)^(t/t_ave). | 
|  | 109 |  | 
|  | 110 |  | 
|  | 111 | NOTES: | 
|  | 112 |  | 
|  | 113 | Upper bound on W. | 
|  | 114 | ----------------- | 
|  | 115 |  | 
|  | 116 | If you want to allow bursts of L packets of size S, | 
|  | 117 | you should choose W: | 
|  | 118 |  | 
|  | 119 | L + 1 - th_min/S < (1-(1-W)^L)/W | 
|  | 120 |  | 
|  | 121 | th_min/S = 32         th_min/S = 4 | 
|  | 122 |  | 
|  | 123 | log(W)	L | 
|  | 124 | -1	33 | 
|  | 125 | -2	35 | 
|  | 126 | -3	39 | 
|  | 127 | -4	46 | 
|  | 128 | -5	57 | 
|  | 129 | -6	75 | 
|  | 130 | -7	101 | 
|  | 131 | -8	135 | 
|  | 132 | -9	190 | 
|  | 133 | etc. | 
|  | 134 | */ | 
|  | 135 |  | 
|  | 136 | struct red_sched_data | 
|  | 137 | { | 
|  | 138 | /* Parameters */ | 
|  | 139 | u32		limit;		/* HARD maximal queue length	*/ | 
|  | 140 | u32		qth_min;	/* Min average length threshold: A scaled */ | 
|  | 141 | u32		qth_max;	/* Max average length threshold: A scaled */ | 
|  | 142 | u32		Rmask; | 
|  | 143 | u32		Scell_max; | 
|  | 144 | unsigned char	flags; | 
|  | 145 | char		Wlog;		/* log(W)		*/ | 
|  | 146 | char		Plog;		/* random number bits	*/ | 
|  | 147 | char		Scell_log; | 
|  | 148 | u8		Stab[256]; | 
|  | 149 |  | 
|  | 150 | /* Variables */ | 
|  | 151 | unsigned long	qave;		/* Average queue length: A scaled */ | 
|  | 152 | int		qcount;		/* Packets since last random number generation */ | 
|  | 153 | u32		qR;		/* Cached random number */ | 
|  | 154 |  | 
|  | 155 | psched_time_t	qidlestart;	/* Start of idle period		*/ | 
|  | 156 | struct tc_red_xstats st; | 
|  | 157 | }; | 
|  | 158 |  | 
|  | 159 | static int red_ecn_mark(struct sk_buff *skb) | 
|  | 160 | { | 
|  | 161 | if (skb->nh.raw + 20 > skb->tail) | 
|  | 162 | return 0; | 
|  | 163 |  | 
|  | 164 | switch (skb->protocol) { | 
|  | 165 | case __constant_htons(ETH_P_IP): | 
|  | 166 | if (INET_ECN_is_not_ect(skb->nh.iph->tos)) | 
|  | 167 | return 0; | 
|  | 168 | IP_ECN_set_ce(skb->nh.iph); | 
|  | 169 | return 1; | 
|  | 170 | case __constant_htons(ETH_P_IPV6): | 
|  | 171 | if (INET_ECN_is_not_ect(ipv6_get_dsfield(skb->nh.ipv6h))) | 
|  | 172 | return 0; | 
|  | 173 | IP6_ECN_set_ce(skb->nh.ipv6h); | 
|  | 174 | return 1; | 
|  | 175 | default: | 
|  | 176 | return 0; | 
|  | 177 | } | 
|  | 178 | } | 
|  | 179 |  | 
|  | 180 | static int | 
|  | 181 | red_enqueue(struct sk_buff *skb, struct Qdisc* sch) | 
|  | 182 | { | 
|  | 183 | struct red_sched_data *q = qdisc_priv(sch); | 
|  | 184 |  | 
|  | 185 | psched_time_t now; | 
|  | 186 |  | 
|  | 187 | if (!PSCHED_IS_PASTPERFECT(q->qidlestart)) { | 
|  | 188 | long us_idle; | 
|  | 189 | int  shift; | 
|  | 190 |  | 
|  | 191 | PSCHED_GET_TIME(now); | 
|  | 192 | us_idle = PSCHED_TDIFF_SAFE(now, q->qidlestart, q->Scell_max); | 
|  | 193 | PSCHED_SET_PASTPERFECT(q->qidlestart); | 
|  | 194 |  | 
|  | 195 | /* | 
|  | 196 | The problem: ideally, average length queue recalcultion should | 
|  | 197 | be done over constant clock intervals. This is too expensive, so that | 
|  | 198 | the calculation is driven by outgoing packets. | 
|  | 199 | When the queue is idle we have to model this clock by hand. | 
|  | 200 |  | 
|  | 201 | SF+VJ proposed to "generate" m = idletime/(average_pkt_size/bandwidth) | 
|  | 202 | dummy packets as a burst after idle time, i.e. | 
|  | 203 |  | 
|  | 204 | q->qave *= (1-W)^m | 
|  | 205 |  | 
|  | 206 | This is an apparently overcomplicated solution (f.e. we have to precompute | 
|  | 207 | a table to make this calculation in reasonable time) | 
|  | 208 | I believe that a simpler model may be used here, | 
|  | 209 | but it is field for experiments. | 
|  | 210 | */ | 
|  | 211 | shift = q->Stab[us_idle>>q->Scell_log]; | 
|  | 212 |  | 
|  | 213 | if (shift) { | 
|  | 214 | q->qave >>= shift; | 
|  | 215 | } else { | 
|  | 216 | /* Approximate initial part of exponent | 
|  | 217 | with linear function: | 
|  | 218 | (1-W)^m ~= 1-mW + ... | 
|  | 219 |  | 
|  | 220 | Seems, it is the best solution to | 
|  | 221 | problem of too coarce exponent tabulation. | 
|  | 222 | */ | 
|  | 223 |  | 
|  | 224 | us_idle = (q->qave * us_idle)>>q->Scell_log; | 
|  | 225 | if (us_idle < q->qave/2) | 
|  | 226 | q->qave -= us_idle; | 
|  | 227 | else | 
|  | 228 | q->qave >>= 1; | 
|  | 229 | } | 
|  | 230 | } else { | 
|  | 231 | q->qave += sch->qstats.backlog - (q->qave >> q->Wlog); | 
|  | 232 | /* NOTE: | 
|  | 233 | q->qave is fixed point number with point at Wlog. | 
|  | 234 | The formulae above is equvalent to floating point | 
|  | 235 | version: | 
|  | 236 |  | 
|  | 237 | qave = qave*(1-W) + sch->qstats.backlog*W; | 
|  | 238 | --ANK (980924) | 
|  | 239 | */ | 
|  | 240 | } | 
|  | 241 |  | 
|  | 242 | if (q->qave < q->qth_min) { | 
|  | 243 | q->qcount = -1; | 
|  | 244 | enqueue: | 
|  | 245 | if (sch->qstats.backlog + skb->len <= q->limit) { | 
|  | 246 | __skb_queue_tail(&sch->q, skb); | 
|  | 247 | sch->qstats.backlog += skb->len; | 
|  | 248 | sch->bstats.bytes += skb->len; | 
|  | 249 | sch->bstats.packets++; | 
|  | 250 | return NET_XMIT_SUCCESS; | 
|  | 251 | } else { | 
|  | 252 | q->st.pdrop++; | 
|  | 253 | } | 
|  | 254 | kfree_skb(skb); | 
|  | 255 | sch->qstats.drops++; | 
|  | 256 | return NET_XMIT_DROP; | 
|  | 257 | } | 
|  | 258 | if (q->qave >= q->qth_max) { | 
|  | 259 | q->qcount = -1; | 
|  | 260 | sch->qstats.overlimits++; | 
|  | 261 | mark: | 
|  | 262 | if  (!(q->flags&TC_RED_ECN) || !red_ecn_mark(skb)) { | 
|  | 263 | q->st.early++; | 
|  | 264 | goto drop; | 
|  | 265 | } | 
|  | 266 | q->st.marked++; | 
|  | 267 | goto enqueue; | 
|  | 268 | } | 
|  | 269 |  | 
|  | 270 | if (++q->qcount) { | 
|  | 271 | /* The formula used below causes questions. | 
|  | 272 |  | 
|  | 273 | OK. qR is random number in the interval 0..Rmask | 
|  | 274 | i.e. 0..(2^Plog). If we used floating point | 
|  | 275 | arithmetics, it would be: (2^Plog)*rnd_num, | 
|  | 276 | where rnd_num is less 1. | 
|  | 277 |  | 
|  | 278 | Taking into account, that qave have fixed | 
|  | 279 | point at Wlog, and Plog is related to max_P by | 
|  | 280 | max_P = (qth_max-qth_min)/2^Plog; two lines | 
|  | 281 | below have the following floating point equivalent: | 
|  | 282 |  | 
|  | 283 | max_P*(qave - qth_min)/(qth_max-qth_min) < rnd/qcount | 
|  | 284 |  | 
|  | 285 | Any questions? --ANK (980924) | 
|  | 286 | */ | 
|  | 287 | if (((q->qave - q->qth_min)>>q->Wlog)*q->qcount < q->qR) | 
|  | 288 | goto enqueue; | 
|  | 289 | q->qcount = 0; | 
|  | 290 | q->qR = net_random()&q->Rmask; | 
|  | 291 | sch->qstats.overlimits++; | 
|  | 292 | goto mark; | 
|  | 293 | } | 
|  | 294 | q->qR = net_random()&q->Rmask; | 
|  | 295 | goto enqueue; | 
|  | 296 |  | 
|  | 297 | drop: | 
|  | 298 | kfree_skb(skb); | 
|  | 299 | sch->qstats.drops++; | 
|  | 300 | return NET_XMIT_CN; | 
|  | 301 | } | 
|  | 302 |  | 
|  | 303 | static int | 
|  | 304 | red_requeue(struct sk_buff *skb, struct Qdisc* sch) | 
|  | 305 | { | 
|  | 306 | struct red_sched_data *q = qdisc_priv(sch); | 
|  | 307 |  | 
|  | 308 | PSCHED_SET_PASTPERFECT(q->qidlestart); | 
|  | 309 |  | 
|  | 310 | __skb_queue_head(&sch->q, skb); | 
|  | 311 | sch->qstats.backlog += skb->len; | 
|  | 312 | sch->qstats.requeues++; | 
|  | 313 | return 0; | 
|  | 314 | } | 
|  | 315 |  | 
|  | 316 | static struct sk_buff * | 
|  | 317 | red_dequeue(struct Qdisc* sch) | 
|  | 318 | { | 
|  | 319 | struct sk_buff *skb; | 
|  | 320 | struct red_sched_data *q = qdisc_priv(sch); | 
|  | 321 |  | 
|  | 322 | skb = __skb_dequeue(&sch->q); | 
|  | 323 | if (skb) { | 
|  | 324 | sch->qstats.backlog -= skb->len; | 
|  | 325 | return skb; | 
|  | 326 | } | 
|  | 327 | PSCHED_GET_TIME(q->qidlestart); | 
|  | 328 | return NULL; | 
|  | 329 | } | 
|  | 330 |  | 
|  | 331 | static unsigned int red_drop(struct Qdisc* sch) | 
|  | 332 | { | 
|  | 333 | struct sk_buff *skb; | 
|  | 334 | struct red_sched_data *q = qdisc_priv(sch); | 
|  | 335 |  | 
|  | 336 | skb = __skb_dequeue_tail(&sch->q); | 
|  | 337 | if (skb) { | 
|  | 338 | unsigned int len = skb->len; | 
|  | 339 | sch->qstats.backlog -= len; | 
|  | 340 | sch->qstats.drops++; | 
|  | 341 | q->st.other++; | 
|  | 342 | kfree_skb(skb); | 
|  | 343 | return len; | 
|  | 344 | } | 
|  | 345 | PSCHED_GET_TIME(q->qidlestart); | 
|  | 346 | return 0; | 
|  | 347 | } | 
|  | 348 |  | 
|  | 349 | static void red_reset(struct Qdisc* sch) | 
|  | 350 | { | 
|  | 351 | struct red_sched_data *q = qdisc_priv(sch); | 
|  | 352 |  | 
|  | 353 | __skb_queue_purge(&sch->q); | 
|  | 354 | sch->qstats.backlog = 0; | 
|  | 355 | PSCHED_SET_PASTPERFECT(q->qidlestart); | 
|  | 356 | q->qave = 0; | 
|  | 357 | q->qcount = -1; | 
|  | 358 | } | 
|  | 359 |  | 
|  | 360 | static int red_change(struct Qdisc *sch, struct rtattr *opt) | 
|  | 361 | { | 
|  | 362 | struct red_sched_data *q = qdisc_priv(sch); | 
|  | 363 | struct rtattr *tb[TCA_RED_STAB]; | 
|  | 364 | struct tc_red_qopt *ctl; | 
|  | 365 |  | 
|  | 366 | if (opt == NULL || | 
|  | 367 | rtattr_parse_nested(tb, TCA_RED_STAB, opt) || | 
|  | 368 | tb[TCA_RED_PARMS-1] == 0 || tb[TCA_RED_STAB-1] == 0 || | 
|  | 369 | RTA_PAYLOAD(tb[TCA_RED_PARMS-1]) < sizeof(*ctl) || | 
|  | 370 | RTA_PAYLOAD(tb[TCA_RED_STAB-1]) < 256) | 
|  | 371 | return -EINVAL; | 
|  | 372 |  | 
|  | 373 | ctl = RTA_DATA(tb[TCA_RED_PARMS-1]); | 
|  | 374 |  | 
|  | 375 | sch_tree_lock(sch); | 
|  | 376 | q->flags = ctl->flags; | 
|  | 377 | q->Wlog = ctl->Wlog; | 
|  | 378 | q->Plog = ctl->Plog; | 
|  | 379 | q->Rmask = ctl->Plog < 32 ? ((1<<ctl->Plog) - 1) : ~0UL; | 
|  | 380 | q->Scell_log = ctl->Scell_log; | 
|  | 381 | q->Scell_max = (255<<q->Scell_log); | 
|  | 382 | q->qth_min = ctl->qth_min<<ctl->Wlog; | 
|  | 383 | q->qth_max = ctl->qth_max<<ctl->Wlog; | 
|  | 384 | q->limit = ctl->limit; | 
|  | 385 | memcpy(q->Stab, RTA_DATA(tb[TCA_RED_STAB-1]), 256); | 
|  | 386 |  | 
|  | 387 | q->qcount = -1; | 
|  | 388 | if (skb_queue_len(&sch->q) == 0) | 
|  | 389 | PSCHED_SET_PASTPERFECT(q->qidlestart); | 
|  | 390 | sch_tree_unlock(sch); | 
|  | 391 | return 0; | 
|  | 392 | } | 
|  | 393 |  | 
|  | 394 | static int red_init(struct Qdisc* sch, struct rtattr *opt) | 
|  | 395 | { | 
|  | 396 | return red_change(sch, opt); | 
|  | 397 | } | 
|  | 398 |  | 
|  | 399 | static int red_dump(struct Qdisc *sch, struct sk_buff *skb) | 
|  | 400 | { | 
|  | 401 | struct red_sched_data *q = qdisc_priv(sch); | 
|  | 402 | unsigned char	 *b = skb->tail; | 
|  | 403 | struct rtattr *rta; | 
|  | 404 | struct tc_red_qopt opt; | 
|  | 405 |  | 
|  | 406 | rta = (struct rtattr*)b; | 
|  | 407 | RTA_PUT(skb, TCA_OPTIONS, 0, NULL); | 
|  | 408 | opt.limit = q->limit; | 
|  | 409 | opt.qth_min = q->qth_min>>q->Wlog; | 
|  | 410 | opt.qth_max = q->qth_max>>q->Wlog; | 
|  | 411 | opt.Wlog = q->Wlog; | 
|  | 412 | opt.Plog = q->Plog; | 
|  | 413 | opt.Scell_log = q->Scell_log; | 
|  | 414 | opt.flags = q->flags; | 
|  | 415 | RTA_PUT(skb, TCA_RED_PARMS, sizeof(opt), &opt); | 
|  | 416 | rta->rta_len = skb->tail - b; | 
|  | 417 |  | 
|  | 418 | return skb->len; | 
|  | 419 |  | 
|  | 420 | rtattr_failure: | 
|  | 421 | skb_trim(skb, b - skb->data); | 
|  | 422 | return -1; | 
|  | 423 | } | 
|  | 424 |  | 
|  | 425 | static int red_dump_stats(struct Qdisc *sch, struct gnet_dump *d) | 
|  | 426 | { | 
|  | 427 | struct red_sched_data *q = qdisc_priv(sch); | 
|  | 428 |  | 
|  | 429 | return gnet_stats_copy_app(d, &q->st, sizeof(q->st)); | 
|  | 430 | } | 
|  | 431 |  | 
|  | 432 | static struct Qdisc_ops red_qdisc_ops = { | 
|  | 433 | .next		=	NULL, | 
|  | 434 | .cl_ops		=	NULL, | 
|  | 435 | .id		=	"red", | 
|  | 436 | .priv_size	=	sizeof(struct red_sched_data), | 
|  | 437 | .enqueue	=	red_enqueue, | 
|  | 438 | .dequeue	=	red_dequeue, | 
|  | 439 | .requeue	=	red_requeue, | 
|  | 440 | .drop		=	red_drop, | 
|  | 441 | .init		=	red_init, | 
|  | 442 | .reset		=	red_reset, | 
|  | 443 | .change		=	red_change, | 
|  | 444 | .dump		=	red_dump, | 
|  | 445 | .dump_stats	=	red_dump_stats, | 
|  | 446 | .owner		=	THIS_MODULE, | 
|  | 447 | }; | 
|  | 448 |  | 
|  | 449 | static int __init red_module_init(void) | 
|  | 450 | { | 
|  | 451 | return register_qdisc(&red_qdisc_ops); | 
|  | 452 | } | 
|  | 453 | static void __exit red_module_exit(void) | 
|  | 454 | { | 
|  | 455 | unregister_qdisc(&red_qdisc_ops); | 
|  | 456 | } | 
|  | 457 | module_init(red_module_init) | 
|  | 458 | module_exit(red_module_exit) | 
|  | 459 | MODULE_LICENSE("GPL"); |