Peter Zijlstra | 029632f | 2011-10-25 10:00:11 +0200 | [diff] [blame] | 1 | |
| 2 | #include <linux/sched.h> |
| 3 | #include <linux/mutex.h> |
| 4 | #include <linux/spinlock.h> |
| 5 | #include <linux/stop_machine.h> |
| 6 | |
Peter Zijlstra | 391e43d | 2011-11-15 17:14:39 +0100 | [diff] [blame] | 7 | #include "cpupri.h" |
Peter Zijlstra | 029632f | 2011-10-25 10:00:11 +0200 | [diff] [blame] | 8 | |
| 9 | extern __read_mostly int scheduler_running; |
| 10 | |
| 11 | /* |
| 12 | * Convert user-nice values [ -20 ... 0 ... 19 ] |
| 13 | * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], |
| 14 | * and back. |
| 15 | */ |
| 16 | #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20) |
| 17 | #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20) |
| 18 | #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio) |
| 19 | |
| 20 | /* |
| 21 | * 'User priority' is the nice value converted to something we |
| 22 | * can work with better when scaling various scheduler parameters, |
| 23 | * it's a [ 0 ... 39 ] range. |
| 24 | */ |
| 25 | #define USER_PRIO(p) ((p)-MAX_RT_PRIO) |
| 26 | #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio) |
| 27 | #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO)) |
| 28 | |
| 29 | /* |
| 30 | * Helpers for converting nanosecond timing to jiffy resolution |
| 31 | */ |
| 32 | #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) |
| 33 | |
| 34 | #define NICE_0_LOAD SCHED_LOAD_SCALE |
| 35 | #define NICE_0_SHIFT SCHED_LOAD_SHIFT |
| 36 | |
| 37 | /* |
| 38 | * These are the 'tuning knobs' of the scheduler: |
Peter Zijlstra | 029632f | 2011-10-25 10:00:11 +0200 | [diff] [blame] | 39 | */ |
Peter Zijlstra | 029632f | 2011-10-25 10:00:11 +0200 | [diff] [blame] | 40 | |
| 41 | /* |
| 42 | * single value that denotes runtime == period, ie unlimited time. |
| 43 | */ |
| 44 | #define RUNTIME_INF ((u64)~0ULL) |
| 45 | |
| 46 | static inline int rt_policy(int policy) |
| 47 | { |
| 48 | if (policy == SCHED_FIFO || policy == SCHED_RR) |
| 49 | return 1; |
| 50 | return 0; |
| 51 | } |
| 52 | |
| 53 | static inline int task_has_rt_policy(struct task_struct *p) |
| 54 | { |
| 55 | return rt_policy(p->policy); |
| 56 | } |
| 57 | |
| 58 | /* |
| 59 | * This is the priority-queue data structure of the RT scheduling class: |
| 60 | */ |
| 61 | struct rt_prio_array { |
| 62 | DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ |
| 63 | struct list_head queue[MAX_RT_PRIO]; |
| 64 | }; |
| 65 | |
| 66 | struct rt_bandwidth { |
| 67 | /* nests inside the rq lock: */ |
| 68 | raw_spinlock_t rt_runtime_lock; |
| 69 | ktime_t rt_period; |
| 70 | u64 rt_runtime; |
| 71 | struct hrtimer rt_period_timer; |
| 72 | }; |
| 73 | |
| 74 | extern struct mutex sched_domains_mutex; |
| 75 | |
| 76 | #ifdef CONFIG_CGROUP_SCHED |
| 77 | |
| 78 | #include <linux/cgroup.h> |
| 79 | |
| 80 | struct cfs_rq; |
| 81 | struct rt_rq; |
| 82 | |
| 83 | static LIST_HEAD(task_groups); |
| 84 | |
| 85 | struct cfs_bandwidth { |
| 86 | #ifdef CONFIG_CFS_BANDWIDTH |
| 87 | raw_spinlock_t lock; |
| 88 | ktime_t period; |
| 89 | u64 quota, runtime; |
| 90 | s64 hierarchal_quota; |
| 91 | u64 runtime_expires; |
| 92 | |
| 93 | int idle, timer_active; |
| 94 | struct hrtimer period_timer, slack_timer; |
| 95 | struct list_head throttled_cfs_rq; |
| 96 | |
| 97 | /* statistics */ |
| 98 | int nr_periods, nr_throttled; |
| 99 | u64 throttled_time; |
| 100 | #endif |
| 101 | }; |
| 102 | |
| 103 | /* task group related information */ |
| 104 | struct task_group { |
| 105 | struct cgroup_subsys_state css; |
| 106 | |
| 107 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 108 | /* schedulable entities of this group on each cpu */ |
| 109 | struct sched_entity **se; |
| 110 | /* runqueue "owned" by this group on each cpu */ |
| 111 | struct cfs_rq **cfs_rq; |
| 112 | unsigned long shares; |
| 113 | |
| 114 | atomic_t load_weight; |
| 115 | #endif |
| 116 | |
| 117 | #ifdef CONFIG_RT_GROUP_SCHED |
| 118 | struct sched_rt_entity **rt_se; |
| 119 | struct rt_rq **rt_rq; |
| 120 | |
| 121 | struct rt_bandwidth rt_bandwidth; |
| 122 | #endif |
| 123 | |
| 124 | struct rcu_head rcu; |
| 125 | struct list_head list; |
| 126 | |
| 127 | struct task_group *parent; |
| 128 | struct list_head siblings; |
| 129 | struct list_head children; |
| 130 | |
| 131 | #ifdef CONFIG_SCHED_AUTOGROUP |
| 132 | struct autogroup *autogroup; |
| 133 | #endif |
| 134 | |
| 135 | struct cfs_bandwidth cfs_bandwidth; |
| 136 | }; |
| 137 | |
| 138 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 139 | #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD |
| 140 | |
| 141 | /* |
| 142 | * A weight of 0 or 1 can cause arithmetics problems. |
| 143 | * A weight of a cfs_rq is the sum of weights of which entities |
| 144 | * are queued on this cfs_rq, so a weight of a entity should not be |
| 145 | * too large, so as the shares value of a task group. |
| 146 | * (The default weight is 1024 - so there's no practical |
| 147 | * limitation from this.) |
| 148 | */ |
| 149 | #define MIN_SHARES (1UL << 1) |
| 150 | #define MAX_SHARES (1UL << 18) |
| 151 | #endif |
| 152 | |
| 153 | /* Default task group. |
| 154 | * Every task in system belong to this group at bootup. |
| 155 | */ |
| 156 | extern struct task_group root_task_group; |
| 157 | |
| 158 | typedef int (*tg_visitor)(struct task_group *, void *); |
| 159 | |
| 160 | extern int walk_tg_tree_from(struct task_group *from, |
| 161 | tg_visitor down, tg_visitor up, void *data); |
| 162 | |
| 163 | /* |
| 164 | * Iterate the full tree, calling @down when first entering a node and @up when |
| 165 | * leaving it for the final time. |
| 166 | * |
| 167 | * Caller must hold rcu_lock or sufficient equivalent. |
| 168 | */ |
| 169 | static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) |
| 170 | { |
| 171 | return walk_tg_tree_from(&root_task_group, down, up, data); |
| 172 | } |
| 173 | |
| 174 | extern int tg_nop(struct task_group *tg, void *data); |
| 175 | |
| 176 | extern void free_fair_sched_group(struct task_group *tg); |
| 177 | extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); |
| 178 | extern void unregister_fair_sched_group(struct task_group *tg, int cpu); |
| 179 | extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, |
| 180 | struct sched_entity *se, int cpu, |
| 181 | struct sched_entity *parent); |
| 182 | extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b); |
| 183 | extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); |
| 184 | |
| 185 | extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); |
| 186 | extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); |
| 187 | extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); |
| 188 | |
| 189 | extern void free_rt_sched_group(struct task_group *tg); |
| 190 | extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); |
| 191 | extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, |
| 192 | struct sched_rt_entity *rt_se, int cpu, |
| 193 | struct sched_rt_entity *parent); |
| 194 | |
| 195 | #else /* CONFIG_CGROUP_SCHED */ |
| 196 | |
| 197 | struct cfs_bandwidth { }; |
| 198 | |
| 199 | #endif /* CONFIG_CGROUP_SCHED */ |
| 200 | |
| 201 | /* CFS-related fields in a runqueue */ |
| 202 | struct cfs_rq { |
| 203 | struct load_weight load; |
Peter Zijlstra | c82513e | 2012-04-26 13:12:27 +0200 | [diff] [blame] | 204 | unsigned int nr_running, h_nr_running; |
Peter Zijlstra | 029632f | 2011-10-25 10:00:11 +0200 | [diff] [blame] | 205 | |
| 206 | u64 exec_clock; |
| 207 | u64 min_vruntime; |
| 208 | #ifndef CONFIG_64BIT |
| 209 | u64 min_vruntime_copy; |
| 210 | #endif |
| 211 | |
| 212 | struct rb_root tasks_timeline; |
| 213 | struct rb_node *rb_leftmost; |
| 214 | |
Peter Zijlstra | 029632f | 2011-10-25 10:00:11 +0200 | [diff] [blame] | 215 | /* |
| 216 | * 'curr' points to currently running entity on this cfs_rq. |
| 217 | * It is set to NULL otherwise (i.e when none are currently running). |
| 218 | */ |
| 219 | struct sched_entity *curr, *next, *last, *skip; |
| 220 | |
| 221 | #ifdef CONFIG_SCHED_DEBUG |
| 222 | unsigned int nr_spread_over; |
| 223 | #endif |
| 224 | |
| 225 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 226 | struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */ |
| 227 | |
| 228 | /* |
| 229 | * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in |
| 230 | * a hierarchy). Non-leaf lrqs hold other higher schedulable entities |
| 231 | * (like users, containers etc.) |
| 232 | * |
| 233 | * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This |
| 234 | * list is used during load balance. |
| 235 | */ |
| 236 | int on_list; |
| 237 | struct list_head leaf_cfs_rq_list; |
| 238 | struct task_group *tg; /* group that "owns" this runqueue */ |
| 239 | |
| 240 | #ifdef CONFIG_SMP |
| 241 | /* |
Peter Zijlstra | 029632f | 2011-10-25 10:00:11 +0200 | [diff] [blame] | 242 | * h_load = weight * f(tg) |
| 243 | * |
| 244 | * Where f(tg) is the recursive weight fraction assigned to |
| 245 | * this group. |
| 246 | */ |
| 247 | unsigned long h_load; |
| 248 | |
| 249 | /* |
| 250 | * Maintaining per-cpu shares distribution for group scheduling |
| 251 | * |
| 252 | * load_stamp is the last time we updated the load average |
| 253 | * load_last is the last time we updated the load average and saw load |
| 254 | * load_unacc_exec_time is currently unaccounted execution time |
| 255 | */ |
| 256 | u64 load_avg; |
| 257 | u64 load_period; |
| 258 | u64 load_stamp, load_last, load_unacc_exec_time; |
| 259 | |
| 260 | unsigned long load_contribution; |
| 261 | #endif /* CONFIG_SMP */ |
| 262 | #ifdef CONFIG_CFS_BANDWIDTH |
| 263 | int runtime_enabled; |
| 264 | u64 runtime_expires; |
| 265 | s64 runtime_remaining; |
| 266 | |
| 267 | u64 throttled_timestamp; |
| 268 | int throttled, throttle_count; |
| 269 | struct list_head throttled_list; |
| 270 | #endif /* CONFIG_CFS_BANDWIDTH */ |
| 271 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
| 272 | }; |
| 273 | |
| 274 | static inline int rt_bandwidth_enabled(void) |
| 275 | { |
| 276 | return sysctl_sched_rt_runtime >= 0; |
| 277 | } |
| 278 | |
| 279 | /* Real-Time classes' related field in a runqueue: */ |
| 280 | struct rt_rq { |
| 281 | struct rt_prio_array active; |
Peter Zijlstra | c82513e | 2012-04-26 13:12:27 +0200 | [diff] [blame] | 282 | unsigned int rt_nr_running; |
Peter Zijlstra | 029632f | 2011-10-25 10:00:11 +0200 | [diff] [blame] | 283 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED |
| 284 | struct { |
| 285 | int curr; /* highest queued rt task prio */ |
| 286 | #ifdef CONFIG_SMP |
| 287 | int next; /* next highest */ |
| 288 | #endif |
| 289 | } highest_prio; |
| 290 | #endif |
| 291 | #ifdef CONFIG_SMP |
| 292 | unsigned long rt_nr_migratory; |
| 293 | unsigned long rt_nr_total; |
| 294 | int overloaded; |
| 295 | struct plist_head pushable_tasks; |
| 296 | #endif |
| 297 | int rt_throttled; |
| 298 | u64 rt_time; |
| 299 | u64 rt_runtime; |
| 300 | /* Nests inside the rq lock: */ |
| 301 | raw_spinlock_t rt_runtime_lock; |
| 302 | |
| 303 | #ifdef CONFIG_RT_GROUP_SCHED |
| 304 | unsigned long rt_nr_boosted; |
| 305 | |
| 306 | struct rq *rq; |
| 307 | struct list_head leaf_rt_rq_list; |
| 308 | struct task_group *tg; |
| 309 | #endif |
| 310 | }; |
| 311 | |
| 312 | #ifdef CONFIG_SMP |
| 313 | |
| 314 | /* |
| 315 | * We add the notion of a root-domain which will be used to define per-domain |
| 316 | * variables. Each exclusive cpuset essentially defines an island domain by |
| 317 | * fully partitioning the member cpus from any other cpuset. Whenever a new |
| 318 | * exclusive cpuset is created, we also create and attach a new root-domain |
| 319 | * object. |
| 320 | * |
| 321 | */ |
| 322 | struct root_domain { |
| 323 | atomic_t refcount; |
| 324 | atomic_t rto_count; |
| 325 | struct rcu_head rcu; |
| 326 | cpumask_var_t span; |
| 327 | cpumask_var_t online; |
| 328 | |
| 329 | /* |
| 330 | * The "RT overload" flag: it gets set if a CPU has more than |
| 331 | * one runnable RT task. |
| 332 | */ |
| 333 | cpumask_var_t rto_mask; |
| 334 | struct cpupri cpupri; |
| 335 | }; |
| 336 | |
| 337 | extern struct root_domain def_root_domain; |
| 338 | |
| 339 | #endif /* CONFIG_SMP */ |
| 340 | |
| 341 | /* |
| 342 | * This is the main, per-CPU runqueue data structure. |
| 343 | * |
| 344 | * Locking rule: those places that want to lock multiple runqueues |
| 345 | * (such as the load balancing or the thread migration code), lock |
| 346 | * acquire operations must be ordered by ascending &runqueue. |
| 347 | */ |
| 348 | struct rq { |
| 349 | /* runqueue lock: */ |
| 350 | raw_spinlock_t lock; |
| 351 | |
| 352 | /* |
| 353 | * nr_running and cpu_load should be in the same cacheline because |
| 354 | * remote CPUs use both these fields when doing load calculation. |
| 355 | */ |
Peter Zijlstra | c82513e | 2012-04-26 13:12:27 +0200 | [diff] [blame] | 356 | unsigned int nr_running; |
Peter Zijlstra | 029632f | 2011-10-25 10:00:11 +0200 | [diff] [blame] | 357 | #define CPU_LOAD_IDX_MAX 5 |
| 358 | unsigned long cpu_load[CPU_LOAD_IDX_MAX]; |
| 359 | unsigned long last_load_update_tick; |
| 360 | #ifdef CONFIG_NO_HZ |
| 361 | u64 nohz_stamp; |
Suresh Siddha | 1c792db | 2011-12-01 17:07:32 -0800 | [diff] [blame] | 362 | unsigned long nohz_flags; |
Peter Zijlstra | 029632f | 2011-10-25 10:00:11 +0200 | [diff] [blame] | 363 | #endif |
| 364 | int skip_clock_update; |
| 365 | |
| 366 | /* capture load from *all* tasks on this cpu: */ |
| 367 | struct load_weight load; |
| 368 | unsigned long nr_load_updates; |
| 369 | u64 nr_switches; |
| 370 | |
| 371 | struct cfs_rq cfs; |
| 372 | struct rt_rq rt; |
| 373 | |
| 374 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 375 | /* list of leaf cfs_rq on this cpu: */ |
| 376 | struct list_head leaf_cfs_rq_list; |
| 377 | #endif |
| 378 | #ifdef CONFIG_RT_GROUP_SCHED |
| 379 | struct list_head leaf_rt_rq_list; |
| 380 | #endif |
| 381 | |
| 382 | /* |
| 383 | * This is part of a global counter where only the total sum |
| 384 | * over all CPUs matters. A task can increase this counter on |
| 385 | * one CPU and if it got migrated afterwards it may decrease |
| 386 | * it on another CPU. Always updated under the runqueue lock: |
| 387 | */ |
| 388 | unsigned long nr_uninterruptible; |
| 389 | |
| 390 | struct task_struct *curr, *idle, *stop; |
| 391 | unsigned long next_balance; |
| 392 | struct mm_struct *prev_mm; |
| 393 | |
| 394 | u64 clock; |
| 395 | u64 clock_task; |
| 396 | |
| 397 | atomic_t nr_iowait; |
| 398 | |
| 399 | #ifdef CONFIG_SMP |
| 400 | struct root_domain *rd; |
| 401 | struct sched_domain *sd; |
| 402 | |
| 403 | unsigned long cpu_power; |
| 404 | |
| 405 | unsigned char idle_balance; |
| 406 | /* For active balancing */ |
| 407 | int post_schedule; |
| 408 | int active_balance; |
| 409 | int push_cpu; |
| 410 | struct cpu_stop_work active_balance_work; |
| 411 | /* cpu of this runqueue: */ |
| 412 | int cpu; |
| 413 | int online; |
| 414 | |
Peter Zijlstra | 367456c | 2012-02-20 21:49:09 +0100 | [diff] [blame] | 415 | struct list_head cfs_tasks; |
| 416 | |
Peter Zijlstra | 029632f | 2011-10-25 10:00:11 +0200 | [diff] [blame] | 417 | u64 rt_avg; |
| 418 | u64 age_stamp; |
| 419 | u64 idle_stamp; |
| 420 | u64 avg_idle; |
| 421 | #endif |
| 422 | |
| 423 | #ifdef CONFIG_IRQ_TIME_ACCOUNTING |
| 424 | u64 prev_irq_time; |
| 425 | #endif |
| 426 | #ifdef CONFIG_PARAVIRT |
| 427 | u64 prev_steal_time; |
| 428 | #endif |
| 429 | #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING |
| 430 | u64 prev_steal_time_rq; |
| 431 | #endif |
| 432 | |
| 433 | /* calc_load related fields */ |
| 434 | unsigned long calc_load_update; |
| 435 | long calc_load_active; |
| 436 | |
| 437 | #ifdef CONFIG_SCHED_HRTICK |
| 438 | #ifdef CONFIG_SMP |
| 439 | int hrtick_csd_pending; |
| 440 | struct call_single_data hrtick_csd; |
| 441 | #endif |
| 442 | struct hrtimer hrtick_timer; |
| 443 | #endif |
| 444 | |
| 445 | #ifdef CONFIG_SCHEDSTATS |
| 446 | /* latency stats */ |
| 447 | struct sched_info rq_sched_info; |
| 448 | unsigned long long rq_cpu_time; |
| 449 | /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ |
| 450 | |
| 451 | /* sys_sched_yield() stats */ |
| 452 | unsigned int yld_count; |
| 453 | |
| 454 | /* schedule() stats */ |
Peter Zijlstra | 029632f | 2011-10-25 10:00:11 +0200 | [diff] [blame] | 455 | unsigned int sched_count; |
| 456 | unsigned int sched_goidle; |
| 457 | |
| 458 | /* try_to_wake_up() stats */ |
| 459 | unsigned int ttwu_count; |
| 460 | unsigned int ttwu_local; |
| 461 | #endif |
| 462 | |
| 463 | #ifdef CONFIG_SMP |
| 464 | struct llist_head wake_list; |
| 465 | #endif |
| 466 | }; |
| 467 | |
| 468 | static inline int cpu_of(struct rq *rq) |
| 469 | { |
| 470 | #ifdef CONFIG_SMP |
| 471 | return rq->cpu; |
| 472 | #else |
| 473 | return 0; |
| 474 | #endif |
| 475 | } |
| 476 | |
| 477 | DECLARE_PER_CPU(struct rq, runqueues); |
| 478 | |
Peter Zijlstra | 518cd62 | 2011-12-07 15:07:31 +0100 | [diff] [blame] | 479 | #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) |
| 480 | #define this_rq() (&__get_cpu_var(runqueues)) |
| 481 | #define task_rq(p) cpu_rq(task_cpu(p)) |
| 482 | #define cpu_curr(cpu) (cpu_rq(cpu)->curr) |
| 483 | #define raw_rq() (&__raw_get_cpu_var(runqueues)) |
| 484 | |
| 485 | #ifdef CONFIG_SMP |
| 486 | |
Peter Zijlstra | 029632f | 2011-10-25 10:00:11 +0200 | [diff] [blame] | 487 | #define rcu_dereference_check_sched_domain(p) \ |
| 488 | rcu_dereference_check((p), \ |
| 489 | lockdep_is_held(&sched_domains_mutex)) |
| 490 | |
| 491 | /* |
| 492 | * The domain tree (rq->sd) is protected by RCU's quiescent state transition. |
| 493 | * See detach_destroy_domains: synchronize_sched for details. |
| 494 | * |
| 495 | * The domain tree of any CPU may only be accessed from within |
| 496 | * preempt-disabled sections. |
| 497 | */ |
| 498 | #define for_each_domain(cpu, __sd) \ |
Peter Zijlstra | 518cd62 | 2011-12-07 15:07:31 +0100 | [diff] [blame] | 499 | for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ |
| 500 | __sd; __sd = __sd->parent) |
Peter Zijlstra | 029632f | 2011-10-25 10:00:11 +0200 | [diff] [blame] | 501 | |
Suresh Siddha | 77e8136 | 2011-11-17 11:08:23 -0800 | [diff] [blame] | 502 | #define for_each_lower_domain(sd) for (; sd; sd = sd->child) |
| 503 | |
Peter Zijlstra | 518cd62 | 2011-12-07 15:07:31 +0100 | [diff] [blame] | 504 | /** |
| 505 | * highest_flag_domain - Return highest sched_domain containing flag. |
| 506 | * @cpu: The cpu whose highest level of sched domain is to |
| 507 | * be returned. |
| 508 | * @flag: The flag to check for the highest sched_domain |
| 509 | * for the given cpu. |
| 510 | * |
| 511 | * Returns the highest sched_domain of a cpu which contains the given flag. |
| 512 | */ |
| 513 | static inline struct sched_domain *highest_flag_domain(int cpu, int flag) |
| 514 | { |
| 515 | struct sched_domain *sd, *hsd = NULL; |
| 516 | |
| 517 | for_each_domain(cpu, sd) { |
| 518 | if (!(sd->flags & flag)) |
| 519 | break; |
| 520 | hsd = sd; |
| 521 | } |
| 522 | |
| 523 | return hsd; |
| 524 | } |
| 525 | |
| 526 | DECLARE_PER_CPU(struct sched_domain *, sd_llc); |
| 527 | DECLARE_PER_CPU(int, sd_llc_id); |
| 528 | |
| 529 | #endif /* CONFIG_SMP */ |
Peter Zijlstra | 029632f | 2011-10-25 10:00:11 +0200 | [diff] [blame] | 530 | |
Peter Zijlstra | 391e43d | 2011-11-15 17:14:39 +0100 | [diff] [blame] | 531 | #include "stats.h" |
| 532 | #include "auto_group.h" |
Peter Zijlstra | 029632f | 2011-10-25 10:00:11 +0200 | [diff] [blame] | 533 | |
| 534 | #ifdef CONFIG_CGROUP_SCHED |
| 535 | |
| 536 | /* |
| 537 | * Return the group to which this tasks belongs. |
| 538 | * |
| 539 | * We use task_subsys_state_check() and extend the RCU verification with |
| 540 | * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each |
| 541 | * task it moves into the cgroup. Therefore by holding either of those locks, |
| 542 | * we pin the task to the current cgroup. |
| 543 | */ |
| 544 | static inline struct task_group *task_group(struct task_struct *p) |
| 545 | { |
| 546 | struct task_group *tg; |
| 547 | struct cgroup_subsys_state *css; |
| 548 | |
| 549 | css = task_subsys_state_check(p, cpu_cgroup_subsys_id, |
| 550 | lockdep_is_held(&p->pi_lock) || |
| 551 | lockdep_is_held(&task_rq(p)->lock)); |
| 552 | tg = container_of(css, struct task_group, css); |
| 553 | |
| 554 | return autogroup_task_group(p, tg); |
| 555 | } |
| 556 | |
| 557 | /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ |
| 558 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) |
| 559 | { |
| 560 | #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) |
| 561 | struct task_group *tg = task_group(p); |
| 562 | #endif |
| 563 | |
| 564 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 565 | p->se.cfs_rq = tg->cfs_rq[cpu]; |
| 566 | p->se.parent = tg->se[cpu]; |
| 567 | #endif |
| 568 | |
| 569 | #ifdef CONFIG_RT_GROUP_SCHED |
| 570 | p->rt.rt_rq = tg->rt_rq[cpu]; |
| 571 | p->rt.parent = tg->rt_se[cpu]; |
| 572 | #endif |
| 573 | } |
| 574 | |
| 575 | #else /* CONFIG_CGROUP_SCHED */ |
| 576 | |
| 577 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } |
| 578 | static inline struct task_group *task_group(struct task_struct *p) |
| 579 | { |
| 580 | return NULL; |
| 581 | } |
| 582 | |
| 583 | #endif /* CONFIG_CGROUP_SCHED */ |
| 584 | |
| 585 | static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) |
| 586 | { |
| 587 | set_task_rq(p, cpu); |
| 588 | #ifdef CONFIG_SMP |
| 589 | /* |
| 590 | * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be |
| 591 | * successfuly executed on another CPU. We must ensure that updates of |
| 592 | * per-task data have been completed by this moment. |
| 593 | */ |
| 594 | smp_wmb(); |
| 595 | task_thread_info(p)->cpu = cpu; |
| 596 | #endif |
| 597 | } |
| 598 | |
| 599 | /* |
| 600 | * Tunables that become constants when CONFIG_SCHED_DEBUG is off: |
| 601 | */ |
| 602 | #ifdef CONFIG_SCHED_DEBUG |
Ingo Molnar | c5905af | 2012-02-24 08:31:31 +0100 | [diff] [blame] | 603 | # include <linux/static_key.h> |
Peter Zijlstra | 029632f | 2011-10-25 10:00:11 +0200 | [diff] [blame] | 604 | # define const_debug __read_mostly |
| 605 | #else |
| 606 | # define const_debug const |
| 607 | #endif |
| 608 | |
| 609 | extern const_debug unsigned int sysctl_sched_features; |
| 610 | |
| 611 | #define SCHED_FEAT(name, enabled) \ |
| 612 | __SCHED_FEAT_##name , |
| 613 | |
| 614 | enum { |
Peter Zijlstra | 391e43d | 2011-11-15 17:14:39 +0100 | [diff] [blame] | 615 | #include "features.h" |
Peter Zijlstra | f8b6d1c | 2011-07-06 14:20:14 +0200 | [diff] [blame] | 616 | __SCHED_FEAT_NR, |
Peter Zijlstra | 029632f | 2011-10-25 10:00:11 +0200 | [diff] [blame] | 617 | }; |
| 618 | |
| 619 | #undef SCHED_FEAT |
| 620 | |
Peter Zijlstra | f8b6d1c | 2011-07-06 14:20:14 +0200 | [diff] [blame] | 621 | #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL) |
Ingo Molnar | c5905af | 2012-02-24 08:31:31 +0100 | [diff] [blame] | 622 | static __always_inline bool static_branch__true(struct static_key *key) |
Peter Zijlstra | f8b6d1c | 2011-07-06 14:20:14 +0200 | [diff] [blame] | 623 | { |
Ingo Molnar | c5905af | 2012-02-24 08:31:31 +0100 | [diff] [blame] | 624 | return static_key_true(key); /* Not out of line branch. */ |
Peter Zijlstra | f8b6d1c | 2011-07-06 14:20:14 +0200 | [diff] [blame] | 625 | } |
| 626 | |
Ingo Molnar | c5905af | 2012-02-24 08:31:31 +0100 | [diff] [blame] | 627 | static __always_inline bool static_branch__false(struct static_key *key) |
Peter Zijlstra | f8b6d1c | 2011-07-06 14:20:14 +0200 | [diff] [blame] | 628 | { |
Ingo Molnar | c5905af | 2012-02-24 08:31:31 +0100 | [diff] [blame] | 629 | return static_key_false(key); /* Out of line branch. */ |
Peter Zijlstra | f8b6d1c | 2011-07-06 14:20:14 +0200 | [diff] [blame] | 630 | } |
| 631 | |
| 632 | #define SCHED_FEAT(name, enabled) \ |
Ingo Molnar | c5905af | 2012-02-24 08:31:31 +0100 | [diff] [blame] | 633 | static __always_inline bool static_branch_##name(struct static_key *key) \ |
Peter Zijlstra | f8b6d1c | 2011-07-06 14:20:14 +0200 | [diff] [blame] | 634 | { \ |
| 635 | return static_branch__##enabled(key); \ |
| 636 | } |
| 637 | |
| 638 | #include "features.h" |
| 639 | |
| 640 | #undef SCHED_FEAT |
| 641 | |
Ingo Molnar | c5905af | 2012-02-24 08:31:31 +0100 | [diff] [blame] | 642 | extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; |
Peter Zijlstra | f8b6d1c | 2011-07-06 14:20:14 +0200 | [diff] [blame] | 643 | #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) |
| 644 | #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */ |
Peter Zijlstra | 029632f | 2011-10-25 10:00:11 +0200 | [diff] [blame] | 645 | #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) |
Peter Zijlstra | f8b6d1c | 2011-07-06 14:20:14 +0200 | [diff] [blame] | 646 | #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */ |
Peter Zijlstra | 029632f | 2011-10-25 10:00:11 +0200 | [diff] [blame] | 647 | |
| 648 | static inline u64 global_rt_period(void) |
| 649 | { |
| 650 | return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; |
| 651 | } |
| 652 | |
| 653 | static inline u64 global_rt_runtime(void) |
| 654 | { |
| 655 | if (sysctl_sched_rt_runtime < 0) |
| 656 | return RUNTIME_INF; |
| 657 | |
| 658 | return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; |
| 659 | } |
| 660 | |
| 661 | |
| 662 | |
| 663 | static inline int task_current(struct rq *rq, struct task_struct *p) |
| 664 | { |
| 665 | return rq->curr == p; |
| 666 | } |
| 667 | |
| 668 | static inline int task_running(struct rq *rq, struct task_struct *p) |
| 669 | { |
| 670 | #ifdef CONFIG_SMP |
| 671 | return p->on_cpu; |
| 672 | #else |
| 673 | return task_current(rq, p); |
| 674 | #endif |
| 675 | } |
| 676 | |
| 677 | |
| 678 | #ifndef prepare_arch_switch |
| 679 | # define prepare_arch_switch(next) do { } while (0) |
| 680 | #endif |
| 681 | #ifndef finish_arch_switch |
| 682 | # define finish_arch_switch(prev) do { } while (0) |
| 683 | #endif |
Catalin Marinas | 01f23e1 | 2011-11-27 21:43:10 +0000 | [diff] [blame] | 684 | #ifndef finish_arch_post_lock_switch |
| 685 | # define finish_arch_post_lock_switch() do { } while (0) |
| 686 | #endif |
Peter Zijlstra | 029632f | 2011-10-25 10:00:11 +0200 | [diff] [blame] | 687 | |
| 688 | #ifndef __ARCH_WANT_UNLOCKED_CTXSW |
| 689 | static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) |
| 690 | { |
| 691 | #ifdef CONFIG_SMP |
| 692 | /* |
| 693 | * We can optimise this out completely for !SMP, because the |
| 694 | * SMP rebalancing from interrupt is the only thing that cares |
| 695 | * here. |
| 696 | */ |
| 697 | next->on_cpu = 1; |
| 698 | #endif |
| 699 | } |
| 700 | |
| 701 | static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) |
| 702 | { |
| 703 | #ifdef CONFIG_SMP |
| 704 | /* |
| 705 | * After ->on_cpu is cleared, the task can be moved to a different CPU. |
| 706 | * We must ensure this doesn't happen until the switch is completely |
| 707 | * finished. |
| 708 | */ |
| 709 | smp_wmb(); |
| 710 | prev->on_cpu = 0; |
| 711 | #endif |
| 712 | #ifdef CONFIG_DEBUG_SPINLOCK |
| 713 | /* this is a valid case when another task releases the spinlock */ |
| 714 | rq->lock.owner = current; |
| 715 | #endif |
| 716 | /* |
| 717 | * If we are tracking spinlock dependencies then we have to |
| 718 | * fix up the runqueue lock - which gets 'carried over' from |
| 719 | * prev into current: |
| 720 | */ |
| 721 | spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); |
| 722 | |
| 723 | raw_spin_unlock_irq(&rq->lock); |
| 724 | } |
| 725 | |
| 726 | #else /* __ARCH_WANT_UNLOCKED_CTXSW */ |
| 727 | static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) |
| 728 | { |
| 729 | #ifdef CONFIG_SMP |
| 730 | /* |
| 731 | * We can optimise this out completely for !SMP, because the |
| 732 | * SMP rebalancing from interrupt is the only thing that cares |
| 733 | * here. |
| 734 | */ |
| 735 | next->on_cpu = 1; |
| 736 | #endif |
| 737 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW |
| 738 | raw_spin_unlock_irq(&rq->lock); |
| 739 | #else |
| 740 | raw_spin_unlock(&rq->lock); |
| 741 | #endif |
| 742 | } |
| 743 | |
| 744 | static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) |
| 745 | { |
| 746 | #ifdef CONFIG_SMP |
| 747 | /* |
| 748 | * After ->on_cpu is cleared, the task can be moved to a different CPU. |
| 749 | * We must ensure this doesn't happen until the switch is completely |
| 750 | * finished. |
| 751 | */ |
| 752 | smp_wmb(); |
| 753 | prev->on_cpu = 0; |
| 754 | #endif |
| 755 | #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW |
| 756 | local_irq_enable(); |
| 757 | #endif |
| 758 | } |
| 759 | #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ |
| 760 | |
| 761 | |
| 762 | static inline void update_load_add(struct load_weight *lw, unsigned long inc) |
| 763 | { |
| 764 | lw->weight += inc; |
| 765 | lw->inv_weight = 0; |
| 766 | } |
| 767 | |
| 768 | static inline void update_load_sub(struct load_weight *lw, unsigned long dec) |
| 769 | { |
| 770 | lw->weight -= dec; |
| 771 | lw->inv_weight = 0; |
| 772 | } |
| 773 | |
| 774 | static inline void update_load_set(struct load_weight *lw, unsigned long w) |
| 775 | { |
| 776 | lw->weight = w; |
| 777 | lw->inv_weight = 0; |
| 778 | } |
| 779 | |
| 780 | /* |
| 781 | * To aid in avoiding the subversion of "niceness" due to uneven distribution |
| 782 | * of tasks with abnormal "nice" values across CPUs the contribution that |
| 783 | * each task makes to its run queue's load is weighted according to its |
| 784 | * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a |
| 785 | * scaled version of the new time slice allocation that they receive on time |
| 786 | * slice expiry etc. |
| 787 | */ |
| 788 | |
| 789 | #define WEIGHT_IDLEPRIO 3 |
| 790 | #define WMULT_IDLEPRIO 1431655765 |
| 791 | |
| 792 | /* |
| 793 | * Nice levels are multiplicative, with a gentle 10% change for every |
| 794 | * nice level changed. I.e. when a CPU-bound task goes from nice 0 to |
| 795 | * nice 1, it will get ~10% less CPU time than another CPU-bound task |
| 796 | * that remained on nice 0. |
| 797 | * |
| 798 | * The "10% effect" is relative and cumulative: from _any_ nice level, |
| 799 | * if you go up 1 level, it's -10% CPU usage, if you go down 1 level |
| 800 | * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. |
| 801 | * If a task goes up by ~10% and another task goes down by ~10% then |
| 802 | * the relative distance between them is ~25%.) |
| 803 | */ |
| 804 | static const int prio_to_weight[40] = { |
| 805 | /* -20 */ 88761, 71755, 56483, 46273, 36291, |
| 806 | /* -15 */ 29154, 23254, 18705, 14949, 11916, |
| 807 | /* -10 */ 9548, 7620, 6100, 4904, 3906, |
| 808 | /* -5 */ 3121, 2501, 1991, 1586, 1277, |
| 809 | /* 0 */ 1024, 820, 655, 526, 423, |
| 810 | /* 5 */ 335, 272, 215, 172, 137, |
| 811 | /* 10 */ 110, 87, 70, 56, 45, |
| 812 | /* 15 */ 36, 29, 23, 18, 15, |
| 813 | }; |
| 814 | |
| 815 | /* |
| 816 | * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated. |
| 817 | * |
| 818 | * In cases where the weight does not change often, we can use the |
| 819 | * precalculated inverse to speed up arithmetics by turning divisions |
| 820 | * into multiplications: |
| 821 | */ |
| 822 | static const u32 prio_to_wmult[40] = { |
| 823 | /* -20 */ 48388, 59856, 76040, 92818, 118348, |
| 824 | /* -15 */ 147320, 184698, 229616, 287308, 360437, |
| 825 | /* -10 */ 449829, 563644, 704093, 875809, 1099582, |
| 826 | /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, |
| 827 | /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, |
| 828 | /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, |
| 829 | /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, |
| 830 | /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, |
| 831 | }; |
| 832 | |
| 833 | /* Time spent by the tasks of the cpu accounting group executing in ... */ |
| 834 | enum cpuacct_stat_index { |
| 835 | CPUACCT_STAT_USER, /* ... user mode */ |
| 836 | CPUACCT_STAT_SYSTEM, /* ... kernel mode */ |
| 837 | |
| 838 | CPUACCT_STAT_NSTATS, |
| 839 | }; |
| 840 | |
| 841 | |
| 842 | #define sched_class_highest (&stop_sched_class) |
| 843 | #define for_each_class(class) \ |
| 844 | for (class = sched_class_highest; class; class = class->next) |
| 845 | |
| 846 | extern const struct sched_class stop_sched_class; |
| 847 | extern const struct sched_class rt_sched_class; |
| 848 | extern const struct sched_class fair_sched_class; |
| 849 | extern const struct sched_class idle_sched_class; |
| 850 | |
| 851 | |
| 852 | #ifdef CONFIG_SMP |
| 853 | |
| 854 | extern void trigger_load_balance(struct rq *rq, int cpu); |
| 855 | extern void idle_balance(int this_cpu, struct rq *this_rq); |
| 856 | |
| 857 | #else /* CONFIG_SMP */ |
| 858 | |
| 859 | static inline void idle_balance(int cpu, struct rq *rq) |
| 860 | { |
| 861 | } |
| 862 | |
| 863 | #endif |
| 864 | |
| 865 | extern void sysrq_sched_debug_show(void); |
| 866 | extern void sched_init_granularity(void); |
| 867 | extern void update_max_interval(void); |
| 868 | extern void update_group_power(struct sched_domain *sd, int cpu); |
| 869 | extern int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu); |
| 870 | extern void init_sched_rt_class(void); |
| 871 | extern void init_sched_fair_class(void); |
| 872 | |
| 873 | extern void resched_task(struct task_struct *p); |
| 874 | extern void resched_cpu(int cpu); |
| 875 | |
| 876 | extern struct rt_bandwidth def_rt_bandwidth; |
| 877 | extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); |
| 878 | |
Peter Zijlstra | 556061b | 2012-05-11 17:31:26 +0200 | [diff] [blame^] | 879 | extern void update_idle_cpu_load(struct rq *this_rq); |
Peter Zijlstra | 029632f | 2011-10-25 10:00:11 +0200 | [diff] [blame] | 880 | |
| 881 | #ifdef CONFIG_CGROUP_CPUACCT |
Glauber Costa | 54c707e | 2011-11-28 14:45:19 -0200 | [diff] [blame] | 882 | #include <linux/cgroup.h> |
| 883 | /* track cpu usage of a group of tasks and its child groups */ |
| 884 | struct cpuacct { |
| 885 | struct cgroup_subsys_state css; |
| 886 | /* cpuusage holds pointer to a u64-type object on every cpu */ |
| 887 | u64 __percpu *cpuusage; |
| 888 | struct kernel_cpustat __percpu *cpustat; |
| 889 | }; |
| 890 | |
| 891 | /* return cpu accounting group corresponding to this container */ |
| 892 | static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp) |
| 893 | { |
| 894 | return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id), |
| 895 | struct cpuacct, css); |
| 896 | } |
| 897 | |
| 898 | /* return cpu accounting group to which this task belongs */ |
| 899 | static inline struct cpuacct *task_ca(struct task_struct *tsk) |
| 900 | { |
| 901 | return container_of(task_subsys_state(tsk, cpuacct_subsys_id), |
| 902 | struct cpuacct, css); |
| 903 | } |
| 904 | |
| 905 | static inline struct cpuacct *parent_ca(struct cpuacct *ca) |
| 906 | { |
| 907 | if (!ca || !ca->css.cgroup->parent) |
| 908 | return NULL; |
| 909 | return cgroup_ca(ca->css.cgroup->parent); |
| 910 | } |
| 911 | |
Peter Zijlstra | 029632f | 2011-10-25 10:00:11 +0200 | [diff] [blame] | 912 | extern void cpuacct_charge(struct task_struct *tsk, u64 cputime); |
Peter Zijlstra | 029632f | 2011-10-25 10:00:11 +0200 | [diff] [blame] | 913 | #else |
| 914 | static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {} |
Peter Zijlstra | 029632f | 2011-10-25 10:00:11 +0200 | [diff] [blame] | 915 | #endif |
| 916 | |
| 917 | static inline void inc_nr_running(struct rq *rq) |
| 918 | { |
| 919 | rq->nr_running++; |
| 920 | } |
| 921 | |
| 922 | static inline void dec_nr_running(struct rq *rq) |
| 923 | { |
| 924 | rq->nr_running--; |
| 925 | } |
| 926 | |
| 927 | extern void update_rq_clock(struct rq *rq); |
| 928 | |
| 929 | extern void activate_task(struct rq *rq, struct task_struct *p, int flags); |
| 930 | extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); |
| 931 | |
| 932 | extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); |
| 933 | |
| 934 | extern const_debug unsigned int sysctl_sched_time_avg; |
| 935 | extern const_debug unsigned int sysctl_sched_nr_migrate; |
| 936 | extern const_debug unsigned int sysctl_sched_migration_cost; |
| 937 | |
| 938 | static inline u64 sched_avg_period(void) |
| 939 | { |
| 940 | return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2; |
| 941 | } |
| 942 | |
| 943 | void calc_load_account_idle(struct rq *this_rq); |
| 944 | |
| 945 | #ifdef CONFIG_SCHED_HRTICK |
| 946 | |
| 947 | /* |
| 948 | * Use hrtick when: |
| 949 | * - enabled by features |
| 950 | * - hrtimer is actually high res |
| 951 | */ |
| 952 | static inline int hrtick_enabled(struct rq *rq) |
| 953 | { |
| 954 | if (!sched_feat(HRTICK)) |
| 955 | return 0; |
| 956 | if (!cpu_active(cpu_of(rq))) |
| 957 | return 0; |
| 958 | return hrtimer_is_hres_active(&rq->hrtick_timer); |
| 959 | } |
| 960 | |
| 961 | void hrtick_start(struct rq *rq, u64 delay); |
| 962 | |
Mike Galbraith | b39e66e | 2011-11-22 15:20:07 +0100 | [diff] [blame] | 963 | #else |
| 964 | |
| 965 | static inline int hrtick_enabled(struct rq *rq) |
| 966 | { |
| 967 | return 0; |
| 968 | } |
| 969 | |
Peter Zijlstra | 029632f | 2011-10-25 10:00:11 +0200 | [diff] [blame] | 970 | #endif /* CONFIG_SCHED_HRTICK */ |
| 971 | |
| 972 | #ifdef CONFIG_SMP |
| 973 | extern void sched_avg_update(struct rq *rq); |
| 974 | static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) |
| 975 | { |
| 976 | rq->rt_avg += rt_delta; |
| 977 | sched_avg_update(rq); |
| 978 | } |
| 979 | #else |
| 980 | static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { } |
| 981 | static inline void sched_avg_update(struct rq *rq) { } |
| 982 | #endif |
| 983 | |
| 984 | extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period); |
| 985 | |
| 986 | #ifdef CONFIG_SMP |
| 987 | #ifdef CONFIG_PREEMPT |
| 988 | |
| 989 | static inline void double_rq_lock(struct rq *rq1, struct rq *rq2); |
| 990 | |
| 991 | /* |
| 992 | * fair double_lock_balance: Safely acquires both rq->locks in a fair |
| 993 | * way at the expense of forcing extra atomic operations in all |
| 994 | * invocations. This assures that the double_lock is acquired using the |
| 995 | * same underlying policy as the spinlock_t on this architecture, which |
| 996 | * reduces latency compared to the unfair variant below. However, it |
| 997 | * also adds more overhead and therefore may reduce throughput. |
| 998 | */ |
| 999 | static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) |
| 1000 | __releases(this_rq->lock) |
| 1001 | __acquires(busiest->lock) |
| 1002 | __acquires(this_rq->lock) |
| 1003 | { |
| 1004 | raw_spin_unlock(&this_rq->lock); |
| 1005 | double_rq_lock(this_rq, busiest); |
| 1006 | |
| 1007 | return 1; |
| 1008 | } |
| 1009 | |
| 1010 | #else |
| 1011 | /* |
| 1012 | * Unfair double_lock_balance: Optimizes throughput at the expense of |
| 1013 | * latency by eliminating extra atomic operations when the locks are |
| 1014 | * already in proper order on entry. This favors lower cpu-ids and will |
| 1015 | * grant the double lock to lower cpus over higher ids under contention, |
| 1016 | * regardless of entry order into the function. |
| 1017 | */ |
| 1018 | static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) |
| 1019 | __releases(this_rq->lock) |
| 1020 | __acquires(busiest->lock) |
| 1021 | __acquires(this_rq->lock) |
| 1022 | { |
| 1023 | int ret = 0; |
| 1024 | |
| 1025 | if (unlikely(!raw_spin_trylock(&busiest->lock))) { |
| 1026 | if (busiest < this_rq) { |
| 1027 | raw_spin_unlock(&this_rq->lock); |
| 1028 | raw_spin_lock(&busiest->lock); |
| 1029 | raw_spin_lock_nested(&this_rq->lock, |
| 1030 | SINGLE_DEPTH_NESTING); |
| 1031 | ret = 1; |
| 1032 | } else |
| 1033 | raw_spin_lock_nested(&busiest->lock, |
| 1034 | SINGLE_DEPTH_NESTING); |
| 1035 | } |
| 1036 | return ret; |
| 1037 | } |
| 1038 | |
| 1039 | #endif /* CONFIG_PREEMPT */ |
| 1040 | |
| 1041 | /* |
| 1042 | * double_lock_balance - lock the busiest runqueue, this_rq is locked already. |
| 1043 | */ |
| 1044 | static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) |
| 1045 | { |
| 1046 | if (unlikely(!irqs_disabled())) { |
| 1047 | /* printk() doesn't work good under rq->lock */ |
| 1048 | raw_spin_unlock(&this_rq->lock); |
| 1049 | BUG_ON(1); |
| 1050 | } |
| 1051 | |
| 1052 | return _double_lock_balance(this_rq, busiest); |
| 1053 | } |
| 1054 | |
| 1055 | static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) |
| 1056 | __releases(busiest->lock) |
| 1057 | { |
| 1058 | raw_spin_unlock(&busiest->lock); |
| 1059 | lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); |
| 1060 | } |
| 1061 | |
| 1062 | /* |
| 1063 | * double_rq_lock - safely lock two runqueues |
| 1064 | * |
| 1065 | * Note this does not disable interrupts like task_rq_lock, |
| 1066 | * you need to do so manually before calling. |
| 1067 | */ |
| 1068 | static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) |
| 1069 | __acquires(rq1->lock) |
| 1070 | __acquires(rq2->lock) |
| 1071 | { |
| 1072 | BUG_ON(!irqs_disabled()); |
| 1073 | if (rq1 == rq2) { |
| 1074 | raw_spin_lock(&rq1->lock); |
| 1075 | __acquire(rq2->lock); /* Fake it out ;) */ |
| 1076 | } else { |
| 1077 | if (rq1 < rq2) { |
| 1078 | raw_spin_lock(&rq1->lock); |
| 1079 | raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); |
| 1080 | } else { |
| 1081 | raw_spin_lock(&rq2->lock); |
| 1082 | raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); |
| 1083 | } |
| 1084 | } |
| 1085 | } |
| 1086 | |
| 1087 | /* |
| 1088 | * double_rq_unlock - safely unlock two runqueues |
| 1089 | * |
| 1090 | * Note this does not restore interrupts like task_rq_unlock, |
| 1091 | * you need to do so manually after calling. |
| 1092 | */ |
| 1093 | static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) |
| 1094 | __releases(rq1->lock) |
| 1095 | __releases(rq2->lock) |
| 1096 | { |
| 1097 | raw_spin_unlock(&rq1->lock); |
| 1098 | if (rq1 != rq2) |
| 1099 | raw_spin_unlock(&rq2->lock); |
| 1100 | else |
| 1101 | __release(rq2->lock); |
| 1102 | } |
| 1103 | |
| 1104 | #else /* CONFIG_SMP */ |
| 1105 | |
| 1106 | /* |
| 1107 | * double_rq_lock - safely lock two runqueues |
| 1108 | * |
| 1109 | * Note this does not disable interrupts like task_rq_lock, |
| 1110 | * you need to do so manually before calling. |
| 1111 | */ |
| 1112 | static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) |
| 1113 | __acquires(rq1->lock) |
| 1114 | __acquires(rq2->lock) |
| 1115 | { |
| 1116 | BUG_ON(!irqs_disabled()); |
| 1117 | BUG_ON(rq1 != rq2); |
| 1118 | raw_spin_lock(&rq1->lock); |
| 1119 | __acquire(rq2->lock); /* Fake it out ;) */ |
| 1120 | } |
| 1121 | |
| 1122 | /* |
| 1123 | * double_rq_unlock - safely unlock two runqueues |
| 1124 | * |
| 1125 | * Note this does not restore interrupts like task_rq_unlock, |
| 1126 | * you need to do so manually after calling. |
| 1127 | */ |
| 1128 | static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) |
| 1129 | __releases(rq1->lock) |
| 1130 | __releases(rq2->lock) |
| 1131 | { |
| 1132 | BUG_ON(rq1 != rq2); |
| 1133 | raw_spin_unlock(&rq1->lock); |
| 1134 | __release(rq2->lock); |
| 1135 | } |
| 1136 | |
| 1137 | #endif |
| 1138 | |
| 1139 | extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); |
| 1140 | extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); |
| 1141 | extern void print_cfs_stats(struct seq_file *m, int cpu); |
| 1142 | extern void print_rt_stats(struct seq_file *m, int cpu); |
| 1143 | |
| 1144 | extern void init_cfs_rq(struct cfs_rq *cfs_rq); |
| 1145 | extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq); |
| 1146 | extern void unthrottle_offline_cfs_rqs(struct rq *rq); |
| 1147 | |
| 1148 | extern void account_cfs_bandwidth_used(int enabled, int was_enabled); |
Suresh Siddha | 1c792db | 2011-12-01 17:07:32 -0800 | [diff] [blame] | 1149 | |
| 1150 | #ifdef CONFIG_NO_HZ |
| 1151 | enum rq_nohz_flag_bits { |
| 1152 | NOHZ_TICK_STOPPED, |
| 1153 | NOHZ_BALANCE_KICK, |
Suresh Siddha | 69e1e81 | 2011-12-01 17:07:33 -0800 | [diff] [blame] | 1154 | NOHZ_IDLE, |
Suresh Siddha | 1c792db | 2011-12-01 17:07:32 -0800 | [diff] [blame] | 1155 | }; |
| 1156 | |
| 1157 | #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) |
| 1158 | #endif |