blob: 3256e36ad251f1dc745469d8c572fc6e497c1772 [file] [log] [blame]
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001/*
Ingo Molnar57c0c152009-09-21 12:20:38 +02002 * Performance events core code:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
Ingo Molnar57c0c152009-09-21 12:20:38 +02009 * For licensing details see kernel-base/COPYING
Ingo Molnarcdd6c482009-09-21 12:02:48 +020010 */
11
12#include <linux/fs.h>
13#include <linux/mm.h>
14#include <linux/cpu.h>
15#include <linux/smp.h>
16#include <linux/file.h>
17#include <linux/poll.h>
18#include <linux/sysfs.h>
19#include <linux/dcache.h>
20#include <linux/percpu.h>
21#include <linux/ptrace.h>
22#include <linux/vmstat.h>
Peter Zijlstra906010b2009-09-21 16:08:49 +020023#include <linux/vmalloc.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020024#include <linux/hardirq.h>
25#include <linux/rculist.h>
26#include <linux/uaccess.h>
27#include <linux/syscalls.h>
28#include <linux/anon_inodes.h>
29#include <linux/kernel_stat.h>
30#include <linux/perf_event.h>
Li Zefan6fb29152009-10-15 11:21:42 +080031#include <linux/ftrace_event.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020032
33#include <asm/irq_regs.h>
34
35/*
36 * Each CPU has a list of per CPU events:
37 */
38DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
39
40int perf_max_events __read_mostly = 1;
41static int perf_reserved_percpu __read_mostly;
42static int perf_overcommit __read_mostly = 1;
43
44static atomic_t nr_events __read_mostly;
45static atomic_t nr_mmap_events __read_mostly;
46static atomic_t nr_comm_events __read_mostly;
47static atomic_t nr_task_events __read_mostly;
48
49/*
50 * perf event paranoia level:
51 * -1 - not paranoid at all
52 * 0 - disallow raw tracepoint access for unpriv
53 * 1 - disallow cpu events for unpriv
54 * 2 - disallow kernel profiling for unpriv
55 */
56int sysctl_perf_event_paranoid __read_mostly = 1;
57
58static inline bool perf_paranoid_tracepoint_raw(void)
59{
60 return sysctl_perf_event_paranoid > -1;
61}
62
63static inline bool perf_paranoid_cpu(void)
64{
65 return sysctl_perf_event_paranoid > 0;
66}
67
68static inline bool perf_paranoid_kernel(void)
69{
70 return sysctl_perf_event_paranoid > 1;
71}
72
73int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
74
75/*
76 * max perf event sample rate
77 */
78int sysctl_perf_event_sample_rate __read_mostly = 100000;
79
80static atomic64_t perf_event_id;
81
82/*
83 * Lock for (sysadmin-configurable) event reservations:
84 */
85static DEFINE_SPINLOCK(perf_resource_lock);
86
87/*
88 * Architecture provided APIs - weak aliases:
89 */
90extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
91{
92 return NULL;
93}
94
95void __weak hw_perf_disable(void) { barrier(); }
96void __weak hw_perf_enable(void) { barrier(); }
97
98void __weak hw_perf_event_setup(int cpu) { barrier(); }
99void __weak hw_perf_event_setup_online(int cpu) { barrier(); }
100
101int __weak
102hw_perf_group_sched_in(struct perf_event *group_leader,
103 struct perf_cpu_context *cpuctx,
104 struct perf_event_context *ctx, int cpu)
105{
106 return 0;
107}
108
109void __weak perf_event_print_debug(void) { }
110
111static DEFINE_PER_CPU(int, perf_disable_count);
112
113void __perf_disable(void)
114{
115 __get_cpu_var(perf_disable_count)++;
116}
117
118bool __perf_enable(void)
119{
120 return !--__get_cpu_var(perf_disable_count);
121}
122
123void perf_disable(void)
124{
125 __perf_disable();
126 hw_perf_disable();
127}
128
129void perf_enable(void)
130{
131 if (__perf_enable())
132 hw_perf_enable();
133}
134
135static void get_ctx(struct perf_event_context *ctx)
136{
137 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
138}
139
140static void free_ctx(struct rcu_head *head)
141{
142 struct perf_event_context *ctx;
143
144 ctx = container_of(head, struct perf_event_context, rcu_head);
145 kfree(ctx);
146}
147
148static void put_ctx(struct perf_event_context *ctx)
149{
150 if (atomic_dec_and_test(&ctx->refcount)) {
151 if (ctx->parent_ctx)
152 put_ctx(ctx->parent_ctx);
153 if (ctx->task)
154 put_task_struct(ctx->task);
155 call_rcu(&ctx->rcu_head, free_ctx);
156 }
157}
158
159static void unclone_ctx(struct perf_event_context *ctx)
160{
161 if (ctx->parent_ctx) {
162 put_ctx(ctx->parent_ctx);
163 ctx->parent_ctx = NULL;
164 }
165}
166
167/*
168 * If we inherit events we want to return the parent event id
169 * to userspace.
170 */
171static u64 primary_event_id(struct perf_event *event)
172{
173 u64 id = event->id;
174
175 if (event->parent)
176 id = event->parent->id;
177
178 return id;
179}
180
181/*
182 * Get the perf_event_context for a task and lock it.
183 * This has to cope with with the fact that until it is locked,
184 * the context could get moved to another task.
185 */
186static struct perf_event_context *
187perf_lock_task_context(struct task_struct *task, unsigned long *flags)
188{
189 struct perf_event_context *ctx;
190
191 rcu_read_lock();
192 retry:
193 ctx = rcu_dereference(task->perf_event_ctxp);
194 if (ctx) {
195 /*
196 * If this context is a clone of another, it might
197 * get swapped for another underneath us by
198 * perf_event_task_sched_out, though the
199 * rcu_read_lock() protects us from any context
200 * getting freed. Lock the context and check if it
201 * got swapped before we could get the lock, and retry
202 * if so. If we locked the right context, then it
203 * can't get swapped on us any more.
204 */
205 spin_lock_irqsave(&ctx->lock, *flags);
206 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
207 spin_unlock_irqrestore(&ctx->lock, *flags);
208 goto retry;
209 }
210
211 if (!atomic_inc_not_zero(&ctx->refcount)) {
212 spin_unlock_irqrestore(&ctx->lock, *flags);
213 ctx = NULL;
214 }
215 }
216 rcu_read_unlock();
217 return ctx;
218}
219
220/*
221 * Get the context for a task and increment its pin_count so it
222 * can't get swapped to another task. This also increments its
223 * reference count so that the context can't get freed.
224 */
225static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
226{
227 struct perf_event_context *ctx;
228 unsigned long flags;
229
230 ctx = perf_lock_task_context(task, &flags);
231 if (ctx) {
232 ++ctx->pin_count;
233 spin_unlock_irqrestore(&ctx->lock, flags);
234 }
235 return ctx;
236}
237
238static void perf_unpin_context(struct perf_event_context *ctx)
239{
240 unsigned long flags;
241
242 spin_lock_irqsave(&ctx->lock, flags);
243 --ctx->pin_count;
244 spin_unlock_irqrestore(&ctx->lock, flags);
245 put_ctx(ctx);
246}
247
248/*
249 * Add a event from the lists for its context.
250 * Must be called with ctx->mutex and ctx->lock held.
251 */
252static void
253list_add_event(struct perf_event *event, struct perf_event_context *ctx)
254{
255 struct perf_event *group_leader = event->group_leader;
256
257 /*
258 * Depending on whether it is a standalone or sibling event,
259 * add it straight to the context's event list, or to the group
260 * leader's sibling list:
261 */
262 if (group_leader == event)
263 list_add_tail(&event->group_entry, &ctx->group_list);
264 else {
265 list_add_tail(&event->group_entry, &group_leader->sibling_list);
266 group_leader->nr_siblings++;
267 }
268
269 list_add_rcu(&event->event_entry, &ctx->event_list);
270 ctx->nr_events++;
271 if (event->attr.inherit_stat)
272 ctx->nr_stat++;
273}
274
275/*
276 * Remove a event from the lists for its context.
277 * Must be called with ctx->mutex and ctx->lock held.
278 */
279static void
280list_del_event(struct perf_event *event, struct perf_event_context *ctx)
281{
282 struct perf_event *sibling, *tmp;
283
284 if (list_empty(&event->group_entry))
285 return;
286 ctx->nr_events--;
287 if (event->attr.inherit_stat)
288 ctx->nr_stat--;
289
290 list_del_init(&event->group_entry);
291 list_del_rcu(&event->event_entry);
292
293 if (event->group_leader != event)
294 event->group_leader->nr_siblings--;
295
296 /*
297 * If this was a group event with sibling events then
298 * upgrade the siblings to singleton events by adding them
299 * to the context list directly:
300 */
301 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
302
303 list_move_tail(&sibling->group_entry, &ctx->group_list);
304 sibling->group_leader = sibling;
305 }
306}
307
308static void
309event_sched_out(struct perf_event *event,
310 struct perf_cpu_context *cpuctx,
311 struct perf_event_context *ctx)
312{
313 if (event->state != PERF_EVENT_STATE_ACTIVE)
314 return;
315
316 event->state = PERF_EVENT_STATE_INACTIVE;
317 if (event->pending_disable) {
318 event->pending_disable = 0;
319 event->state = PERF_EVENT_STATE_OFF;
320 }
321 event->tstamp_stopped = ctx->time;
322 event->pmu->disable(event);
323 event->oncpu = -1;
324
325 if (!is_software_event(event))
326 cpuctx->active_oncpu--;
327 ctx->nr_active--;
328 if (event->attr.exclusive || !cpuctx->active_oncpu)
329 cpuctx->exclusive = 0;
330}
331
332static void
333group_sched_out(struct perf_event *group_event,
334 struct perf_cpu_context *cpuctx,
335 struct perf_event_context *ctx)
336{
337 struct perf_event *event;
338
339 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
340 return;
341
342 event_sched_out(group_event, cpuctx, ctx);
343
344 /*
345 * Schedule out siblings (if any):
346 */
347 list_for_each_entry(event, &group_event->sibling_list, group_entry)
348 event_sched_out(event, cpuctx, ctx);
349
350 if (group_event->attr.exclusive)
351 cpuctx->exclusive = 0;
352}
353
354/*
355 * Cross CPU call to remove a performance event
356 *
357 * We disable the event on the hardware level first. After that we
358 * remove it from the context list.
359 */
360static void __perf_event_remove_from_context(void *info)
361{
362 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
363 struct perf_event *event = info;
364 struct perf_event_context *ctx = event->ctx;
365
366 /*
367 * If this is a task context, we need to check whether it is
368 * the current task context of this cpu. If not it has been
369 * scheduled out before the smp call arrived.
370 */
371 if (ctx->task && cpuctx->task_ctx != ctx)
372 return;
373
374 spin_lock(&ctx->lock);
375 /*
376 * Protect the list operation against NMI by disabling the
377 * events on a global level.
378 */
379 perf_disable();
380
381 event_sched_out(event, cpuctx, ctx);
382
383 list_del_event(event, ctx);
384
385 if (!ctx->task) {
386 /*
387 * Allow more per task events with respect to the
388 * reservation:
389 */
390 cpuctx->max_pertask =
391 min(perf_max_events - ctx->nr_events,
392 perf_max_events - perf_reserved_percpu);
393 }
394
395 perf_enable();
396 spin_unlock(&ctx->lock);
397}
398
399
400/*
401 * Remove the event from a task's (or a CPU's) list of events.
402 *
403 * Must be called with ctx->mutex held.
404 *
405 * CPU events are removed with a smp call. For task events we only
406 * call when the task is on a CPU.
407 *
408 * If event->ctx is a cloned context, callers must make sure that
409 * every task struct that event->ctx->task could possibly point to
410 * remains valid. This is OK when called from perf_release since
411 * that only calls us on the top-level context, which can't be a clone.
412 * When called from perf_event_exit_task, it's OK because the
413 * context has been detached from its task.
414 */
415static void perf_event_remove_from_context(struct perf_event *event)
416{
417 struct perf_event_context *ctx = event->ctx;
418 struct task_struct *task = ctx->task;
419
420 if (!task) {
421 /*
422 * Per cpu events are removed via an smp call and
423 * the removal is always sucessful.
424 */
425 smp_call_function_single(event->cpu,
426 __perf_event_remove_from_context,
427 event, 1);
428 return;
429 }
430
431retry:
432 task_oncpu_function_call(task, __perf_event_remove_from_context,
433 event);
434
435 spin_lock_irq(&ctx->lock);
436 /*
437 * If the context is active we need to retry the smp call.
438 */
439 if (ctx->nr_active && !list_empty(&event->group_entry)) {
440 spin_unlock_irq(&ctx->lock);
441 goto retry;
442 }
443
444 /*
445 * The lock prevents that this context is scheduled in so we
446 * can remove the event safely, if the call above did not
447 * succeed.
448 */
449 if (!list_empty(&event->group_entry)) {
450 list_del_event(event, ctx);
451 }
452 spin_unlock_irq(&ctx->lock);
453}
454
455static inline u64 perf_clock(void)
456{
457 return cpu_clock(smp_processor_id());
458}
459
460/*
461 * Update the record of the current time in a context.
462 */
463static void update_context_time(struct perf_event_context *ctx)
464{
465 u64 now = perf_clock();
466
467 ctx->time += now - ctx->timestamp;
468 ctx->timestamp = now;
469}
470
471/*
472 * Update the total_time_enabled and total_time_running fields for a event.
473 */
474static void update_event_times(struct perf_event *event)
475{
476 struct perf_event_context *ctx = event->ctx;
477 u64 run_end;
478
479 if (event->state < PERF_EVENT_STATE_INACTIVE ||
480 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
481 return;
482
483 event->total_time_enabled = ctx->time - event->tstamp_enabled;
484
485 if (event->state == PERF_EVENT_STATE_INACTIVE)
486 run_end = event->tstamp_stopped;
487 else
488 run_end = ctx->time;
489
490 event->total_time_running = run_end - event->tstamp_running;
491}
492
493/*
494 * Update total_time_enabled and total_time_running for all events in a group.
495 */
496static void update_group_times(struct perf_event *leader)
497{
498 struct perf_event *event;
499
500 update_event_times(leader);
501 list_for_each_entry(event, &leader->sibling_list, group_entry)
502 update_event_times(event);
503}
504
505/*
506 * Cross CPU call to disable a performance event
507 */
508static void __perf_event_disable(void *info)
509{
510 struct perf_event *event = info;
511 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
512 struct perf_event_context *ctx = event->ctx;
513
514 /*
515 * If this is a per-task event, need to check whether this
516 * event's task is the current task on this cpu.
517 */
518 if (ctx->task && cpuctx->task_ctx != ctx)
519 return;
520
521 spin_lock(&ctx->lock);
522
523 /*
524 * If the event is on, turn it off.
525 * If it is in error state, leave it in error state.
526 */
527 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
528 update_context_time(ctx);
529 update_group_times(event);
530 if (event == event->group_leader)
531 group_sched_out(event, cpuctx, ctx);
532 else
533 event_sched_out(event, cpuctx, ctx);
534 event->state = PERF_EVENT_STATE_OFF;
535 }
536
537 spin_unlock(&ctx->lock);
538}
539
540/*
541 * Disable a event.
542 *
543 * If event->ctx is a cloned context, callers must make sure that
544 * every task struct that event->ctx->task could possibly point to
545 * remains valid. This condition is satisifed when called through
546 * perf_event_for_each_child or perf_event_for_each because they
547 * hold the top-level event's child_mutex, so any descendant that
548 * goes to exit will block in sync_child_event.
549 * When called from perf_pending_event it's OK because event->ctx
550 * is the current context on this CPU and preemption is disabled,
551 * hence we can't get into perf_event_task_sched_out for this context.
552 */
553static void perf_event_disable(struct perf_event *event)
554{
555 struct perf_event_context *ctx = event->ctx;
556 struct task_struct *task = ctx->task;
557
558 if (!task) {
559 /*
560 * Disable the event on the cpu that it's on
561 */
562 smp_call_function_single(event->cpu, __perf_event_disable,
563 event, 1);
564 return;
565 }
566
567 retry:
568 task_oncpu_function_call(task, __perf_event_disable, event);
569
570 spin_lock_irq(&ctx->lock);
571 /*
572 * If the event is still active, we need to retry the cross-call.
573 */
574 if (event->state == PERF_EVENT_STATE_ACTIVE) {
575 spin_unlock_irq(&ctx->lock);
576 goto retry;
577 }
578
579 /*
580 * Since we have the lock this context can't be scheduled
581 * in, so we can change the state safely.
582 */
583 if (event->state == PERF_EVENT_STATE_INACTIVE) {
584 update_group_times(event);
585 event->state = PERF_EVENT_STATE_OFF;
586 }
587
588 spin_unlock_irq(&ctx->lock);
589}
590
591static int
592event_sched_in(struct perf_event *event,
593 struct perf_cpu_context *cpuctx,
594 struct perf_event_context *ctx,
595 int cpu)
596{
597 if (event->state <= PERF_EVENT_STATE_OFF)
598 return 0;
599
600 event->state = PERF_EVENT_STATE_ACTIVE;
601 event->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
602 /*
603 * The new state must be visible before we turn it on in the hardware:
604 */
605 smp_wmb();
606
607 if (event->pmu->enable(event)) {
608 event->state = PERF_EVENT_STATE_INACTIVE;
609 event->oncpu = -1;
610 return -EAGAIN;
611 }
612
613 event->tstamp_running += ctx->time - event->tstamp_stopped;
614
615 if (!is_software_event(event))
616 cpuctx->active_oncpu++;
617 ctx->nr_active++;
618
619 if (event->attr.exclusive)
620 cpuctx->exclusive = 1;
621
622 return 0;
623}
624
625static int
626group_sched_in(struct perf_event *group_event,
627 struct perf_cpu_context *cpuctx,
628 struct perf_event_context *ctx,
629 int cpu)
630{
631 struct perf_event *event, *partial_group;
632 int ret;
633
634 if (group_event->state == PERF_EVENT_STATE_OFF)
635 return 0;
636
637 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
638 if (ret)
639 return ret < 0 ? ret : 0;
640
641 if (event_sched_in(group_event, cpuctx, ctx, cpu))
642 return -EAGAIN;
643
644 /*
645 * Schedule in siblings as one group (if any):
646 */
647 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
648 if (event_sched_in(event, cpuctx, ctx, cpu)) {
649 partial_group = event;
650 goto group_error;
651 }
652 }
653
654 return 0;
655
656group_error:
657 /*
658 * Groups can be scheduled in as one unit only, so undo any
659 * partial group before returning:
660 */
661 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
662 if (event == partial_group)
663 break;
664 event_sched_out(event, cpuctx, ctx);
665 }
666 event_sched_out(group_event, cpuctx, ctx);
667
668 return -EAGAIN;
669}
670
671/*
672 * Return 1 for a group consisting entirely of software events,
673 * 0 if the group contains any hardware events.
674 */
675static int is_software_only_group(struct perf_event *leader)
676{
677 struct perf_event *event;
678
679 if (!is_software_event(leader))
680 return 0;
681
682 list_for_each_entry(event, &leader->sibling_list, group_entry)
683 if (!is_software_event(event))
684 return 0;
685
686 return 1;
687}
688
689/*
690 * Work out whether we can put this event group on the CPU now.
691 */
692static int group_can_go_on(struct perf_event *event,
693 struct perf_cpu_context *cpuctx,
694 int can_add_hw)
695{
696 /*
697 * Groups consisting entirely of software events can always go on.
698 */
699 if (is_software_only_group(event))
700 return 1;
701 /*
702 * If an exclusive group is already on, no other hardware
703 * events can go on.
704 */
705 if (cpuctx->exclusive)
706 return 0;
707 /*
708 * If this group is exclusive and there are already
709 * events on the CPU, it can't go on.
710 */
711 if (event->attr.exclusive && cpuctx->active_oncpu)
712 return 0;
713 /*
714 * Otherwise, try to add it if all previous groups were able
715 * to go on.
716 */
717 return can_add_hw;
718}
719
720static void add_event_to_ctx(struct perf_event *event,
721 struct perf_event_context *ctx)
722{
723 list_add_event(event, ctx);
724 event->tstamp_enabled = ctx->time;
725 event->tstamp_running = ctx->time;
726 event->tstamp_stopped = ctx->time;
727}
728
729/*
730 * Cross CPU call to install and enable a performance event
731 *
732 * Must be called with ctx->mutex held
733 */
734static void __perf_install_in_context(void *info)
735{
736 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
737 struct perf_event *event = info;
738 struct perf_event_context *ctx = event->ctx;
739 struct perf_event *leader = event->group_leader;
740 int cpu = smp_processor_id();
741 int err;
742
743 /*
744 * If this is a task context, we need to check whether it is
745 * the current task context of this cpu. If not it has been
746 * scheduled out before the smp call arrived.
747 * Or possibly this is the right context but it isn't
748 * on this cpu because it had no events.
749 */
750 if (ctx->task && cpuctx->task_ctx != ctx) {
751 if (cpuctx->task_ctx || ctx->task != current)
752 return;
753 cpuctx->task_ctx = ctx;
754 }
755
756 spin_lock(&ctx->lock);
757 ctx->is_active = 1;
758 update_context_time(ctx);
759
760 /*
761 * Protect the list operation against NMI by disabling the
762 * events on a global level. NOP for non NMI based events.
763 */
764 perf_disable();
765
766 add_event_to_ctx(event, ctx);
767
768 /*
769 * Don't put the event on if it is disabled or if
770 * it is in a group and the group isn't on.
771 */
772 if (event->state != PERF_EVENT_STATE_INACTIVE ||
773 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
774 goto unlock;
775
776 /*
777 * An exclusive event can't go on if there are already active
778 * hardware events, and no hardware event can go on if there
779 * is already an exclusive event on.
780 */
781 if (!group_can_go_on(event, cpuctx, 1))
782 err = -EEXIST;
783 else
784 err = event_sched_in(event, cpuctx, ctx, cpu);
785
786 if (err) {
787 /*
788 * This event couldn't go on. If it is in a group
789 * then we have to pull the whole group off.
790 * If the event group is pinned then put it in error state.
791 */
792 if (leader != event)
793 group_sched_out(leader, cpuctx, ctx);
794 if (leader->attr.pinned) {
795 update_group_times(leader);
796 leader->state = PERF_EVENT_STATE_ERROR;
797 }
798 }
799
800 if (!err && !ctx->task && cpuctx->max_pertask)
801 cpuctx->max_pertask--;
802
803 unlock:
804 perf_enable();
805
806 spin_unlock(&ctx->lock);
807}
808
809/*
810 * Attach a performance event to a context
811 *
812 * First we add the event to the list with the hardware enable bit
813 * in event->hw_config cleared.
814 *
815 * If the event is attached to a task which is on a CPU we use a smp
816 * call to enable it in the task context. The task might have been
817 * scheduled away, but we check this in the smp call again.
818 *
819 * Must be called with ctx->mutex held.
820 */
821static void
822perf_install_in_context(struct perf_event_context *ctx,
823 struct perf_event *event,
824 int cpu)
825{
826 struct task_struct *task = ctx->task;
827
828 if (!task) {
829 /*
830 * Per cpu events are installed via an smp call and
831 * the install is always sucessful.
832 */
833 smp_call_function_single(cpu, __perf_install_in_context,
834 event, 1);
835 return;
836 }
837
838retry:
839 task_oncpu_function_call(task, __perf_install_in_context,
840 event);
841
842 spin_lock_irq(&ctx->lock);
843 /*
844 * we need to retry the smp call.
845 */
846 if (ctx->is_active && list_empty(&event->group_entry)) {
847 spin_unlock_irq(&ctx->lock);
848 goto retry;
849 }
850
851 /*
852 * The lock prevents that this context is scheduled in so we
853 * can add the event safely, if it the call above did not
854 * succeed.
855 */
856 if (list_empty(&event->group_entry))
857 add_event_to_ctx(event, ctx);
858 spin_unlock_irq(&ctx->lock);
859}
860
861/*
862 * Put a event into inactive state and update time fields.
863 * Enabling the leader of a group effectively enables all
864 * the group members that aren't explicitly disabled, so we
865 * have to update their ->tstamp_enabled also.
866 * Note: this works for group members as well as group leaders
867 * since the non-leader members' sibling_lists will be empty.
868 */
869static void __perf_event_mark_enabled(struct perf_event *event,
870 struct perf_event_context *ctx)
871{
872 struct perf_event *sub;
873
874 event->state = PERF_EVENT_STATE_INACTIVE;
875 event->tstamp_enabled = ctx->time - event->total_time_enabled;
876 list_for_each_entry(sub, &event->sibling_list, group_entry)
877 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
878 sub->tstamp_enabled =
879 ctx->time - sub->total_time_enabled;
880}
881
882/*
883 * Cross CPU call to enable a performance event
884 */
885static void __perf_event_enable(void *info)
886{
887 struct perf_event *event = info;
888 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
889 struct perf_event_context *ctx = event->ctx;
890 struct perf_event *leader = event->group_leader;
891 int err;
892
893 /*
894 * If this is a per-task event, need to check whether this
895 * event's task is the current task on this cpu.
896 */
897 if (ctx->task && cpuctx->task_ctx != ctx) {
898 if (cpuctx->task_ctx || ctx->task != current)
899 return;
900 cpuctx->task_ctx = ctx;
901 }
902
903 spin_lock(&ctx->lock);
904 ctx->is_active = 1;
905 update_context_time(ctx);
906
907 if (event->state >= PERF_EVENT_STATE_INACTIVE)
908 goto unlock;
909 __perf_event_mark_enabled(event, ctx);
910
911 /*
912 * If the event is in a group and isn't the group leader,
913 * then don't put it on unless the group is on.
914 */
915 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
916 goto unlock;
917
918 if (!group_can_go_on(event, cpuctx, 1)) {
919 err = -EEXIST;
920 } else {
921 perf_disable();
922 if (event == leader)
923 err = group_sched_in(event, cpuctx, ctx,
924 smp_processor_id());
925 else
926 err = event_sched_in(event, cpuctx, ctx,
927 smp_processor_id());
928 perf_enable();
929 }
930
931 if (err) {
932 /*
933 * If this event can't go on and it's part of a
934 * group, then the whole group has to come off.
935 */
936 if (leader != event)
937 group_sched_out(leader, cpuctx, ctx);
938 if (leader->attr.pinned) {
939 update_group_times(leader);
940 leader->state = PERF_EVENT_STATE_ERROR;
941 }
942 }
943
944 unlock:
945 spin_unlock(&ctx->lock);
946}
947
948/*
949 * Enable a event.
950 *
951 * If event->ctx is a cloned context, callers must make sure that
952 * every task struct that event->ctx->task could possibly point to
953 * remains valid. This condition is satisfied when called through
954 * perf_event_for_each_child or perf_event_for_each as described
955 * for perf_event_disable.
956 */
957static void perf_event_enable(struct perf_event *event)
958{
959 struct perf_event_context *ctx = event->ctx;
960 struct task_struct *task = ctx->task;
961
962 if (!task) {
963 /*
964 * Enable the event on the cpu that it's on
965 */
966 smp_call_function_single(event->cpu, __perf_event_enable,
967 event, 1);
968 return;
969 }
970
971 spin_lock_irq(&ctx->lock);
972 if (event->state >= PERF_EVENT_STATE_INACTIVE)
973 goto out;
974
975 /*
976 * If the event is in error state, clear that first.
977 * That way, if we see the event in error state below, we
978 * know that it has gone back into error state, as distinct
979 * from the task having been scheduled away before the
980 * cross-call arrived.
981 */
982 if (event->state == PERF_EVENT_STATE_ERROR)
983 event->state = PERF_EVENT_STATE_OFF;
984
985 retry:
986 spin_unlock_irq(&ctx->lock);
987 task_oncpu_function_call(task, __perf_event_enable, event);
988
989 spin_lock_irq(&ctx->lock);
990
991 /*
992 * If the context is active and the event is still off,
993 * we need to retry the cross-call.
994 */
995 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
996 goto retry;
997
998 /*
999 * Since we have the lock this context can't be scheduled
1000 * in, so we can change the state safely.
1001 */
1002 if (event->state == PERF_EVENT_STATE_OFF)
1003 __perf_event_mark_enabled(event, ctx);
1004
1005 out:
1006 spin_unlock_irq(&ctx->lock);
1007}
1008
1009static int perf_event_refresh(struct perf_event *event, int refresh)
1010{
1011 /*
1012 * not supported on inherited events
1013 */
1014 if (event->attr.inherit)
1015 return -EINVAL;
1016
1017 atomic_add(refresh, &event->event_limit);
1018 perf_event_enable(event);
1019
1020 return 0;
1021}
1022
1023void __perf_event_sched_out(struct perf_event_context *ctx,
1024 struct perf_cpu_context *cpuctx)
1025{
1026 struct perf_event *event;
1027
1028 spin_lock(&ctx->lock);
1029 ctx->is_active = 0;
1030 if (likely(!ctx->nr_events))
1031 goto out;
1032 update_context_time(ctx);
1033
1034 perf_disable();
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001035 if (ctx->nr_active)
1036 list_for_each_entry(event, &ctx->group_list, group_entry)
1037 group_sched_out(event, cpuctx, ctx);
1038
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001039 perf_enable();
1040 out:
1041 spin_unlock(&ctx->lock);
1042}
1043
1044/*
1045 * Test whether two contexts are equivalent, i.e. whether they
1046 * have both been cloned from the same version of the same context
1047 * and they both have the same number of enabled events.
1048 * If the number of enabled events is the same, then the set
1049 * of enabled events should be the same, because these are both
1050 * inherited contexts, therefore we can't access individual events
1051 * in them directly with an fd; we can only enable/disable all
1052 * events via prctl, or enable/disable all events in a family
1053 * via ioctl, which will have the same effect on both contexts.
1054 */
1055static int context_equiv(struct perf_event_context *ctx1,
1056 struct perf_event_context *ctx2)
1057{
1058 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1059 && ctx1->parent_gen == ctx2->parent_gen
1060 && !ctx1->pin_count && !ctx2->pin_count;
1061}
1062
1063static void __perf_event_read(void *event);
1064
1065static void __perf_event_sync_stat(struct perf_event *event,
1066 struct perf_event *next_event)
1067{
1068 u64 value;
1069
1070 if (!event->attr.inherit_stat)
1071 return;
1072
1073 /*
1074 * Update the event value, we cannot use perf_event_read()
1075 * because we're in the middle of a context switch and have IRQs
1076 * disabled, which upsets smp_call_function_single(), however
1077 * we know the event must be on the current CPU, therefore we
1078 * don't need to use it.
1079 */
1080 switch (event->state) {
1081 case PERF_EVENT_STATE_ACTIVE:
1082 __perf_event_read(event);
1083 break;
1084
1085 case PERF_EVENT_STATE_INACTIVE:
1086 update_event_times(event);
1087 break;
1088
1089 default:
1090 break;
1091 }
1092
1093 /*
1094 * In order to keep per-task stats reliable we need to flip the event
1095 * values when we flip the contexts.
1096 */
1097 value = atomic64_read(&next_event->count);
1098 value = atomic64_xchg(&event->count, value);
1099 atomic64_set(&next_event->count, value);
1100
1101 swap(event->total_time_enabled, next_event->total_time_enabled);
1102 swap(event->total_time_running, next_event->total_time_running);
1103
1104 /*
1105 * Since we swizzled the values, update the user visible data too.
1106 */
1107 perf_event_update_userpage(event);
1108 perf_event_update_userpage(next_event);
1109}
1110
1111#define list_next_entry(pos, member) \
1112 list_entry(pos->member.next, typeof(*pos), member)
1113
1114static void perf_event_sync_stat(struct perf_event_context *ctx,
1115 struct perf_event_context *next_ctx)
1116{
1117 struct perf_event *event, *next_event;
1118
1119 if (!ctx->nr_stat)
1120 return;
1121
1122 event = list_first_entry(&ctx->event_list,
1123 struct perf_event, event_entry);
1124
1125 next_event = list_first_entry(&next_ctx->event_list,
1126 struct perf_event, event_entry);
1127
1128 while (&event->event_entry != &ctx->event_list &&
1129 &next_event->event_entry != &next_ctx->event_list) {
1130
1131 __perf_event_sync_stat(event, next_event);
1132
1133 event = list_next_entry(event, event_entry);
1134 next_event = list_next_entry(next_event, event_entry);
1135 }
1136}
1137
1138/*
1139 * Called from scheduler to remove the events of the current task,
1140 * with interrupts disabled.
1141 *
1142 * We stop each event and update the event value in event->count.
1143 *
1144 * This does not protect us against NMI, but disable()
1145 * sets the disabled bit in the control field of event _before_
1146 * accessing the event control register. If a NMI hits, then it will
1147 * not restart the event.
1148 */
1149void perf_event_task_sched_out(struct task_struct *task,
1150 struct task_struct *next, int cpu)
1151{
1152 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1153 struct perf_event_context *ctx = task->perf_event_ctxp;
1154 struct perf_event_context *next_ctx;
1155 struct perf_event_context *parent;
1156 struct pt_regs *regs;
1157 int do_switch = 1;
1158
1159 regs = task_pt_regs(task);
1160 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1161
1162 if (likely(!ctx || !cpuctx->task_ctx))
1163 return;
1164
1165 update_context_time(ctx);
1166
1167 rcu_read_lock();
1168 parent = rcu_dereference(ctx->parent_ctx);
1169 next_ctx = next->perf_event_ctxp;
1170 if (parent && next_ctx &&
1171 rcu_dereference(next_ctx->parent_ctx) == parent) {
1172 /*
1173 * Looks like the two contexts are clones, so we might be
1174 * able to optimize the context switch. We lock both
1175 * contexts and check that they are clones under the
1176 * lock (including re-checking that neither has been
1177 * uncloned in the meantime). It doesn't matter which
1178 * order we take the locks because no other cpu could
1179 * be trying to lock both of these tasks.
1180 */
1181 spin_lock(&ctx->lock);
1182 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1183 if (context_equiv(ctx, next_ctx)) {
1184 /*
1185 * XXX do we need a memory barrier of sorts
1186 * wrt to rcu_dereference() of perf_event_ctxp
1187 */
1188 task->perf_event_ctxp = next_ctx;
1189 next->perf_event_ctxp = ctx;
1190 ctx->task = next;
1191 next_ctx->task = task;
1192 do_switch = 0;
1193
1194 perf_event_sync_stat(ctx, next_ctx);
1195 }
1196 spin_unlock(&next_ctx->lock);
1197 spin_unlock(&ctx->lock);
1198 }
1199 rcu_read_unlock();
1200
1201 if (do_switch) {
1202 __perf_event_sched_out(ctx, cpuctx);
1203 cpuctx->task_ctx = NULL;
1204 }
1205}
1206
1207/*
1208 * Called with IRQs disabled
1209 */
1210static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1211{
1212 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1213
1214 if (!cpuctx->task_ctx)
1215 return;
1216
1217 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1218 return;
1219
1220 __perf_event_sched_out(ctx, cpuctx);
1221 cpuctx->task_ctx = NULL;
1222}
1223
1224/*
1225 * Called with IRQs disabled
1226 */
1227static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx)
1228{
1229 __perf_event_sched_out(&cpuctx->ctx, cpuctx);
1230}
1231
1232static void
1233__perf_event_sched_in(struct perf_event_context *ctx,
1234 struct perf_cpu_context *cpuctx, int cpu)
1235{
1236 struct perf_event *event;
1237 int can_add_hw = 1;
1238
1239 spin_lock(&ctx->lock);
1240 ctx->is_active = 1;
1241 if (likely(!ctx->nr_events))
1242 goto out;
1243
1244 ctx->timestamp = perf_clock();
1245
1246 perf_disable();
1247
1248 /*
1249 * First go through the list and put on any pinned groups
1250 * in order to give them the best chance of going on.
1251 */
1252 list_for_each_entry(event, &ctx->group_list, group_entry) {
1253 if (event->state <= PERF_EVENT_STATE_OFF ||
1254 !event->attr.pinned)
1255 continue;
1256 if (event->cpu != -1 && event->cpu != cpu)
1257 continue;
1258
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001259 if (group_can_go_on(event, cpuctx, 1))
1260 group_sched_in(event, cpuctx, ctx, cpu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001261
1262 /*
1263 * If this pinned group hasn't been scheduled,
1264 * put it in error state.
1265 */
1266 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1267 update_group_times(event);
1268 event->state = PERF_EVENT_STATE_ERROR;
1269 }
1270 }
1271
1272 list_for_each_entry(event, &ctx->group_list, group_entry) {
1273 /*
1274 * Ignore events in OFF or ERROR state, and
1275 * ignore pinned events since we did them already.
1276 */
1277 if (event->state <= PERF_EVENT_STATE_OFF ||
1278 event->attr.pinned)
1279 continue;
1280
1281 /*
1282 * Listen to the 'cpu' scheduling filter constraint
1283 * of events:
1284 */
1285 if (event->cpu != -1 && event->cpu != cpu)
1286 continue;
1287
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001288 if (group_can_go_on(event, cpuctx, can_add_hw))
1289 if (group_sched_in(event, cpuctx, ctx, cpu))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001290 can_add_hw = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001291 }
1292 perf_enable();
1293 out:
1294 spin_unlock(&ctx->lock);
1295}
1296
1297/*
1298 * Called from scheduler to add the events of the current task
1299 * with interrupts disabled.
1300 *
1301 * We restore the event value and then enable it.
1302 *
1303 * This does not protect us against NMI, but enable()
1304 * sets the enabled bit in the control field of event _before_
1305 * accessing the event control register. If a NMI hits, then it will
1306 * keep the event running.
1307 */
1308void perf_event_task_sched_in(struct task_struct *task, int cpu)
1309{
1310 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1311 struct perf_event_context *ctx = task->perf_event_ctxp;
1312
1313 if (likely(!ctx))
1314 return;
1315 if (cpuctx->task_ctx == ctx)
1316 return;
1317 __perf_event_sched_in(ctx, cpuctx, cpu);
1318 cpuctx->task_ctx = ctx;
1319}
1320
1321static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1322{
1323 struct perf_event_context *ctx = &cpuctx->ctx;
1324
1325 __perf_event_sched_in(ctx, cpuctx, cpu);
1326}
1327
1328#define MAX_INTERRUPTS (~0ULL)
1329
1330static void perf_log_throttle(struct perf_event *event, int enable);
1331
1332static void perf_adjust_period(struct perf_event *event, u64 events)
1333{
1334 struct hw_perf_event *hwc = &event->hw;
1335 u64 period, sample_period;
1336 s64 delta;
1337
1338 events *= hwc->sample_period;
1339 period = div64_u64(events, event->attr.sample_freq);
1340
1341 delta = (s64)(period - hwc->sample_period);
1342 delta = (delta + 7) / 8; /* low pass filter */
1343
1344 sample_period = hwc->sample_period + delta;
1345
1346 if (!sample_period)
1347 sample_period = 1;
1348
1349 hwc->sample_period = sample_period;
1350}
1351
1352static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1353{
1354 struct perf_event *event;
1355 struct hw_perf_event *hwc;
1356 u64 interrupts, freq;
1357
1358 spin_lock(&ctx->lock);
Paul Mackerras03541f82009-10-14 16:58:03 +11001359 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001360 if (event->state != PERF_EVENT_STATE_ACTIVE)
1361 continue;
1362
1363 hwc = &event->hw;
1364
1365 interrupts = hwc->interrupts;
1366 hwc->interrupts = 0;
1367
1368 /*
1369 * unthrottle events on the tick
1370 */
1371 if (interrupts == MAX_INTERRUPTS) {
1372 perf_log_throttle(event, 1);
1373 event->pmu->unthrottle(event);
1374 interrupts = 2*sysctl_perf_event_sample_rate/HZ;
1375 }
1376
1377 if (!event->attr.freq || !event->attr.sample_freq)
1378 continue;
1379
1380 /*
1381 * if the specified freq < HZ then we need to skip ticks
1382 */
1383 if (event->attr.sample_freq < HZ) {
1384 freq = event->attr.sample_freq;
1385
1386 hwc->freq_count += freq;
1387 hwc->freq_interrupts += interrupts;
1388
1389 if (hwc->freq_count < HZ)
1390 continue;
1391
1392 interrupts = hwc->freq_interrupts;
1393 hwc->freq_interrupts = 0;
1394 hwc->freq_count -= HZ;
1395 } else
1396 freq = HZ;
1397
1398 perf_adjust_period(event, freq * interrupts);
1399
1400 /*
1401 * In order to avoid being stalled by an (accidental) huge
1402 * sample period, force reset the sample period if we didn't
1403 * get any events in this freq period.
1404 */
1405 if (!interrupts) {
1406 perf_disable();
1407 event->pmu->disable(event);
1408 atomic64_set(&hwc->period_left, 0);
1409 event->pmu->enable(event);
1410 perf_enable();
1411 }
1412 }
1413 spin_unlock(&ctx->lock);
1414}
1415
1416/*
1417 * Round-robin a context's events:
1418 */
1419static void rotate_ctx(struct perf_event_context *ctx)
1420{
1421 struct perf_event *event;
1422
1423 if (!ctx->nr_events)
1424 return;
1425
1426 spin_lock(&ctx->lock);
1427 /*
1428 * Rotate the first entry last (works just fine for group events too):
1429 */
1430 perf_disable();
1431 list_for_each_entry(event, &ctx->group_list, group_entry) {
1432 list_move_tail(&event->group_entry, &ctx->group_list);
1433 break;
1434 }
1435 perf_enable();
1436
1437 spin_unlock(&ctx->lock);
1438}
1439
1440void perf_event_task_tick(struct task_struct *curr, int cpu)
1441{
1442 struct perf_cpu_context *cpuctx;
1443 struct perf_event_context *ctx;
1444
1445 if (!atomic_read(&nr_events))
1446 return;
1447
1448 cpuctx = &per_cpu(perf_cpu_context, cpu);
1449 ctx = curr->perf_event_ctxp;
1450
1451 perf_ctx_adjust_freq(&cpuctx->ctx);
1452 if (ctx)
1453 perf_ctx_adjust_freq(ctx);
1454
1455 perf_event_cpu_sched_out(cpuctx);
1456 if (ctx)
1457 __perf_event_task_sched_out(ctx);
1458
1459 rotate_ctx(&cpuctx->ctx);
1460 if (ctx)
1461 rotate_ctx(ctx);
1462
1463 perf_event_cpu_sched_in(cpuctx, cpu);
1464 if (ctx)
1465 perf_event_task_sched_in(curr, cpu);
1466}
1467
1468/*
1469 * Enable all of a task's events that have been marked enable-on-exec.
1470 * This expects task == current.
1471 */
1472static void perf_event_enable_on_exec(struct task_struct *task)
1473{
1474 struct perf_event_context *ctx;
1475 struct perf_event *event;
1476 unsigned long flags;
1477 int enabled = 0;
1478
1479 local_irq_save(flags);
1480 ctx = task->perf_event_ctxp;
1481 if (!ctx || !ctx->nr_events)
1482 goto out;
1483
1484 __perf_event_task_sched_out(ctx);
1485
1486 spin_lock(&ctx->lock);
1487
1488 list_for_each_entry(event, &ctx->group_list, group_entry) {
1489 if (!event->attr.enable_on_exec)
1490 continue;
1491 event->attr.enable_on_exec = 0;
1492 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1493 continue;
1494 __perf_event_mark_enabled(event, ctx);
1495 enabled = 1;
1496 }
1497
1498 /*
1499 * Unclone this context if we enabled any event.
1500 */
1501 if (enabled)
1502 unclone_ctx(ctx);
1503
1504 spin_unlock(&ctx->lock);
1505
1506 perf_event_task_sched_in(task, smp_processor_id());
1507 out:
1508 local_irq_restore(flags);
1509}
1510
1511/*
1512 * Cross CPU call to read the hardware event
1513 */
1514static void __perf_event_read(void *info)
1515{
1516 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1517 struct perf_event *event = info;
1518 struct perf_event_context *ctx = event->ctx;
1519 unsigned long flags;
1520
1521 /*
1522 * If this is a task context, we need to check whether it is
1523 * the current task context of this cpu. If not it has been
1524 * scheduled out before the smp call arrived. In that case
1525 * event->count would have been updated to a recent sample
1526 * when the event was scheduled out.
1527 */
1528 if (ctx->task && cpuctx->task_ctx != ctx)
1529 return;
1530
1531 local_irq_save(flags);
1532 if (ctx->is_active)
1533 update_context_time(ctx);
1534 event->pmu->read(event);
1535 update_event_times(event);
1536 local_irq_restore(flags);
1537}
1538
1539static u64 perf_event_read(struct perf_event *event)
1540{
1541 /*
1542 * If event is enabled and currently active on a CPU, update the
1543 * value in the event structure:
1544 */
1545 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1546 smp_call_function_single(event->oncpu,
1547 __perf_event_read, event, 1);
1548 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1549 update_event_times(event);
1550 }
1551
1552 return atomic64_read(&event->count);
1553}
1554
1555/*
1556 * Initialize the perf_event context in a task_struct:
1557 */
1558static void
1559__perf_event_init_context(struct perf_event_context *ctx,
1560 struct task_struct *task)
1561{
1562 memset(ctx, 0, sizeof(*ctx));
1563 spin_lock_init(&ctx->lock);
1564 mutex_init(&ctx->mutex);
1565 INIT_LIST_HEAD(&ctx->group_list);
1566 INIT_LIST_HEAD(&ctx->event_list);
1567 atomic_set(&ctx->refcount, 1);
1568 ctx->task = task;
1569}
1570
1571static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1572{
1573 struct perf_event_context *ctx;
1574 struct perf_cpu_context *cpuctx;
1575 struct task_struct *task;
1576 unsigned long flags;
1577 int err;
1578
1579 /*
1580 * If cpu is not a wildcard then this is a percpu event:
1581 */
1582 if (cpu != -1) {
1583 /* Must be root to operate on a CPU event: */
1584 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1585 return ERR_PTR(-EACCES);
1586
1587 if (cpu < 0 || cpu > num_possible_cpus())
1588 return ERR_PTR(-EINVAL);
1589
1590 /*
1591 * We could be clever and allow to attach a event to an
1592 * offline CPU and activate it when the CPU comes up, but
1593 * that's for later.
1594 */
1595 if (!cpu_isset(cpu, cpu_online_map))
1596 return ERR_PTR(-ENODEV);
1597
1598 cpuctx = &per_cpu(perf_cpu_context, cpu);
1599 ctx = &cpuctx->ctx;
1600 get_ctx(ctx);
1601
1602 return ctx;
1603 }
1604
1605 rcu_read_lock();
1606 if (!pid)
1607 task = current;
1608 else
1609 task = find_task_by_vpid(pid);
1610 if (task)
1611 get_task_struct(task);
1612 rcu_read_unlock();
1613
1614 if (!task)
1615 return ERR_PTR(-ESRCH);
1616
1617 /*
1618 * Can't attach events to a dying task.
1619 */
1620 err = -ESRCH;
1621 if (task->flags & PF_EXITING)
1622 goto errout;
1623
1624 /* Reuse ptrace permission checks for now. */
1625 err = -EACCES;
1626 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1627 goto errout;
1628
1629 retry:
1630 ctx = perf_lock_task_context(task, &flags);
1631 if (ctx) {
1632 unclone_ctx(ctx);
1633 spin_unlock_irqrestore(&ctx->lock, flags);
1634 }
1635
1636 if (!ctx) {
1637 ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1638 err = -ENOMEM;
1639 if (!ctx)
1640 goto errout;
1641 __perf_event_init_context(ctx, task);
1642 get_ctx(ctx);
1643 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1644 /*
1645 * We raced with some other task; use
1646 * the context they set.
1647 */
1648 kfree(ctx);
1649 goto retry;
1650 }
1651 get_task_struct(task);
1652 }
1653
1654 put_task_struct(task);
1655 return ctx;
1656
1657 errout:
1658 put_task_struct(task);
1659 return ERR_PTR(err);
1660}
1661
Li Zefan6fb29152009-10-15 11:21:42 +08001662static void perf_event_free_filter(struct perf_event *event);
1663
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001664static void free_event_rcu(struct rcu_head *head)
1665{
1666 struct perf_event *event;
1667
1668 event = container_of(head, struct perf_event, rcu_head);
1669 if (event->ns)
1670 put_pid_ns(event->ns);
Li Zefan6fb29152009-10-15 11:21:42 +08001671 perf_event_free_filter(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001672 kfree(event);
1673}
1674
1675static void perf_pending_sync(struct perf_event *event);
1676
1677static void free_event(struct perf_event *event)
1678{
1679 perf_pending_sync(event);
1680
1681 if (!event->parent) {
1682 atomic_dec(&nr_events);
1683 if (event->attr.mmap)
1684 atomic_dec(&nr_mmap_events);
1685 if (event->attr.comm)
1686 atomic_dec(&nr_comm_events);
1687 if (event->attr.task)
1688 atomic_dec(&nr_task_events);
1689 }
1690
1691 if (event->output) {
1692 fput(event->output->filp);
1693 event->output = NULL;
1694 }
1695
1696 if (event->destroy)
1697 event->destroy(event);
1698
1699 put_ctx(event->ctx);
1700 call_rcu(&event->rcu_head, free_event_rcu);
1701}
1702
1703/*
1704 * Called when the last reference to the file is gone.
1705 */
1706static int perf_release(struct inode *inode, struct file *file)
1707{
1708 struct perf_event *event = file->private_data;
1709 struct perf_event_context *ctx = event->ctx;
1710
1711 file->private_data = NULL;
1712
1713 WARN_ON_ONCE(ctx->parent_ctx);
1714 mutex_lock(&ctx->mutex);
1715 perf_event_remove_from_context(event);
1716 mutex_unlock(&ctx->mutex);
1717
1718 mutex_lock(&event->owner->perf_event_mutex);
1719 list_del_init(&event->owner_entry);
1720 mutex_unlock(&event->owner->perf_event_mutex);
1721 put_task_struct(event->owner);
1722
1723 free_event(event);
1724
1725 return 0;
1726}
1727
1728static int perf_event_read_size(struct perf_event *event)
1729{
1730 int entry = sizeof(u64); /* value */
1731 int size = 0;
1732 int nr = 1;
1733
1734 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1735 size += sizeof(u64);
1736
1737 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1738 size += sizeof(u64);
1739
1740 if (event->attr.read_format & PERF_FORMAT_ID)
1741 entry += sizeof(u64);
1742
1743 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1744 nr += event->group_leader->nr_siblings;
1745 size += sizeof(u64);
1746 }
1747
1748 size += entry * nr;
1749
1750 return size;
1751}
1752
1753static u64 perf_event_read_value(struct perf_event *event)
1754{
1755 struct perf_event *child;
1756 u64 total = 0;
1757
1758 total += perf_event_read(event);
1759 list_for_each_entry(child, &event->child_list, child_list)
1760 total += perf_event_read(child);
1761
1762 return total;
1763}
1764
1765static int perf_event_read_entry(struct perf_event *event,
1766 u64 read_format, char __user *buf)
1767{
1768 int n = 0, count = 0;
1769 u64 values[2];
1770
1771 values[n++] = perf_event_read_value(event);
1772 if (read_format & PERF_FORMAT_ID)
1773 values[n++] = primary_event_id(event);
1774
1775 count = n * sizeof(u64);
1776
1777 if (copy_to_user(buf, values, count))
1778 return -EFAULT;
1779
1780 return count;
1781}
1782
1783static int perf_event_read_group(struct perf_event *event,
1784 u64 read_format, char __user *buf)
1785{
1786 struct perf_event *leader = event->group_leader, *sub;
1787 int n = 0, size = 0, err = -EFAULT;
1788 u64 values[3];
1789
1790 values[n++] = 1 + leader->nr_siblings;
1791 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1792 values[n++] = leader->total_time_enabled +
1793 atomic64_read(&leader->child_total_time_enabled);
1794 }
1795 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1796 values[n++] = leader->total_time_running +
1797 atomic64_read(&leader->child_total_time_running);
1798 }
1799
1800 size = n * sizeof(u64);
1801
1802 if (copy_to_user(buf, values, size))
1803 return -EFAULT;
1804
1805 err = perf_event_read_entry(leader, read_format, buf + size);
1806 if (err < 0)
1807 return err;
1808
1809 size += err;
1810
1811 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1812 err = perf_event_read_entry(sub, read_format,
1813 buf + size);
1814 if (err < 0)
1815 return err;
1816
1817 size += err;
1818 }
1819
1820 return size;
1821}
1822
1823static int perf_event_read_one(struct perf_event *event,
1824 u64 read_format, char __user *buf)
1825{
1826 u64 values[4];
1827 int n = 0;
1828
1829 values[n++] = perf_event_read_value(event);
1830 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1831 values[n++] = event->total_time_enabled +
1832 atomic64_read(&event->child_total_time_enabled);
1833 }
1834 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1835 values[n++] = event->total_time_running +
1836 atomic64_read(&event->child_total_time_running);
1837 }
1838 if (read_format & PERF_FORMAT_ID)
1839 values[n++] = primary_event_id(event);
1840
1841 if (copy_to_user(buf, values, n * sizeof(u64)))
1842 return -EFAULT;
1843
1844 return n * sizeof(u64);
1845}
1846
1847/*
1848 * Read the performance event - simple non blocking version for now
1849 */
1850static ssize_t
1851perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
1852{
1853 u64 read_format = event->attr.read_format;
1854 int ret;
1855
1856 /*
1857 * Return end-of-file for a read on a event that is in
1858 * error state (i.e. because it was pinned but it couldn't be
1859 * scheduled on to the CPU at some point).
1860 */
1861 if (event->state == PERF_EVENT_STATE_ERROR)
1862 return 0;
1863
1864 if (count < perf_event_read_size(event))
1865 return -ENOSPC;
1866
1867 WARN_ON_ONCE(event->ctx->parent_ctx);
1868 mutex_lock(&event->child_mutex);
1869 if (read_format & PERF_FORMAT_GROUP)
1870 ret = perf_event_read_group(event, read_format, buf);
1871 else
1872 ret = perf_event_read_one(event, read_format, buf);
1873 mutex_unlock(&event->child_mutex);
1874
1875 return ret;
1876}
1877
1878static ssize_t
1879perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1880{
1881 struct perf_event *event = file->private_data;
1882
1883 return perf_read_hw(event, buf, count);
1884}
1885
1886static unsigned int perf_poll(struct file *file, poll_table *wait)
1887{
1888 struct perf_event *event = file->private_data;
1889 struct perf_mmap_data *data;
1890 unsigned int events = POLL_HUP;
1891
1892 rcu_read_lock();
1893 data = rcu_dereference(event->data);
1894 if (data)
1895 events = atomic_xchg(&data->poll, 0);
1896 rcu_read_unlock();
1897
1898 poll_wait(file, &event->waitq, wait);
1899
1900 return events;
1901}
1902
1903static void perf_event_reset(struct perf_event *event)
1904{
1905 (void)perf_event_read(event);
1906 atomic64_set(&event->count, 0);
1907 perf_event_update_userpage(event);
1908}
1909
1910/*
1911 * Holding the top-level event's child_mutex means that any
1912 * descendant process that has inherited this event will block
1913 * in sync_child_event if it goes to exit, thus satisfying the
1914 * task existence requirements of perf_event_enable/disable.
1915 */
1916static void perf_event_for_each_child(struct perf_event *event,
1917 void (*func)(struct perf_event *))
1918{
1919 struct perf_event *child;
1920
1921 WARN_ON_ONCE(event->ctx->parent_ctx);
1922 mutex_lock(&event->child_mutex);
1923 func(event);
1924 list_for_each_entry(child, &event->child_list, child_list)
1925 func(child);
1926 mutex_unlock(&event->child_mutex);
1927}
1928
1929static void perf_event_for_each(struct perf_event *event,
1930 void (*func)(struct perf_event *))
1931{
1932 struct perf_event_context *ctx = event->ctx;
1933 struct perf_event *sibling;
1934
1935 WARN_ON_ONCE(ctx->parent_ctx);
1936 mutex_lock(&ctx->mutex);
1937 event = event->group_leader;
1938
1939 perf_event_for_each_child(event, func);
1940 func(event);
1941 list_for_each_entry(sibling, &event->sibling_list, group_entry)
1942 perf_event_for_each_child(event, func);
1943 mutex_unlock(&ctx->mutex);
1944}
1945
1946static int perf_event_period(struct perf_event *event, u64 __user *arg)
1947{
1948 struct perf_event_context *ctx = event->ctx;
1949 unsigned long size;
1950 int ret = 0;
1951 u64 value;
1952
1953 if (!event->attr.sample_period)
1954 return -EINVAL;
1955
1956 size = copy_from_user(&value, arg, sizeof(value));
1957 if (size != sizeof(value))
1958 return -EFAULT;
1959
1960 if (!value)
1961 return -EINVAL;
1962
1963 spin_lock_irq(&ctx->lock);
1964 if (event->attr.freq) {
1965 if (value > sysctl_perf_event_sample_rate) {
1966 ret = -EINVAL;
1967 goto unlock;
1968 }
1969
1970 event->attr.sample_freq = value;
1971 } else {
1972 event->attr.sample_period = value;
1973 event->hw.sample_period = value;
1974 }
1975unlock:
1976 spin_unlock_irq(&ctx->lock);
1977
1978 return ret;
1979}
1980
Li Zefan6fb29152009-10-15 11:21:42 +08001981static int perf_event_set_output(struct perf_event *event, int output_fd);
1982static int perf_event_set_filter(struct perf_event *event, void __user *arg);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001983
1984static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1985{
1986 struct perf_event *event = file->private_data;
1987 void (*func)(struct perf_event *);
1988 u32 flags = arg;
1989
1990 switch (cmd) {
1991 case PERF_EVENT_IOC_ENABLE:
1992 func = perf_event_enable;
1993 break;
1994 case PERF_EVENT_IOC_DISABLE:
1995 func = perf_event_disable;
1996 break;
1997 case PERF_EVENT_IOC_RESET:
1998 func = perf_event_reset;
1999 break;
2000
2001 case PERF_EVENT_IOC_REFRESH:
2002 return perf_event_refresh(event, arg);
2003
2004 case PERF_EVENT_IOC_PERIOD:
2005 return perf_event_period(event, (u64 __user *)arg);
2006
2007 case PERF_EVENT_IOC_SET_OUTPUT:
2008 return perf_event_set_output(event, arg);
2009
Li Zefan6fb29152009-10-15 11:21:42 +08002010 case PERF_EVENT_IOC_SET_FILTER:
2011 return perf_event_set_filter(event, (void __user *)arg);
2012
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002013 default:
2014 return -ENOTTY;
2015 }
2016
2017 if (flags & PERF_IOC_FLAG_GROUP)
2018 perf_event_for_each(event, func);
2019 else
2020 perf_event_for_each_child(event, func);
2021
2022 return 0;
2023}
2024
2025int perf_event_task_enable(void)
2026{
2027 struct perf_event *event;
2028
2029 mutex_lock(&current->perf_event_mutex);
2030 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2031 perf_event_for_each_child(event, perf_event_enable);
2032 mutex_unlock(&current->perf_event_mutex);
2033
2034 return 0;
2035}
2036
2037int perf_event_task_disable(void)
2038{
2039 struct perf_event *event;
2040
2041 mutex_lock(&current->perf_event_mutex);
2042 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2043 perf_event_for_each_child(event, perf_event_disable);
2044 mutex_unlock(&current->perf_event_mutex);
2045
2046 return 0;
2047}
2048
2049#ifndef PERF_EVENT_INDEX_OFFSET
2050# define PERF_EVENT_INDEX_OFFSET 0
2051#endif
2052
2053static int perf_event_index(struct perf_event *event)
2054{
2055 if (event->state != PERF_EVENT_STATE_ACTIVE)
2056 return 0;
2057
2058 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2059}
2060
2061/*
2062 * Callers need to ensure there can be no nesting of this function, otherwise
2063 * the seqlock logic goes bad. We can not serialize this because the arch
2064 * code calls this from NMI context.
2065 */
2066void perf_event_update_userpage(struct perf_event *event)
2067{
2068 struct perf_event_mmap_page *userpg;
2069 struct perf_mmap_data *data;
2070
2071 rcu_read_lock();
2072 data = rcu_dereference(event->data);
2073 if (!data)
2074 goto unlock;
2075
2076 userpg = data->user_page;
2077
2078 /*
2079 * Disable preemption so as to not let the corresponding user-space
2080 * spin too long if we get preempted.
2081 */
2082 preempt_disable();
2083 ++userpg->lock;
2084 barrier();
2085 userpg->index = perf_event_index(event);
2086 userpg->offset = atomic64_read(&event->count);
2087 if (event->state == PERF_EVENT_STATE_ACTIVE)
2088 userpg->offset -= atomic64_read(&event->hw.prev_count);
2089
2090 userpg->time_enabled = event->total_time_enabled +
2091 atomic64_read(&event->child_total_time_enabled);
2092
2093 userpg->time_running = event->total_time_running +
2094 atomic64_read(&event->child_total_time_running);
2095
2096 barrier();
2097 ++userpg->lock;
2098 preempt_enable();
2099unlock:
2100 rcu_read_unlock();
2101}
2102
Peter Zijlstra906010b2009-09-21 16:08:49 +02002103static unsigned long perf_data_size(struct perf_mmap_data *data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002104{
Peter Zijlstra906010b2009-09-21 16:08:49 +02002105 return data->nr_pages << (PAGE_SHIFT + data->data_order);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002106}
2107
Peter Zijlstra906010b2009-09-21 16:08:49 +02002108#ifndef CONFIG_PERF_USE_VMALLOC
2109
2110/*
2111 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2112 */
2113
2114static struct page *
2115perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2116{
2117 if (pgoff > data->nr_pages)
2118 return NULL;
2119
2120 if (pgoff == 0)
2121 return virt_to_page(data->user_page);
2122
2123 return virt_to_page(data->data_pages[pgoff - 1]);
2124}
2125
2126static struct perf_mmap_data *
2127perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002128{
2129 struct perf_mmap_data *data;
2130 unsigned long size;
2131 int i;
2132
2133 WARN_ON(atomic_read(&event->mmap_count));
2134
2135 size = sizeof(struct perf_mmap_data);
2136 size += nr_pages * sizeof(void *);
2137
2138 data = kzalloc(size, GFP_KERNEL);
2139 if (!data)
2140 goto fail;
2141
2142 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2143 if (!data->user_page)
2144 goto fail_user_page;
2145
2146 for (i = 0; i < nr_pages; i++) {
2147 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2148 if (!data->data_pages[i])
2149 goto fail_data_pages;
2150 }
2151
Peter Zijlstra906010b2009-09-21 16:08:49 +02002152 data->data_order = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002153 data->nr_pages = nr_pages;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002154
Peter Zijlstra906010b2009-09-21 16:08:49 +02002155 return data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002156
2157fail_data_pages:
2158 for (i--; i >= 0; i--)
2159 free_page((unsigned long)data->data_pages[i]);
2160
2161 free_page((unsigned long)data->user_page);
2162
2163fail_user_page:
2164 kfree(data);
2165
2166fail:
Peter Zijlstra906010b2009-09-21 16:08:49 +02002167 return NULL;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002168}
2169
2170static void perf_mmap_free_page(unsigned long addr)
2171{
2172 struct page *page = virt_to_page((void *)addr);
2173
2174 page->mapping = NULL;
2175 __free_page(page);
2176}
2177
Peter Zijlstra906010b2009-09-21 16:08:49 +02002178static void perf_mmap_data_free(struct perf_mmap_data *data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002179{
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002180 int i;
2181
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002182 perf_mmap_free_page((unsigned long)data->user_page);
2183 for (i = 0; i < data->nr_pages; i++)
2184 perf_mmap_free_page((unsigned long)data->data_pages[i]);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002185}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002186
Peter Zijlstra906010b2009-09-21 16:08:49 +02002187#else
2188
2189/*
2190 * Back perf_mmap() with vmalloc memory.
2191 *
2192 * Required for architectures that have d-cache aliasing issues.
2193 */
2194
2195static struct page *
2196perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2197{
2198 if (pgoff > (1UL << data->data_order))
2199 return NULL;
2200
2201 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2202}
2203
2204static void perf_mmap_unmark_page(void *addr)
2205{
2206 struct page *page = vmalloc_to_page(addr);
2207
2208 page->mapping = NULL;
2209}
2210
2211static void perf_mmap_data_free_work(struct work_struct *work)
2212{
2213 struct perf_mmap_data *data;
2214 void *base;
2215 int i, nr;
2216
2217 data = container_of(work, struct perf_mmap_data, work);
2218 nr = 1 << data->data_order;
2219
2220 base = data->user_page;
2221 for (i = 0; i < nr + 1; i++)
2222 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2223
2224 vfree(base);
2225}
2226
2227static void perf_mmap_data_free(struct perf_mmap_data *data)
2228{
2229 schedule_work(&data->work);
2230}
2231
2232static struct perf_mmap_data *
2233perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2234{
2235 struct perf_mmap_data *data;
2236 unsigned long size;
2237 void *all_buf;
2238
2239 WARN_ON(atomic_read(&event->mmap_count));
2240
2241 size = sizeof(struct perf_mmap_data);
2242 size += sizeof(void *);
2243
2244 data = kzalloc(size, GFP_KERNEL);
2245 if (!data)
2246 goto fail;
2247
2248 INIT_WORK(&data->work, perf_mmap_data_free_work);
2249
2250 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2251 if (!all_buf)
2252 goto fail_all_buf;
2253
2254 data->user_page = all_buf;
2255 data->data_pages[0] = all_buf + PAGE_SIZE;
2256 data->data_order = ilog2(nr_pages);
2257 data->nr_pages = 1;
2258
2259 return data;
2260
2261fail_all_buf:
2262 kfree(data);
2263
2264fail:
2265 return NULL;
2266}
2267
2268#endif
2269
2270static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2271{
2272 struct perf_event *event = vma->vm_file->private_data;
2273 struct perf_mmap_data *data;
2274 int ret = VM_FAULT_SIGBUS;
2275
2276 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2277 if (vmf->pgoff == 0)
2278 ret = 0;
2279 return ret;
2280 }
2281
2282 rcu_read_lock();
2283 data = rcu_dereference(event->data);
2284 if (!data)
2285 goto unlock;
2286
2287 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2288 goto unlock;
2289
2290 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2291 if (!vmf->page)
2292 goto unlock;
2293
2294 get_page(vmf->page);
2295 vmf->page->mapping = vma->vm_file->f_mapping;
2296 vmf->page->index = vmf->pgoff;
2297
2298 ret = 0;
2299unlock:
2300 rcu_read_unlock();
2301
2302 return ret;
2303}
2304
2305static void
2306perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2307{
2308 long max_size = perf_data_size(data);
2309
2310 atomic_set(&data->lock, -1);
2311
2312 if (event->attr.watermark) {
2313 data->watermark = min_t(long, max_size,
2314 event->attr.wakeup_watermark);
2315 }
2316
2317 if (!data->watermark)
2318 data->watermark = max_t(long, PAGE_SIZE, max_size / 2);
2319
2320
2321 rcu_assign_pointer(event->data, data);
2322}
2323
2324static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2325{
2326 struct perf_mmap_data *data;
2327
2328 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2329 perf_mmap_data_free(data);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002330 kfree(data);
2331}
2332
Peter Zijlstra906010b2009-09-21 16:08:49 +02002333static void perf_mmap_data_release(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002334{
2335 struct perf_mmap_data *data = event->data;
2336
2337 WARN_ON(atomic_read(&event->mmap_count));
2338
2339 rcu_assign_pointer(event->data, NULL);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002340 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002341}
2342
2343static void perf_mmap_open(struct vm_area_struct *vma)
2344{
2345 struct perf_event *event = vma->vm_file->private_data;
2346
2347 atomic_inc(&event->mmap_count);
2348}
2349
2350static void perf_mmap_close(struct vm_area_struct *vma)
2351{
2352 struct perf_event *event = vma->vm_file->private_data;
2353
2354 WARN_ON_ONCE(event->ctx->parent_ctx);
2355 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
Peter Zijlstra906010b2009-09-21 16:08:49 +02002356 unsigned long size = perf_data_size(event->data);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002357 struct user_struct *user = current_user();
2358
Peter Zijlstra906010b2009-09-21 16:08:49 +02002359 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002360 vma->vm_mm->locked_vm -= event->data->nr_locked;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002361 perf_mmap_data_release(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002362 mutex_unlock(&event->mmap_mutex);
2363 }
2364}
2365
Alexey Dobriyanf0f37e22009-09-27 22:29:37 +04002366static const struct vm_operations_struct perf_mmap_vmops = {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002367 .open = perf_mmap_open,
2368 .close = perf_mmap_close,
2369 .fault = perf_mmap_fault,
2370 .page_mkwrite = perf_mmap_fault,
2371};
2372
2373static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2374{
2375 struct perf_event *event = file->private_data;
2376 unsigned long user_locked, user_lock_limit;
2377 struct user_struct *user = current_user();
2378 unsigned long locked, lock_limit;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002379 struct perf_mmap_data *data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002380 unsigned long vma_size;
2381 unsigned long nr_pages;
2382 long user_extra, extra;
2383 int ret = 0;
2384
2385 if (!(vma->vm_flags & VM_SHARED))
2386 return -EINVAL;
2387
2388 vma_size = vma->vm_end - vma->vm_start;
2389 nr_pages = (vma_size / PAGE_SIZE) - 1;
2390
2391 /*
2392 * If we have data pages ensure they're a power-of-two number, so we
2393 * can do bitmasks instead of modulo.
2394 */
2395 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2396 return -EINVAL;
2397
2398 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2399 return -EINVAL;
2400
2401 if (vma->vm_pgoff != 0)
2402 return -EINVAL;
2403
2404 WARN_ON_ONCE(event->ctx->parent_ctx);
2405 mutex_lock(&event->mmap_mutex);
2406 if (event->output) {
2407 ret = -EINVAL;
2408 goto unlock;
2409 }
2410
2411 if (atomic_inc_not_zero(&event->mmap_count)) {
2412 if (nr_pages != event->data->nr_pages)
2413 ret = -EINVAL;
2414 goto unlock;
2415 }
2416
2417 user_extra = nr_pages + 1;
2418 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2419
2420 /*
2421 * Increase the limit linearly with more CPUs:
2422 */
2423 user_lock_limit *= num_online_cpus();
2424
2425 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2426
2427 extra = 0;
2428 if (user_locked > user_lock_limit)
2429 extra = user_locked - user_lock_limit;
2430
2431 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2432 lock_limit >>= PAGE_SHIFT;
2433 locked = vma->vm_mm->locked_vm + extra;
2434
2435 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2436 !capable(CAP_IPC_LOCK)) {
2437 ret = -EPERM;
2438 goto unlock;
2439 }
2440
2441 WARN_ON(event->data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002442
2443 data = perf_mmap_data_alloc(event, nr_pages);
2444 ret = -ENOMEM;
2445 if (!data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002446 goto unlock;
2447
Peter Zijlstra906010b2009-09-21 16:08:49 +02002448 ret = 0;
2449 perf_mmap_data_init(event, data);
2450
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002451 atomic_set(&event->mmap_count, 1);
2452 atomic_long_add(user_extra, &user->locked_vm);
2453 vma->vm_mm->locked_vm += extra;
2454 event->data->nr_locked = extra;
2455 if (vma->vm_flags & VM_WRITE)
2456 event->data->writable = 1;
2457
2458unlock:
2459 mutex_unlock(&event->mmap_mutex);
2460
2461 vma->vm_flags |= VM_RESERVED;
2462 vma->vm_ops = &perf_mmap_vmops;
2463
2464 return ret;
2465}
2466
2467static int perf_fasync(int fd, struct file *filp, int on)
2468{
2469 struct inode *inode = filp->f_path.dentry->d_inode;
2470 struct perf_event *event = filp->private_data;
2471 int retval;
2472
2473 mutex_lock(&inode->i_mutex);
2474 retval = fasync_helper(fd, filp, on, &event->fasync);
2475 mutex_unlock(&inode->i_mutex);
2476
2477 if (retval < 0)
2478 return retval;
2479
2480 return 0;
2481}
2482
2483static const struct file_operations perf_fops = {
2484 .release = perf_release,
2485 .read = perf_read,
2486 .poll = perf_poll,
2487 .unlocked_ioctl = perf_ioctl,
2488 .compat_ioctl = perf_ioctl,
2489 .mmap = perf_mmap,
2490 .fasync = perf_fasync,
2491};
2492
2493/*
2494 * Perf event wakeup
2495 *
2496 * If there's data, ensure we set the poll() state and publish everything
2497 * to user-space before waking everybody up.
2498 */
2499
2500void perf_event_wakeup(struct perf_event *event)
2501{
2502 wake_up_all(&event->waitq);
2503
2504 if (event->pending_kill) {
2505 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2506 event->pending_kill = 0;
2507 }
2508}
2509
2510/*
2511 * Pending wakeups
2512 *
2513 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2514 *
2515 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2516 * single linked list and use cmpxchg() to add entries lockless.
2517 */
2518
2519static void perf_pending_event(struct perf_pending_entry *entry)
2520{
2521 struct perf_event *event = container_of(entry,
2522 struct perf_event, pending);
2523
2524 if (event->pending_disable) {
2525 event->pending_disable = 0;
2526 __perf_event_disable(event);
2527 }
2528
2529 if (event->pending_wakeup) {
2530 event->pending_wakeup = 0;
2531 perf_event_wakeup(event);
2532 }
2533}
2534
2535#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2536
2537static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2538 PENDING_TAIL,
2539};
2540
2541static void perf_pending_queue(struct perf_pending_entry *entry,
2542 void (*func)(struct perf_pending_entry *))
2543{
2544 struct perf_pending_entry **head;
2545
2546 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2547 return;
2548
2549 entry->func = func;
2550
2551 head = &get_cpu_var(perf_pending_head);
2552
2553 do {
2554 entry->next = *head;
2555 } while (cmpxchg(head, entry->next, entry) != entry->next);
2556
2557 set_perf_event_pending();
2558
2559 put_cpu_var(perf_pending_head);
2560}
2561
2562static int __perf_pending_run(void)
2563{
2564 struct perf_pending_entry *list;
2565 int nr = 0;
2566
2567 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2568 while (list != PENDING_TAIL) {
2569 void (*func)(struct perf_pending_entry *);
2570 struct perf_pending_entry *entry = list;
2571
2572 list = list->next;
2573
2574 func = entry->func;
2575 entry->next = NULL;
2576 /*
2577 * Ensure we observe the unqueue before we issue the wakeup,
2578 * so that we won't be waiting forever.
2579 * -- see perf_not_pending().
2580 */
2581 smp_wmb();
2582
2583 func(entry);
2584 nr++;
2585 }
2586
2587 return nr;
2588}
2589
2590static inline int perf_not_pending(struct perf_event *event)
2591{
2592 /*
2593 * If we flush on whatever cpu we run, there is a chance we don't
2594 * need to wait.
2595 */
2596 get_cpu();
2597 __perf_pending_run();
2598 put_cpu();
2599
2600 /*
2601 * Ensure we see the proper queue state before going to sleep
2602 * so that we do not miss the wakeup. -- see perf_pending_handle()
2603 */
2604 smp_rmb();
2605 return event->pending.next == NULL;
2606}
2607
2608static void perf_pending_sync(struct perf_event *event)
2609{
2610 wait_event(event->waitq, perf_not_pending(event));
2611}
2612
2613void perf_event_do_pending(void)
2614{
2615 __perf_pending_run();
2616}
2617
2618/*
2619 * Callchain support -- arch specific
2620 */
2621
2622__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2623{
2624 return NULL;
2625}
2626
2627/*
2628 * Output
2629 */
2630static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2631 unsigned long offset, unsigned long head)
2632{
2633 unsigned long mask;
2634
2635 if (!data->writable)
2636 return true;
2637
Peter Zijlstra906010b2009-09-21 16:08:49 +02002638 mask = perf_data_size(data) - 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002639
2640 offset = (offset - tail) & mask;
2641 head = (head - tail) & mask;
2642
2643 if ((int)(head - offset) < 0)
2644 return false;
2645
2646 return true;
2647}
2648
2649static void perf_output_wakeup(struct perf_output_handle *handle)
2650{
2651 atomic_set(&handle->data->poll, POLL_IN);
2652
2653 if (handle->nmi) {
2654 handle->event->pending_wakeup = 1;
2655 perf_pending_queue(&handle->event->pending,
2656 perf_pending_event);
2657 } else
2658 perf_event_wakeup(handle->event);
2659}
2660
2661/*
2662 * Curious locking construct.
2663 *
2664 * We need to ensure a later event_id doesn't publish a head when a former
2665 * event_id isn't done writing. However since we need to deal with NMIs we
2666 * cannot fully serialize things.
2667 *
2668 * What we do is serialize between CPUs so we only have to deal with NMI
2669 * nesting on a single CPU.
2670 *
2671 * We only publish the head (and generate a wakeup) when the outer-most
2672 * event_id completes.
2673 */
2674static void perf_output_lock(struct perf_output_handle *handle)
2675{
2676 struct perf_mmap_data *data = handle->data;
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002677 int cur, cpu = get_cpu();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002678
2679 handle->locked = 0;
2680
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002681 for (;;) {
2682 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2683 if (cur == -1) {
2684 handle->locked = 1;
2685 break;
2686 }
2687 if (cur == cpu)
2688 break;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002689
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002690 cpu_relax();
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002691 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002692}
2693
2694static void perf_output_unlock(struct perf_output_handle *handle)
2695{
2696 struct perf_mmap_data *data = handle->data;
2697 unsigned long head;
2698 int cpu;
2699
2700 data->done_head = data->head;
2701
2702 if (!handle->locked)
2703 goto out;
2704
2705again:
2706 /*
2707 * The xchg implies a full barrier that ensures all writes are done
2708 * before we publish the new head, matched by a rmb() in userspace when
2709 * reading this position.
2710 */
2711 while ((head = atomic_long_xchg(&data->done_head, 0)))
2712 data->user_page->data_head = head;
2713
2714 /*
2715 * NMI can happen here, which means we can miss a done_head update.
2716 */
2717
2718 cpu = atomic_xchg(&data->lock, -1);
2719 WARN_ON_ONCE(cpu != smp_processor_id());
2720
2721 /*
2722 * Therefore we have to validate we did not indeed do so.
2723 */
2724 if (unlikely(atomic_long_read(&data->done_head))) {
2725 /*
2726 * Since we had it locked, we can lock it again.
2727 */
2728 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2729 cpu_relax();
2730
2731 goto again;
2732 }
2733
2734 if (atomic_xchg(&data->wakeup, 0))
2735 perf_output_wakeup(handle);
2736out:
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002737 put_cpu();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002738}
2739
2740void perf_output_copy(struct perf_output_handle *handle,
2741 const void *buf, unsigned int len)
2742{
2743 unsigned int pages_mask;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002744 unsigned long offset;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002745 unsigned int size;
2746 void **pages;
2747
2748 offset = handle->offset;
2749 pages_mask = handle->data->nr_pages - 1;
2750 pages = handle->data->data_pages;
2751
2752 do {
Peter Zijlstra906010b2009-09-21 16:08:49 +02002753 unsigned long page_offset;
2754 unsigned long page_size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002755 int nr;
2756
2757 nr = (offset >> PAGE_SHIFT) & pages_mask;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002758 page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
2759 page_offset = offset & (page_size - 1);
2760 size = min_t(unsigned int, page_size - page_offset, len);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002761
2762 memcpy(pages[nr] + page_offset, buf, size);
2763
2764 len -= size;
2765 buf += size;
2766 offset += size;
2767 } while (len);
2768
2769 handle->offset = offset;
2770
2771 /*
2772 * Check we didn't copy past our reservation window, taking the
2773 * possible unsigned int wrap into account.
2774 */
2775 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2776}
2777
2778int perf_output_begin(struct perf_output_handle *handle,
2779 struct perf_event *event, unsigned int size,
2780 int nmi, int sample)
2781{
2782 struct perf_event *output_event;
2783 struct perf_mmap_data *data;
2784 unsigned long tail, offset, head;
2785 int have_lost;
2786 struct {
2787 struct perf_event_header header;
2788 u64 id;
2789 u64 lost;
2790 } lost_event;
2791
2792 rcu_read_lock();
2793 /*
2794 * For inherited events we send all the output towards the parent.
2795 */
2796 if (event->parent)
2797 event = event->parent;
2798
2799 output_event = rcu_dereference(event->output);
2800 if (output_event)
2801 event = output_event;
2802
2803 data = rcu_dereference(event->data);
2804 if (!data)
2805 goto out;
2806
2807 handle->data = data;
2808 handle->event = event;
2809 handle->nmi = nmi;
2810 handle->sample = sample;
2811
2812 if (!data->nr_pages)
2813 goto fail;
2814
2815 have_lost = atomic_read(&data->lost);
2816 if (have_lost)
2817 size += sizeof(lost_event);
2818
2819 perf_output_lock(handle);
2820
2821 do {
2822 /*
2823 * Userspace could choose to issue a mb() before updating the
2824 * tail pointer. So that all reads will be completed before the
2825 * write is issued.
2826 */
2827 tail = ACCESS_ONCE(data->user_page->data_tail);
2828 smp_rmb();
2829 offset = head = atomic_long_read(&data->head);
2830 head += size;
2831 if (unlikely(!perf_output_space(data, tail, offset, head)))
2832 goto fail;
2833 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2834
2835 handle->offset = offset;
2836 handle->head = head;
2837
2838 if (head - tail > data->watermark)
2839 atomic_set(&data->wakeup, 1);
2840
2841 if (have_lost) {
2842 lost_event.header.type = PERF_RECORD_LOST;
2843 lost_event.header.misc = 0;
2844 lost_event.header.size = sizeof(lost_event);
2845 lost_event.id = event->id;
2846 lost_event.lost = atomic_xchg(&data->lost, 0);
2847
2848 perf_output_put(handle, lost_event);
2849 }
2850
2851 return 0;
2852
2853fail:
2854 atomic_inc(&data->lost);
2855 perf_output_unlock(handle);
2856out:
2857 rcu_read_unlock();
2858
2859 return -ENOSPC;
2860}
2861
2862void perf_output_end(struct perf_output_handle *handle)
2863{
2864 struct perf_event *event = handle->event;
2865 struct perf_mmap_data *data = handle->data;
2866
2867 int wakeup_events = event->attr.wakeup_events;
2868
2869 if (handle->sample && wakeup_events) {
2870 int events = atomic_inc_return(&data->events);
2871 if (events >= wakeup_events) {
2872 atomic_sub(wakeup_events, &data->events);
2873 atomic_set(&data->wakeup, 1);
2874 }
2875 }
2876
2877 perf_output_unlock(handle);
2878 rcu_read_unlock();
2879}
2880
2881static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
2882{
2883 /*
2884 * only top level events have the pid namespace they were created in
2885 */
2886 if (event->parent)
2887 event = event->parent;
2888
2889 return task_tgid_nr_ns(p, event->ns);
2890}
2891
2892static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
2893{
2894 /*
2895 * only top level events have the pid namespace they were created in
2896 */
2897 if (event->parent)
2898 event = event->parent;
2899
2900 return task_pid_nr_ns(p, event->ns);
2901}
2902
2903static void perf_output_read_one(struct perf_output_handle *handle,
2904 struct perf_event *event)
2905{
2906 u64 read_format = event->attr.read_format;
2907 u64 values[4];
2908 int n = 0;
2909
2910 values[n++] = atomic64_read(&event->count);
2911 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2912 values[n++] = event->total_time_enabled +
2913 atomic64_read(&event->child_total_time_enabled);
2914 }
2915 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2916 values[n++] = event->total_time_running +
2917 atomic64_read(&event->child_total_time_running);
2918 }
2919 if (read_format & PERF_FORMAT_ID)
2920 values[n++] = primary_event_id(event);
2921
2922 perf_output_copy(handle, values, n * sizeof(u64));
2923}
2924
2925/*
2926 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
2927 */
2928static void perf_output_read_group(struct perf_output_handle *handle,
2929 struct perf_event *event)
2930{
2931 struct perf_event *leader = event->group_leader, *sub;
2932 u64 read_format = event->attr.read_format;
2933 u64 values[5];
2934 int n = 0;
2935
2936 values[n++] = 1 + leader->nr_siblings;
2937
2938 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2939 values[n++] = leader->total_time_enabled;
2940
2941 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2942 values[n++] = leader->total_time_running;
2943
2944 if (leader != event)
2945 leader->pmu->read(leader);
2946
2947 values[n++] = atomic64_read(&leader->count);
2948 if (read_format & PERF_FORMAT_ID)
2949 values[n++] = primary_event_id(leader);
2950
2951 perf_output_copy(handle, values, n * sizeof(u64));
2952
2953 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2954 n = 0;
2955
2956 if (sub != event)
2957 sub->pmu->read(sub);
2958
2959 values[n++] = atomic64_read(&sub->count);
2960 if (read_format & PERF_FORMAT_ID)
2961 values[n++] = primary_event_id(sub);
2962
2963 perf_output_copy(handle, values, n * sizeof(u64));
2964 }
2965}
2966
2967static void perf_output_read(struct perf_output_handle *handle,
2968 struct perf_event *event)
2969{
2970 if (event->attr.read_format & PERF_FORMAT_GROUP)
2971 perf_output_read_group(handle, event);
2972 else
2973 perf_output_read_one(handle, event);
2974}
2975
2976void perf_output_sample(struct perf_output_handle *handle,
2977 struct perf_event_header *header,
2978 struct perf_sample_data *data,
2979 struct perf_event *event)
2980{
2981 u64 sample_type = data->type;
2982
2983 perf_output_put(handle, *header);
2984
2985 if (sample_type & PERF_SAMPLE_IP)
2986 perf_output_put(handle, data->ip);
2987
2988 if (sample_type & PERF_SAMPLE_TID)
2989 perf_output_put(handle, data->tid_entry);
2990
2991 if (sample_type & PERF_SAMPLE_TIME)
2992 perf_output_put(handle, data->time);
2993
2994 if (sample_type & PERF_SAMPLE_ADDR)
2995 perf_output_put(handle, data->addr);
2996
2997 if (sample_type & PERF_SAMPLE_ID)
2998 perf_output_put(handle, data->id);
2999
3000 if (sample_type & PERF_SAMPLE_STREAM_ID)
3001 perf_output_put(handle, data->stream_id);
3002
3003 if (sample_type & PERF_SAMPLE_CPU)
3004 perf_output_put(handle, data->cpu_entry);
3005
3006 if (sample_type & PERF_SAMPLE_PERIOD)
3007 perf_output_put(handle, data->period);
3008
3009 if (sample_type & PERF_SAMPLE_READ)
3010 perf_output_read(handle, event);
3011
3012 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3013 if (data->callchain) {
3014 int size = 1;
3015
3016 if (data->callchain)
3017 size += data->callchain->nr;
3018
3019 size *= sizeof(u64);
3020
3021 perf_output_copy(handle, data->callchain, size);
3022 } else {
3023 u64 nr = 0;
3024 perf_output_put(handle, nr);
3025 }
3026 }
3027
3028 if (sample_type & PERF_SAMPLE_RAW) {
3029 if (data->raw) {
3030 perf_output_put(handle, data->raw->size);
3031 perf_output_copy(handle, data->raw->data,
3032 data->raw->size);
3033 } else {
3034 struct {
3035 u32 size;
3036 u32 data;
3037 } raw = {
3038 .size = sizeof(u32),
3039 .data = 0,
3040 };
3041 perf_output_put(handle, raw);
3042 }
3043 }
3044}
3045
3046void perf_prepare_sample(struct perf_event_header *header,
3047 struct perf_sample_data *data,
3048 struct perf_event *event,
3049 struct pt_regs *regs)
3050{
3051 u64 sample_type = event->attr.sample_type;
3052
3053 data->type = sample_type;
3054
3055 header->type = PERF_RECORD_SAMPLE;
3056 header->size = sizeof(*header);
3057
3058 header->misc = 0;
3059 header->misc |= perf_misc_flags(regs);
3060
3061 if (sample_type & PERF_SAMPLE_IP) {
3062 data->ip = perf_instruction_pointer(regs);
3063
3064 header->size += sizeof(data->ip);
3065 }
3066
3067 if (sample_type & PERF_SAMPLE_TID) {
3068 /* namespace issues */
3069 data->tid_entry.pid = perf_event_pid(event, current);
3070 data->tid_entry.tid = perf_event_tid(event, current);
3071
3072 header->size += sizeof(data->tid_entry);
3073 }
3074
3075 if (sample_type & PERF_SAMPLE_TIME) {
3076 data->time = perf_clock();
3077
3078 header->size += sizeof(data->time);
3079 }
3080
3081 if (sample_type & PERF_SAMPLE_ADDR)
3082 header->size += sizeof(data->addr);
3083
3084 if (sample_type & PERF_SAMPLE_ID) {
3085 data->id = primary_event_id(event);
3086
3087 header->size += sizeof(data->id);
3088 }
3089
3090 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3091 data->stream_id = event->id;
3092
3093 header->size += sizeof(data->stream_id);
3094 }
3095
3096 if (sample_type & PERF_SAMPLE_CPU) {
3097 data->cpu_entry.cpu = raw_smp_processor_id();
3098 data->cpu_entry.reserved = 0;
3099
3100 header->size += sizeof(data->cpu_entry);
3101 }
3102
3103 if (sample_type & PERF_SAMPLE_PERIOD)
3104 header->size += sizeof(data->period);
3105
3106 if (sample_type & PERF_SAMPLE_READ)
3107 header->size += perf_event_read_size(event);
3108
3109 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3110 int size = 1;
3111
3112 data->callchain = perf_callchain(regs);
3113
3114 if (data->callchain)
3115 size += data->callchain->nr;
3116
3117 header->size += size * sizeof(u64);
3118 }
3119
3120 if (sample_type & PERF_SAMPLE_RAW) {
3121 int size = sizeof(u32);
3122
3123 if (data->raw)
3124 size += data->raw->size;
3125 else
3126 size += sizeof(u32);
3127
3128 WARN_ON_ONCE(size & (sizeof(u64)-1));
3129 header->size += size;
3130 }
3131}
3132
3133static void perf_event_output(struct perf_event *event, int nmi,
3134 struct perf_sample_data *data,
3135 struct pt_regs *regs)
3136{
3137 struct perf_output_handle handle;
3138 struct perf_event_header header;
3139
3140 perf_prepare_sample(&header, data, event, regs);
3141
3142 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3143 return;
3144
3145 perf_output_sample(&handle, &header, data, event);
3146
3147 perf_output_end(&handle);
3148}
3149
3150/*
3151 * read event_id
3152 */
3153
3154struct perf_read_event {
3155 struct perf_event_header header;
3156
3157 u32 pid;
3158 u32 tid;
3159};
3160
3161static void
3162perf_event_read_event(struct perf_event *event,
3163 struct task_struct *task)
3164{
3165 struct perf_output_handle handle;
3166 struct perf_read_event read_event = {
3167 .header = {
3168 .type = PERF_RECORD_READ,
3169 .misc = 0,
3170 .size = sizeof(read_event) + perf_event_read_size(event),
3171 },
3172 .pid = perf_event_pid(event, task),
3173 .tid = perf_event_tid(event, task),
3174 };
3175 int ret;
3176
3177 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3178 if (ret)
3179 return;
3180
3181 perf_output_put(&handle, read_event);
3182 perf_output_read(&handle, event);
3183
3184 perf_output_end(&handle);
3185}
3186
3187/*
3188 * task tracking -- fork/exit
3189 *
3190 * enabled by: attr.comm | attr.mmap | attr.task
3191 */
3192
3193struct perf_task_event {
3194 struct task_struct *task;
3195 struct perf_event_context *task_ctx;
3196
3197 struct {
3198 struct perf_event_header header;
3199
3200 u32 pid;
3201 u32 ppid;
3202 u32 tid;
3203 u32 ptid;
3204 u64 time;
3205 } event_id;
3206};
3207
3208static void perf_event_task_output(struct perf_event *event,
3209 struct perf_task_event *task_event)
3210{
3211 struct perf_output_handle handle;
3212 int size;
3213 struct task_struct *task = task_event->task;
3214 int ret;
3215
3216 size = task_event->event_id.header.size;
3217 ret = perf_output_begin(&handle, event, size, 0, 0);
3218
3219 if (ret)
3220 return;
3221
3222 task_event->event_id.pid = perf_event_pid(event, task);
3223 task_event->event_id.ppid = perf_event_pid(event, current);
3224
3225 task_event->event_id.tid = perf_event_tid(event, task);
3226 task_event->event_id.ptid = perf_event_tid(event, current);
3227
3228 task_event->event_id.time = perf_clock();
3229
3230 perf_output_put(&handle, task_event->event_id);
3231
3232 perf_output_end(&handle);
3233}
3234
3235static int perf_event_task_match(struct perf_event *event)
3236{
3237 if (event->attr.comm || event->attr.mmap || event->attr.task)
3238 return 1;
3239
3240 return 0;
3241}
3242
3243static void perf_event_task_ctx(struct perf_event_context *ctx,
3244 struct perf_task_event *task_event)
3245{
3246 struct perf_event *event;
3247
3248 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3249 return;
3250
3251 rcu_read_lock();
3252 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3253 if (perf_event_task_match(event))
3254 perf_event_task_output(event, task_event);
3255 }
3256 rcu_read_unlock();
3257}
3258
3259static void perf_event_task_event(struct perf_task_event *task_event)
3260{
3261 struct perf_cpu_context *cpuctx;
3262 struct perf_event_context *ctx = task_event->task_ctx;
3263
3264 cpuctx = &get_cpu_var(perf_cpu_context);
3265 perf_event_task_ctx(&cpuctx->ctx, task_event);
3266 put_cpu_var(perf_cpu_context);
3267
3268 rcu_read_lock();
3269 if (!ctx)
3270 ctx = rcu_dereference(task_event->task->perf_event_ctxp);
3271 if (ctx)
3272 perf_event_task_ctx(ctx, task_event);
3273 rcu_read_unlock();
3274}
3275
3276static void perf_event_task(struct task_struct *task,
3277 struct perf_event_context *task_ctx,
3278 int new)
3279{
3280 struct perf_task_event task_event;
3281
3282 if (!atomic_read(&nr_comm_events) &&
3283 !atomic_read(&nr_mmap_events) &&
3284 !atomic_read(&nr_task_events))
3285 return;
3286
3287 task_event = (struct perf_task_event){
3288 .task = task,
3289 .task_ctx = task_ctx,
3290 .event_id = {
3291 .header = {
3292 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3293 .misc = 0,
3294 .size = sizeof(task_event.event_id),
3295 },
3296 /* .pid */
3297 /* .ppid */
3298 /* .tid */
3299 /* .ptid */
3300 },
3301 };
3302
3303 perf_event_task_event(&task_event);
3304}
3305
3306void perf_event_fork(struct task_struct *task)
3307{
3308 perf_event_task(task, NULL, 1);
3309}
3310
3311/*
3312 * comm tracking
3313 */
3314
3315struct perf_comm_event {
3316 struct task_struct *task;
3317 char *comm;
3318 int comm_size;
3319
3320 struct {
3321 struct perf_event_header header;
3322
3323 u32 pid;
3324 u32 tid;
3325 } event_id;
3326};
3327
3328static void perf_event_comm_output(struct perf_event *event,
3329 struct perf_comm_event *comm_event)
3330{
3331 struct perf_output_handle handle;
3332 int size = comm_event->event_id.header.size;
3333 int ret = perf_output_begin(&handle, event, size, 0, 0);
3334
3335 if (ret)
3336 return;
3337
3338 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3339 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3340
3341 perf_output_put(&handle, comm_event->event_id);
3342 perf_output_copy(&handle, comm_event->comm,
3343 comm_event->comm_size);
3344 perf_output_end(&handle);
3345}
3346
3347static int perf_event_comm_match(struct perf_event *event)
3348{
3349 if (event->attr.comm)
3350 return 1;
3351
3352 return 0;
3353}
3354
3355static void perf_event_comm_ctx(struct perf_event_context *ctx,
3356 struct perf_comm_event *comm_event)
3357{
3358 struct perf_event *event;
3359
3360 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3361 return;
3362
3363 rcu_read_lock();
3364 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3365 if (perf_event_comm_match(event))
3366 perf_event_comm_output(event, comm_event);
3367 }
3368 rcu_read_unlock();
3369}
3370
3371static void perf_event_comm_event(struct perf_comm_event *comm_event)
3372{
3373 struct perf_cpu_context *cpuctx;
3374 struct perf_event_context *ctx;
3375 unsigned int size;
3376 char comm[TASK_COMM_LEN];
3377
3378 memset(comm, 0, sizeof(comm));
3379 strncpy(comm, comm_event->task->comm, sizeof(comm));
3380 size = ALIGN(strlen(comm)+1, sizeof(u64));
3381
3382 comm_event->comm = comm;
3383 comm_event->comm_size = size;
3384
3385 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3386
3387 cpuctx = &get_cpu_var(perf_cpu_context);
3388 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3389 put_cpu_var(perf_cpu_context);
3390
3391 rcu_read_lock();
3392 /*
3393 * doesn't really matter which of the child contexts the
3394 * events ends up in.
3395 */
3396 ctx = rcu_dereference(current->perf_event_ctxp);
3397 if (ctx)
3398 perf_event_comm_ctx(ctx, comm_event);
3399 rcu_read_unlock();
3400}
3401
3402void perf_event_comm(struct task_struct *task)
3403{
3404 struct perf_comm_event comm_event;
3405
3406 if (task->perf_event_ctxp)
3407 perf_event_enable_on_exec(task);
3408
3409 if (!atomic_read(&nr_comm_events))
3410 return;
3411
3412 comm_event = (struct perf_comm_event){
3413 .task = task,
3414 /* .comm */
3415 /* .comm_size */
3416 .event_id = {
3417 .header = {
3418 .type = PERF_RECORD_COMM,
3419 .misc = 0,
3420 /* .size */
3421 },
3422 /* .pid */
3423 /* .tid */
3424 },
3425 };
3426
3427 perf_event_comm_event(&comm_event);
3428}
3429
3430/*
3431 * mmap tracking
3432 */
3433
3434struct perf_mmap_event {
3435 struct vm_area_struct *vma;
3436
3437 const char *file_name;
3438 int file_size;
3439
3440 struct {
3441 struct perf_event_header header;
3442
3443 u32 pid;
3444 u32 tid;
3445 u64 start;
3446 u64 len;
3447 u64 pgoff;
3448 } event_id;
3449};
3450
3451static void perf_event_mmap_output(struct perf_event *event,
3452 struct perf_mmap_event *mmap_event)
3453{
3454 struct perf_output_handle handle;
3455 int size = mmap_event->event_id.header.size;
3456 int ret = perf_output_begin(&handle, event, size, 0, 0);
3457
3458 if (ret)
3459 return;
3460
3461 mmap_event->event_id.pid = perf_event_pid(event, current);
3462 mmap_event->event_id.tid = perf_event_tid(event, current);
3463
3464 perf_output_put(&handle, mmap_event->event_id);
3465 perf_output_copy(&handle, mmap_event->file_name,
3466 mmap_event->file_size);
3467 perf_output_end(&handle);
3468}
3469
3470static int perf_event_mmap_match(struct perf_event *event,
3471 struct perf_mmap_event *mmap_event)
3472{
3473 if (event->attr.mmap)
3474 return 1;
3475
3476 return 0;
3477}
3478
3479static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3480 struct perf_mmap_event *mmap_event)
3481{
3482 struct perf_event *event;
3483
3484 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3485 return;
3486
3487 rcu_read_lock();
3488 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3489 if (perf_event_mmap_match(event, mmap_event))
3490 perf_event_mmap_output(event, mmap_event);
3491 }
3492 rcu_read_unlock();
3493}
3494
3495static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3496{
3497 struct perf_cpu_context *cpuctx;
3498 struct perf_event_context *ctx;
3499 struct vm_area_struct *vma = mmap_event->vma;
3500 struct file *file = vma->vm_file;
3501 unsigned int size;
3502 char tmp[16];
3503 char *buf = NULL;
3504 const char *name;
3505
3506 memset(tmp, 0, sizeof(tmp));
3507
3508 if (file) {
3509 /*
3510 * d_path works from the end of the buffer backwards, so we
3511 * need to add enough zero bytes after the string to handle
3512 * the 64bit alignment we do later.
3513 */
3514 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3515 if (!buf) {
3516 name = strncpy(tmp, "//enomem", sizeof(tmp));
3517 goto got_name;
3518 }
3519 name = d_path(&file->f_path, buf, PATH_MAX);
3520 if (IS_ERR(name)) {
3521 name = strncpy(tmp, "//toolong", sizeof(tmp));
3522 goto got_name;
3523 }
3524 } else {
3525 if (arch_vma_name(mmap_event->vma)) {
3526 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3527 sizeof(tmp));
3528 goto got_name;
3529 }
3530
3531 if (!vma->vm_mm) {
3532 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3533 goto got_name;
3534 }
3535
3536 name = strncpy(tmp, "//anon", sizeof(tmp));
3537 goto got_name;
3538 }
3539
3540got_name:
3541 size = ALIGN(strlen(name)+1, sizeof(u64));
3542
3543 mmap_event->file_name = name;
3544 mmap_event->file_size = size;
3545
3546 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3547
3548 cpuctx = &get_cpu_var(perf_cpu_context);
3549 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3550 put_cpu_var(perf_cpu_context);
3551
3552 rcu_read_lock();
3553 /*
3554 * doesn't really matter which of the child contexts the
3555 * events ends up in.
3556 */
3557 ctx = rcu_dereference(current->perf_event_ctxp);
3558 if (ctx)
3559 perf_event_mmap_ctx(ctx, mmap_event);
3560 rcu_read_unlock();
3561
3562 kfree(buf);
3563}
3564
3565void __perf_event_mmap(struct vm_area_struct *vma)
3566{
3567 struct perf_mmap_event mmap_event;
3568
3569 if (!atomic_read(&nr_mmap_events))
3570 return;
3571
3572 mmap_event = (struct perf_mmap_event){
3573 .vma = vma,
3574 /* .file_name */
3575 /* .file_size */
3576 .event_id = {
3577 .header = {
3578 .type = PERF_RECORD_MMAP,
3579 .misc = 0,
3580 /* .size */
3581 },
3582 /* .pid */
3583 /* .tid */
3584 .start = vma->vm_start,
3585 .len = vma->vm_end - vma->vm_start,
3586 .pgoff = vma->vm_pgoff,
3587 },
3588 };
3589
3590 perf_event_mmap_event(&mmap_event);
3591}
3592
3593/*
3594 * IRQ throttle logging
3595 */
3596
3597static void perf_log_throttle(struct perf_event *event, int enable)
3598{
3599 struct perf_output_handle handle;
3600 int ret;
3601
3602 struct {
3603 struct perf_event_header header;
3604 u64 time;
3605 u64 id;
3606 u64 stream_id;
3607 } throttle_event = {
3608 .header = {
3609 .type = PERF_RECORD_THROTTLE,
3610 .misc = 0,
3611 .size = sizeof(throttle_event),
3612 },
3613 .time = perf_clock(),
3614 .id = primary_event_id(event),
3615 .stream_id = event->id,
3616 };
3617
3618 if (enable)
3619 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3620
3621 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3622 if (ret)
3623 return;
3624
3625 perf_output_put(&handle, throttle_event);
3626 perf_output_end(&handle);
3627}
3628
3629/*
3630 * Generic event overflow handling, sampling.
3631 */
3632
3633static int __perf_event_overflow(struct perf_event *event, int nmi,
3634 int throttle, struct perf_sample_data *data,
3635 struct pt_regs *regs)
3636{
3637 int events = atomic_read(&event->event_limit);
3638 struct hw_perf_event *hwc = &event->hw;
3639 int ret = 0;
3640
3641 throttle = (throttle && event->pmu->unthrottle != NULL);
3642
3643 if (!throttle) {
3644 hwc->interrupts++;
3645 } else {
3646 if (hwc->interrupts != MAX_INTERRUPTS) {
3647 hwc->interrupts++;
3648 if (HZ * hwc->interrupts >
3649 (u64)sysctl_perf_event_sample_rate) {
3650 hwc->interrupts = MAX_INTERRUPTS;
3651 perf_log_throttle(event, 0);
3652 ret = 1;
3653 }
3654 } else {
3655 /*
3656 * Keep re-disabling events even though on the previous
3657 * pass we disabled it - just in case we raced with a
3658 * sched-in and the event got enabled again:
3659 */
3660 ret = 1;
3661 }
3662 }
3663
3664 if (event->attr.freq) {
3665 u64 now = perf_clock();
3666 s64 delta = now - hwc->freq_stamp;
3667
3668 hwc->freq_stamp = now;
3669
3670 if (delta > 0 && delta < TICK_NSEC)
3671 perf_adjust_period(event, NSEC_PER_SEC / (int)delta);
3672 }
3673
3674 /*
3675 * XXX event_limit might not quite work as expected on inherited
3676 * events
3677 */
3678
3679 event->pending_kill = POLL_IN;
3680 if (events && atomic_dec_and_test(&event->event_limit)) {
3681 ret = 1;
3682 event->pending_kill = POLL_HUP;
3683 if (nmi) {
3684 event->pending_disable = 1;
3685 perf_pending_queue(&event->pending,
3686 perf_pending_event);
3687 } else
3688 perf_event_disable(event);
3689 }
3690
3691 perf_event_output(event, nmi, data, regs);
3692 return ret;
3693}
3694
3695int perf_event_overflow(struct perf_event *event, int nmi,
3696 struct perf_sample_data *data,
3697 struct pt_regs *regs)
3698{
3699 return __perf_event_overflow(event, nmi, 1, data, regs);
3700}
3701
3702/*
3703 * Generic software event infrastructure
3704 */
3705
3706/*
3707 * We directly increment event->count and keep a second value in
3708 * event->hw.period_left to count intervals. This period event
3709 * is kept in the range [-sample_period, 0] so that we can use the
3710 * sign as trigger.
3711 */
3712
3713static u64 perf_swevent_set_period(struct perf_event *event)
3714{
3715 struct hw_perf_event *hwc = &event->hw;
3716 u64 period = hwc->last_period;
3717 u64 nr, offset;
3718 s64 old, val;
3719
3720 hwc->last_period = hwc->sample_period;
3721
3722again:
3723 old = val = atomic64_read(&hwc->period_left);
3724 if (val < 0)
3725 return 0;
3726
3727 nr = div64_u64(period + val, period);
3728 offset = nr * period;
3729 val -= offset;
3730 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3731 goto again;
3732
3733 return nr;
3734}
3735
3736static void perf_swevent_overflow(struct perf_event *event,
3737 int nmi, struct perf_sample_data *data,
3738 struct pt_regs *regs)
3739{
3740 struct hw_perf_event *hwc = &event->hw;
3741 int throttle = 0;
3742 u64 overflow;
3743
3744 data->period = event->hw.last_period;
3745 overflow = perf_swevent_set_period(event);
3746
3747 if (hwc->interrupts == MAX_INTERRUPTS)
3748 return;
3749
3750 for (; overflow; overflow--) {
3751 if (__perf_event_overflow(event, nmi, throttle,
3752 data, regs)) {
3753 /*
3754 * We inhibit the overflow from happening when
3755 * hwc->interrupts == MAX_INTERRUPTS.
3756 */
3757 break;
3758 }
3759 throttle = 1;
3760 }
3761}
3762
3763static void perf_swevent_unthrottle(struct perf_event *event)
3764{
3765 /*
3766 * Nothing to do, we already reset hwc->interrupts.
3767 */
3768}
3769
3770static void perf_swevent_add(struct perf_event *event, u64 nr,
3771 int nmi, struct perf_sample_data *data,
3772 struct pt_regs *regs)
3773{
3774 struct hw_perf_event *hwc = &event->hw;
3775
3776 atomic64_add(nr, &event->count);
3777
3778 if (!hwc->sample_period)
3779 return;
3780
3781 if (!regs)
3782 return;
3783
3784 if (!atomic64_add_negative(nr, &hwc->period_left))
3785 perf_swevent_overflow(event, nmi, data, regs);
3786}
3787
3788static int perf_swevent_is_counting(struct perf_event *event)
3789{
3790 /*
3791 * The event is active, we're good!
3792 */
3793 if (event->state == PERF_EVENT_STATE_ACTIVE)
3794 return 1;
3795
3796 /*
3797 * The event is off/error, not counting.
3798 */
3799 if (event->state != PERF_EVENT_STATE_INACTIVE)
3800 return 0;
3801
3802 /*
3803 * The event is inactive, if the context is active
3804 * we're part of a group that didn't make it on the 'pmu',
3805 * not counting.
3806 */
3807 if (event->ctx->is_active)
3808 return 0;
3809
3810 /*
3811 * We're inactive and the context is too, this means the
3812 * task is scheduled out, we're counting events that happen
3813 * to us, like migration events.
3814 */
3815 return 1;
3816}
3817
Li Zefan6fb29152009-10-15 11:21:42 +08003818static int perf_tp_event_match(struct perf_event *event,
3819 struct perf_sample_data *data);
3820
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003821static int perf_swevent_match(struct perf_event *event,
3822 enum perf_type_id type,
Li Zefan6fb29152009-10-15 11:21:42 +08003823 u32 event_id,
3824 struct perf_sample_data *data,
3825 struct pt_regs *regs)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003826{
3827 if (!perf_swevent_is_counting(event))
3828 return 0;
3829
3830 if (event->attr.type != type)
3831 return 0;
3832 if (event->attr.config != event_id)
3833 return 0;
3834
3835 if (regs) {
3836 if (event->attr.exclude_user && user_mode(regs))
3837 return 0;
3838
3839 if (event->attr.exclude_kernel && !user_mode(regs))
3840 return 0;
3841 }
3842
Li Zefan6fb29152009-10-15 11:21:42 +08003843 if (event->attr.type == PERF_TYPE_TRACEPOINT &&
3844 !perf_tp_event_match(event, data))
3845 return 0;
3846
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003847 return 1;
3848}
3849
3850static void perf_swevent_ctx_event(struct perf_event_context *ctx,
3851 enum perf_type_id type,
3852 u32 event_id, u64 nr, int nmi,
3853 struct perf_sample_data *data,
3854 struct pt_regs *regs)
3855{
3856 struct perf_event *event;
3857
3858 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3859 return;
3860
3861 rcu_read_lock();
3862 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
Li Zefan6fb29152009-10-15 11:21:42 +08003863 if (perf_swevent_match(event, type, event_id, data, regs))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003864 perf_swevent_add(event, nr, nmi, data, regs);
3865 }
3866 rcu_read_unlock();
3867}
3868
3869static int *perf_swevent_recursion_context(struct perf_cpu_context *cpuctx)
3870{
3871 if (in_nmi())
3872 return &cpuctx->recursion[3];
3873
3874 if (in_irq())
3875 return &cpuctx->recursion[2];
3876
3877 if (in_softirq())
3878 return &cpuctx->recursion[1];
3879
3880 return &cpuctx->recursion[0];
3881}
3882
3883static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
3884 u64 nr, int nmi,
3885 struct perf_sample_data *data,
3886 struct pt_regs *regs)
3887{
3888 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3889 int *recursion = perf_swevent_recursion_context(cpuctx);
3890 struct perf_event_context *ctx;
3891
3892 if (*recursion)
3893 goto out;
3894
3895 (*recursion)++;
3896 barrier();
3897
3898 perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
3899 nr, nmi, data, regs);
3900 rcu_read_lock();
3901 /*
3902 * doesn't really matter which of the child contexts the
3903 * events ends up in.
3904 */
3905 ctx = rcu_dereference(current->perf_event_ctxp);
3906 if (ctx)
3907 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
3908 rcu_read_unlock();
3909
3910 barrier();
3911 (*recursion)--;
3912
3913out:
3914 put_cpu_var(perf_cpu_context);
3915}
3916
3917void __perf_sw_event(u32 event_id, u64 nr, int nmi,
3918 struct pt_regs *regs, u64 addr)
3919{
3920 struct perf_sample_data data = {
3921 .addr = addr,
3922 };
3923
3924 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi,
3925 &data, regs);
3926}
3927
3928static void perf_swevent_read(struct perf_event *event)
3929{
3930}
3931
3932static int perf_swevent_enable(struct perf_event *event)
3933{
3934 struct hw_perf_event *hwc = &event->hw;
3935
3936 if (hwc->sample_period) {
3937 hwc->last_period = hwc->sample_period;
3938 perf_swevent_set_period(event);
3939 }
3940 return 0;
3941}
3942
3943static void perf_swevent_disable(struct perf_event *event)
3944{
3945}
3946
3947static const struct pmu perf_ops_generic = {
3948 .enable = perf_swevent_enable,
3949 .disable = perf_swevent_disable,
3950 .read = perf_swevent_read,
3951 .unthrottle = perf_swevent_unthrottle,
3952};
3953
3954/*
3955 * hrtimer based swevent callback
3956 */
3957
3958static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
3959{
3960 enum hrtimer_restart ret = HRTIMER_RESTART;
3961 struct perf_sample_data data;
3962 struct pt_regs *regs;
3963 struct perf_event *event;
3964 u64 period;
3965
3966 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
3967 event->pmu->read(event);
3968
3969 data.addr = 0;
3970 regs = get_irq_regs();
3971 /*
3972 * In case we exclude kernel IPs or are somehow not in interrupt
3973 * context, provide the next best thing, the user IP.
3974 */
3975 if ((event->attr.exclude_kernel || !regs) &&
3976 !event->attr.exclude_user)
3977 regs = task_pt_regs(current);
3978
3979 if (regs) {
Soeren Sandmann54f44072009-10-22 18:34:08 +02003980 if (!(event->attr.exclude_idle && current->pid == 0))
3981 if (perf_event_overflow(event, 0, &data, regs))
3982 ret = HRTIMER_NORESTART;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003983 }
3984
3985 period = max_t(u64, 10000, event->hw.sample_period);
3986 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
3987
3988 return ret;
3989}
3990
Soeren Sandmann721a6692009-09-15 14:33:08 +02003991static void perf_swevent_start_hrtimer(struct perf_event *event)
3992{
3993 struct hw_perf_event *hwc = &event->hw;
3994
3995 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3996 hwc->hrtimer.function = perf_swevent_hrtimer;
3997 if (hwc->sample_period) {
3998 u64 period;
3999
4000 if (hwc->remaining) {
4001 if (hwc->remaining < 0)
4002 period = 10000;
4003 else
4004 period = hwc->remaining;
4005 hwc->remaining = 0;
4006 } else {
4007 period = max_t(u64, 10000, hwc->sample_period);
4008 }
4009 __hrtimer_start_range_ns(&hwc->hrtimer,
4010 ns_to_ktime(period), 0,
4011 HRTIMER_MODE_REL, 0);
4012 }
4013}
4014
4015static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4016{
4017 struct hw_perf_event *hwc = &event->hw;
4018
4019 if (hwc->sample_period) {
4020 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4021 hwc->remaining = ktime_to_ns(remaining);
4022
4023 hrtimer_cancel(&hwc->hrtimer);
4024 }
4025}
4026
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004027/*
4028 * Software event: cpu wall time clock
4029 */
4030
4031static void cpu_clock_perf_event_update(struct perf_event *event)
4032{
4033 int cpu = raw_smp_processor_id();
4034 s64 prev;
4035 u64 now;
4036
4037 now = cpu_clock(cpu);
4038 prev = atomic64_read(&event->hw.prev_count);
4039 atomic64_set(&event->hw.prev_count, now);
4040 atomic64_add(now - prev, &event->count);
4041}
4042
4043static int cpu_clock_perf_event_enable(struct perf_event *event)
4044{
4045 struct hw_perf_event *hwc = &event->hw;
4046 int cpu = raw_smp_processor_id();
4047
4048 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
Soeren Sandmann721a6692009-09-15 14:33:08 +02004049 perf_swevent_start_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004050
4051 return 0;
4052}
4053
4054static void cpu_clock_perf_event_disable(struct perf_event *event)
4055{
Soeren Sandmann721a6692009-09-15 14:33:08 +02004056 perf_swevent_cancel_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004057 cpu_clock_perf_event_update(event);
4058}
4059
4060static void cpu_clock_perf_event_read(struct perf_event *event)
4061{
4062 cpu_clock_perf_event_update(event);
4063}
4064
4065static const struct pmu perf_ops_cpu_clock = {
4066 .enable = cpu_clock_perf_event_enable,
4067 .disable = cpu_clock_perf_event_disable,
4068 .read = cpu_clock_perf_event_read,
4069};
4070
4071/*
4072 * Software event: task time clock
4073 */
4074
4075static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4076{
4077 u64 prev;
4078 s64 delta;
4079
4080 prev = atomic64_xchg(&event->hw.prev_count, now);
4081 delta = now - prev;
4082 atomic64_add(delta, &event->count);
4083}
4084
4085static int task_clock_perf_event_enable(struct perf_event *event)
4086{
4087 struct hw_perf_event *hwc = &event->hw;
4088 u64 now;
4089
4090 now = event->ctx->time;
4091
4092 atomic64_set(&hwc->prev_count, now);
Soeren Sandmann721a6692009-09-15 14:33:08 +02004093
4094 perf_swevent_start_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004095
4096 return 0;
4097}
4098
4099static void task_clock_perf_event_disable(struct perf_event *event)
4100{
Soeren Sandmann721a6692009-09-15 14:33:08 +02004101 perf_swevent_cancel_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004102 task_clock_perf_event_update(event, event->ctx->time);
4103
4104}
4105
4106static void task_clock_perf_event_read(struct perf_event *event)
4107{
4108 u64 time;
4109
4110 if (!in_nmi()) {
4111 update_context_time(event->ctx);
4112 time = event->ctx->time;
4113 } else {
4114 u64 now = perf_clock();
4115 u64 delta = now - event->ctx->timestamp;
4116 time = event->ctx->time + delta;
4117 }
4118
4119 task_clock_perf_event_update(event, time);
4120}
4121
4122static const struct pmu perf_ops_task_clock = {
4123 .enable = task_clock_perf_event_enable,
4124 .disable = task_clock_perf_event_disable,
4125 .read = task_clock_perf_event_read,
4126};
4127
4128#ifdef CONFIG_EVENT_PROFILE
Li Zefan6fb29152009-10-15 11:21:42 +08004129
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004130void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4131 int entry_size)
4132{
4133 struct perf_raw_record raw = {
4134 .size = entry_size,
4135 .data = record,
4136 };
4137
4138 struct perf_sample_data data = {
4139 .addr = addr,
4140 .raw = &raw,
4141 };
4142
4143 struct pt_regs *regs = get_irq_regs();
4144
4145 if (!regs)
4146 regs = task_pt_regs(current);
4147
4148 do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4149 &data, regs);
4150}
4151EXPORT_SYMBOL_GPL(perf_tp_event);
4152
Li Zefan6fb29152009-10-15 11:21:42 +08004153static int perf_tp_event_match(struct perf_event *event,
4154 struct perf_sample_data *data)
4155{
4156 void *record = data->raw->data;
4157
4158 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4159 return 1;
4160 return 0;
4161}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004162
4163static void tp_perf_event_destroy(struct perf_event *event)
4164{
4165 ftrace_profile_disable(event->attr.config);
4166}
4167
4168static const struct pmu *tp_perf_event_init(struct perf_event *event)
4169{
4170 /*
4171 * Raw tracepoint data is a severe data leak, only allow root to
4172 * have these.
4173 */
4174 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4175 perf_paranoid_tracepoint_raw() &&
4176 !capable(CAP_SYS_ADMIN))
4177 return ERR_PTR(-EPERM);
4178
4179 if (ftrace_profile_enable(event->attr.config))
4180 return NULL;
4181
4182 event->destroy = tp_perf_event_destroy;
4183
4184 return &perf_ops_generic;
4185}
Li Zefan6fb29152009-10-15 11:21:42 +08004186
4187static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4188{
4189 char *filter_str;
4190 int ret;
4191
4192 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4193 return -EINVAL;
4194
4195 filter_str = strndup_user(arg, PAGE_SIZE);
4196 if (IS_ERR(filter_str))
4197 return PTR_ERR(filter_str);
4198
4199 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4200
4201 kfree(filter_str);
4202 return ret;
4203}
4204
4205static void perf_event_free_filter(struct perf_event *event)
4206{
4207 ftrace_profile_free_filter(event);
4208}
4209
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004210#else
Li Zefan6fb29152009-10-15 11:21:42 +08004211
4212static int perf_tp_event_match(struct perf_event *event,
4213 struct perf_sample_data *data)
4214{
4215 return 1;
4216}
4217
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004218static const struct pmu *tp_perf_event_init(struct perf_event *event)
4219{
4220 return NULL;
4221}
Li Zefan6fb29152009-10-15 11:21:42 +08004222
4223static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4224{
4225 return -ENOENT;
4226}
4227
4228static void perf_event_free_filter(struct perf_event *event)
4229{
4230}
4231
4232#endif /* CONFIG_EVENT_PROFILE */
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004233
4234atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4235
4236static void sw_perf_event_destroy(struct perf_event *event)
4237{
4238 u64 event_id = event->attr.config;
4239
4240 WARN_ON(event->parent);
4241
4242 atomic_dec(&perf_swevent_enabled[event_id]);
4243}
4244
4245static const struct pmu *sw_perf_event_init(struct perf_event *event)
4246{
4247 const struct pmu *pmu = NULL;
4248 u64 event_id = event->attr.config;
4249
4250 /*
4251 * Software events (currently) can't in general distinguish
4252 * between user, kernel and hypervisor events.
4253 * However, context switches and cpu migrations are considered
4254 * to be kernel events, and page faults are never hypervisor
4255 * events.
4256 */
4257 switch (event_id) {
4258 case PERF_COUNT_SW_CPU_CLOCK:
4259 pmu = &perf_ops_cpu_clock;
4260
4261 break;
4262 case PERF_COUNT_SW_TASK_CLOCK:
4263 /*
4264 * If the user instantiates this as a per-cpu event,
4265 * use the cpu_clock event instead.
4266 */
4267 if (event->ctx->task)
4268 pmu = &perf_ops_task_clock;
4269 else
4270 pmu = &perf_ops_cpu_clock;
4271
4272 break;
4273 case PERF_COUNT_SW_PAGE_FAULTS:
4274 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4275 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4276 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4277 case PERF_COUNT_SW_CPU_MIGRATIONS:
Anton Blanchardf7d79862009-10-18 01:09:29 +00004278 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4279 case PERF_COUNT_SW_EMULATION_FAULTS:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004280 if (!event->parent) {
4281 atomic_inc(&perf_swevent_enabled[event_id]);
4282 event->destroy = sw_perf_event_destroy;
4283 }
4284 pmu = &perf_ops_generic;
4285 break;
4286 }
4287
4288 return pmu;
4289}
4290
4291/*
4292 * Allocate and initialize a event structure
4293 */
4294static struct perf_event *
4295perf_event_alloc(struct perf_event_attr *attr,
4296 int cpu,
4297 struct perf_event_context *ctx,
4298 struct perf_event *group_leader,
4299 struct perf_event *parent_event,
4300 gfp_t gfpflags)
4301{
4302 const struct pmu *pmu;
4303 struct perf_event *event;
4304 struct hw_perf_event *hwc;
4305 long err;
4306
4307 event = kzalloc(sizeof(*event), gfpflags);
4308 if (!event)
4309 return ERR_PTR(-ENOMEM);
4310
4311 /*
4312 * Single events are their own group leaders, with an
4313 * empty sibling list:
4314 */
4315 if (!group_leader)
4316 group_leader = event;
4317
4318 mutex_init(&event->child_mutex);
4319 INIT_LIST_HEAD(&event->child_list);
4320
4321 INIT_LIST_HEAD(&event->group_entry);
4322 INIT_LIST_HEAD(&event->event_entry);
4323 INIT_LIST_HEAD(&event->sibling_list);
4324 init_waitqueue_head(&event->waitq);
4325
4326 mutex_init(&event->mmap_mutex);
4327
4328 event->cpu = cpu;
4329 event->attr = *attr;
4330 event->group_leader = group_leader;
4331 event->pmu = NULL;
4332 event->ctx = ctx;
4333 event->oncpu = -1;
4334
4335 event->parent = parent_event;
4336
4337 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4338 event->id = atomic64_inc_return(&perf_event_id);
4339
4340 event->state = PERF_EVENT_STATE_INACTIVE;
4341
4342 if (attr->disabled)
4343 event->state = PERF_EVENT_STATE_OFF;
4344
4345 pmu = NULL;
4346
4347 hwc = &event->hw;
4348 hwc->sample_period = attr->sample_period;
4349 if (attr->freq && attr->sample_freq)
4350 hwc->sample_period = 1;
4351 hwc->last_period = hwc->sample_period;
4352
4353 atomic64_set(&hwc->period_left, hwc->sample_period);
4354
4355 /*
4356 * we currently do not support PERF_FORMAT_GROUP on inherited events
4357 */
4358 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4359 goto done;
4360
4361 switch (attr->type) {
4362 case PERF_TYPE_RAW:
4363 case PERF_TYPE_HARDWARE:
4364 case PERF_TYPE_HW_CACHE:
4365 pmu = hw_perf_event_init(event);
4366 break;
4367
4368 case PERF_TYPE_SOFTWARE:
4369 pmu = sw_perf_event_init(event);
4370 break;
4371
4372 case PERF_TYPE_TRACEPOINT:
4373 pmu = tp_perf_event_init(event);
4374 break;
4375
4376 default:
4377 break;
4378 }
4379done:
4380 err = 0;
4381 if (!pmu)
4382 err = -EINVAL;
4383 else if (IS_ERR(pmu))
4384 err = PTR_ERR(pmu);
4385
4386 if (err) {
4387 if (event->ns)
4388 put_pid_ns(event->ns);
4389 kfree(event);
4390 return ERR_PTR(err);
4391 }
4392
4393 event->pmu = pmu;
4394
4395 if (!event->parent) {
4396 atomic_inc(&nr_events);
4397 if (event->attr.mmap)
4398 atomic_inc(&nr_mmap_events);
4399 if (event->attr.comm)
4400 atomic_inc(&nr_comm_events);
4401 if (event->attr.task)
4402 atomic_inc(&nr_task_events);
4403 }
4404
4405 return event;
4406}
4407
4408static int perf_copy_attr(struct perf_event_attr __user *uattr,
4409 struct perf_event_attr *attr)
4410{
4411 u32 size;
4412 int ret;
4413
4414 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4415 return -EFAULT;
4416
4417 /*
4418 * zero the full structure, so that a short copy will be nice.
4419 */
4420 memset(attr, 0, sizeof(*attr));
4421
4422 ret = get_user(size, &uattr->size);
4423 if (ret)
4424 return ret;
4425
4426 if (size > PAGE_SIZE) /* silly large */
4427 goto err_size;
4428
4429 if (!size) /* abi compat */
4430 size = PERF_ATTR_SIZE_VER0;
4431
4432 if (size < PERF_ATTR_SIZE_VER0)
4433 goto err_size;
4434
4435 /*
4436 * If we're handed a bigger struct than we know of,
4437 * ensure all the unknown bits are 0 - i.e. new
4438 * user-space does not rely on any kernel feature
4439 * extensions we dont know about yet.
4440 */
4441 if (size > sizeof(*attr)) {
4442 unsigned char __user *addr;
4443 unsigned char __user *end;
4444 unsigned char val;
4445
4446 addr = (void __user *)uattr + sizeof(*attr);
4447 end = (void __user *)uattr + size;
4448
4449 for (; addr < end; addr++) {
4450 ret = get_user(val, addr);
4451 if (ret)
4452 return ret;
4453 if (val)
4454 goto err_size;
4455 }
4456 size = sizeof(*attr);
4457 }
4458
4459 ret = copy_from_user(attr, uattr, size);
4460 if (ret)
4461 return -EFAULT;
4462
4463 /*
4464 * If the type exists, the corresponding creation will verify
4465 * the attr->config.
4466 */
4467 if (attr->type >= PERF_TYPE_MAX)
4468 return -EINVAL;
4469
4470 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
4471 return -EINVAL;
4472
4473 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4474 return -EINVAL;
4475
4476 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4477 return -EINVAL;
4478
4479out:
4480 return ret;
4481
4482err_size:
4483 put_user(sizeof(*attr), &uattr->size);
4484 ret = -E2BIG;
4485 goto out;
4486}
4487
Li Zefan6fb29152009-10-15 11:21:42 +08004488static int perf_event_set_output(struct perf_event *event, int output_fd)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004489{
4490 struct perf_event *output_event = NULL;
4491 struct file *output_file = NULL;
4492 struct perf_event *old_output;
4493 int fput_needed = 0;
4494 int ret = -EINVAL;
4495
4496 if (!output_fd)
4497 goto set;
4498
4499 output_file = fget_light(output_fd, &fput_needed);
4500 if (!output_file)
4501 return -EBADF;
4502
4503 if (output_file->f_op != &perf_fops)
4504 goto out;
4505
4506 output_event = output_file->private_data;
4507
4508 /* Don't chain output fds */
4509 if (output_event->output)
4510 goto out;
4511
4512 /* Don't set an output fd when we already have an output channel */
4513 if (event->data)
4514 goto out;
4515
4516 atomic_long_inc(&output_file->f_count);
4517
4518set:
4519 mutex_lock(&event->mmap_mutex);
4520 old_output = event->output;
4521 rcu_assign_pointer(event->output, output_event);
4522 mutex_unlock(&event->mmap_mutex);
4523
4524 if (old_output) {
4525 /*
4526 * we need to make sure no existing perf_output_*()
4527 * is still referencing this event.
4528 */
4529 synchronize_rcu();
4530 fput(old_output->filp);
4531 }
4532
4533 ret = 0;
4534out:
4535 fput_light(output_file, fput_needed);
4536 return ret;
4537}
4538
4539/**
4540 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4541 *
4542 * @attr_uptr: event_id type attributes for monitoring/sampling
4543 * @pid: target pid
4544 * @cpu: target cpu
4545 * @group_fd: group leader event fd
4546 */
4547SYSCALL_DEFINE5(perf_event_open,
4548 struct perf_event_attr __user *, attr_uptr,
4549 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4550{
4551 struct perf_event *event, *group_leader;
4552 struct perf_event_attr attr;
4553 struct perf_event_context *ctx;
4554 struct file *event_file = NULL;
4555 struct file *group_file = NULL;
4556 int fput_needed = 0;
4557 int fput_needed2 = 0;
4558 int err;
4559
4560 /* for future expandability... */
4561 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4562 return -EINVAL;
4563
4564 err = perf_copy_attr(attr_uptr, &attr);
4565 if (err)
4566 return err;
4567
4568 if (!attr.exclude_kernel) {
4569 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4570 return -EACCES;
4571 }
4572
4573 if (attr.freq) {
4574 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4575 return -EINVAL;
4576 }
4577
4578 /*
4579 * Get the target context (task or percpu):
4580 */
4581 ctx = find_get_context(pid, cpu);
4582 if (IS_ERR(ctx))
4583 return PTR_ERR(ctx);
4584
4585 /*
4586 * Look up the group leader (we will attach this event to it):
4587 */
4588 group_leader = NULL;
4589 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4590 err = -EINVAL;
4591 group_file = fget_light(group_fd, &fput_needed);
4592 if (!group_file)
4593 goto err_put_context;
4594 if (group_file->f_op != &perf_fops)
4595 goto err_put_context;
4596
4597 group_leader = group_file->private_data;
4598 /*
4599 * Do not allow a recursive hierarchy (this new sibling
4600 * becoming part of another group-sibling):
4601 */
4602 if (group_leader->group_leader != group_leader)
4603 goto err_put_context;
4604 /*
4605 * Do not allow to attach to a group in a different
4606 * task or CPU context:
4607 */
4608 if (group_leader->ctx != ctx)
4609 goto err_put_context;
4610 /*
4611 * Only a group leader can be exclusive or pinned
4612 */
4613 if (attr.exclusive || attr.pinned)
4614 goto err_put_context;
4615 }
4616
4617 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4618 NULL, GFP_KERNEL);
4619 err = PTR_ERR(event);
4620 if (IS_ERR(event))
4621 goto err_put_context;
4622
4623 err = anon_inode_getfd("[perf_event]", &perf_fops, event, 0);
4624 if (err < 0)
4625 goto err_free_put_context;
4626
4627 event_file = fget_light(err, &fput_needed2);
4628 if (!event_file)
4629 goto err_free_put_context;
4630
4631 if (flags & PERF_FLAG_FD_OUTPUT) {
4632 err = perf_event_set_output(event, group_fd);
4633 if (err)
4634 goto err_fput_free_put_context;
4635 }
4636
4637 event->filp = event_file;
4638 WARN_ON_ONCE(ctx->parent_ctx);
4639 mutex_lock(&ctx->mutex);
4640 perf_install_in_context(ctx, event, cpu);
4641 ++ctx->generation;
4642 mutex_unlock(&ctx->mutex);
4643
4644 event->owner = current;
4645 get_task_struct(current);
4646 mutex_lock(&current->perf_event_mutex);
4647 list_add_tail(&event->owner_entry, &current->perf_event_list);
4648 mutex_unlock(&current->perf_event_mutex);
4649
4650err_fput_free_put_context:
4651 fput_light(event_file, fput_needed2);
4652
4653err_free_put_context:
4654 if (err < 0)
4655 kfree(event);
4656
4657err_put_context:
4658 if (err < 0)
4659 put_ctx(ctx);
4660
4661 fput_light(group_file, fput_needed);
4662
4663 return err;
4664}
4665
4666/*
4667 * inherit a event from parent task to child task:
4668 */
4669static struct perf_event *
4670inherit_event(struct perf_event *parent_event,
4671 struct task_struct *parent,
4672 struct perf_event_context *parent_ctx,
4673 struct task_struct *child,
4674 struct perf_event *group_leader,
4675 struct perf_event_context *child_ctx)
4676{
4677 struct perf_event *child_event;
4678
4679 /*
4680 * Instead of creating recursive hierarchies of events,
4681 * we link inherited events back to the original parent,
4682 * which has a filp for sure, which we use as the reference
4683 * count:
4684 */
4685 if (parent_event->parent)
4686 parent_event = parent_event->parent;
4687
4688 child_event = perf_event_alloc(&parent_event->attr,
4689 parent_event->cpu, child_ctx,
4690 group_leader, parent_event,
4691 GFP_KERNEL);
4692 if (IS_ERR(child_event))
4693 return child_event;
4694 get_ctx(child_ctx);
4695
4696 /*
4697 * Make the child state follow the state of the parent event,
4698 * not its attr.disabled bit. We hold the parent's mutex,
4699 * so we won't race with perf_event_{en, dis}able_family.
4700 */
4701 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
4702 child_event->state = PERF_EVENT_STATE_INACTIVE;
4703 else
4704 child_event->state = PERF_EVENT_STATE_OFF;
4705
4706 if (parent_event->attr.freq)
4707 child_event->hw.sample_period = parent_event->hw.sample_period;
4708
4709 /*
4710 * Link it up in the child's context:
4711 */
4712 add_event_to_ctx(child_event, child_ctx);
4713
4714 /*
4715 * Get a reference to the parent filp - we will fput it
4716 * when the child event exits. This is safe to do because
4717 * we are in the parent and we know that the filp still
4718 * exists and has a nonzero count:
4719 */
4720 atomic_long_inc(&parent_event->filp->f_count);
4721
4722 /*
4723 * Link this into the parent event's child list
4724 */
4725 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4726 mutex_lock(&parent_event->child_mutex);
4727 list_add_tail(&child_event->child_list, &parent_event->child_list);
4728 mutex_unlock(&parent_event->child_mutex);
4729
4730 return child_event;
4731}
4732
4733static int inherit_group(struct perf_event *parent_event,
4734 struct task_struct *parent,
4735 struct perf_event_context *parent_ctx,
4736 struct task_struct *child,
4737 struct perf_event_context *child_ctx)
4738{
4739 struct perf_event *leader;
4740 struct perf_event *sub;
4741 struct perf_event *child_ctr;
4742
4743 leader = inherit_event(parent_event, parent, parent_ctx,
4744 child, NULL, child_ctx);
4745 if (IS_ERR(leader))
4746 return PTR_ERR(leader);
4747 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
4748 child_ctr = inherit_event(sub, parent, parent_ctx,
4749 child, leader, child_ctx);
4750 if (IS_ERR(child_ctr))
4751 return PTR_ERR(child_ctr);
4752 }
4753 return 0;
4754}
4755
4756static void sync_child_event(struct perf_event *child_event,
4757 struct task_struct *child)
4758{
4759 struct perf_event *parent_event = child_event->parent;
4760 u64 child_val;
4761
4762 if (child_event->attr.inherit_stat)
4763 perf_event_read_event(child_event, child);
4764
4765 child_val = atomic64_read(&child_event->count);
4766
4767 /*
4768 * Add back the child's count to the parent's count:
4769 */
4770 atomic64_add(child_val, &parent_event->count);
4771 atomic64_add(child_event->total_time_enabled,
4772 &parent_event->child_total_time_enabled);
4773 atomic64_add(child_event->total_time_running,
4774 &parent_event->child_total_time_running);
4775
4776 /*
4777 * Remove this event from the parent's list
4778 */
4779 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4780 mutex_lock(&parent_event->child_mutex);
4781 list_del_init(&child_event->child_list);
4782 mutex_unlock(&parent_event->child_mutex);
4783
4784 /*
4785 * Release the parent event, if this was the last
4786 * reference to it.
4787 */
4788 fput(parent_event->filp);
4789}
4790
4791static void
4792__perf_event_exit_task(struct perf_event *child_event,
4793 struct perf_event_context *child_ctx,
4794 struct task_struct *child)
4795{
4796 struct perf_event *parent_event;
4797
4798 update_event_times(child_event);
4799 perf_event_remove_from_context(child_event);
4800
4801 parent_event = child_event->parent;
4802 /*
4803 * It can happen that parent exits first, and has events
4804 * that are still around due to the child reference. These
4805 * events need to be zapped - but otherwise linger.
4806 */
4807 if (parent_event) {
4808 sync_child_event(child_event, child);
4809 free_event(child_event);
4810 }
4811}
4812
4813/*
4814 * When a child task exits, feed back event values to parent events.
4815 */
4816void perf_event_exit_task(struct task_struct *child)
4817{
4818 struct perf_event *child_event, *tmp;
4819 struct perf_event_context *child_ctx;
4820 unsigned long flags;
4821
4822 if (likely(!child->perf_event_ctxp)) {
4823 perf_event_task(child, NULL, 0);
4824 return;
4825 }
4826
4827 local_irq_save(flags);
4828 /*
4829 * We can't reschedule here because interrupts are disabled,
4830 * and either child is current or it is a task that can't be
4831 * scheduled, so we are now safe from rescheduling changing
4832 * our context.
4833 */
4834 child_ctx = child->perf_event_ctxp;
4835 __perf_event_task_sched_out(child_ctx);
4836
4837 /*
4838 * Take the context lock here so that if find_get_context is
4839 * reading child->perf_event_ctxp, we wait until it has
4840 * incremented the context's refcount before we do put_ctx below.
4841 */
4842 spin_lock(&child_ctx->lock);
4843 child->perf_event_ctxp = NULL;
4844 /*
4845 * If this context is a clone; unclone it so it can't get
4846 * swapped to another process while we're removing all
4847 * the events from it.
4848 */
4849 unclone_ctx(child_ctx);
4850 spin_unlock_irqrestore(&child_ctx->lock, flags);
4851
4852 /*
4853 * Report the task dead after unscheduling the events so that we
4854 * won't get any samples after PERF_RECORD_EXIT. We can however still
4855 * get a few PERF_RECORD_READ events.
4856 */
4857 perf_event_task(child, child_ctx, 0);
4858
4859 /*
4860 * We can recurse on the same lock type through:
4861 *
4862 * __perf_event_exit_task()
4863 * sync_child_event()
4864 * fput(parent_event->filp)
4865 * perf_release()
4866 * mutex_lock(&ctx->mutex)
4867 *
4868 * But since its the parent context it won't be the same instance.
4869 */
4870 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
4871
4872again:
4873 list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list,
4874 group_entry)
4875 __perf_event_exit_task(child_event, child_ctx, child);
4876
4877 /*
4878 * If the last event was a group event, it will have appended all
4879 * its siblings to the list, but we obtained 'tmp' before that which
4880 * will still point to the list head terminating the iteration.
4881 */
4882 if (!list_empty(&child_ctx->group_list))
4883 goto again;
4884
4885 mutex_unlock(&child_ctx->mutex);
4886
4887 put_ctx(child_ctx);
4888}
4889
4890/*
4891 * free an unexposed, unused context as created by inheritance by
4892 * init_task below, used by fork() in case of fail.
4893 */
4894void perf_event_free_task(struct task_struct *task)
4895{
4896 struct perf_event_context *ctx = task->perf_event_ctxp;
4897 struct perf_event *event, *tmp;
4898
4899 if (!ctx)
4900 return;
4901
4902 mutex_lock(&ctx->mutex);
4903again:
4904 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) {
4905 struct perf_event *parent = event->parent;
4906
4907 if (WARN_ON_ONCE(!parent))
4908 continue;
4909
4910 mutex_lock(&parent->child_mutex);
4911 list_del_init(&event->child_list);
4912 mutex_unlock(&parent->child_mutex);
4913
4914 fput(parent->filp);
4915
4916 list_del_event(event, ctx);
4917 free_event(event);
4918 }
4919
4920 if (!list_empty(&ctx->group_list))
4921 goto again;
4922
4923 mutex_unlock(&ctx->mutex);
4924
4925 put_ctx(ctx);
4926}
4927
4928/*
4929 * Initialize the perf_event context in task_struct
4930 */
4931int perf_event_init_task(struct task_struct *child)
4932{
4933 struct perf_event_context *child_ctx, *parent_ctx;
4934 struct perf_event_context *cloned_ctx;
4935 struct perf_event *event;
4936 struct task_struct *parent = current;
4937 int inherited_all = 1;
4938 int ret = 0;
4939
4940 child->perf_event_ctxp = NULL;
4941
4942 mutex_init(&child->perf_event_mutex);
4943 INIT_LIST_HEAD(&child->perf_event_list);
4944
4945 if (likely(!parent->perf_event_ctxp))
4946 return 0;
4947
4948 /*
4949 * This is executed from the parent task context, so inherit
4950 * events that have been marked for cloning.
4951 * First allocate and initialize a context for the child.
4952 */
4953
4954 child_ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4955 if (!child_ctx)
4956 return -ENOMEM;
4957
4958 __perf_event_init_context(child_ctx, child);
4959 child->perf_event_ctxp = child_ctx;
4960 get_task_struct(child);
4961
4962 /*
4963 * If the parent's context is a clone, pin it so it won't get
4964 * swapped under us.
4965 */
4966 parent_ctx = perf_pin_task_context(parent);
4967
4968 /*
4969 * No need to check if parent_ctx != NULL here; since we saw
4970 * it non-NULL earlier, the only reason for it to become NULL
4971 * is if we exit, and since we're currently in the middle of
4972 * a fork we can't be exiting at the same time.
4973 */
4974
4975 /*
4976 * Lock the parent list. No need to lock the child - not PID
4977 * hashed yet and not running, so nobody can access it.
4978 */
4979 mutex_lock(&parent_ctx->mutex);
4980
4981 /*
4982 * We dont have to disable NMIs - we are only looking at
4983 * the list, not manipulating it:
4984 */
Xiao Guangrong27f99942009-09-25 13:54:01 +08004985 list_for_each_entry(event, &parent_ctx->group_list, group_entry) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004986
4987 if (!event->attr.inherit) {
4988 inherited_all = 0;
4989 continue;
4990 }
4991
4992 ret = inherit_group(event, parent, parent_ctx,
4993 child, child_ctx);
4994 if (ret) {
4995 inherited_all = 0;
4996 break;
4997 }
4998 }
4999
5000 if (inherited_all) {
5001 /*
5002 * Mark the child context as a clone of the parent
5003 * context, or of whatever the parent is a clone of.
5004 * Note that if the parent is a clone, it could get
5005 * uncloned at any point, but that doesn't matter
5006 * because the list of events and the generation
5007 * count can't have changed since we took the mutex.
5008 */
5009 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5010 if (cloned_ctx) {
5011 child_ctx->parent_ctx = cloned_ctx;
5012 child_ctx->parent_gen = parent_ctx->parent_gen;
5013 } else {
5014 child_ctx->parent_ctx = parent_ctx;
5015 child_ctx->parent_gen = parent_ctx->generation;
5016 }
5017 get_ctx(child_ctx->parent_ctx);
5018 }
5019
5020 mutex_unlock(&parent_ctx->mutex);
5021
5022 perf_unpin_context(parent_ctx);
5023
5024 return ret;
5025}
5026
5027static void __cpuinit perf_event_init_cpu(int cpu)
5028{
5029 struct perf_cpu_context *cpuctx;
5030
5031 cpuctx = &per_cpu(perf_cpu_context, cpu);
5032 __perf_event_init_context(&cpuctx->ctx, NULL);
5033
5034 spin_lock(&perf_resource_lock);
5035 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5036 spin_unlock(&perf_resource_lock);
5037
5038 hw_perf_event_setup(cpu);
5039}
5040
5041#ifdef CONFIG_HOTPLUG_CPU
5042static void __perf_event_exit_cpu(void *info)
5043{
5044 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5045 struct perf_event_context *ctx = &cpuctx->ctx;
5046 struct perf_event *event, *tmp;
5047
5048 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry)
5049 __perf_event_remove_from_context(event);
5050}
5051static void perf_event_exit_cpu(int cpu)
5052{
5053 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5054 struct perf_event_context *ctx = &cpuctx->ctx;
5055
5056 mutex_lock(&ctx->mutex);
5057 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5058 mutex_unlock(&ctx->mutex);
5059}
5060#else
5061static inline void perf_event_exit_cpu(int cpu) { }
5062#endif
5063
5064static int __cpuinit
5065perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5066{
5067 unsigned int cpu = (long)hcpu;
5068
5069 switch (action) {
5070
5071 case CPU_UP_PREPARE:
5072 case CPU_UP_PREPARE_FROZEN:
5073 perf_event_init_cpu(cpu);
5074 break;
5075
5076 case CPU_ONLINE:
5077 case CPU_ONLINE_FROZEN:
5078 hw_perf_event_setup_online(cpu);
5079 break;
5080
5081 case CPU_DOWN_PREPARE:
5082 case CPU_DOWN_PREPARE_FROZEN:
5083 perf_event_exit_cpu(cpu);
5084 break;
5085
5086 default:
5087 break;
5088 }
5089
5090 return NOTIFY_OK;
5091}
5092
5093/*
5094 * This has to have a higher priority than migration_notifier in sched.c.
5095 */
5096static struct notifier_block __cpuinitdata perf_cpu_nb = {
5097 .notifier_call = perf_cpu_notify,
5098 .priority = 20,
5099};
5100
5101void __init perf_event_init(void)
5102{
5103 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5104 (void *)(long)smp_processor_id());
5105 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5106 (void *)(long)smp_processor_id());
5107 register_cpu_notifier(&perf_cpu_nb);
5108}
5109
5110static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
5111{
5112 return sprintf(buf, "%d\n", perf_reserved_percpu);
5113}
5114
5115static ssize_t
5116perf_set_reserve_percpu(struct sysdev_class *class,
5117 const char *buf,
5118 size_t count)
5119{
5120 struct perf_cpu_context *cpuctx;
5121 unsigned long val;
5122 int err, cpu, mpt;
5123
5124 err = strict_strtoul(buf, 10, &val);
5125 if (err)
5126 return err;
5127 if (val > perf_max_events)
5128 return -EINVAL;
5129
5130 spin_lock(&perf_resource_lock);
5131 perf_reserved_percpu = val;
5132 for_each_online_cpu(cpu) {
5133 cpuctx = &per_cpu(perf_cpu_context, cpu);
5134 spin_lock_irq(&cpuctx->ctx.lock);
5135 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5136 perf_max_events - perf_reserved_percpu);
5137 cpuctx->max_pertask = mpt;
5138 spin_unlock_irq(&cpuctx->ctx.lock);
5139 }
5140 spin_unlock(&perf_resource_lock);
5141
5142 return count;
5143}
5144
5145static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
5146{
5147 return sprintf(buf, "%d\n", perf_overcommit);
5148}
5149
5150static ssize_t
5151perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
5152{
5153 unsigned long val;
5154 int err;
5155
5156 err = strict_strtoul(buf, 10, &val);
5157 if (err)
5158 return err;
5159 if (val > 1)
5160 return -EINVAL;
5161
5162 spin_lock(&perf_resource_lock);
5163 perf_overcommit = val;
5164 spin_unlock(&perf_resource_lock);
5165
5166 return count;
5167}
5168
5169static SYSDEV_CLASS_ATTR(
5170 reserve_percpu,
5171 0644,
5172 perf_show_reserve_percpu,
5173 perf_set_reserve_percpu
5174 );
5175
5176static SYSDEV_CLASS_ATTR(
5177 overcommit,
5178 0644,
5179 perf_show_overcommit,
5180 perf_set_overcommit
5181 );
5182
5183static struct attribute *perfclass_attrs[] = {
5184 &attr_reserve_percpu.attr,
5185 &attr_overcommit.attr,
5186 NULL
5187};
5188
5189static struct attribute_group perfclass_attr_group = {
5190 .attrs = perfclass_attrs,
5191 .name = "perf_events",
5192};
5193
5194static int __init perf_event_sysfs_init(void)
5195{
5196 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5197 &perfclass_attr_group);
5198}
5199device_initcall(perf_event_sysfs_init);