| David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 1 | /* | 
|  | 2 | * Copyright (C) 2012 Fusion-io  All rights reserved. | 
|  | 3 | * Copyright (C) 2012 Intel Corp. All rights reserved. | 
|  | 4 | * | 
|  | 5 | * This program is free software; you can redistribute it and/or | 
|  | 6 | * modify it under the terms of the GNU General Public | 
|  | 7 | * License v2 as published by the Free Software Foundation. | 
|  | 8 | * | 
|  | 9 | * This program is distributed in the hope that it will be useful, | 
|  | 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | 12 | * General Public License for more details. | 
|  | 13 | * | 
|  | 14 | * You should have received a copy of the GNU General Public | 
|  | 15 | * License along with this program; if not, write to the | 
|  | 16 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | 
|  | 17 | * Boston, MA 021110-1307, USA. | 
|  | 18 | */ | 
|  | 19 | #include <linux/sched.h> | 
|  | 20 | #include <linux/wait.h> | 
|  | 21 | #include <linux/bio.h> | 
|  | 22 | #include <linux/slab.h> | 
|  | 23 | #include <linux/buffer_head.h> | 
|  | 24 | #include <linux/blkdev.h> | 
|  | 25 | #include <linux/random.h> | 
|  | 26 | #include <linux/iocontext.h> | 
|  | 27 | #include <linux/capability.h> | 
|  | 28 | #include <linux/ratelimit.h> | 
|  | 29 | #include <linux/kthread.h> | 
|  | 30 | #include <linux/raid/pq.h> | 
|  | 31 | #include <linux/hash.h> | 
|  | 32 | #include <linux/list_sort.h> | 
|  | 33 | #include <linux/raid/xor.h> | 
| Geert Uytterhoeven | d7011f5 | 2013-03-03 04:44:41 -0700 | [diff] [blame] | 34 | #include <linux/vmalloc.h> | 
| David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 35 | #include <asm/div64.h> | 
|  | 36 | #include "compat.h" | 
|  | 37 | #include "ctree.h" | 
|  | 38 | #include "extent_map.h" | 
|  | 39 | #include "disk-io.h" | 
|  | 40 | #include "transaction.h" | 
|  | 41 | #include "print-tree.h" | 
|  | 42 | #include "volumes.h" | 
|  | 43 | #include "raid56.h" | 
|  | 44 | #include "async-thread.h" | 
|  | 45 | #include "check-integrity.h" | 
|  | 46 | #include "rcu-string.h" | 
|  | 47 |  | 
|  | 48 | /* set when additional merges to this rbio are not allowed */ | 
|  | 49 | #define RBIO_RMW_LOCKED_BIT	1 | 
|  | 50 |  | 
| Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame] | 51 | /* | 
|  | 52 | * set when this rbio is sitting in the hash, but it is just a cache | 
|  | 53 | * of past RMW | 
|  | 54 | */ | 
|  | 55 | #define RBIO_CACHE_BIT		2 | 
|  | 56 |  | 
|  | 57 | /* | 
|  | 58 | * set when it is safe to trust the stripe_pages for caching | 
|  | 59 | */ | 
|  | 60 | #define RBIO_CACHE_READY_BIT	3 | 
|  | 61 |  | 
|  | 62 |  | 
|  | 63 | #define RBIO_CACHE_SIZE 1024 | 
|  | 64 |  | 
| David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 65 | struct btrfs_raid_bio { | 
|  | 66 | struct btrfs_fs_info *fs_info; | 
|  | 67 | struct btrfs_bio *bbio; | 
|  | 68 |  | 
|  | 69 | /* | 
|  | 70 | * logical block numbers for the start of each stripe | 
|  | 71 | * The last one or two are p/q.  These are sorted, | 
|  | 72 | * so raid_map[0] is the start of our full stripe | 
|  | 73 | */ | 
|  | 74 | u64 *raid_map; | 
|  | 75 |  | 
|  | 76 | /* while we're doing rmw on a stripe | 
|  | 77 | * we put it into a hash table so we can | 
|  | 78 | * lock the stripe and merge more rbios | 
|  | 79 | * into it. | 
|  | 80 | */ | 
|  | 81 | struct list_head hash_list; | 
|  | 82 |  | 
|  | 83 | /* | 
| Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame] | 84 | * LRU list for the stripe cache | 
|  | 85 | */ | 
|  | 86 | struct list_head stripe_cache; | 
|  | 87 |  | 
|  | 88 | /* | 
| David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 89 | * for scheduling work in the helper threads | 
|  | 90 | */ | 
|  | 91 | struct btrfs_work work; | 
|  | 92 |  | 
|  | 93 | /* | 
|  | 94 | * bio list and bio_list_lock are used | 
|  | 95 | * to add more bios into the stripe | 
|  | 96 | * in hopes of avoiding the full rmw | 
|  | 97 | */ | 
|  | 98 | struct bio_list bio_list; | 
|  | 99 | spinlock_t bio_list_lock; | 
|  | 100 |  | 
| Chris Mason | 6ac0f48 | 2013-01-31 14:42:28 -0500 | [diff] [blame] | 101 | /* also protected by the bio_list_lock, the | 
|  | 102 | * plug list is used by the plugging code | 
|  | 103 | * to collect partial bios while plugged.  The | 
|  | 104 | * stripe locking code also uses it to hand off | 
| David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 105 | * the stripe lock to the next pending IO | 
|  | 106 | */ | 
|  | 107 | struct list_head plug_list; | 
|  | 108 |  | 
|  | 109 | /* | 
|  | 110 | * flags that tell us if it is safe to | 
|  | 111 | * merge with this bio | 
|  | 112 | */ | 
|  | 113 | unsigned long flags; | 
|  | 114 |  | 
|  | 115 | /* size of each individual stripe on disk */ | 
|  | 116 | int stripe_len; | 
|  | 117 |  | 
|  | 118 | /* number of data stripes (no p/q) */ | 
|  | 119 | int nr_data; | 
|  | 120 |  | 
|  | 121 | /* | 
|  | 122 | * set if we're doing a parity rebuild | 
|  | 123 | * for a read from higher up, which is handled | 
|  | 124 | * differently from a parity rebuild as part of | 
|  | 125 | * rmw | 
|  | 126 | */ | 
|  | 127 | int read_rebuild; | 
|  | 128 |  | 
|  | 129 | /* first bad stripe */ | 
|  | 130 | int faila; | 
|  | 131 |  | 
|  | 132 | /* second bad stripe (for raid6 use) */ | 
|  | 133 | int failb; | 
|  | 134 |  | 
|  | 135 | /* | 
|  | 136 | * number of pages needed to represent the full | 
|  | 137 | * stripe | 
|  | 138 | */ | 
|  | 139 | int nr_pages; | 
|  | 140 |  | 
|  | 141 | /* | 
|  | 142 | * size of all the bios in the bio_list.  This | 
|  | 143 | * helps us decide if the rbio maps to a full | 
|  | 144 | * stripe or not | 
|  | 145 | */ | 
|  | 146 | int bio_list_bytes; | 
|  | 147 |  | 
|  | 148 | atomic_t refs; | 
|  | 149 |  | 
|  | 150 | /* | 
|  | 151 | * these are two arrays of pointers.  We allocate the | 
|  | 152 | * rbio big enough to hold them both and setup their | 
|  | 153 | * locations when the rbio is allocated | 
|  | 154 | */ | 
|  | 155 |  | 
|  | 156 | /* pointers to pages that we allocated for | 
|  | 157 | * reading/writing stripes directly from the disk (including P/Q) | 
|  | 158 | */ | 
|  | 159 | struct page **stripe_pages; | 
|  | 160 |  | 
|  | 161 | /* | 
|  | 162 | * pointers to the pages in the bio_list.  Stored | 
|  | 163 | * here for faster lookup | 
|  | 164 | */ | 
|  | 165 | struct page **bio_pages; | 
|  | 166 | }; | 
|  | 167 |  | 
|  | 168 | static int __raid56_parity_recover(struct btrfs_raid_bio *rbio); | 
|  | 169 | static noinline void finish_rmw(struct btrfs_raid_bio *rbio); | 
|  | 170 | static void rmw_work(struct btrfs_work *work); | 
|  | 171 | static void read_rebuild_work(struct btrfs_work *work); | 
|  | 172 | static void async_rmw_stripe(struct btrfs_raid_bio *rbio); | 
|  | 173 | static void async_read_rebuild(struct btrfs_raid_bio *rbio); | 
|  | 174 | static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio); | 
|  | 175 | static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed); | 
|  | 176 | static void __free_raid_bio(struct btrfs_raid_bio *rbio); | 
|  | 177 | static void index_rbio_pages(struct btrfs_raid_bio *rbio); | 
|  | 178 | static int alloc_rbio_pages(struct btrfs_raid_bio *rbio); | 
|  | 179 |  | 
|  | 180 | /* | 
|  | 181 | * the stripe hash table is used for locking, and to collect | 
|  | 182 | * bios in hopes of making a full stripe | 
|  | 183 | */ | 
|  | 184 | int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info) | 
|  | 185 | { | 
|  | 186 | struct btrfs_stripe_hash_table *table; | 
|  | 187 | struct btrfs_stripe_hash_table *x; | 
|  | 188 | struct btrfs_stripe_hash *cur; | 
|  | 189 | struct btrfs_stripe_hash *h; | 
|  | 190 | int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS; | 
|  | 191 | int i; | 
| David Sterba | 83c8266 | 2013-03-01 15:03:00 +0000 | [diff] [blame] | 192 | int table_size; | 
| David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 193 |  | 
|  | 194 | if (info->stripe_hash_table) | 
|  | 195 | return 0; | 
|  | 196 |  | 
| David Sterba | 83c8266 | 2013-03-01 15:03:00 +0000 | [diff] [blame] | 197 | /* | 
|  | 198 | * The table is large, starting with order 4 and can go as high as | 
|  | 199 | * order 7 in case lock debugging is turned on. | 
|  | 200 | * | 
|  | 201 | * Try harder to allocate and fallback to vmalloc to lower the chance | 
|  | 202 | * of a failing mount. | 
|  | 203 | */ | 
|  | 204 | table_size = sizeof(*table) + sizeof(*h) * num_entries; | 
|  | 205 | table = kzalloc(table_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); | 
|  | 206 | if (!table) { | 
|  | 207 | table = vzalloc(table_size); | 
|  | 208 | if (!table) | 
|  | 209 | return -ENOMEM; | 
|  | 210 | } | 
| David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 211 |  | 
| Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame] | 212 | spin_lock_init(&table->cache_lock); | 
|  | 213 | INIT_LIST_HEAD(&table->stripe_cache); | 
|  | 214 |  | 
| David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 215 | h = table->table; | 
|  | 216 |  | 
|  | 217 | for (i = 0; i < num_entries; i++) { | 
|  | 218 | cur = h + i; | 
|  | 219 | INIT_LIST_HEAD(&cur->hash_list); | 
|  | 220 | spin_lock_init(&cur->lock); | 
|  | 221 | init_waitqueue_head(&cur->wait); | 
|  | 222 | } | 
|  | 223 |  | 
|  | 224 | x = cmpxchg(&info->stripe_hash_table, NULL, table); | 
| David Sterba | 83c8266 | 2013-03-01 15:03:00 +0000 | [diff] [blame] | 225 | if (x) { | 
|  | 226 | if (is_vmalloc_addr(x)) | 
|  | 227 | vfree(x); | 
|  | 228 | else | 
|  | 229 | kfree(x); | 
|  | 230 | } | 
| David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 231 | return 0; | 
|  | 232 | } | 
|  | 233 |  | 
|  | 234 | /* | 
| Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame] | 235 | * caching an rbio means to copy anything from the | 
|  | 236 | * bio_pages array into the stripe_pages array.  We | 
|  | 237 | * use the page uptodate bit in the stripe cache array | 
|  | 238 | * to indicate if it has valid data | 
|  | 239 | * | 
|  | 240 | * once the caching is done, we set the cache ready | 
|  | 241 | * bit. | 
|  | 242 | */ | 
|  | 243 | static void cache_rbio_pages(struct btrfs_raid_bio *rbio) | 
|  | 244 | { | 
|  | 245 | int i; | 
|  | 246 | char *s; | 
|  | 247 | char *d; | 
|  | 248 | int ret; | 
|  | 249 |  | 
|  | 250 | ret = alloc_rbio_pages(rbio); | 
|  | 251 | if (ret) | 
|  | 252 | return; | 
|  | 253 |  | 
|  | 254 | for (i = 0; i < rbio->nr_pages; i++) { | 
|  | 255 | if (!rbio->bio_pages[i]) | 
|  | 256 | continue; | 
|  | 257 |  | 
|  | 258 | s = kmap(rbio->bio_pages[i]); | 
|  | 259 | d = kmap(rbio->stripe_pages[i]); | 
|  | 260 |  | 
|  | 261 | memcpy(d, s, PAGE_CACHE_SIZE); | 
|  | 262 |  | 
|  | 263 | kunmap(rbio->bio_pages[i]); | 
|  | 264 | kunmap(rbio->stripe_pages[i]); | 
|  | 265 | SetPageUptodate(rbio->stripe_pages[i]); | 
|  | 266 | } | 
|  | 267 | set_bit(RBIO_CACHE_READY_BIT, &rbio->flags); | 
|  | 268 | } | 
|  | 269 |  | 
|  | 270 | /* | 
| David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 271 | * we hash on the first logical address of the stripe | 
|  | 272 | */ | 
|  | 273 | static int rbio_bucket(struct btrfs_raid_bio *rbio) | 
|  | 274 | { | 
|  | 275 | u64 num = rbio->raid_map[0]; | 
|  | 276 |  | 
|  | 277 | /* | 
|  | 278 | * we shift down quite a bit.  We're using byte | 
|  | 279 | * addressing, and most of the lower bits are zeros. | 
|  | 280 | * This tends to upset hash_64, and it consistently | 
|  | 281 | * returns just one or two different values. | 
|  | 282 | * | 
|  | 283 | * shifting off the lower bits fixes things. | 
|  | 284 | */ | 
|  | 285 | return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS); | 
|  | 286 | } | 
|  | 287 |  | 
|  | 288 | /* | 
| Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame] | 289 | * stealing an rbio means taking all the uptodate pages from the stripe | 
|  | 290 | * array in the source rbio and putting them into the destination rbio | 
|  | 291 | */ | 
|  | 292 | static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest) | 
|  | 293 | { | 
|  | 294 | int i; | 
|  | 295 | struct page *s; | 
|  | 296 | struct page *d; | 
|  | 297 |  | 
|  | 298 | if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags)) | 
|  | 299 | return; | 
|  | 300 |  | 
|  | 301 | for (i = 0; i < dest->nr_pages; i++) { | 
|  | 302 | s = src->stripe_pages[i]; | 
|  | 303 | if (!s || !PageUptodate(s)) { | 
|  | 304 | continue; | 
|  | 305 | } | 
|  | 306 |  | 
|  | 307 | d = dest->stripe_pages[i]; | 
|  | 308 | if (d) | 
|  | 309 | __free_page(d); | 
|  | 310 |  | 
|  | 311 | dest->stripe_pages[i] = s; | 
|  | 312 | src->stripe_pages[i] = NULL; | 
|  | 313 | } | 
|  | 314 | } | 
|  | 315 |  | 
|  | 316 | /* | 
| David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 317 | * merging means we take the bio_list from the victim and | 
|  | 318 | * splice it into the destination.  The victim should | 
|  | 319 | * be discarded afterwards. | 
|  | 320 | * | 
|  | 321 | * must be called with dest->rbio_list_lock held | 
|  | 322 | */ | 
|  | 323 | static void merge_rbio(struct btrfs_raid_bio *dest, | 
|  | 324 | struct btrfs_raid_bio *victim) | 
|  | 325 | { | 
|  | 326 | bio_list_merge(&dest->bio_list, &victim->bio_list); | 
|  | 327 | dest->bio_list_bytes += victim->bio_list_bytes; | 
|  | 328 | bio_list_init(&victim->bio_list); | 
|  | 329 | } | 
|  | 330 |  | 
|  | 331 | /* | 
| Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame] | 332 | * used to prune items that are in the cache.  The caller | 
|  | 333 | * must hold the hash table lock. | 
|  | 334 | */ | 
|  | 335 | static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio) | 
|  | 336 | { | 
|  | 337 | int bucket = rbio_bucket(rbio); | 
|  | 338 | struct btrfs_stripe_hash_table *table; | 
|  | 339 | struct btrfs_stripe_hash *h; | 
|  | 340 | int freeit = 0; | 
|  | 341 |  | 
|  | 342 | /* | 
|  | 343 | * check the bit again under the hash table lock. | 
|  | 344 | */ | 
|  | 345 | if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) | 
|  | 346 | return; | 
|  | 347 |  | 
|  | 348 | table = rbio->fs_info->stripe_hash_table; | 
|  | 349 | h = table->table + bucket; | 
|  | 350 |  | 
|  | 351 | /* hold the lock for the bucket because we may be | 
|  | 352 | * removing it from the hash table | 
|  | 353 | */ | 
|  | 354 | spin_lock(&h->lock); | 
|  | 355 |  | 
|  | 356 | /* | 
|  | 357 | * hold the lock for the bio list because we need | 
|  | 358 | * to make sure the bio list is empty | 
|  | 359 | */ | 
|  | 360 | spin_lock(&rbio->bio_list_lock); | 
|  | 361 |  | 
|  | 362 | if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) { | 
|  | 363 | list_del_init(&rbio->stripe_cache); | 
|  | 364 | table->cache_size -= 1; | 
|  | 365 | freeit = 1; | 
|  | 366 |  | 
|  | 367 | /* if the bio list isn't empty, this rbio is | 
|  | 368 | * still involved in an IO.  We take it out | 
|  | 369 | * of the cache list, and drop the ref that | 
|  | 370 | * was held for the list. | 
|  | 371 | * | 
|  | 372 | * If the bio_list was empty, we also remove | 
|  | 373 | * the rbio from the hash_table, and drop | 
|  | 374 | * the corresponding ref | 
|  | 375 | */ | 
|  | 376 | if (bio_list_empty(&rbio->bio_list)) { | 
|  | 377 | if (!list_empty(&rbio->hash_list)) { | 
|  | 378 | list_del_init(&rbio->hash_list); | 
|  | 379 | atomic_dec(&rbio->refs); | 
|  | 380 | BUG_ON(!list_empty(&rbio->plug_list)); | 
|  | 381 | } | 
|  | 382 | } | 
|  | 383 | } | 
|  | 384 |  | 
|  | 385 | spin_unlock(&rbio->bio_list_lock); | 
|  | 386 | spin_unlock(&h->lock); | 
|  | 387 |  | 
|  | 388 | if (freeit) | 
|  | 389 | __free_raid_bio(rbio); | 
|  | 390 | } | 
|  | 391 |  | 
|  | 392 | /* | 
|  | 393 | * prune a given rbio from the cache | 
|  | 394 | */ | 
|  | 395 | static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio) | 
|  | 396 | { | 
|  | 397 | struct btrfs_stripe_hash_table *table; | 
|  | 398 | unsigned long flags; | 
|  | 399 |  | 
|  | 400 | if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) | 
|  | 401 | return; | 
|  | 402 |  | 
|  | 403 | table = rbio->fs_info->stripe_hash_table; | 
|  | 404 |  | 
|  | 405 | spin_lock_irqsave(&table->cache_lock, flags); | 
|  | 406 | __remove_rbio_from_cache(rbio); | 
|  | 407 | spin_unlock_irqrestore(&table->cache_lock, flags); | 
|  | 408 | } | 
|  | 409 |  | 
|  | 410 | /* | 
|  | 411 | * remove everything in the cache | 
|  | 412 | */ | 
|  | 413 | void btrfs_clear_rbio_cache(struct btrfs_fs_info *info) | 
|  | 414 | { | 
|  | 415 | struct btrfs_stripe_hash_table *table; | 
|  | 416 | unsigned long flags; | 
|  | 417 | struct btrfs_raid_bio *rbio; | 
|  | 418 |  | 
|  | 419 | table = info->stripe_hash_table; | 
|  | 420 |  | 
|  | 421 | spin_lock_irqsave(&table->cache_lock, flags); | 
|  | 422 | while (!list_empty(&table->stripe_cache)) { | 
|  | 423 | rbio = list_entry(table->stripe_cache.next, | 
|  | 424 | struct btrfs_raid_bio, | 
|  | 425 | stripe_cache); | 
|  | 426 | __remove_rbio_from_cache(rbio); | 
|  | 427 | } | 
|  | 428 | spin_unlock_irqrestore(&table->cache_lock, flags); | 
|  | 429 | } | 
|  | 430 |  | 
|  | 431 | /* | 
|  | 432 | * remove all cached entries and free the hash table | 
|  | 433 | * used by unmount | 
| David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 434 | */ | 
|  | 435 | void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info) | 
|  | 436 | { | 
|  | 437 | if (!info->stripe_hash_table) | 
|  | 438 | return; | 
| Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame] | 439 | btrfs_clear_rbio_cache(info); | 
| David Sterba | 83c8266 | 2013-03-01 15:03:00 +0000 | [diff] [blame] | 440 | if (is_vmalloc_addr(info->stripe_hash_table)) | 
|  | 441 | vfree(info->stripe_hash_table); | 
|  | 442 | else | 
|  | 443 | kfree(info->stripe_hash_table); | 
| David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 444 | info->stripe_hash_table = NULL; | 
|  | 445 | } | 
|  | 446 |  | 
|  | 447 | /* | 
| Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame] | 448 | * insert an rbio into the stripe cache.  It | 
|  | 449 | * must have already been prepared by calling | 
|  | 450 | * cache_rbio_pages | 
|  | 451 | * | 
|  | 452 | * If this rbio was already cached, it gets | 
|  | 453 | * moved to the front of the lru. | 
|  | 454 | * | 
|  | 455 | * If the size of the rbio cache is too big, we | 
|  | 456 | * prune an item. | 
|  | 457 | */ | 
|  | 458 | static void cache_rbio(struct btrfs_raid_bio *rbio) | 
|  | 459 | { | 
|  | 460 | struct btrfs_stripe_hash_table *table; | 
|  | 461 | unsigned long flags; | 
|  | 462 |  | 
|  | 463 | if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags)) | 
|  | 464 | return; | 
|  | 465 |  | 
|  | 466 | table = rbio->fs_info->stripe_hash_table; | 
|  | 467 |  | 
|  | 468 | spin_lock_irqsave(&table->cache_lock, flags); | 
|  | 469 | spin_lock(&rbio->bio_list_lock); | 
|  | 470 |  | 
|  | 471 | /* bump our ref if we were not in the list before */ | 
|  | 472 | if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags)) | 
|  | 473 | atomic_inc(&rbio->refs); | 
|  | 474 |  | 
|  | 475 | if (!list_empty(&rbio->stripe_cache)){ | 
|  | 476 | list_move(&rbio->stripe_cache, &table->stripe_cache); | 
|  | 477 | } else { | 
|  | 478 | list_add(&rbio->stripe_cache, &table->stripe_cache); | 
|  | 479 | table->cache_size += 1; | 
|  | 480 | } | 
|  | 481 |  | 
|  | 482 | spin_unlock(&rbio->bio_list_lock); | 
|  | 483 |  | 
|  | 484 | if (table->cache_size > RBIO_CACHE_SIZE) { | 
|  | 485 | struct btrfs_raid_bio *found; | 
|  | 486 |  | 
|  | 487 | found = list_entry(table->stripe_cache.prev, | 
|  | 488 | struct btrfs_raid_bio, | 
|  | 489 | stripe_cache); | 
|  | 490 |  | 
|  | 491 | if (found != rbio) | 
|  | 492 | __remove_rbio_from_cache(found); | 
|  | 493 | } | 
|  | 494 |  | 
|  | 495 | spin_unlock_irqrestore(&table->cache_lock, flags); | 
|  | 496 | return; | 
|  | 497 | } | 
|  | 498 |  | 
|  | 499 | /* | 
| David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 500 | * helper function to run the xor_blocks api.  It is only | 
|  | 501 | * able to do MAX_XOR_BLOCKS at a time, so we need to | 
|  | 502 | * loop through. | 
|  | 503 | */ | 
|  | 504 | static void run_xor(void **pages, int src_cnt, ssize_t len) | 
|  | 505 | { | 
|  | 506 | int src_off = 0; | 
|  | 507 | int xor_src_cnt = 0; | 
|  | 508 | void *dest = pages[src_cnt]; | 
|  | 509 |  | 
|  | 510 | while(src_cnt > 0) { | 
|  | 511 | xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS); | 
|  | 512 | xor_blocks(xor_src_cnt, len, dest, pages + src_off); | 
|  | 513 |  | 
|  | 514 | src_cnt -= xor_src_cnt; | 
|  | 515 | src_off += xor_src_cnt; | 
|  | 516 | } | 
|  | 517 | } | 
|  | 518 |  | 
|  | 519 | /* | 
|  | 520 | * returns true if the bio list inside this rbio | 
|  | 521 | * covers an entire stripe (no rmw required). | 
|  | 522 | * Must be called with the bio list lock held, or | 
|  | 523 | * at a time when you know it is impossible to add | 
|  | 524 | * new bios into the list | 
|  | 525 | */ | 
|  | 526 | static int __rbio_is_full(struct btrfs_raid_bio *rbio) | 
|  | 527 | { | 
|  | 528 | unsigned long size = rbio->bio_list_bytes; | 
|  | 529 | int ret = 1; | 
|  | 530 |  | 
|  | 531 | if (size != rbio->nr_data * rbio->stripe_len) | 
|  | 532 | ret = 0; | 
|  | 533 |  | 
|  | 534 | BUG_ON(size > rbio->nr_data * rbio->stripe_len); | 
|  | 535 | return ret; | 
|  | 536 | } | 
|  | 537 |  | 
|  | 538 | static int rbio_is_full(struct btrfs_raid_bio *rbio) | 
|  | 539 | { | 
|  | 540 | unsigned long flags; | 
|  | 541 | int ret; | 
|  | 542 |  | 
|  | 543 | spin_lock_irqsave(&rbio->bio_list_lock, flags); | 
|  | 544 | ret = __rbio_is_full(rbio); | 
|  | 545 | spin_unlock_irqrestore(&rbio->bio_list_lock, flags); | 
|  | 546 | return ret; | 
|  | 547 | } | 
|  | 548 |  | 
|  | 549 | /* | 
|  | 550 | * returns 1 if it is safe to merge two rbios together. | 
|  | 551 | * The merging is safe if the two rbios correspond to | 
|  | 552 | * the same stripe and if they are both going in the same | 
|  | 553 | * direction (read vs write), and if neither one is | 
|  | 554 | * locked for final IO | 
|  | 555 | * | 
|  | 556 | * The caller is responsible for locking such that | 
|  | 557 | * rmw_locked is safe to test | 
|  | 558 | */ | 
|  | 559 | static int rbio_can_merge(struct btrfs_raid_bio *last, | 
|  | 560 | struct btrfs_raid_bio *cur) | 
|  | 561 | { | 
|  | 562 | if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) || | 
|  | 563 | test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) | 
|  | 564 | return 0; | 
|  | 565 |  | 
| Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame] | 566 | /* | 
|  | 567 | * we can't merge with cached rbios, since the | 
|  | 568 | * idea is that when we merge the destination | 
|  | 569 | * rbio is going to run our IO for us.  We can | 
|  | 570 | * steal from cached rbio's though, other functions | 
|  | 571 | * handle that. | 
|  | 572 | */ | 
|  | 573 | if (test_bit(RBIO_CACHE_BIT, &last->flags) || | 
|  | 574 | test_bit(RBIO_CACHE_BIT, &cur->flags)) | 
|  | 575 | return 0; | 
|  | 576 |  | 
| David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 577 | if (last->raid_map[0] != | 
|  | 578 | cur->raid_map[0]) | 
|  | 579 | return 0; | 
|  | 580 |  | 
|  | 581 | /* reads can't merge with writes */ | 
|  | 582 | if (last->read_rebuild != | 
|  | 583 | cur->read_rebuild) { | 
|  | 584 | return 0; | 
|  | 585 | } | 
|  | 586 |  | 
|  | 587 | return 1; | 
|  | 588 | } | 
|  | 589 |  | 
|  | 590 | /* | 
|  | 591 | * helper to index into the pstripe | 
|  | 592 | */ | 
|  | 593 | static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index) | 
|  | 594 | { | 
|  | 595 | index += (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT; | 
|  | 596 | return rbio->stripe_pages[index]; | 
|  | 597 | } | 
|  | 598 |  | 
|  | 599 | /* | 
|  | 600 | * helper to index into the qstripe, returns null | 
|  | 601 | * if there is no qstripe | 
|  | 602 | */ | 
|  | 603 | static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index) | 
|  | 604 | { | 
|  | 605 | if (rbio->nr_data + 1 == rbio->bbio->num_stripes) | 
|  | 606 | return NULL; | 
|  | 607 |  | 
|  | 608 | index += ((rbio->nr_data + 1) * rbio->stripe_len) >> | 
|  | 609 | PAGE_CACHE_SHIFT; | 
|  | 610 | return rbio->stripe_pages[index]; | 
|  | 611 | } | 
|  | 612 |  | 
|  | 613 | /* | 
|  | 614 | * The first stripe in the table for a logical address | 
|  | 615 | * has the lock.  rbios are added in one of three ways: | 
|  | 616 | * | 
|  | 617 | * 1) Nobody has the stripe locked yet.  The rbio is given | 
|  | 618 | * the lock and 0 is returned.  The caller must start the IO | 
|  | 619 | * themselves. | 
|  | 620 | * | 
|  | 621 | * 2) Someone has the stripe locked, but we're able to merge | 
|  | 622 | * with the lock owner.  The rbio is freed and the IO will | 
|  | 623 | * start automatically along with the existing rbio.  1 is returned. | 
|  | 624 | * | 
|  | 625 | * 3) Someone has the stripe locked, but we're not able to merge. | 
|  | 626 | * The rbio is added to the lock owner's plug list, or merged into | 
|  | 627 | * an rbio already on the plug list.  When the lock owner unlocks, | 
|  | 628 | * the next rbio on the list is run and the IO is started automatically. | 
|  | 629 | * 1 is returned | 
|  | 630 | * | 
|  | 631 | * If we return 0, the caller still owns the rbio and must continue with | 
|  | 632 | * IO submission.  If we return 1, the caller must assume the rbio has | 
|  | 633 | * already been freed. | 
|  | 634 | */ | 
|  | 635 | static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio) | 
|  | 636 | { | 
|  | 637 | int bucket = rbio_bucket(rbio); | 
|  | 638 | struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket; | 
|  | 639 | struct btrfs_raid_bio *cur; | 
|  | 640 | struct btrfs_raid_bio *pending; | 
|  | 641 | unsigned long flags; | 
|  | 642 | DEFINE_WAIT(wait); | 
|  | 643 | struct btrfs_raid_bio *freeit = NULL; | 
| Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame] | 644 | struct btrfs_raid_bio *cache_drop = NULL; | 
| David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 645 | int ret = 0; | 
|  | 646 | int walk = 0; | 
|  | 647 |  | 
|  | 648 | spin_lock_irqsave(&h->lock, flags); | 
|  | 649 | list_for_each_entry(cur, &h->hash_list, hash_list) { | 
|  | 650 | walk++; | 
|  | 651 | if (cur->raid_map[0] == rbio->raid_map[0]) { | 
|  | 652 | spin_lock(&cur->bio_list_lock); | 
|  | 653 |  | 
| Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame] | 654 | /* can we steal this cached rbio's pages? */ | 
|  | 655 | if (bio_list_empty(&cur->bio_list) && | 
|  | 656 | list_empty(&cur->plug_list) && | 
|  | 657 | test_bit(RBIO_CACHE_BIT, &cur->flags) && | 
|  | 658 | !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) { | 
|  | 659 | list_del_init(&cur->hash_list); | 
|  | 660 | atomic_dec(&cur->refs); | 
|  | 661 |  | 
|  | 662 | steal_rbio(cur, rbio); | 
|  | 663 | cache_drop = cur; | 
|  | 664 | spin_unlock(&cur->bio_list_lock); | 
|  | 665 |  | 
|  | 666 | goto lockit; | 
|  | 667 | } | 
|  | 668 |  | 
| David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 669 | /* can we merge into the lock owner? */ | 
|  | 670 | if (rbio_can_merge(cur, rbio)) { | 
|  | 671 | merge_rbio(cur, rbio); | 
|  | 672 | spin_unlock(&cur->bio_list_lock); | 
|  | 673 | freeit = rbio; | 
|  | 674 | ret = 1; | 
|  | 675 | goto out; | 
|  | 676 | } | 
|  | 677 |  | 
| Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame] | 678 |  | 
| David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 679 | /* | 
|  | 680 | * we couldn't merge with the running | 
|  | 681 | * rbio, see if we can merge with the | 
|  | 682 | * pending ones.  We don't have to | 
|  | 683 | * check for rmw_locked because there | 
|  | 684 | * is no way they are inside finish_rmw | 
|  | 685 | * right now | 
|  | 686 | */ | 
|  | 687 | list_for_each_entry(pending, &cur->plug_list, | 
|  | 688 | plug_list) { | 
|  | 689 | if (rbio_can_merge(pending, rbio)) { | 
|  | 690 | merge_rbio(pending, rbio); | 
|  | 691 | spin_unlock(&cur->bio_list_lock); | 
|  | 692 | freeit = rbio; | 
|  | 693 | ret = 1; | 
|  | 694 | goto out; | 
|  | 695 | } | 
|  | 696 | } | 
|  | 697 |  | 
|  | 698 | /* no merging, put us on the tail of the plug list, | 
|  | 699 | * our rbio will be started with the currently | 
|  | 700 | * running rbio unlocks | 
|  | 701 | */ | 
|  | 702 | list_add_tail(&rbio->plug_list, &cur->plug_list); | 
|  | 703 | spin_unlock(&cur->bio_list_lock); | 
|  | 704 | ret = 1; | 
|  | 705 | goto out; | 
|  | 706 | } | 
|  | 707 | } | 
| Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame] | 708 | lockit: | 
| David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 709 | atomic_inc(&rbio->refs); | 
|  | 710 | list_add(&rbio->hash_list, &h->hash_list); | 
|  | 711 | out: | 
|  | 712 | spin_unlock_irqrestore(&h->lock, flags); | 
| Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame] | 713 | if (cache_drop) | 
|  | 714 | remove_rbio_from_cache(cache_drop); | 
| David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 715 | if (freeit) | 
|  | 716 | __free_raid_bio(freeit); | 
|  | 717 | return ret; | 
|  | 718 | } | 
|  | 719 |  | 
|  | 720 | /* | 
|  | 721 | * called as rmw or parity rebuild is completed.  If the plug list has more | 
|  | 722 | * rbios waiting for this stripe, the next one on the list will be started | 
|  | 723 | */ | 
|  | 724 | static noinline void unlock_stripe(struct btrfs_raid_bio *rbio) | 
|  | 725 | { | 
|  | 726 | int bucket; | 
|  | 727 | struct btrfs_stripe_hash *h; | 
|  | 728 | unsigned long flags; | 
| Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame] | 729 | int keep_cache = 0; | 
| David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 730 |  | 
|  | 731 | bucket = rbio_bucket(rbio); | 
|  | 732 | h = rbio->fs_info->stripe_hash_table->table + bucket; | 
|  | 733 |  | 
| Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame] | 734 | if (list_empty(&rbio->plug_list)) | 
|  | 735 | cache_rbio(rbio); | 
|  | 736 |  | 
| David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 737 | spin_lock_irqsave(&h->lock, flags); | 
|  | 738 | spin_lock(&rbio->bio_list_lock); | 
|  | 739 |  | 
|  | 740 | if (!list_empty(&rbio->hash_list)) { | 
| Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame] | 741 | /* | 
|  | 742 | * if we're still cached and there is no other IO | 
|  | 743 | * to perform, just leave this rbio here for others | 
|  | 744 | * to steal from later | 
|  | 745 | */ | 
|  | 746 | if (list_empty(&rbio->plug_list) && | 
|  | 747 | test_bit(RBIO_CACHE_BIT, &rbio->flags)) { | 
|  | 748 | keep_cache = 1; | 
|  | 749 | clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); | 
|  | 750 | BUG_ON(!bio_list_empty(&rbio->bio_list)); | 
|  | 751 | goto done; | 
|  | 752 | } | 
| David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 753 |  | 
|  | 754 | list_del_init(&rbio->hash_list); | 
|  | 755 | atomic_dec(&rbio->refs); | 
|  | 756 |  | 
|  | 757 | /* | 
|  | 758 | * we use the plug list to hold all the rbios | 
|  | 759 | * waiting for the chance to lock this stripe. | 
|  | 760 | * hand the lock over to one of them. | 
|  | 761 | */ | 
|  | 762 | if (!list_empty(&rbio->plug_list)) { | 
|  | 763 | struct btrfs_raid_bio *next; | 
|  | 764 | struct list_head *head = rbio->plug_list.next; | 
|  | 765 |  | 
|  | 766 | next = list_entry(head, struct btrfs_raid_bio, | 
|  | 767 | plug_list); | 
|  | 768 |  | 
|  | 769 | list_del_init(&rbio->plug_list); | 
|  | 770 |  | 
|  | 771 | list_add(&next->hash_list, &h->hash_list); | 
|  | 772 | atomic_inc(&next->refs); | 
|  | 773 | spin_unlock(&rbio->bio_list_lock); | 
|  | 774 | spin_unlock_irqrestore(&h->lock, flags); | 
|  | 775 |  | 
|  | 776 | if (next->read_rebuild) | 
|  | 777 | async_read_rebuild(next); | 
| Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame] | 778 | else { | 
|  | 779 | steal_rbio(rbio, next); | 
| David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 780 | async_rmw_stripe(next); | 
| Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame] | 781 | } | 
| David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 782 |  | 
|  | 783 | goto done_nolock; | 
| David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 784 | } else  if (waitqueue_active(&h->wait)) { | 
|  | 785 | spin_unlock(&rbio->bio_list_lock); | 
|  | 786 | spin_unlock_irqrestore(&h->lock, flags); | 
|  | 787 | wake_up(&h->wait); | 
|  | 788 | goto done_nolock; | 
|  | 789 | } | 
|  | 790 | } | 
| Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame] | 791 | done: | 
| David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 792 | spin_unlock(&rbio->bio_list_lock); | 
|  | 793 | spin_unlock_irqrestore(&h->lock, flags); | 
|  | 794 |  | 
|  | 795 | done_nolock: | 
| Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame] | 796 | if (!keep_cache) | 
|  | 797 | remove_rbio_from_cache(rbio); | 
| David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 798 | } | 
|  | 799 |  | 
|  | 800 | static void __free_raid_bio(struct btrfs_raid_bio *rbio) | 
|  | 801 | { | 
|  | 802 | int i; | 
|  | 803 |  | 
|  | 804 | WARN_ON(atomic_read(&rbio->refs) < 0); | 
|  | 805 | if (!atomic_dec_and_test(&rbio->refs)) | 
|  | 806 | return; | 
|  | 807 |  | 
| Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame] | 808 | WARN_ON(!list_empty(&rbio->stripe_cache)); | 
| David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 809 | WARN_ON(!list_empty(&rbio->hash_list)); | 
|  | 810 | WARN_ON(!bio_list_empty(&rbio->bio_list)); | 
|  | 811 |  | 
|  | 812 | for (i = 0; i < rbio->nr_pages; i++) { | 
|  | 813 | if (rbio->stripe_pages[i]) { | 
|  | 814 | __free_page(rbio->stripe_pages[i]); | 
|  | 815 | rbio->stripe_pages[i] = NULL; | 
|  | 816 | } | 
|  | 817 | } | 
|  | 818 | kfree(rbio->raid_map); | 
|  | 819 | kfree(rbio->bbio); | 
|  | 820 | kfree(rbio); | 
|  | 821 | } | 
|  | 822 |  | 
|  | 823 | static void free_raid_bio(struct btrfs_raid_bio *rbio) | 
|  | 824 | { | 
|  | 825 | unlock_stripe(rbio); | 
|  | 826 | __free_raid_bio(rbio); | 
|  | 827 | } | 
|  | 828 |  | 
|  | 829 | /* | 
|  | 830 | * this frees the rbio and runs through all the bios in the | 
|  | 831 | * bio_list and calls end_io on them | 
|  | 832 | */ | 
|  | 833 | static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, int err, int uptodate) | 
|  | 834 | { | 
|  | 835 | struct bio *cur = bio_list_get(&rbio->bio_list); | 
|  | 836 | struct bio *next; | 
|  | 837 | free_raid_bio(rbio); | 
|  | 838 |  | 
|  | 839 | while (cur) { | 
|  | 840 | next = cur->bi_next; | 
|  | 841 | cur->bi_next = NULL; | 
|  | 842 | if (uptodate) | 
|  | 843 | set_bit(BIO_UPTODATE, &cur->bi_flags); | 
|  | 844 | bio_endio(cur, err); | 
|  | 845 | cur = next; | 
|  | 846 | } | 
|  | 847 | } | 
|  | 848 |  | 
|  | 849 | /* | 
|  | 850 | * end io function used by finish_rmw.  When we finally | 
|  | 851 | * get here, we've written a full stripe | 
|  | 852 | */ | 
|  | 853 | static void raid_write_end_io(struct bio *bio, int err) | 
|  | 854 | { | 
|  | 855 | struct btrfs_raid_bio *rbio = bio->bi_private; | 
|  | 856 |  | 
|  | 857 | if (err) | 
|  | 858 | fail_bio_stripe(rbio, bio); | 
|  | 859 |  | 
|  | 860 | bio_put(bio); | 
|  | 861 |  | 
|  | 862 | if (!atomic_dec_and_test(&rbio->bbio->stripes_pending)) | 
|  | 863 | return; | 
|  | 864 |  | 
|  | 865 | err = 0; | 
|  | 866 |  | 
|  | 867 | /* OK, we have read all the stripes we need to. */ | 
|  | 868 | if (atomic_read(&rbio->bbio->error) > rbio->bbio->max_errors) | 
|  | 869 | err = -EIO; | 
|  | 870 |  | 
|  | 871 | rbio_orig_end_io(rbio, err, 0); | 
|  | 872 | return; | 
|  | 873 | } | 
|  | 874 |  | 
|  | 875 | /* | 
|  | 876 | * the read/modify/write code wants to use the original bio for | 
|  | 877 | * any pages it included, and then use the rbio for everything | 
|  | 878 | * else.  This function decides if a given index (stripe number) | 
|  | 879 | * and page number in that stripe fall inside the original bio | 
|  | 880 | * or the rbio. | 
|  | 881 | * | 
|  | 882 | * if you set bio_list_only, you'll get a NULL back for any ranges | 
|  | 883 | * that are outside the bio_list | 
|  | 884 | * | 
|  | 885 | * This doesn't take any refs on anything, you get a bare page pointer | 
|  | 886 | * and the caller must bump refs as required. | 
|  | 887 | * | 
|  | 888 | * You must call index_rbio_pages once before you can trust | 
|  | 889 | * the answers from this function. | 
|  | 890 | */ | 
|  | 891 | static struct page *page_in_rbio(struct btrfs_raid_bio *rbio, | 
|  | 892 | int index, int pagenr, int bio_list_only) | 
|  | 893 | { | 
|  | 894 | int chunk_page; | 
|  | 895 | struct page *p = NULL; | 
|  | 896 |  | 
|  | 897 | chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr; | 
|  | 898 |  | 
|  | 899 | spin_lock_irq(&rbio->bio_list_lock); | 
|  | 900 | p = rbio->bio_pages[chunk_page]; | 
|  | 901 | spin_unlock_irq(&rbio->bio_list_lock); | 
|  | 902 |  | 
|  | 903 | if (p || bio_list_only) | 
|  | 904 | return p; | 
|  | 905 |  | 
|  | 906 | return rbio->stripe_pages[chunk_page]; | 
|  | 907 | } | 
|  | 908 |  | 
|  | 909 | /* | 
|  | 910 | * number of pages we need for the entire stripe across all the | 
|  | 911 | * drives | 
|  | 912 | */ | 
|  | 913 | static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes) | 
|  | 914 | { | 
|  | 915 | unsigned long nr = stripe_len * nr_stripes; | 
|  | 916 | return (nr + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; | 
|  | 917 | } | 
|  | 918 |  | 
|  | 919 | /* | 
|  | 920 | * allocation and initial setup for the btrfs_raid_bio.  Not | 
|  | 921 | * this does not allocate any pages for rbio->pages. | 
|  | 922 | */ | 
|  | 923 | static struct btrfs_raid_bio *alloc_rbio(struct btrfs_root *root, | 
|  | 924 | struct btrfs_bio *bbio, u64 *raid_map, | 
|  | 925 | u64 stripe_len) | 
|  | 926 | { | 
|  | 927 | struct btrfs_raid_bio *rbio; | 
|  | 928 | int nr_data = 0; | 
|  | 929 | int num_pages = rbio_nr_pages(stripe_len, bbio->num_stripes); | 
|  | 930 | void *p; | 
|  | 931 |  | 
|  | 932 | rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2, | 
|  | 933 | GFP_NOFS); | 
|  | 934 | if (!rbio) { | 
|  | 935 | kfree(raid_map); | 
|  | 936 | kfree(bbio); | 
|  | 937 | return ERR_PTR(-ENOMEM); | 
|  | 938 | } | 
|  | 939 |  | 
|  | 940 | bio_list_init(&rbio->bio_list); | 
|  | 941 | INIT_LIST_HEAD(&rbio->plug_list); | 
|  | 942 | spin_lock_init(&rbio->bio_list_lock); | 
| Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame] | 943 | INIT_LIST_HEAD(&rbio->stripe_cache); | 
| David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 944 | INIT_LIST_HEAD(&rbio->hash_list); | 
|  | 945 | rbio->bbio = bbio; | 
|  | 946 | rbio->raid_map = raid_map; | 
|  | 947 | rbio->fs_info = root->fs_info; | 
|  | 948 | rbio->stripe_len = stripe_len; | 
|  | 949 | rbio->nr_pages = num_pages; | 
|  | 950 | rbio->faila = -1; | 
|  | 951 | rbio->failb = -1; | 
|  | 952 | atomic_set(&rbio->refs, 1); | 
|  | 953 |  | 
|  | 954 | /* | 
|  | 955 | * the stripe_pages and bio_pages array point to the extra | 
|  | 956 | * memory we allocated past the end of the rbio | 
|  | 957 | */ | 
|  | 958 | p = rbio + 1; | 
|  | 959 | rbio->stripe_pages = p; | 
|  | 960 | rbio->bio_pages = p + sizeof(struct page *) * num_pages; | 
|  | 961 |  | 
|  | 962 | if (raid_map[bbio->num_stripes - 1] == RAID6_Q_STRIPE) | 
|  | 963 | nr_data = bbio->num_stripes - 2; | 
|  | 964 | else | 
|  | 965 | nr_data = bbio->num_stripes - 1; | 
|  | 966 |  | 
|  | 967 | rbio->nr_data = nr_data; | 
|  | 968 | return rbio; | 
|  | 969 | } | 
|  | 970 |  | 
|  | 971 | /* allocate pages for all the stripes in the bio, including parity */ | 
|  | 972 | static int alloc_rbio_pages(struct btrfs_raid_bio *rbio) | 
|  | 973 | { | 
|  | 974 | int i; | 
|  | 975 | struct page *page; | 
|  | 976 |  | 
|  | 977 | for (i = 0; i < rbio->nr_pages; i++) { | 
|  | 978 | if (rbio->stripe_pages[i]) | 
|  | 979 | continue; | 
|  | 980 | page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); | 
|  | 981 | if (!page) | 
|  | 982 | return -ENOMEM; | 
|  | 983 | rbio->stripe_pages[i] = page; | 
|  | 984 | ClearPageUptodate(page); | 
|  | 985 | } | 
|  | 986 | return 0; | 
|  | 987 | } | 
|  | 988 |  | 
|  | 989 | /* allocate pages for just the p/q stripes */ | 
|  | 990 | static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio) | 
|  | 991 | { | 
|  | 992 | int i; | 
|  | 993 | struct page *page; | 
|  | 994 |  | 
|  | 995 | i = (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT; | 
|  | 996 |  | 
|  | 997 | for (; i < rbio->nr_pages; i++) { | 
|  | 998 | if (rbio->stripe_pages[i]) | 
|  | 999 | continue; | 
|  | 1000 | page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); | 
|  | 1001 | if (!page) | 
|  | 1002 | return -ENOMEM; | 
|  | 1003 | rbio->stripe_pages[i] = page; | 
|  | 1004 | } | 
|  | 1005 | return 0; | 
|  | 1006 | } | 
|  | 1007 |  | 
|  | 1008 | /* | 
|  | 1009 | * add a single page from a specific stripe into our list of bios for IO | 
|  | 1010 | * this will try to merge into existing bios if possible, and returns | 
|  | 1011 | * zero if all went well. | 
|  | 1012 | */ | 
|  | 1013 | int rbio_add_io_page(struct btrfs_raid_bio *rbio, | 
|  | 1014 | struct bio_list *bio_list, | 
|  | 1015 | struct page *page, | 
|  | 1016 | int stripe_nr, | 
|  | 1017 | unsigned long page_index, | 
|  | 1018 | unsigned long bio_max_len) | 
|  | 1019 | { | 
|  | 1020 | struct bio *last = bio_list->tail; | 
|  | 1021 | u64 last_end = 0; | 
|  | 1022 | int ret; | 
|  | 1023 | struct bio *bio; | 
|  | 1024 | struct btrfs_bio_stripe *stripe; | 
|  | 1025 | u64 disk_start; | 
|  | 1026 |  | 
|  | 1027 | stripe = &rbio->bbio->stripes[stripe_nr]; | 
|  | 1028 | disk_start = stripe->physical + (page_index << PAGE_CACHE_SHIFT); | 
|  | 1029 |  | 
|  | 1030 | /* if the device is missing, just fail this stripe */ | 
|  | 1031 | if (!stripe->dev->bdev) | 
|  | 1032 | return fail_rbio_index(rbio, stripe_nr); | 
|  | 1033 |  | 
|  | 1034 | /* see if we can add this page onto our existing bio */ | 
|  | 1035 | if (last) { | 
|  | 1036 | last_end = (u64)last->bi_sector << 9; | 
|  | 1037 | last_end += last->bi_size; | 
|  | 1038 |  | 
|  | 1039 | /* | 
|  | 1040 | * we can't merge these if they are from different | 
|  | 1041 | * devices or if they are not contiguous | 
|  | 1042 | */ | 
|  | 1043 | if (last_end == disk_start && stripe->dev->bdev && | 
|  | 1044 | test_bit(BIO_UPTODATE, &last->bi_flags) && | 
|  | 1045 | last->bi_bdev == stripe->dev->bdev) { | 
|  | 1046 | ret = bio_add_page(last, page, PAGE_CACHE_SIZE, 0); | 
|  | 1047 | if (ret == PAGE_CACHE_SIZE) | 
|  | 1048 | return 0; | 
|  | 1049 | } | 
|  | 1050 | } | 
|  | 1051 |  | 
|  | 1052 | /* put a new bio on the list */ | 
|  | 1053 | bio = bio_alloc(GFP_NOFS, bio_max_len >> PAGE_SHIFT?:1); | 
|  | 1054 | if (!bio) | 
|  | 1055 | return -ENOMEM; | 
|  | 1056 |  | 
|  | 1057 | bio->bi_size = 0; | 
|  | 1058 | bio->bi_bdev = stripe->dev->bdev; | 
|  | 1059 | bio->bi_sector = disk_start >> 9; | 
|  | 1060 | set_bit(BIO_UPTODATE, &bio->bi_flags); | 
|  | 1061 |  | 
|  | 1062 | bio_add_page(bio, page, PAGE_CACHE_SIZE, 0); | 
|  | 1063 | bio_list_add(bio_list, bio); | 
|  | 1064 | return 0; | 
|  | 1065 | } | 
|  | 1066 |  | 
|  | 1067 | /* | 
|  | 1068 | * while we're doing the read/modify/write cycle, we could | 
|  | 1069 | * have errors in reading pages off the disk.  This checks | 
|  | 1070 | * for errors and if we're not able to read the page it'll | 
|  | 1071 | * trigger parity reconstruction.  The rmw will be finished | 
|  | 1072 | * after we've reconstructed the failed stripes | 
|  | 1073 | */ | 
|  | 1074 | static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio) | 
|  | 1075 | { | 
|  | 1076 | if (rbio->faila >= 0 || rbio->failb >= 0) { | 
|  | 1077 | BUG_ON(rbio->faila == rbio->bbio->num_stripes - 1); | 
|  | 1078 | __raid56_parity_recover(rbio); | 
|  | 1079 | } else { | 
|  | 1080 | finish_rmw(rbio); | 
|  | 1081 | } | 
|  | 1082 | } | 
|  | 1083 |  | 
|  | 1084 | /* | 
|  | 1085 | * these are just the pages from the rbio array, not from anything | 
|  | 1086 | * the FS sent down to us | 
|  | 1087 | */ | 
|  | 1088 | static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe, int page) | 
|  | 1089 | { | 
|  | 1090 | int index; | 
|  | 1091 | index = stripe * (rbio->stripe_len >> PAGE_CACHE_SHIFT); | 
|  | 1092 | index += page; | 
|  | 1093 | return rbio->stripe_pages[index]; | 
|  | 1094 | } | 
|  | 1095 |  | 
|  | 1096 | /* | 
|  | 1097 | * helper function to walk our bio list and populate the bio_pages array with | 
|  | 1098 | * the result.  This seems expensive, but it is faster than constantly | 
|  | 1099 | * searching through the bio list as we setup the IO in finish_rmw or stripe | 
|  | 1100 | * reconstruction. | 
|  | 1101 | * | 
|  | 1102 | * This must be called before you trust the answers from page_in_rbio | 
|  | 1103 | */ | 
|  | 1104 | static void index_rbio_pages(struct btrfs_raid_bio *rbio) | 
|  | 1105 | { | 
|  | 1106 | struct bio *bio; | 
|  | 1107 | u64 start; | 
|  | 1108 | unsigned long stripe_offset; | 
|  | 1109 | unsigned long page_index; | 
|  | 1110 | struct page *p; | 
|  | 1111 | int i; | 
|  | 1112 |  | 
|  | 1113 | spin_lock_irq(&rbio->bio_list_lock); | 
|  | 1114 | bio_list_for_each(bio, &rbio->bio_list) { | 
|  | 1115 | start = (u64)bio->bi_sector << 9; | 
|  | 1116 | stripe_offset = start - rbio->raid_map[0]; | 
|  | 1117 | page_index = stripe_offset >> PAGE_CACHE_SHIFT; | 
|  | 1118 |  | 
|  | 1119 | for (i = 0; i < bio->bi_vcnt; i++) { | 
|  | 1120 | p = bio->bi_io_vec[i].bv_page; | 
|  | 1121 | rbio->bio_pages[page_index + i] = p; | 
|  | 1122 | } | 
|  | 1123 | } | 
|  | 1124 | spin_unlock_irq(&rbio->bio_list_lock); | 
|  | 1125 | } | 
|  | 1126 |  | 
|  | 1127 | /* | 
|  | 1128 | * this is called from one of two situations.  We either | 
|  | 1129 | * have a full stripe from the higher layers, or we've read all | 
|  | 1130 | * the missing bits off disk. | 
|  | 1131 | * | 
|  | 1132 | * This will calculate the parity and then send down any | 
|  | 1133 | * changed blocks. | 
|  | 1134 | */ | 
|  | 1135 | static noinline void finish_rmw(struct btrfs_raid_bio *rbio) | 
|  | 1136 | { | 
|  | 1137 | struct btrfs_bio *bbio = rbio->bbio; | 
|  | 1138 | void *pointers[bbio->num_stripes]; | 
|  | 1139 | int stripe_len = rbio->stripe_len; | 
|  | 1140 | int nr_data = rbio->nr_data; | 
|  | 1141 | int stripe; | 
|  | 1142 | int pagenr; | 
|  | 1143 | int p_stripe = -1; | 
|  | 1144 | int q_stripe = -1; | 
|  | 1145 | struct bio_list bio_list; | 
|  | 1146 | struct bio *bio; | 
|  | 1147 | int pages_per_stripe = stripe_len >> PAGE_CACHE_SHIFT; | 
|  | 1148 | int ret; | 
|  | 1149 |  | 
|  | 1150 | bio_list_init(&bio_list); | 
|  | 1151 |  | 
|  | 1152 | if (bbio->num_stripes - rbio->nr_data == 1) { | 
|  | 1153 | p_stripe = bbio->num_stripes - 1; | 
|  | 1154 | } else if (bbio->num_stripes - rbio->nr_data == 2) { | 
|  | 1155 | p_stripe = bbio->num_stripes - 2; | 
|  | 1156 | q_stripe = bbio->num_stripes - 1; | 
|  | 1157 | } else { | 
|  | 1158 | BUG(); | 
|  | 1159 | } | 
|  | 1160 |  | 
|  | 1161 | /* at this point we either have a full stripe, | 
|  | 1162 | * or we've read the full stripe from the drive. | 
|  | 1163 | * recalculate the parity and write the new results. | 
|  | 1164 | * | 
|  | 1165 | * We're not allowed to add any new bios to the | 
|  | 1166 | * bio list here, anyone else that wants to | 
|  | 1167 | * change this stripe needs to do their own rmw. | 
|  | 1168 | */ | 
|  | 1169 | spin_lock_irq(&rbio->bio_list_lock); | 
|  | 1170 | set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); | 
|  | 1171 | spin_unlock_irq(&rbio->bio_list_lock); | 
|  | 1172 |  | 
|  | 1173 | atomic_set(&rbio->bbio->error, 0); | 
|  | 1174 |  | 
|  | 1175 | /* | 
|  | 1176 | * now that we've set rmw_locked, run through the | 
|  | 1177 | * bio list one last time and map the page pointers | 
| Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame] | 1178 | * | 
|  | 1179 | * We don't cache full rbios because we're assuming | 
|  | 1180 | * the higher layers are unlikely to use this area of | 
|  | 1181 | * the disk again soon.  If they do use it again, | 
|  | 1182 | * hopefully they will send another full bio. | 
| David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 1183 | */ | 
|  | 1184 | index_rbio_pages(rbio); | 
| Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame] | 1185 | if (!rbio_is_full(rbio)) | 
|  | 1186 | cache_rbio_pages(rbio); | 
|  | 1187 | else | 
|  | 1188 | clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); | 
| David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 1189 |  | 
|  | 1190 | for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) { | 
|  | 1191 | struct page *p; | 
|  | 1192 | /* first collect one page from each data stripe */ | 
|  | 1193 | for (stripe = 0; stripe < nr_data; stripe++) { | 
|  | 1194 | p = page_in_rbio(rbio, stripe, pagenr, 0); | 
|  | 1195 | pointers[stripe] = kmap(p); | 
|  | 1196 | } | 
|  | 1197 |  | 
|  | 1198 | /* then add the parity stripe */ | 
|  | 1199 | p = rbio_pstripe_page(rbio, pagenr); | 
|  | 1200 | SetPageUptodate(p); | 
|  | 1201 | pointers[stripe++] = kmap(p); | 
|  | 1202 |  | 
|  | 1203 | if (q_stripe != -1) { | 
|  | 1204 |  | 
|  | 1205 | /* | 
|  | 1206 | * raid6, add the qstripe and call the | 
|  | 1207 | * library function to fill in our p/q | 
|  | 1208 | */ | 
|  | 1209 | p = rbio_qstripe_page(rbio, pagenr); | 
|  | 1210 | SetPageUptodate(p); | 
|  | 1211 | pointers[stripe++] = kmap(p); | 
|  | 1212 |  | 
|  | 1213 | raid6_call.gen_syndrome(bbio->num_stripes, PAGE_SIZE, | 
|  | 1214 | pointers); | 
|  | 1215 | } else { | 
|  | 1216 | /* raid5 */ | 
|  | 1217 | memcpy(pointers[nr_data], pointers[0], PAGE_SIZE); | 
|  | 1218 | run_xor(pointers + 1, nr_data - 1, PAGE_CACHE_SIZE); | 
|  | 1219 | } | 
|  | 1220 |  | 
|  | 1221 |  | 
|  | 1222 | for (stripe = 0; stripe < bbio->num_stripes; stripe++) | 
|  | 1223 | kunmap(page_in_rbio(rbio, stripe, pagenr, 0)); | 
|  | 1224 | } | 
|  | 1225 |  | 
|  | 1226 | /* | 
|  | 1227 | * time to start writing.  Make bios for everything from the | 
|  | 1228 | * higher layers (the bio_list in our rbio) and our p/q.  Ignore | 
|  | 1229 | * everything else. | 
|  | 1230 | */ | 
|  | 1231 | for (stripe = 0; stripe < bbio->num_stripes; stripe++) { | 
|  | 1232 | for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) { | 
|  | 1233 | struct page *page; | 
|  | 1234 | if (stripe < rbio->nr_data) { | 
|  | 1235 | page = page_in_rbio(rbio, stripe, pagenr, 1); | 
|  | 1236 | if (!page) | 
|  | 1237 | continue; | 
|  | 1238 | } else { | 
|  | 1239 | page = rbio_stripe_page(rbio, stripe, pagenr); | 
|  | 1240 | } | 
|  | 1241 |  | 
|  | 1242 | ret = rbio_add_io_page(rbio, &bio_list, | 
|  | 1243 | page, stripe, pagenr, rbio->stripe_len); | 
|  | 1244 | if (ret) | 
|  | 1245 | goto cleanup; | 
|  | 1246 | } | 
|  | 1247 | } | 
|  | 1248 |  | 
|  | 1249 | atomic_set(&bbio->stripes_pending, bio_list_size(&bio_list)); | 
|  | 1250 | BUG_ON(atomic_read(&bbio->stripes_pending) == 0); | 
|  | 1251 |  | 
|  | 1252 | while (1) { | 
|  | 1253 | bio = bio_list_pop(&bio_list); | 
|  | 1254 | if (!bio) | 
|  | 1255 | break; | 
|  | 1256 |  | 
|  | 1257 | bio->bi_private = rbio; | 
|  | 1258 | bio->bi_end_io = raid_write_end_io; | 
|  | 1259 | BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags)); | 
|  | 1260 | submit_bio(WRITE, bio); | 
|  | 1261 | } | 
|  | 1262 | return; | 
|  | 1263 |  | 
|  | 1264 | cleanup: | 
|  | 1265 | rbio_orig_end_io(rbio, -EIO, 0); | 
|  | 1266 | } | 
|  | 1267 |  | 
|  | 1268 | /* | 
|  | 1269 | * helper to find the stripe number for a given bio.  Used to figure out which | 
|  | 1270 | * stripe has failed.  This expects the bio to correspond to a physical disk, | 
|  | 1271 | * so it looks up based on physical sector numbers. | 
|  | 1272 | */ | 
|  | 1273 | static int find_bio_stripe(struct btrfs_raid_bio *rbio, | 
|  | 1274 | struct bio *bio) | 
|  | 1275 | { | 
|  | 1276 | u64 physical = bio->bi_sector; | 
|  | 1277 | u64 stripe_start; | 
|  | 1278 | int i; | 
|  | 1279 | struct btrfs_bio_stripe *stripe; | 
|  | 1280 |  | 
|  | 1281 | physical <<= 9; | 
|  | 1282 |  | 
|  | 1283 | for (i = 0; i < rbio->bbio->num_stripes; i++) { | 
|  | 1284 | stripe = &rbio->bbio->stripes[i]; | 
|  | 1285 | stripe_start = stripe->physical; | 
|  | 1286 | if (physical >= stripe_start && | 
|  | 1287 | physical < stripe_start + rbio->stripe_len) { | 
|  | 1288 | return i; | 
|  | 1289 | } | 
|  | 1290 | } | 
|  | 1291 | return -1; | 
|  | 1292 | } | 
|  | 1293 |  | 
|  | 1294 | /* | 
|  | 1295 | * helper to find the stripe number for a given | 
|  | 1296 | * bio (before mapping).  Used to figure out which stripe has | 
|  | 1297 | * failed.  This looks up based on logical block numbers. | 
|  | 1298 | */ | 
|  | 1299 | static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio, | 
|  | 1300 | struct bio *bio) | 
|  | 1301 | { | 
|  | 1302 | u64 logical = bio->bi_sector; | 
|  | 1303 | u64 stripe_start; | 
|  | 1304 | int i; | 
|  | 1305 |  | 
|  | 1306 | logical <<= 9; | 
|  | 1307 |  | 
|  | 1308 | for (i = 0; i < rbio->nr_data; i++) { | 
|  | 1309 | stripe_start = rbio->raid_map[i]; | 
|  | 1310 | if (logical >= stripe_start && | 
|  | 1311 | logical < stripe_start + rbio->stripe_len) { | 
|  | 1312 | return i; | 
|  | 1313 | } | 
|  | 1314 | } | 
|  | 1315 | return -1; | 
|  | 1316 | } | 
|  | 1317 |  | 
|  | 1318 | /* | 
|  | 1319 | * returns -EIO if we had too many failures | 
|  | 1320 | */ | 
|  | 1321 | static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed) | 
|  | 1322 | { | 
|  | 1323 | unsigned long flags; | 
|  | 1324 | int ret = 0; | 
|  | 1325 |  | 
|  | 1326 | spin_lock_irqsave(&rbio->bio_list_lock, flags); | 
|  | 1327 |  | 
|  | 1328 | /* we already know this stripe is bad, move on */ | 
|  | 1329 | if (rbio->faila == failed || rbio->failb == failed) | 
|  | 1330 | goto out; | 
|  | 1331 |  | 
|  | 1332 | if (rbio->faila == -1) { | 
|  | 1333 | /* first failure on this rbio */ | 
|  | 1334 | rbio->faila = failed; | 
|  | 1335 | atomic_inc(&rbio->bbio->error); | 
|  | 1336 | } else if (rbio->failb == -1) { | 
|  | 1337 | /* second failure on this rbio */ | 
|  | 1338 | rbio->failb = failed; | 
|  | 1339 | atomic_inc(&rbio->bbio->error); | 
|  | 1340 | } else { | 
|  | 1341 | ret = -EIO; | 
|  | 1342 | } | 
|  | 1343 | out: | 
|  | 1344 | spin_unlock_irqrestore(&rbio->bio_list_lock, flags); | 
|  | 1345 |  | 
|  | 1346 | return ret; | 
|  | 1347 | } | 
|  | 1348 |  | 
|  | 1349 | /* | 
|  | 1350 | * helper to fail a stripe based on a physical disk | 
|  | 1351 | * bio. | 
|  | 1352 | */ | 
|  | 1353 | static int fail_bio_stripe(struct btrfs_raid_bio *rbio, | 
|  | 1354 | struct bio *bio) | 
|  | 1355 | { | 
|  | 1356 | int failed = find_bio_stripe(rbio, bio); | 
|  | 1357 |  | 
|  | 1358 | if (failed < 0) | 
|  | 1359 | return -EIO; | 
|  | 1360 |  | 
|  | 1361 | return fail_rbio_index(rbio, failed); | 
|  | 1362 | } | 
|  | 1363 |  | 
|  | 1364 | /* | 
|  | 1365 | * this sets each page in the bio uptodate.  It should only be used on private | 
|  | 1366 | * rbio pages, nothing that comes in from the higher layers | 
|  | 1367 | */ | 
|  | 1368 | static void set_bio_pages_uptodate(struct bio *bio) | 
|  | 1369 | { | 
|  | 1370 | int i; | 
|  | 1371 | struct page *p; | 
|  | 1372 |  | 
|  | 1373 | for (i = 0; i < bio->bi_vcnt; i++) { | 
|  | 1374 | p = bio->bi_io_vec[i].bv_page; | 
|  | 1375 | SetPageUptodate(p); | 
|  | 1376 | } | 
|  | 1377 | } | 
|  | 1378 |  | 
|  | 1379 | /* | 
|  | 1380 | * end io for the read phase of the rmw cycle.  All the bios here are physical | 
|  | 1381 | * stripe bios we've read from the disk so we can recalculate the parity of the | 
|  | 1382 | * stripe. | 
|  | 1383 | * | 
|  | 1384 | * This will usually kick off finish_rmw once all the bios are read in, but it | 
|  | 1385 | * may trigger parity reconstruction if we had any errors along the way | 
|  | 1386 | */ | 
|  | 1387 | static void raid_rmw_end_io(struct bio *bio, int err) | 
|  | 1388 | { | 
|  | 1389 | struct btrfs_raid_bio *rbio = bio->bi_private; | 
|  | 1390 |  | 
|  | 1391 | if (err) | 
|  | 1392 | fail_bio_stripe(rbio, bio); | 
|  | 1393 | else | 
|  | 1394 | set_bio_pages_uptodate(bio); | 
|  | 1395 |  | 
|  | 1396 | bio_put(bio); | 
|  | 1397 |  | 
|  | 1398 | if (!atomic_dec_and_test(&rbio->bbio->stripes_pending)) | 
|  | 1399 | return; | 
|  | 1400 |  | 
|  | 1401 | err = 0; | 
|  | 1402 | if (atomic_read(&rbio->bbio->error) > rbio->bbio->max_errors) | 
|  | 1403 | goto cleanup; | 
|  | 1404 |  | 
|  | 1405 | /* | 
|  | 1406 | * this will normally call finish_rmw to start our write | 
|  | 1407 | * but if there are any failed stripes we'll reconstruct | 
|  | 1408 | * from parity first | 
|  | 1409 | */ | 
|  | 1410 | validate_rbio_for_rmw(rbio); | 
|  | 1411 | return; | 
|  | 1412 |  | 
|  | 1413 | cleanup: | 
|  | 1414 |  | 
|  | 1415 | rbio_orig_end_io(rbio, -EIO, 0); | 
|  | 1416 | } | 
|  | 1417 |  | 
|  | 1418 | static void async_rmw_stripe(struct btrfs_raid_bio *rbio) | 
|  | 1419 | { | 
|  | 1420 | rbio->work.flags = 0; | 
|  | 1421 | rbio->work.func = rmw_work; | 
|  | 1422 |  | 
|  | 1423 | btrfs_queue_worker(&rbio->fs_info->rmw_workers, | 
|  | 1424 | &rbio->work); | 
|  | 1425 | } | 
|  | 1426 |  | 
|  | 1427 | static void async_read_rebuild(struct btrfs_raid_bio *rbio) | 
|  | 1428 | { | 
|  | 1429 | rbio->work.flags = 0; | 
|  | 1430 | rbio->work.func = read_rebuild_work; | 
|  | 1431 |  | 
|  | 1432 | btrfs_queue_worker(&rbio->fs_info->rmw_workers, | 
|  | 1433 | &rbio->work); | 
|  | 1434 | } | 
|  | 1435 |  | 
|  | 1436 | /* | 
|  | 1437 | * the stripe must be locked by the caller.  It will | 
|  | 1438 | * unlock after all the writes are done | 
|  | 1439 | */ | 
|  | 1440 | static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio) | 
|  | 1441 | { | 
|  | 1442 | int bios_to_read = 0; | 
|  | 1443 | struct btrfs_bio *bbio = rbio->bbio; | 
|  | 1444 | struct bio_list bio_list; | 
|  | 1445 | int ret; | 
|  | 1446 | int nr_pages = (rbio->stripe_len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; | 
|  | 1447 | int pagenr; | 
|  | 1448 | int stripe; | 
|  | 1449 | struct bio *bio; | 
|  | 1450 |  | 
|  | 1451 | bio_list_init(&bio_list); | 
|  | 1452 |  | 
|  | 1453 | ret = alloc_rbio_pages(rbio); | 
|  | 1454 | if (ret) | 
|  | 1455 | goto cleanup; | 
|  | 1456 |  | 
|  | 1457 | index_rbio_pages(rbio); | 
|  | 1458 |  | 
|  | 1459 | atomic_set(&rbio->bbio->error, 0); | 
|  | 1460 | /* | 
|  | 1461 | * build a list of bios to read all the missing parts of this | 
|  | 1462 | * stripe | 
|  | 1463 | */ | 
|  | 1464 | for (stripe = 0; stripe < rbio->nr_data; stripe++) { | 
|  | 1465 | for (pagenr = 0; pagenr < nr_pages; pagenr++) { | 
|  | 1466 | struct page *page; | 
|  | 1467 | /* | 
|  | 1468 | * we want to find all the pages missing from | 
|  | 1469 | * the rbio and read them from the disk.  If | 
|  | 1470 | * page_in_rbio finds a page in the bio list | 
|  | 1471 | * we don't need to read it off the stripe. | 
|  | 1472 | */ | 
|  | 1473 | page = page_in_rbio(rbio, stripe, pagenr, 1); | 
|  | 1474 | if (page) | 
|  | 1475 | continue; | 
|  | 1476 |  | 
|  | 1477 | page = rbio_stripe_page(rbio, stripe, pagenr); | 
| Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame] | 1478 | /* | 
|  | 1479 | * the bio cache may have handed us an uptodate | 
|  | 1480 | * page.  If so, be happy and use it | 
|  | 1481 | */ | 
|  | 1482 | if (PageUptodate(page)) | 
|  | 1483 | continue; | 
|  | 1484 |  | 
| David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 1485 | ret = rbio_add_io_page(rbio, &bio_list, page, | 
|  | 1486 | stripe, pagenr, rbio->stripe_len); | 
|  | 1487 | if (ret) | 
|  | 1488 | goto cleanup; | 
|  | 1489 | } | 
|  | 1490 | } | 
|  | 1491 |  | 
|  | 1492 | bios_to_read = bio_list_size(&bio_list); | 
|  | 1493 | if (!bios_to_read) { | 
|  | 1494 | /* | 
|  | 1495 | * this can happen if others have merged with | 
|  | 1496 | * us, it means there is nothing left to read. | 
|  | 1497 | * But if there are missing devices it may not be | 
|  | 1498 | * safe to do the full stripe write yet. | 
|  | 1499 | */ | 
|  | 1500 | goto finish; | 
|  | 1501 | } | 
|  | 1502 |  | 
|  | 1503 | /* | 
|  | 1504 | * the bbio may be freed once we submit the last bio.  Make sure | 
|  | 1505 | * not to touch it after that | 
|  | 1506 | */ | 
|  | 1507 | atomic_set(&bbio->stripes_pending, bios_to_read); | 
|  | 1508 | while (1) { | 
|  | 1509 | bio = bio_list_pop(&bio_list); | 
|  | 1510 | if (!bio) | 
|  | 1511 | break; | 
|  | 1512 |  | 
|  | 1513 | bio->bi_private = rbio; | 
|  | 1514 | bio->bi_end_io = raid_rmw_end_io; | 
|  | 1515 |  | 
|  | 1516 | btrfs_bio_wq_end_io(rbio->fs_info, bio, | 
|  | 1517 | BTRFS_WQ_ENDIO_RAID56); | 
|  | 1518 |  | 
|  | 1519 | BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags)); | 
|  | 1520 | submit_bio(READ, bio); | 
|  | 1521 | } | 
|  | 1522 | /* the actual write will happen once the reads are done */ | 
|  | 1523 | return 0; | 
|  | 1524 |  | 
|  | 1525 | cleanup: | 
|  | 1526 | rbio_orig_end_io(rbio, -EIO, 0); | 
|  | 1527 | return -EIO; | 
|  | 1528 |  | 
|  | 1529 | finish: | 
|  | 1530 | validate_rbio_for_rmw(rbio); | 
|  | 1531 | return 0; | 
|  | 1532 | } | 
|  | 1533 |  | 
|  | 1534 | /* | 
|  | 1535 | * if the upper layers pass in a full stripe, we thank them by only allocating | 
|  | 1536 | * enough pages to hold the parity, and sending it all down quickly. | 
|  | 1537 | */ | 
|  | 1538 | static int full_stripe_write(struct btrfs_raid_bio *rbio) | 
|  | 1539 | { | 
|  | 1540 | int ret; | 
|  | 1541 |  | 
|  | 1542 | ret = alloc_rbio_parity_pages(rbio); | 
|  | 1543 | if (ret) | 
|  | 1544 | return ret; | 
|  | 1545 |  | 
|  | 1546 | ret = lock_stripe_add(rbio); | 
|  | 1547 | if (ret == 0) | 
|  | 1548 | finish_rmw(rbio); | 
|  | 1549 | return 0; | 
|  | 1550 | } | 
|  | 1551 |  | 
|  | 1552 | /* | 
|  | 1553 | * partial stripe writes get handed over to async helpers. | 
|  | 1554 | * We're really hoping to merge a few more writes into this | 
|  | 1555 | * rbio before calculating new parity | 
|  | 1556 | */ | 
|  | 1557 | static int partial_stripe_write(struct btrfs_raid_bio *rbio) | 
|  | 1558 | { | 
|  | 1559 | int ret; | 
|  | 1560 |  | 
|  | 1561 | ret = lock_stripe_add(rbio); | 
|  | 1562 | if (ret == 0) | 
|  | 1563 | async_rmw_stripe(rbio); | 
|  | 1564 | return 0; | 
|  | 1565 | } | 
|  | 1566 |  | 
|  | 1567 | /* | 
|  | 1568 | * sometimes while we were reading from the drive to | 
|  | 1569 | * recalculate parity, enough new bios come into create | 
|  | 1570 | * a full stripe.  So we do a check here to see if we can | 
|  | 1571 | * go directly to finish_rmw | 
|  | 1572 | */ | 
|  | 1573 | static int __raid56_parity_write(struct btrfs_raid_bio *rbio) | 
|  | 1574 | { | 
|  | 1575 | /* head off into rmw land if we don't have a full stripe */ | 
|  | 1576 | if (!rbio_is_full(rbio)) | 
|  | 1577 | return partial_stripe_write(rbio); | 
|  | 1578 | return full_stripe_write(rbio); | 
|  | 1579 | } | 
|  | 1580 |  | 
|  | 1581 | /* | 
| Chris Mason | 6ac0f48 | 2013-01-31 14:42:28 -0500 | [diff] [blame] | 1582 | * We use plugging call backs to collect full stripes. | 
|  | 1583 | * Any time we get a partial stripe write while plugged | 
|  | 1584 | * we collect it into a list.  When the unplug comes down, | 
|  | 1585 | * we sort the list by logical block number and merge | 
|  | 1586 | * everything we can into the same rbios | 
|  | 1587 | */ | 
|  | 1588 | struct btrfs_plug_cb { | 
|  | 1589 | struct blk_plug_cb cb; | 
|  | 1590 | struct btrfs_fs_info *info; | 
|  | 1591 | struct list_head rbio_list; | 
|  | 1592 | struct btrfs_work work; | 
|  | 1593 | }; | 
|  | 1594 |  | 
|  | 1595 | /* | 
|  | 1596 | * rbios on the plug list are sorted for easier merging. | 
|  | 1597 | */ | 
|  | 1598 | static int plug_cmp(void *priv, struct list_head *a, struct list_head *b) | 
|  | 1599 | { | 
|  | 1600 | struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio, | 
|  | 1601 | plug_list); | 
|  | 1602 | struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio, | 
|  | 1603 | plug_list); | 
|  | 1604 | u64 a_sector = ra->bio_list.head->bi_sector; | 
|  | 1605 | u64 b_sector = rb->bio_list.head->bi_sector; | 
|  | 1606 |  | 
|  | 1607 | if (a_sector < b_sector) | 
|  | 1608 | return -1; | 
|  | 1609 | if (a_sector > b_sector) | 
|  | 1610 | return 1; | 
|  | 1611 | return 0; | 
|  | 1612 | } | 
|  | 1613 |  | 
|  | 1614 | static void run_plug(struct btrfs_plug_cb *plug) | 
|  | 1615 | { | 
|  | 1616 | struct btrfs_raid_bio *cur; | 
|  | 1617 | struct btrfs_raid_bio *last = NULL; | 
|  | 1618 |  | 
|  | 1619 | /* | 
|  | 1620 | * sort our plug list then try to merge | 
|  | 1621 | * everything we can in hopes of creating full | 
|  | 1622 | * stripes. | 
|  | 1623 | */ | 
|  | 1624 | list_sort(NULL, &plug->rbio_list, plug_cmp); | 
|  | 1625 | while (!list_empty(&plug->rbio_list)) { | 
|  | 1626 | cur = list_entry(plug->rbio_list.next, | 
|  | 1627 | struct btrfs_raid_bio, plug_list); | 
|  | 1628 | list_del_init(&cur->plug_list); | 
|  | 1629 |  | 
|  | 1630 | if (rbio_is_full(cur)) { | 
|  | 1631 | /* we have a full stripe, send it down */ | 
|  | 1632 | full_stripe_write(cur); | 
|  | 1633 | continue; | 
|  | 1634 | } | 
|  | 1635 | if (last) { | 
|  | 1636 | if (rbio_can_merge(last, cur)) { | 
|  | 1637 | merge_rbio(last, cur); | 
|  | 1638 | __free_raid_bio(cur); | 
|  | 1639 | continue; | 
|  | 1640 |  | 
|  | 1641 | } | 
|  | 1642 | __raid56_parity_write(last); | 
|  | 1643 | } | 
|  | 1644 | last = cur; | 
|  | 1645 | } | 
|  | 1646 | if (last) { | 
|  | 1647 | __raid56_parity_write(last); | 
|  | 1648 | } | 
|  | 1649 | kfree(plug); | 
|  | 1650 | } | 
|  | 1651 |  | 
|  | 1652 | /* | 
|  | 1653 | * if the unplug comes from schedule, we have to push the | 
|  | 1654 | * work off to a helper thread | 
|  | 1655 | */ | 
|  | 1656 | static void unplug_work(struct btrfs_work *work) | 
|  | 1657 | { | 
|  | 1658 | struct btrfs_plug_cb *plug; | 
|  | 1659 | plug = container_of(work, struct btrfs_plug_cb, work); | 
|  | 1660 | run_plug(plug); | 
|  | 1661 | } | 
|  | 1662 |  | 
|  | 1663 | static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule) | 
|  | 1664 | { | 
|  | 1665 | struct btrfs_plug_cb *plug; | 
|  | 1666 | plug = container_of(cb, struct btrfs_plug_cb, cb); | 
|  | 1667 |  | 
|  | 1668 | if (from_schedule) { | 
|  | 1669 | plug->work.flags = 0; | 
|  | 1670 | plug->work.func = unplug_work; | 
|  | 1671 | btrfs_queue_worker(&plug->info->rmw_workers, | 
|  | 1672 | &plug->work); | 
|  | 1673 | return; | 
|  | 1674 | } | 
|  | 1675 | run_plug(plug); | 
|  | 1676 | } | 
|  | 1677 |  | 
|  | 1678 | /* | 
| David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 1679 | * our main entry point for writes from the rest of the FS. | 
|  | 1680 | */ | 
|  | 1681 | int raid56_parity_write(struct btrfs_root *root, struct bio *bio, | 
|  | 1682 | struct btrfs_bio *bbio, u64 *raid_map, | 
|  | 1683 | u64 stripe_len) | 
|  | 1684 | { | 
|  | 1685 | struct btrfs_raid_bio *rbio; | 
| Chris Mason | 6ac0f48 | 2013-01-31 14:42:28 -0500 | [diff] [blame] | 1686 | struct btrfs_plug_cb *plug = NULL; | 
|  | 1687 | struct blk_plug_cb *cb; | 
| David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 1688 |  | 
|  | 1689 | rbio = alloc_rbio(root, bbio, raid_map, stripe_len); | 
|  | 1690 | if (IS_ERR(rbio)) { | 
|  | 1691 | kfree(raid_map); | 
|  | 1692 | kfree(bbio); | 
|  | 1693 | return PTR_ERR(rbio); | 
|  | 1694 | } | 
|  | 1695 | bio_list_add(&rbio->bio_list, bio); | 
|  | 1696 | rbio->bio_list_bytes = bio->bi_size; | 
| Chris Mason | 6ac0f48 | 2013-01-31 14:42:28 -0500 | [diff] [blame] | 1697 |  | 
|  | 1698 | /* | 
|  | 1699 | * don't plug on full rbios, just get them out the door | 
|  | 1700 | * as quickly as we can | 
|  | 1701 | */ | 
|  | 1702 | if (rbio_is_full(rbio)) | 
|  | 1703 | return full_stripe_write(rbio); | 
|  | 1704 |  | 
|  | 1705 | cb = blk_check_plugged(btrfs_raid_unplug, root->fs_info, | 
|  | 1706 | sizeof(*plug)); | 
|  | 1707 | if (cb) { | 
|  | 1708 | plug = container_of(cb, struct btrfs_plug_cb, cb); | 
|  | 1709 | if (!plug->info) { | 
|  | 1710 | plug->info = root->fs_info; | 
|  | 1711 | INIT_LIST_HEAD(&plug->rbio_list); | 
|  | 1712 | } | 
|  | 1713 | list_add_tail(&rbio->plug_list, &plug->rbio_list); | 
|  | 1714 | } else { | 
|  | 1715 | return __raid56_parity_write(rbio); | 
|  | 1716 | } | 
|  | 1717 | return 0; | 
| David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 1718 | } | 
|  | 1719 |  | 
|  | 1720 | /* | 
|  | 1721 | * all parity reconstruction happens here.  We've read in everything | 
|  | 1722 | * we can find from the drives and this does the heavy lifting of | 
|  | 1723 | * sorting the good from the bad. | 
|  | 1724 | */ | 
|  | 1725 | static void __raid_recover_end_io(struct btrfs_raid_bio *rbio) | 
|  | 1726 | { | 
|  | 1727 | int pagenr, stripe; | 
|  | 1728 | void **pointers; | 
|  | 1729 | int faila = -1, failb = -1; | 
|  | 1730 | int nr_pages = (rbio->stripe_len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; | 
|  | 1731 | struct page *page; | 
|  | 1732 | int err; | 
|  | 1733 | int i; | 
|  | 1734 |  | 
|  | 1735 | pointers = kzalloc(rbio->bbio->num_stripes * sizeof(void *), | 
|  | 1736 | GFP_NOFS); | 
|  | 1737 | if (!pointers) { | 
|  | 1738 | err = -ENOMEM; | 
|  | 1739 | goto cleanup_io; | 
|  | 1740 | } | 
|  | 1741 |  | 
|  | 1742 | faila = rbio->faila; | 
|  | 1743 | failb = rbio->failb; | 
|  | 1744 |  | 
|  | 1745 | if (rbio->read_rebuild) { | 
|  | 1746 | spin_lock_irq(&rbio->bio_list_lock); | 
|  | 1747 | set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); | 
|  | 1748 | spin_unlock_irq(&rbio->bio_list_lock); | 
|  | 1749 | } | 
|  | 1750 |  | 
|  | 1751 | index_rbio_pages(rbio); | 
|  | 1752 |  | 
|  | 1753 | for (pagenr = 0; pagenr < nr_pages; pagenr++) { | 
|  | 1754 | /* setup our array of pointers with pages | 
|  | 1755 | * from each stripe | 
|  | 1756 | */ | 
|  | 1757 | for (stripe = 0; stripe < rbio->bbio->num_stripes; stripe++) { | 
|  | 1758 | /* | 
|  | 1759 | * if we're rebuilding a read, we have to use | 
|  | 1760 | * pages from the bio list | 
|  | 1761 | */ | 
|  | 1762 | if (rbio->read_rebuild && | 
|  | 1763 | (stripe == faila || stripe == failb)) { | 
|  | 1764 | page = page_in_rbio(rbio, stripe, pagenr, 0); | 
|  | 1765 | } else { | 
|  | 1766 | page = rbio_stripe_page(rbio, stripe, pagenr); | 
|  | 1767 | } | 
|  | 1768 | pointers[stripe] = kmap(page); | 
|  | 1769 | } | 
|  | 1770 |  | 
|  | 1771 | /* all raid6 handling here */ | 
|  | 1772 | if (rbio->raid_map[rbio->bbio->num_stripes - 1] == | 
|  | 1773 | RAID6_Q_STRIPE) { | 
|  | 1774 |  | 
|  | 1775 | /* | 
|  | 1776 | * single failure, rebuild from parity raid5 | 
|  | 1777 | * style | 
|  | 1778 | */ | 
|  | 1779 | if (failb < 0) { | 
|  | 1780 | if (faila == rbio->nr_data) { | 
|  | 1781 | /* | 
|  | 1782 | * Just the P stripe has failed, without | 
|  | 1783 | * a bad data or Q stripe. | 
|  | 1784 | * TODO, we should redo the xor here. | 
|  | 1785 | */ | 
|  | 1786 | err = -EIO; | 
|  | 1787 | goto cleanup; | 
|  | 1788 | } | 
|  | 1789 | /* | 
|  | 1790 | * a single failure in raid6 is rebuilt | 
|  | 1791 | * in the pstripe code below | 
|  | 1792 | */ | 
|  | 1793 | goto pstripe; | 
|  | 1794 | } | 
|  | 1795 |  | 
|  | 1796 | /* make sure our ps and qs are in order */ | 
|  | 1797 | if (faila > failb) { | 
|  | 1798 | int tmp = failb; | 
|  | 1799 | failb = faila; | 
|  | 1800 | faila = tmp; | 
|  | 1801 | } | 
|  | 1802 |  | 
|  | 1803 | /* if the q stripe is failed, do a pstripe reconstruction | 
|  | 1804 | * from the xors. | 
|  | 1805 | * If both the q stripe and the P stripe are failed, we're | 
|  | 1806 | * here due to a crc mismatch and we can't give them the | 
|  | 1807 | * data they want | 
|  | 1808 | */ | 
|  | 1809 | if (rbio->raid_map[failb] == RAID6_Q_STRIPE) { | 
|  | 1810 | if (rbio->raid_map[faila] == RAID5_P_STRIPE) { | 
|  | 1811 | err = -EIO; | 
|  | 1812 | goto cleanup; | 
|  | 1813 | } | 
|  | 1814 | /* | 
|  | 1815 | * otherwise we have one bad data stripe and | 
|  | 1816 | * a good P stripe.  raid5! | 
|  | 1817 | */ | 
|  | 1818 | goto pstripe; | 
|  | 1819 | } | 
|  | 1820 |  | 
|  | 1821 | if (rbio->raid_map[failb] == RAID5_P_STRIPE) { | 
|  | 1822 | raid6_datap_recov(rbio->bbio->num_stripes, | 
|  | 1823 | PAGE_SIZE, faila, pointers); | 
|  | 1824 | } else { | 
|  | 1825 | raid6_2data_recov(rbio->bbio->num_stripes, | 
|  | 1826 | PAGE_SIZE, faila, failb, | 
|  | 1827 | pointers); | 
|  | 1828 | } | 
|  | 1829 | } else { | 
|  | 1830 | void *p; | 
|  | 1831 |  | 
|  | 1832 | /* rebuild from P stripe here (raid5 or raid6) */ | 
|  | 1833 | BUG_ON(failb != -1); | 
|  | 1834 | pstripe: | 
|  | 1835 | /* Copy parity block into failed block to start with */ | 
|  | 1836 | memcpy(pointers[faila], | 
|  | 1837 | pointers[rbio->nr_data], | 
|  | 1838 | PAGE_CACHE_SIZE); | 
|  | 1839 |  | 
|  | 1840 | /* rearrange the pointer array */ | 
|  | 1841 | p = pointers[faila]; | 
|  | 1842 | for (stripe = faila; stripe < rbio->nr_data - 1; stripe++) | 
|  | 1843 | pointers[stripe] = pointers[stripe + 1]; | 
|  | 1844 | pointers[rbio->nr_data - 1] = p; | 
|  | 1845 |  | 
|  | 1846 | /* xor in the rest */ | 
|  | 1847 | run_xor(pointers, rbio->nr_data - 1, PAGE_CACHE_SIZE); | 
|  | 1848 | } | 
|  | 1849 | /* if we're doing this rebuild as part of an rmw, go through | 
|  | 1850 | * and set all of our private rbio pages in the | 
|  | 1851 | * failed stripes as uptodate.  This way finish_rmw will | 
|  | 1852 | * know they can be trusted.  If this was a read reconstruction, | 
|  | 1853 | * other endio functions will fiddle the uptodate bits | 
|  | 1854 | */ | 
|  | 1855 | if (!rbio->read_rebuild) { | 
|  | 1856 | for (i = 0;  i < nr_pages; i++) { | 
|  | 1857 | if (faila != -1) { | 
|  | 1858 | page = rbio_stripe_page(rbio, faila, i); | 
|  | 1859 | SetPageUptodate(page); | 
|  | 1860 | } | 
|  | 1861 | if (failb != -1) { | 
|  | 1862 | page = rbio_stripe_page(rbio, failb, i); | 
|  | 1863 | SetPageUptodate(page); | 
|  | 1864 | } | 
|  | 1865 | } | 
|  | 1866 | } | 
|  | 1867 | for (stripe = 0; stripe < rbio->bbio->num_stripes; stripe++) { | 
|  | 1868 | /* | 
|  | 1869 | * if we're rebuilding a read, we have to use | 
|  | 1870 | * pages from the bio list | 
|  | 1871 | */ | 
|  | 1872 | if (rbio->read_rebuild && | 
|  | 1873 | (stripe == faila || stripe == failb)) { | 
|  | 1874 | page = page_in_rbio(rbio, stripe, pagenr, 0); | 
|  | 1875 | } else { | 
|  | 1876 | page = rbio_stripe_page(rbio, stripe, pagenr); | 
|  | 1877 | } | 
|  | 1878 | kunmap(page); | 
|  | 1879 | } | 
|  | 1880 | } | 
|  | 1881 |  | 
|  | 1882 | err = 0; | 
|  | 1883 | cleanup: | 
|  | 1884 | kfree(pointers); | 
|  | 1885 |  | 
|  | 1886 | cleanup_io: | 
|  | 1887 |  | 
|  | 1888 | if (rbio->read_rebuild) { | 
| Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame] | 1889 | if (err == 0) | 
|  | 1890 | cache_rbio_pages(rbio); | 
|  | 1891 | else | 
|  | 1892 | clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); | 
|  | 1893 |  | 
| David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 1894 | rbio_orig_end_io(rbio, err, err == 0); | 
|  | 1895 | } else if (err == 0) { | 
|  | 1896 | rbio->faila = -1; | 
|  | 1897 | rbio->failb = -1; | 
|  | 1898 | finish_rmw(rbio); | 
|  | 1899 | } else { | 
|  | 1900 | rbio_orig_end_io(rbio, err, 0); | 
|  | 1901 | } | 
|  | 1902 | } | 
|  | 1903 |  | 
|  | 1904 | /* | 
|  | 1905 | * This is called only for stripes we've read from disk to | 
|  | 1906 | * reconstruct the parity. | 
|  | 1907 | */ | 
|  | 1908 | static void raid_recover_end_io(struct bio *bio, int err) | 
|  | 1909 | { | 
|  | 1910 | struct btrfs_raid_bio *rbio = bio->bi_private; | 
|  | 1911 |  | 
|  | 1912 | /* | 
|  | 1913 | * we only read stripe pages off the disk, set them | 
|  | 1914 | * up to date if there were no errors | 
|  | 1915 | */ | 
|  | 1916 | if (err) | 
|  | 1917 | fail_bio_stripe(rbio, bio); | 
|  | 1918 | else | 
|  | 1919 | set_bio_pages_uptodate(bio); | 
|  | 1920 | bio_put(bio); | 
|  | 1921 |  | 
|  | 1922 | if (!atomic_dec_and_test(&rbio->bbio->stripes_pending)) | 
|  | 1923 | return; | 
|  | 1924 |  | 
|  | 1925 | if (atomic_read(&rbio->bbio->error) > rbio->bbio->max_errors) | 
|  | 1926 | rbio_orig_end_io(rbio, -EIO, 0); | 
|  | 1927 | else | 
|  | 1928 | __raid_recover_end_io(rbio); | 
|  | 1929 | } | 
|  | 1930 |  | 
|  | 1931 | /* | 
|  | 1932 | * reads everything we need off the disk to reconstruct | 
|  | 1933 | * the parity. endio handlers trigger final reconstruction | 
|  | 1934 | * when the IO is done. | 
|  | 1935 | * | 
|  | 1936 | * This is used both for reads from the higher layers and for | 
|  | 1937 | * parity construction required to finish a rmw cycle. | 
|  | 1938 | */ | 
|  | 1939 | static int __raid56_parity_recover(struct btrfs_raid_bio *rbio) | 
|  | 1940 | { | 
|  | 1941 | int bios_to_read = 0; | 
|  | 1942 | struct btrfs_bio *bbio = rbio->bbio; | 
|  | 1943 | struct bio_list bio_list; | 
|  | 1944 | int ret; | 
|  | 1945 | int nr_pages = (rbio->stripe_len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; | 
|  | 1946 | int pagenr; | 
|  | 1947 | int stripe; | 
|  | 1948 | struct bio *bio; | 
|  | 1949 |  | 
|  | 1950 | bio_list_init(&bio_list); | 
|  | 1951 |  | 
|  | 1952 | ret = alloc_rbio_pages(rbio); | 
|  | 1953 | if (ret) | 
|  | 1954 | goto cleanup; | 
|  | 1955 |  | 
|  | 1956 | atomic_set(&rbio->bbio->error, 0); | 
|  | 1957 |  | 
|  | 1958 | /* | 
| Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame] | 1959 | * read everything that hasn't failed.  Thanks to the | 
|  | 1960 | * stripe cache, it is possible that some or all of these | 
|  | 1961 | * pages are going to be uptodate. | 
| David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 1962 | */ | 
|  | 1963 | for (stripe = 0; stripe < bbio->num_stripes; stripe++) { | 
|  | 1964 | if (rbio->faila == stripe || | 
|  | 1965 | rbio->failb == stripe) | 
|  | 1966 | continue; | 
|  | 1967 |  | 
|  | 1968 | for (pagenr = 0; pagenr < nr_pages; pagenr++) { | 
|  | 1969 | struct page *p; | 
|  | 1970 |  | 
|  | 1971 | /* | 
|  | 1972 | * the rmw code may have already read this | 
|  | 1973 | * page in | 
|  | 1974 | */ | 
|  | 1975 | p = rbio_stripe_page(rbio, stripe, pagenr); | 
|  | 1976 | if (PageUptodate(p)) | 
|  | 1977 | continue; | 
|  | 1978 |  | 
|  | 1979 | ret = rbio_add_io_page(rbio, &bio_list, | 
|  | 1980 | rbio_stripe_page(rbio, stripe, pagenr), | 
|  | 1981 | stripe, pagenr, rbio->stripe_len); | 
|  | 1982 | if (ret < 0) | 
|  | 1983 | goto cleanup; | 
|  | 1984 | } | 
|  | 1985 | } | 
|  | 1986 |  | 
|  | 1987 | bios_to_read = bio_list_size(&bio_list); | 
|  | 1988 | if (!bios_to_read) { | 
|  | 1989 | /* | 
|  | 1990 | * we might have no bios to read just because the pages | 
|  | 1991 | * were up to date, or we might have no bios to read because | 
|  | 1992 | * the devices were gone. | 
|  | 1993 | */ | 
|  | 1994 | if (atomic_read(&rbio->bbio->error) <= rbio->bbio->max_errors) { | 
|  | 1995 | __raid_recover_end_io(rbio); | 
|  | 1996 | goto out; | 
|  | 1997 | } else { | 
|  | 1998 | goto cleanup; | 
|  | 1999 | } | 
|  | 2000 | } | 
|  | 2001 |  | 
|  | 2002 | /* | 
|  | 2003 | * the bbio may be freed once we submit the last bio.  Make sure | 
|  | 2004 | * not to touch it after that | 
|  | 2005 | */ | 
|  | 2006 | atomic_set(&bbio->stripes_pending, bios_to_read); | 
|  | 2007 | while (1) { | 
|  | 2008 | bio = bio_list_pop(&bio_list); | 
|  | 2009 | if (!bio) | 
|  | 2010 | break; | 
|  | 2011 |  | 
|  | 2012 | bio->bi_private = rbio; | 
|  | 2013 | bio->bi_end_io = raid_recover_end_io; | 
|  | 2014 |  | 
|  | 2015 | btrfs_bio_wq_end_io(rbio->fs_info, bio, | 
|  | 2016 | BTRFS_WQ_ENDIO_RAID56); | 
|  | 2017 |  | 
|  | 2018 | BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags)); | 
|  | 2019 | submit_bio(READ, bio); | 
|  | 2020 | } | 
|  | 2021 | out: | 
|  | 2022 | return 0; | 
|  | 2023 |  | 
|  | 2024 | cleanup: | 
|  | 2025 | if (rbio->read_rebuild) | 
|  | 2026 | rbio_orig_end_io(rbio, -EIO, 0); | 
|  | 2027 | return -EIO; | 
|  | 2028 | } | 
|  | 2029 |  | 
|  | 2030 | /* | 
|  | 2031 | * the main entry point for reads from the higher layers.  This | 
|  | 2032 | * is really only called when the normal read path had a failure, | 
|  | 2033 | * so we assume the bio they send down corresponds to a failed part | 
|  | 2034 | * of the drive. | 
|  | 2035 | */ | 
|  | 2036 | int raid56_parity_recover(struct btrfs_root *root, struct bio *bio, | 
|  | 2037 | struct btrfs_bio *bbio, u64 *raid_map, | 
|  | 2038 | u64 stripe_len, int mirror_num) | 
|  | 2039 | { | 
|  | 2040 | struct btrfs_raid_bio *rbio; | 
|  | 2041 | int ret; | 
|  | 2042 |  | 
|  | 2043 | rbio = alloc_rbio(root, bbio, raid_map, stripe_len); | 
|  | 2044 | if (IS_ERR(rbio)) { | 
|  | 2045 | return PTR_ERR(rbio); | 
|  | 2046 | } | 
|  | 2047 |  | 
|  | 2048 | rbio->read_rebuild = 1; | 
|  | 2049 | bio_list_add(&rbio->bio_list, bio); | 
|  | 2050 | rbio->bio_list_bytes = bio->bi_size; | 
|  | 2051 |  | 
|  | 2052 | rbio->faila = find_logical_bio_stripe(rbio, bio); | 
|  | 2053 | if (rbio->faila == -1) { | 
|  | 2054 | BUG(); | 
|  | 2055 | kfree(rbio); | 
|  | 2056 | return -EIO; | 
|  | 2057 | } | 
|  | 2058 |  | 
|  | 2059 | /* | 
|  | 2060 | * reconstruct from the q stripe if they are | 
|  | 2061 | * asking for mirror 3 | 
|  | 2062 | */ | 
|  | 2063 | if (mirror_num == 3) | 
|  | 2064 | rbio->failb = bbio->num_stripes - 2; | 
|  | 2065 |  | 
|  | 2066 | ret = lock_stripe_add(rbio); | 
|  | 2067 |  | 
|  | 2068 | /* | 
|  | 2069 | * __raid56_parity_recover will end the bio with | 
|  | 2070 | * any errors it hits.  We don't want to return | 
|  | 2071 | * its error value up the stack because our caller | 
|  | 2072 | * will end up calling bio_endio with any nonzero | 
|  | 2073 | * return | 
|  | 2074 | */ | 
|  | 2075 | if (ret == 0) | 
|  | 2076 | __raid56_parity_recover(rbio); | 
|  | 2077 | /* | 
|  | 2078 | * our rbio has been added to the list of | 
|  | 2079 | * rbios that will be handled after the | 
|  | 2080 | * currently lock owner is done | 
|  | 2081 | */ | 
|  | 2082 | return 0; | 
|  | 2083 |  | 
|  | 2084 | } | 
|  | 2085 |  | 
|  | 2086 | static void rmw_work(struct btrfs_work *work) | 
|  | 2087 | { | 
|  | 2088 | struct btrfs_raid_bio *rbio; | 
|  | 2089 |  | 
|  | 2090 | rbio = container_of(work, struct btrfs_raid_bio, work); | 
|  | 2091 | raid56_rmw_stripe(rbio); | 
|  | 2092 | } | 
|  | 2093 |  | 
|  | 2094 | static void read_rebuild_work(struct btrfs_work *work) | 
|  | 2095 | { | 
|  | 2096 | struct btrfs_raid_bio *rbio; | 
|  | 2097 |  | 
|  | 2098 | rbio = container_of(work, struct btrfs_raid_bio, work); | 
|  | 2099 | __raid56_parity_recover(rbio); | 
|  | 2100 | } |