| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | Madge Horizon ATM Adapter driver. | 
|  | 3 | Copyright (C) 1995-1999  Madge Networks Ltd. | 
|  | 4 |  | 
|  | 5 | This program is free software; you can redistribute it and/or modify | 
|  | 6 | it under the terms of the GNU General Public License as published by | 
|  | 7 | the Free Software Foundation; either version 2 of the License, or | 
|  | 8 | (at your option) any later version. | 
|  | 9 |  | 
|  | 10 | This program is distributed in the hope that it will be useful, | 
|  | 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | 13 | GNU General Public License for more details. | 
|  | 14 |  | 
|  | 15 | You should have received a copy of the GNU General Public License | 
|  | 16 | along with this program; if not, write to the Free Software | 
|  | 17 | Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA | 
|  | 18 |  | 
|  | 19 | The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian | 
|  | 20 | system and in the file COPYING in the Linux kernel source. | 
|  | 21 | */ | 
|  | 22 |  | 
|  | 23 | /* | 
|  | 24 | IMPORTANT NOTE: Madge Networks no longer makes the adapters | 
|  | 25 | supported by this driver and makes no commitment to maintain it. | 
|  | 26 | */ | 
|  | 27 |  | 
|  | 28 | #include <linux/module.h> | 
|  | 29 | #include <linux/kernel.h> | 
|  | 30 | #include <linux/mm.h> | 
|  | 31 | #include <linux/pci.h> | 
|  | 32 | #include <linux/errno.h> | 
|  | 33 | #include <linux/atm.h> | 
|  | 34 | #include <linux/atmdev.h> | 
|  | 35 | #include <linux/sonet.h> | 
|  | 36 | #include <linux/skbuff.h> | 
|  | 37 | #include <linux/time.h> | 
|  | 38 | #include <linux/delay.h> | 
|  | 39 | #include <linux/uio.h> | 
|  | 40 | #include <linux/init.h> | 
|  | 41 | #include <linux/ioport.h> | 
|  | 42 | #include <linux/wait.h> | 
|  | 43 |  | 
|  | 44 | #include <asm/system.h> | 
|  | 45 | #include <asm/io.h> | 
|  | 46 | #include <asm/atomic.h> | 
|  | 47 | #include <asm/uaccess.h> | 
|  | 48 | #include <asm/string.h> | 
|  | 49 | #include <asm/byteorder.h> | 
|  | 50 |  | 
|  | 51 | #include "horizon.h" | 
|  | 52 |  | 
|  | 53 | #define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>" | 
|  | 54 | #define description_string "Madge ATM Horizon [Ultra] driver" | 
|  | 55 | #define version_string "1.2.1" | 
|  | 56 |  | 
|  | 57 | static inline void __init show_version (void) { | 
|  | 58 | printk ("%s version %s\n", description_string, version_string); | 
|  | 59 | } | 
|  | 60 |  | 
|  | 61 | /* | 
|  | 62 |  | 
|  | 63 | CREDITS | 
|  | 64 |  | 
|  | 65 | Driver and documentation by: | 
|  | 66 |  | 
|  | 67 | Chris Aston        Madge Networks | 
|  | 68 | Giuliano Procida   Madge Networks | 
|  | 69 | Simon Benham       Madge Networks | 
|  | 70 | Simon Johnson      Madge Networks | 
|  | 71 | Various Others     Madge Networks | 
|  | 72 |  | 
|  | 73 | Some inspiration taken from other drivers by: | 
|  | 74 |  | 
|  | 75 | Alexandru Cucos    UTBv | 
|  | 76 | Kari Mettinen      University of Helsinki | 
|  | 77 | Werner Almesberger EPFL LRC | 
|  | 78 |  | 
|  | 79 | Theory of Operation | 
|  | 80 |  | 
|  | 81 | I Hardware, detection, initialisation and shutdown. | 
|  | 82 |  | 
|  | 83 | 1. Supported Hardware | 
|  | 84 |  | 
|  | 85 | This driver should handle all variants of the PCI Madge ATM adapters | 
|  | 86 | with the Horizon chipset. These are all PCI cards supporting PIO, BM | 
|  | 87 | DMA and a form of MMIO (registers only, not internal RAM). | 
|  | 88 |  | 
|  | 89 | The driver is only known to work with SONET and UTP Horizon Ultra | 
|  | 90 | cards at 155Mb/s. However, code is in place to deal with both the | 
|  | 91 | original Horizon and 25Mb/s operation. | 
|  | 92 |  | 
|  | 93 | There are two revisions of the Horizon ASIC: the original and the | 
|  | 94 | Ultra. Details of hardware bugs are in section III. | 
|  | 95 |  | 
|  | 96 | The ASIC version can be distinguished by chip markings but is NOT | 
|  | 97 | indicated by the PCI revision (all adapters seem to have PCI rev 1). | 
|  | 98 |  | 
|  | 99 | I believe that: | 
|  | 100 |  | 
|  | 101 | Horizon       => Collage  25 PCI Adapter (UTP and STP) | 
|  | 102 | Horizon Ultra => Collage 155 PCI Client (UTP or SONET) | 
|  | 103 | Ambassador x  => Collage 155 PCI Server (completely different) | 
|  | 104 |  | 
|  | 105 | Horizon (25Mb/s) is fitted with UTP and STP connectors. It seems to | 
|  | 106 | have a Madge B154 plus glue logic serializer. I have also found a | 
|  | 107 | really ancient version of this with slightly different glue. It | 
|  | 108 | comes with the revision 0 (140-025-01) ASIC. | 
|  | 109 |  | 
|  | 110 | Horizon Ultra (155Mb/s) is fitted with either a Pulse Medialink | 
|  | 111 | output (UTP) or an HP HFBR 5205 output (SONET). It has either | 
|  | 112 | Madge's SAMBA framer or a SUNI-lite device (early versions). It | 
|  | 113 | comes with the revision 1 (140-027-01) ASIC. | 
|  | 114 |  | 
|  | 115 | 2. Detection | 
|  | 116 |  | 
|  | 117 | All Horizon-based cards present with the same PCI Vendor and Device | 
|  | 118 | IDs. The standard Linux 2.2 PCI API is used to locate any cards and | 
|  | 119 | to enable bus-mastering (with appropriate latency). | 
|  | 120 |  | 
|  | 121 | ATM_LAYER_STATUS in the control register distinguishes between the | 
|  | 122 | two possible physical layers (25 and 155). It is not clear whether | 
|  | 123 | the 155 cards can also operate at 25Mbps. We rely on the fact that a | 
|  | 124 | card operates at 155 if and only if it has the newer Horizon Ultra | 
|  | 125 | ASIC. | 
|  | 126 |  | 
|  | 127 | For 155 cards the two possible framers are probed for and then set | 
|  | 128 | up for loop-timing. | 
|  | 129 |  | 
|  | 130 | 3. Initialisation | 
|  | 131 |  | 
|  | 132 | The card is reset and then put into a known state. The physical | 
|  | 133 | layer is configured for normal operation at the appropriate speed; | 
|  | 134 | in the case of the 155 cards, the framer is initialised with | 
|  | 135 | line-based timing; the internal RAM is zeroed and the allocation of | 
|  | 136 | buffers for RX and TX is made; the Burnt In Address is read and | 
|  | 137 | copied to the ATM ESI; various policy settings for RX (VPI bits, | 
|  | 138 | unknown VCs, oam cells) are made. Ideally all policy items should be | 
|  | 139 | configurable at module load (if not actually on-demand), however, | 
|  | 140 | only the vpi vs vci bit allocation can be specified at insmod. | 
|  | 141 |  | 
|  | 142 | 4. Shutdown | 
|  | 143 |  | 
|  | 144 | This is in response to module_cleaup. No VCs are in use and the card | 
|  | 145 | should be idle; it is reset. | 
|  | 146 |  | 
|  | 147 | II Driver software (as it should be) | 
|  | 148 |  | 
|  | 149 | 0. Traffic Parameters | 
|  | 150 |  | 
|  | 151 | The traffic classes (not an enumeration) are currently: ATM_NONE (no | 
|  | 152 | traffic), ATM_UBR, ATM_CBR, ATM_VBR and ATM_ABR, ATM_ANYCLASS | 
|  | 153 | (compatible with everything). Together with (perhaps only some of) | 
|  | 154 | the following items they make up the traffic specification. | 
|  | 155 |  | 
|  | 156 | struct atm_trafprm { | 
|  | 157 | unsigned char traffic_class; traffic class (ATM_UBR, ...) | 
|  | 158 | int           max_pcr;       maximum PCR in cells per second | 
|  | 159 | int           pcr;           desired PCR in cells per second | 
|  | 160 | int           min_pcr;       minimum PCR in cells per second | 
|  | 161 | int           max_cdv;       maximum CDV in microseconds | 
|  | 162 | int           max_sdu;       maximum SDU in bytes | 
|  | 163 | }; | 
|  | 164 |  | 
|  | 165 | Note that these denote bandwidth available not bandwidth used; the | 
|  | 166 | possibilities according to ATMF are: | 
|  | 167 |  | 
|  | 168 | Real Time (cdv and max CDT given) | 
|  | 169 |  | 
|  | 170 | CBR(pcr)             pcr bandwidth always available | 
|  | 171 | rtVBR(pcr,scr,mbs)   scr bandwidth always available, upto pcr at mbs too | 
|  | 172 |  | 
|  | 173 | Non Real Time | 
|  | 174 |  | 
|  | 175 | nrtVBR(pcr,scr,mbs)  scr bandwidth always available, upto pcr at mbs too | 
|  | 176 | UBR() | 
|  | 177 | ABR(mcr,pcr)         mcr bandwidth always available, upto pcr (depending) too | 
|  | 178 |  | 
|  | 179 | mbs is max burst size (bucket) | 
|  | 180 | pcr and scr have associated cdvt values | 
|  | 181 | mcr is like scr but has no cdtv | 
|  | 182 | cdtv may differ at each hop | 
|  | 183 |  | 
|  | 184 | Some of the above items are qos items (as opposed to traffic | 
|  | 185 | parameters). We have nothing to do with qos. All except ABR can have | 
|  | 186 | their traffic parameters converted to GCRA parameters. The GCRA may | 
|  | 187 | be implemented as a (real-number) leaky bucket. The GCRA can be used | 
|  | 188 | in complicated ways by switches and in simpler ways by end-stations. | 
|  | 189 | It can be used both to filter incoming cells and shape out-going | 
|  | 190 | cells. | 
|  | 191 |  | 
|  | 192 | ATM Linux actually supports: | 
|  | 193 |  | 
|  | 194 | ATM_NONE() (no traffic in this direction) | 
|  | 195 | ATM_UBR(max_frame_size) | 
|  | 196 | ATM_CBR(max/min_pcr, max_cdv, max_frame_size) | 
|  | 197 |  | 
|  | 198 | 0 or ATM_MAX_PCR are used to indicate maximum available PCR | 
|  | 199 |  | 
|  | 200 | A traffic specification consists of the AAL type and separate | 
|  | 201 | traffic specifications for either direction. In ATM Linux it is: | 
|  | 202 |  | 
|  | 203 | struct atm_qos { | 
|  | 204 | struct atm_trafprm txtp; | 
|  | 205 | struct atm_trafprm rxtp; | 
|  | 206 | unsigned char aal; | 
|  | 207 | }; | 
|  | 208 |  | 
|  | 209 | AAL types are: | 
|  | 210 |  | 
|  | 211 | ATM_NO_AAL    AAL not specified | 
|  | 212 | ATM_AAL0      "raw" ATM cells | 
|  | 213 | ATM_AAL1      AAL1 (CBR) | 
|  | 214 | ATM_AAL2      AAL2 (VBR) | 
|  | 215 | ATM_AAL34     AAL3/4 (data) | 
|  | 216 | ATM_AAL5      AAL5 (data) | 
|  | 217 | ATM_SAAL      signaling AAL | 
|  | 218 |  | 
|  | 219 | The Horizon has support for AAL frame types: 0, 3/4 and 5. However, | 
|  | 220 | it does not implement AAL 3/4 SAR and it has a different notion of | 
|  | 221 | "raw cell" to ATM Linux's (48 bytes vs. 52 bytes) so neither are | 
|  | 222 | supported by this driver. | 
|  | 223 |  | 
|  | 224 | The Horizon has limited support for ABR (including UBR), VBR and | 
|  | 225 | CBR. Each TX channel has a bucket (containing up to 31 cell units) | 
|  | 226 | and two timers (PCR and SCR) associated with it that can be used to | 
|  | 227 | govern cell emissions and host notification (in the case of ABR this | 
|  | 228 | is presumably so that RM cells may be emitted at appropriate times). | 
|  | 229 | The timers may either be disabled or may be set to any of 240 values | 
|  | 230 | (determined by the clock crystal, a fixed (?) per-device divider, a | 
|  | 231 | configurable divider and a configurable timer preload value). | 
|  | 232 |  | 
|  | 233 | At the moment only UBR and CBR are supported by the driver. VBR will | 
|  | 234 | be supported as soon as ATM for Linux supports it. ABR support is | 
|  | 235 | very unlikely as RM cell handling is completely up to the driver. | 
|  | 236 |  | 
|  | 237 | 1. TX (TX channel setup and TX transfer) | 
|  | 238 |  | 
|  | 239 | The TX half of the driver owns the TX Horizon registers. The TX | 
|  | 240 | component in the IRQ handler is the BM completion handler. This can | 
|  | 241 | only be entered when tx_busy is true (enforced by hardware). The | 
|  | 242 | other TX component can only be entered when tx_busy is false | 
|  | 243 | (enforced by driver). So TX is single-threaded. | 
|  | 244 |  | 
|  | 245 | Apart from a minor optimisation to not re-select the last channel, | 
|  | 246 | the TX send component works as follows: | 
|  | 247 |  | 
|  | 248 | Atomic test and set tx_busy until we succeed; we should implement | 
|  | 249 | some sort of timeout so that tx_busy will never be stuck at true. | 
|  | 250 |  | 
|  | 251 | If no TX channel is set up for this VC we wait for an idle one (if | 
|  | 252 | necessary) and set it up. | 
|  | 253 |  | 
|  | 254 | At this point we have a TX channel ready for use. We wait for enough | 
|  | 255 | buffers to become available then start a TX transmit (set the TX | 
|  | 256 | descriptor, schedule transfer, exit). | 
|  | 257 |  | 
|  | 258 | The IRQ component handles TX completion (stats, free buffer, tx_busy | 
|  | 259 | unset, exit). We also re-schedule further transfers for the same | 
|  | 260 | frame if needed. | 
|  | 261 |  | 
|  | 262 | TX setup in more detail: | 
|  | 263 |  | 
|  | 264 | TX open is a nop, the relevant information is held in the hrz_vcc | 
|  | 265 | (vcc->dev_data) structure and is "cached" on the card. | 
|  | 266 |  | 
|  | 267 | TX close gets the TX lock and clears the channel from the "cache". | 
|  | 268 |  | 
|  | 269 | 2. RX (Data Available and RX transfer) | 
|  | 270 |  | 
|  | 271 | The RX half of the driver owns the RX registers. There are two RX | 
|  | 272 | components in the IRQ handler: the data available handler deals with | 
|  | 273 | fresh data that has arrived on the card, the BM completion handler | 
|  | 274 | is very similar to the TX completion handler. The data available | 
|  | 275 | handler grabs the rx_lock and it is only released once the data has | 
|  | 276 | been discarded or completely transferred to the host. The BM | 
|  | 277 | completion handler only runs when the lock is held; the data | 
|  | 278 | available handler is locked out over the same period. | 
|  | 279 |  | 
|  | 280 | Data available on the card triggers an interrupt. If the data is not | 
|  | 281 | suitable for our existing RX channels or we cannot allocate a buffer | 
|  | 282 | it is flushed. Otherwise an RX receive is scheduled. Multiple RX | 
|  | 283 | transfers may be scheduled for the same frame. | 
|  | 284 |  | 
|  | 285 | RX setup in more detail: | 
|  | 286 |  | 
|  | 287 | RX open... | 
|  | 288 | RX close... | 
|  | 289 |  | 
|  | 290 | III Hardware Bugs | 
|  | 291 |  | 
|  | 292 | 0. Byte vs Word addressing of adapter RAM. | 
|  | 293 |  | 
|  | 294 | A design feature; see the .h file (especially the memory map). | 
|  | 295 |  | 
|  | 296 | 1. Bus Master Data Transfers (original Horizon only, fixed in Ultra) | 
|  | 297 |  | 
|  | 298 | The host must not start a transmit direction transfer at a | 
|  | 299 | non-four-byte boundary in host memory. Instead the host should | 
|  | 300 | perform a byte, or a two byte, or one byte followed by two byte | 
|  | 301 | transfer in order to start the rest of the transfer on a four byte | 
|  | 302 | boundary. RX is OK. | 
|  | 303 |  | 
|  | 304 | Simultaneous transmit and receive direction bus master transfers are | 
|  | 305 | not allowed. | 
|  | 306 |  | 
|  | 307 | The simplest solution to these two is to always do PIO (never DMA) | 
|  | 308 | in the TX direction on the original Horizon. More complicated | 
|  | 309 | solutions are likely to hurt my brain. | 
|  | 310 |  | 
|  | 311 | 2. Loss of buffer on close VC | 
|  | 312 |  | 
|  | 313 | When a VC is being closed, the buffer associated with it is not | 
|  | 314 | returned to the pool. The host must store the reference to this | 
|  | 315 | buffer and when opening a new VC then give it to that new VC. | 
|  | 316 |  | 
|  | 317 | The host intervention currently consists of stacking such a buffer | 
|  | 318 | pointer at VC close and checking the stack at VC open. | 
|  | 319 |  | 
|  | 320 | 3. Failure to close a VC | 
|  | 321 |  | 
|  | 322 | If a VC is currently receiving a frame then closing the VC may fail | 
|  | 323 | and the frame continues to be received. | 
|  | 324 |  | 
|  | 325 | The solution is to make sure any received frames are flushed when | 
|  | 326 | ready. This is currently done just before the solution to 2. | 
|  | 327 |  | 
|  | 328 | 4. PCI bus (original Horizon only, fixed in Ultra) | 
|  | 329 |  | 
|  | 330 | Reading from the data port prior to initialisation will hang the PCI | 
|  | 331 | bus. Just don't do that then! We don't. | 
|  | 332 |  | 
|  | 333 | IV To Do List | 
|  | 334 |  | 
|  | 335 | . Timer code may be broken. | 
|  | 336 |  | 
|  | 337 | . Allow users to specify buffer allocation split for TX and RX. | 
|  | 338 |  | 
|  | 339 | . Deal once and for all with buggy VC close. | 
|  | 340 |  | 
|  | 341 | . Handle interrupted and/or non-blocking operations. | 
|  | 342 |  | 
|  | 343 | . Change some macros to functions and move from .h to .c. | 
|  | 344 |  | 
|  | 345 | . Try to limit the number of TX frames each VC may have queued, in | 
|  | 346 | order to reduce the chances of TX buffer exhaustion. | 
|  | 347 |  | 
|  | 348 | . Implement VBR (bucket and timers not understood) and ABR (need to | 
|  | 349 | do RM cells manually); also no Linux support for either. | 
|  | 350 |  | 
|  | 351 | . Implement QoS changes on open VCs (involves extracting parts of VC open | 
|  | 352 | and close into separate functions and using them to make changes). | 
|  | 353 |  | 
|  | 354 | */ | 
|  | 355 |  | 
|  | 356 | /********** globals **********/ | 
|  | 357 |  | 
|  | 358 | static void do_housekeeping (unsigned long arg); | 
|  | 359 |  | 
|  | 360 | static unsigned short debug = 0; | 
|  | 361 | static unsigned short vpi_bits = 0; | 
|  | 362 | static int max_tx_size = 9000; | 
|  | 363 | static int max_rx_size = 9000; | 
|  | 364 | static unsigned char pci_lat = 0; | 
|  | 365 |  | 
|  | 366 | /********** access functions **********/ | 
|  | 367 |  | 
|  | 368 | /* Read / Write Horizon registers */ | 
|  | 369 | static inline void wr_regl (const hrz_dev * dev, unsigned char reg, u32 data) { | 
|  | 370 | outl (cpu_to_le32 (data), dev->iobase + reg); | 
|  | 371 | } | 
|  | 372 |  | 
|  | 373 | static inline u32 rd_regl (const hrz_dev * dev, unsigned char reg) { | 
|  | 374 | return le32_to_cpu (inl (dev->iobase + reg)); | 
|  | 375 | } | 
|  | 376 |  | 
|  | 377 | static inline void wr_regw (const hrz_dev * dev, unsigned char reg, u16 data) { | 
|  | 378 | outw (cpu_to_le16 (data), dev->iobase + reg); | 
|  | 379 | } | 
|  | 380 |  | 
|  | 381 | static inline u16 rd_regw (const hrz_dev * dev, unsigned char reg) { | 
|  | 382 | return le16_to_cpu (inw (dev->iobase + reg)); | 
|  | 383 | } | 
|  | 384 |  | 
|  | 385 | static inline void wrs_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) { | 
|  | 386 | outsb (dev->iobase + reg, addr, len); | 
|  | 387 | } | 
|  | 388 |  | 
|  | 389 | static inline void rds_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) { | 
|  | 390 | insb (dev->iobase + reg, addr, len); | 
|  | 391 | } | 
|  | 392 |  | 
|  | 393 | /* Read / Write to a given address in Horizon buffer memory. | 
|  | 394 | Interrupts must be disabled between the address register and data | 
|  | 395 | port accesses as these must form an atomic operation. */ | 
|  | 396 | static inline void wr_mem (const hrz_dev * dev, HDW * addr, u32 data) { | 
|  | 397 | // wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr); | 
|  | 398 | wr_regl (dev, MEM_WR_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW)); | 
|  | 399 | wr_regl (dev, MEMORY_PORT_OFF, data); | 
|  | 400 | } | 
|  | 401 |  | 
|  | 402 | static inline u32 rd_mem (const hrz_dev * dev, HDW * addr) { | 
|  | 403 | // wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr); | 
|  | 404 | wr_regl (dev, MEM_RD_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW)); | 
|  | 405 | return rd_regl (dev, MEMORY_PORT_OFF); | 
|  | 406 | } | 
|  | 407 |  | 
|  | 408 | static inline void wr_framer (const hrz_dev * dev, u32 addr, u32 data) { | 
|  | 409 | wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr | 0x80000000); | 
|  | 410 | wr_regl (dev, MEMORY_PORT_OFF, data); | 
|  | 411 | } | 
|  | 412 |  | 
|  | 413 | static inline u32 rd_framer (const hrz_dev * dev, u32 addr) { | 
|  | 414 | wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr | 0x80000000); | 
|  | 415 | return rd_regl (dev, MEMORY_PORT_OFF); | 
|  | 416 | } | 
|  | 417 |  | 
|  | 418 | /********** specialised access functions **********/ | 
|  | 419 |  | 
|  | 420 | /* RX */ | 
|  | 421 |  | 
|  | 422 | static inline void FLUSH_RX_CHANNEL (hrz_dev * dev, u16 channel) { | 
|  | 423 | wr_regw (dev, RX_CHANNEL_PORT_OFF, FLUSH_CHANNEL | channel); | 
|  | 424 | return; | 
|  | 425 | } | 
|  | 426 |  | 
|  | 427 | static inline void WAIT_FLUSH_RX_COMPLETE (hrz_dev * dev) { | 
|  | 428 | while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & FLUSH_CHANNEL) | 
|  | 429 | ; | 
|  | 430 | return; | 
|  | 431 | } | 
|  | 432 |  | 
|  | 433 | static inline void SELECT_RX_CHANNEL (hrz_dev * dev, u16 channel) { | 
|  | 434 | wr_regw (dev, RX_CHANNEL_PORT_OFF, channel); | 
|  | 435 | return; | 
|  | 436 | } | 
|  | 437 |  | 
|  | 438 | static inline void WAIT_UPDATE_COMPLETE (hrz_dev * dev) { | 
|  | 439 | while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & RX_CHANNEL_UPDATE_IN_PROGRESS) | 
|  | 440 | ; | 
|  | 441 | return; | 
|  | 442 | } | 
|  | 443 |  | 
|  | 444 | /* TX */ | 
|  | 445 |  | 
|  | 446 | static inline void SELECT_TX_CHANNEL (hrz_dev * dev, u16 tx_channel) { | 
|  | 447 | wr_regl (dev, TX_CHANNEL_PORT_OFF, tx_channel); | 
|  | 448 | return; | 
|  | 449 | } | 
|  | 450 |  | 
|  | 451 | /* Update or query one configuration parameter of a particular channel. */ | 
|  | 452 |  | 
|  | 453 | static inline void update_tx_channel_config (hrz_dev * dev, short chan, u8 mode, u16 value) { | 
|  | 454 | wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF, | 
|  | 455 | chan * TX_CHANNEL_CONFIG_MULT | mode); | 
|  | 456 | wr_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF, value); | 
|  | 457 | return; | 
|  | 458 | } | 
|  | 459 |  | 
|  | 460 | static inline u16 query_tx_channel_config (hrz_dev * dev, short chan, u8 mode) { | 
|  | 461 | wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF, | 
|  | 462 | chan * TX_CHANNEL_CONFIG_MULT | mode); | 
|  | 463 | return rd_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF); | 
|  | 464 | } | 
|  | 465 |  | 
|  | 466 | /********** dump functions **********/ | 
|  | 467 |  | 
|  | 468 | static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) { | 
|  | 469 | #ifdef DEBUG_HORIZON | 
|  | 470 | unsigned int i; | 
|  | 471 | unsigned char * data = skb->data; | 
|  | 472 | PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc); | 
|  | 473 | for (i=0; i<skb->len && i < 256;i++) | 
|  | 474 | PRINTDM (DBG_DATA, "%02x ", data[i]); | 
|  | 475 | PRINTDE (DBG_DATA,""); | 
|  | 476 | #else | 
|  | 477 | (void) prefix; | 
|  | 478 | (void) vc; | 
|  | 479 | (void) skb; | 
|  | 480 | #endif | 
|  | 481 | return; | 
|  | 482 | } | 
|  | 483 |  | 
|  | 484 | static inline void dump_regs (hrz_dev * dev) { | 
|  | 485 | #ifdef DEBUG_HORIZON | 
|  | 486 | PRINTD (DBG_REGS, "CONTROL 0: %#x", rd_regl (dev, CONTROL_0_REG)); | 
|  | 487 | PRINTD (DBG_REGS, "RX CONFIG: %#x", rd_regw (dev, RX_CONFIG_OFF)); | 
|  | 488 | PRINTD (DBG_REGS, "TX CONFIG: %#x", rd_regw (dev, TX_CONFIG_OFF)); | 
|  | 489 | PRINTD (DBG_REGS, "TX STATUS: %#x", rd_regw (dev, TX_STATUS_OFF)); | 
|  | 490 | PRINTD (DBG_REGS, "IRQ ENBLE: %#x", rd_regl (dev, INT_ENABLE_REG_OFF)); | 
|  | 491 | PRINTD (DBG_REGS, "IRQ SORCE: %#x", rd_regl (dev, INT_SOURCE_REG_OFF)); | 
|  | 492 | #else | 
|  | 493 | (void) dev; | 
|  | 494 | #endif | 
|  | 495 | return; | 
|  | 496 | } | 
|  | 497 |  | 
|  | 498 | static inline void dump_framer (hrz_dev * dev) { | 
|  | 499 | #ifdef DEBUG_HORIZON | 
|  | 500 | unsigned int i; | 
|  | 501 | PRINTDB (DBG_REGS, "framer registers:"); | 
|  | 502 | for (i = 0; i < 0x10; ++i) | 
|  | 503 | PRINTDM (DBG_REGS, " %02x", rd_framer (dev, i)); | 
|  | 504 | PRINTDE (DBG_REGS,""); | 
|  | 505 | #else | 
|  | 506 | (void) dev; | 
|  | 507 | #endif | 
|  | 508 | return; | 
|  | 509 | } | 
|  | 510 |  | 
|  | 511 | /********** VPI/VCI <-> (RX) channel conversions **********/ | 
|  | 512 |  | 
|  | 513 | /* RX channels are 10 bit integers, these fns are quite paranoid */ | 
|  | 514 |  | 
|  | 515 | static inline int channel_to_vpivci (const u16 channel, short * vpi, int * vci) { | 
|  | 516 | unsigned short vci_bits = 10 - vpi_bits; | 
|  | 517 | if ((channel & RX_CHANNEL_MASK) == channel) { | 
|  | 518 | *vci = channel & ((~0)<<vci_bits); | 
|  | 519 | *vpi = channel >> vci_bits; | 
|  | 520 | return channel ? 0 : -EINVAL; | 
|  | 521 | } | 
|  | 522 | return -EINVAL; | 
|  | 523 | } | 
|  | 524 |  | 
|  | 525 | static inline int vpivci_to_channel (u16 * channel, const short vpi, const int vci) { | 
|  | 526 | unsigned short vci_bits = 10 - vpi_bits; | 
|  | 527 | if (0 <= vpi && vpi < 1<<vpi_bits && 0 <= vci && vci < 1<<vci_bits) { | 
|  | 528 | *channel = vpi<<vci_bits | vci; | 
|  | 529 | return *channel ? 0 : -EINVAL; | 
|  | 530 | } | 
|  | 531 | return -EINVAL; | 
|  | 532 | } | 
|  | 533 |  | 
|  | 534 | /********** decode RX queue entries **********/ | 
|  | 535 |  | 
|  | 536 | static inline u16 rx_q_entry_to_length (u32 x) { | 
|  | 537 | return x & RX_Q_ENTRY_LENGTH_MASK; | 
|  | 538 | } | 
|  | 539 |  | 
|  | 540 | static inline u16 rx_q_entry_to_rx_channel (u32 x) { | 
|  | 541 | return (x>>RX_Q_ENTRY_CHANNEL_SHIFT) & RX_CHANNEL_MASK; | 
|  | 542 | } | 
|  | 543 |  | 
|  | 544 | /* Cell Transmit Rate Values | 
|  | 545 | * | 
|  | 546 | * the cell transmit rate (cells per sec) can be set to a variety of | 
|  | 547 | * different values by specifying two parameters: a timer preload from | 
|  | 548 | * 1 to 16 (stored as 0 to 15) and a clock divider (2 to the power of | 
|  | 549 | * an exponent from 0 to 14; the special value 15 disables the timer). | 
|  | 550 | * | 
|  | 551 | * cellrate = baserate / (preload * 2^divider) | 
|  | 552 | * | 
|  | 553 | * The maximum cell rate that can be specified is therefore just the | 
|  | 554 | * base rate. Halving the preload is equivalent to adding 1 to the | 
|  | 555 | * divider and so values 1 to 8 of the preload are redundant except | 
|  | 556 | * in the case of a maximal divider (14). | 
|  | 557 | * | 
|  | 558 | * Given a desired cell rate, an algorithm to determine the preload | 
|  | 559 | * and divider is: | 
|  | 560 | * | 
|  | 561 | * a) x = baserate / cellrate, want p * 2^d = x (as far as possible) | 
|  | 562 | * b) if x > 16 * 2^14 then set p = 16, d = 14 (min rate), done | 
|  | 563 | *    if x <= 16 then set p = x, d = 0 (high rates), done | 
|  | 564 | * c) now have 16 < x <= 2^18, or 1 < x/16 <= 2^14 and we want to | 
|  | 565 | *    know n such that 2^(n-1) < x/16 <= 2^n, so slide a bit until | 
|  | 566 | *    we find the range (n will be between 1 and 14), set d = n | 
|  | 567 | * d) Also have 8 < x/2^n <= 16, so set p nearest x/2^n | 
|  | 568 | * | 
|  | 569 | * The algorithm used below is a minor variant of the above. | 
|  | 570 | * | 
|  | 571 | * The base rate is derived from the oscillator frequency (Hz) using a | 
|  | 572 | * fixed divider: | 
|  | 573 | * | 
|  | 574 | * baserate = freq / 32 in the case of some Unknown Card | 
|  | 575 | * baserate = freq / 8  in the case of the Horizon        25 | 
|  | 576 | * baserate = freq / 8  in the case of the Horizon Ultra 155 | 
|  | 577 | * | 
|  | 578 | * The Horizon cards have oscillators and base rates as follows: | 
|  | 579 | * | 
|  | 580 | * Card               Oscillator  Base Rate | 
|  | 581 | * Unknown Card       33 MHz      1.03125 MHz (33 MHz = PCI freq) | 
|  | 582 | * Horizon        25  32 MHz      4       MHz | 
|  | 583 | * Horizon Ultra 155  40 MHz      5       MHz | 
|  | 584 | * | 
|  | 585 | * The following defines give the base rates in Hz. These were | 
|  | 586 | * previously a factor of 100 larger, no doubt someone was using | 
|  | 587 | * cps*100. | 
|  | 588 | */ | 
|  | 589 |  | 
|  | 590 | #define BR_UKN 1031250l | 
|  | 591 | #define BR_HRZ 4000000l | 
|  | 592 | #define BR_ULT 5000000l | 
|  | 593 |  | 
|  | 594 | // d is an exponent | 
|  | 595 | #define CR_MIND 0 | 
|  | 596 | #define CR_MAXD 14 | 
|  | 597 |  | 
|  | 598 | // p ranges from 1 to a power of 2 | 
|  | 599 | #define CR_MAXPEXP 4 | 
|  | 600 |  | 
|  | 601 | static int make_rate (const hrz_dev * dev, u32 c, rounding r, | 
|  | 602 | u16 * bits, unsigned int * actual) | 
|  | 603 | { | 
|  | 604 | // note: rounding the rate down means rounding 'p' up | 
|  | 605 | const unsigned long br = test_bit(ultra, &dev->flags) ? BR_ULT : BR_HRZ; | 
|  | 606 |  | 
|  | 607 | u32 div = CR_MIND; | 
|  | 608 | u32 pre; | 
|  | 609 |  | 
|  | 610 | // br_exp and br_man are used to avoid overflowing (c*maxp*2^d) in | 
|  | 611 | // the tests below. We could think harder about exact possibilities | 
|  | 612 | // of failure... | 
|  | 613 |  | 
|  | 614 | unsigned long br_man = br; | 
|  | 615 | unsigned int br_exp = 0; | 
|  | 616 |  | 
|  | 617 | PRINTD (DBG_QOS|DBG_FLOW, "make_rate b=%lu, c=%u, %s", br, c, | 
|  | 618 | r == round_up ? "up" : r == round_down ? "down" : "nearest"); | 
|  | 619 |  | 
|  | 620 | // avoid div by zero | 
|  | 621 | if (!c) { | 
|  | 622 | PRINTD (DBG_QOS|DBG_ERR, "zero rate is not allowed!"); | 
|  | 623 | return -EINVAL; | 
|  | 624 | } | 
|  | 625 |  | 
|  | 626 | while (br_exp < CR_MAXPEXP + CR_MIND && (br_man % 2 == 0)) { | 
|  | 627 | br_man = br_man >> 1; | 
|  | 628 | ++br_exp; | 
|  | 629 | } | 
|  | 630 | // (br >>br_exp) <<br_exp == br and | 
|  | 631 | // br_exp <= CR_MAXPEXP+CR_MIND | 
|  | 632 |  | 
|  | 633 | if (br_man <= (c << (CR_MAXPEXP+CR_MIND-br_exp))) { | 
|  | 634 | // Equivalent to: B <= (c << (MAXPEXP+MIND)) | 
|  | 635 | // take care of rounding | 
|  | 636 | switch (r) { | 
|  | 637 | case round_down: | 
|  | 638 | pre = (br+(c<<div)-1)/(c<<div); | 
|  | 639 | // but p must be non-zero | 
|  | 640 | if (!pre) | 
|  | 641 | pre = 1; | 
|  | 642 | break; | 
|  | 643 | case round_nearest: | 
|  | 644 | pre = (br+(c<<div)/2)/(c<<div); | 
|  | 645 | // but p must be non-zero | 
|  | 646 | if (!pre) | 
|  | 647 | pre = 1; | 
|  | 648 | break; | 
|  | 649 | default:	/* round_up */ | 
|  | 650 | pre = br/(c<<div); | 
|  | 651 | // but p must be non-zero | 
|  | 652 | if (!pre) | 
|  | 653 | return -EINVAL; | 
|  | 654 | } | 
|  | 655 | PRINTD (DBG_QOS, "A: p=%u, d=%u", pre, div); | 
|  | 656 | goto got_it; | 
|  | 657 | } | 
|  | 658 |  | 
|  | 659 | // at this point we have | 
|  | 660 | // d == MIND and (c << (MAXPEXP+MIND)) < B | 
|  | 661 | while (div < CR_MAXD) { | 
|  | 662 | div++; | 
|  | 663 | if (br_man <= (c << (CR_MAXPEXP+div-br_exp))) { | 
|  | 664 | // Equivalent to: B <= (c << (MAXPEXP+d)) | 
|  | 665 | // c << (MAXPEXP+d-1) < B <= c << (MAXPEXP+d) | 
|  | 666 | // 1 << (MAXPEXP-1) < B/2^d/c <= 1 << MAXPEXP | 
|  | 667 | // MAXP/2 < B/c2^d <= MAXP | 
|  | 668 | // take care of rounding | 
|  | 669 | switch (r) { | 
|  | 670 | case round_down: | 
|  | 671 | pre = (br+(c<<div)-1)/(c<<div); | 
|  | 672 | break; | 
|  | 673 | case round_nearest: | 
|  | 674 | pre = (br+(c<<div)/2)/(c<<div); | 
|  | 675 | break; | 
|  | 676 | default: /* round_up */ | 
|  | 677 | pre = br/(c<<div); | 
|  | 678 | } | 
|  | 679 | PRINTD (DBG_QOS, "B: p=%u, d=%u", pre, div); | 
|  | 680 | goto got_it; | 
|  | 681 | } | 
|  | 682 | } | 
|  | 683 | // at this point we have | 
|  | 684 | // d == MAXD and (c << (MAXPEXP+MAXD)) < B | 
|  | 685 | // but we cannot go any higher | 
|  | 686 | // take care of rounding | 
|  | 687 | if (r == round_down) | 
|  | 688 | return -EINVAL; | 
|  | 689 | pre = 1 << CR_MAXPEXP; | 
|  | 690 | PRINTD (DBG_QOS, "C: p=%u, d=%u", pre, div); | 
|  | 691 | got_it: | 
|  | 692 | // paranoia | 
|  | 693 | if (div > CR_MAXD || (!pre) || pre > 1<<CR_MAXPEXP) { | 
|  | 694 | PRINTD (DBG_QOS, "set_cr internal failure: d=%u p=%u", | 
|  | 695 | div, pre); | 
|  | 696 | return -EINVAL; | 
|  | 697 | } else { | 
|  | 698 | if (bits) | 
|  | 699 | *bits = (div<<CLOCK_SELECT_SHIFT) | (pre-1); | 
|  | 700 | if (actual) { | 
|  | 701 | *actual = (br + (pre<<div) - 1) / (pre<<div); | 
|  | 702 | PRINTD (DBG_QOS, "actual rate: %u", *actual); | 
|  | 703 | } | 
|  | 704 | return 0; | 
|  | 705 | } | 
|  | 706 | } | 
|  | 707 |  | 
|  | 708 | static int make_rate_with_tolerance (const hrz_dev * dev, u32 c, rounding r, unsigned int tol, | 
|  | 709 | u16 * bit_pattern, unsigned int * actual) { | 
|  | 710 | unsigned int my_actual; | 
|  | 711 |  | 
|  | 712 | PRINTD (DBG_QOS|DBG_FLOW, "make_rate_with_tolerance c=%u, %s, tol=%u", | 
|  | 713 | c, (r == round_up) ? "up" : (r == round_down) ? "down" : "nearest", tol); | 
|  | 714 |  | 
|  | 715 | if (!actual) | 
|  | 716 | // actual rate is not returned | 
|  | 717 | actual = &my_actual; | 
|  | 718 |  | 
|  | 719 | if (make_rate (dev, c, round_nearest, bit_pattern, actual)) | 
|  | 720 | // should never happen as round_nearest always succeeds | 
|  | 721 | return -1; | 
|  | 722 |  | 
|  | 723 | if (c - tol <= *actual && *actual <= c + tol) | 
|  | 724 | // within tolerance | 
|  | 725 | return 0; | 
|  | 726 | else | 
|  | 727 | // intolerant, try rounding instead | 
|  | 728 | return make_rate (dev, c, r, bit_pattern, actual); | 
|  | 729 | } | 
|  | 730 |  | 
|  | 731 | /********** Listen on a VC **********/ | 
|  | 732 |  | 
|  | 733 | static int hrz_open_rx (hrz_dev * dev, u16 channel) { | 
|  | 734 | // is there any guarantee that we don't get two simulataneous | 
|  | 735 | // identical calls of this function from different processes? yes | 
|  | 736 | // rate_lock | 
|  | 737 | unsigned long flags; | 
|  | 738 | u32 channel_type; // u16? | 
|  | 739 |  | 
|  | 740 | u16 buf_ptr = RX_CHANNEL_IDLE; | 
|  | 741 |  | 
|  | 742 | rx_ch_desc * rx_desc = &memmap->rx_descs[channel]; | 
|  | 743 |  | 
|  | 744 | PRINTD (DBG_FLOW, "hrz_open_rx %x", channel); | 
|  | 745 |  | 
|  | 746 | spin_lock_irqsave (&dev->mem_lock, flags); | 
|  | 747 | channel_type = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK; | 
|  | 748 | spin_unlock_irqrestore (&dev->mem_lock, flags); | 
|  | 749 |  | 
|  | 750 | // very serious error, should never occur | 
|  | 751 | if (channel_type != RX_CHANNEL_DISABLED) { | 
|  | 752 | PRINTD (DBG_ERR|DBG_VCC, "RX channel for VC already open"); | 
|  | 753 | return -EBUSY; // clean up? | 
|  | 754 | } | 
|  | 755 |  | 
|  | 756 | // Give back spare buffer | 
|  | 757 | if (dev->noof_spare_buffers) { | 
|  | 758 | buf_ptr = dev->spare_buffers[--dev->noof_spare_buffers]; | 
|  | 759 | PRINTD (DBG_VCC, "using a spare buffer: %u", buf_ptr); | 
|  | 760 | // should never occur | 
|  | 761 | if (buf_ptr == RX_CHANNEL_DISABLED || buf_ptr == RX_CHANNEL_IDLE) { | 
|  | 762 | // but easy to recover from | 
|  | 763 | PRINTD (DBG_ERR|DBG_VCC, "bad spare buffer pointer, using IDLE"); | 
|  | 764 | buf_ptr = RX_CHANNEL_IDLE; | 
|  | 765 | } | 
|  | 766 | } else { | 
|  | 767 | PRINTD (DBG_VCC, "using IDLE buffer pointer"); | 
|  | 768 | } | 
|  | 769 |  | 
|  | 770 | // Channel is currently disabled so change its status to idle | 
|  | 771 |  | 
|  | 772 | // do we really need to save the flags again? | 
|  | 773 | spin_lock_irqsave (&dev->mem_lock, flags); | 
|  | 774 |  | 
|  | 775 | wr_mem (dev, &rx_desc->wr_buf_type, | 
|  | 776 | buf_ptr | CHANNEL_TYPE_AAL5 | FIRST_CELL_OF_AAL5_FRAME); | 
|  | 777 | if (buf_ptr != RX_CHANNEL_IDLE) | 
|  | 778 | wr_mem (dev, &rx_desc->rd_buf_type, buf_ptr); | 
|  | 779 |  | 
|  | 780 | spin_unlock_irqrestore (&dev->mem_lock, flags); | 
|  | 781 |  | 
|  | 782 | // rxer->rate = make_rate (qos->peak_cells); | 
|  | 783 |  | 
|  | 784 | PRINTD (DBG_FLOW, "hrz_open_rx ok"); | 
|  | 785 |  | 
|  | 786 | return 0; | 
|  | 787 | } | 
|  | 788 |  | 
|  | 789 | #if 0 | 
|  | 790 | /********** change vc rate for a given vc **********/ | 
|  | 791 |  | 
|  | 792 | static void hrz_change_vc_qos (ATM_RXER * rxer, MAAL_QOS * qos) { | 
|  | 793 | rxer->rate = make_rate (qos->peak_cells); | 
|  | 794 | } | 
|  | 795 | #endif | 
|  | 796 |  | 
|  | 797 | /********** free an skb (as per ATM device driver documentation) **********/ | 
|  | 798 |  | 
|  | 799 | static inline void hrz_kfree_skb (struct sk_buff * skb) { | 
|  | 800 | if (ATM_SKB(skb)->vcc->pop) { | 
|  | 801 | ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb); | 
|  | 802 | } else { | 
|  | 803 | dev_kfree_skb_any (skb); | 
|  | 804 | } | 
|  | 805 | } | 
|  | 806 |  | 
|  | 807 | /********** cancel listen on a VC **********/ | 
|  | 808 |  | 
|  | 809 | static void hrz_close_rx (hrz_dev * dev, u16 vc) { | 
|  | 810 | unsigned long flags; | 
|  | 811 |  | 
|  | 812 | u32 value; | 
|  | 813 |  | 
|  | 814 | u32 r1, r2; | 
|  | 815 |  | 
|  | 816 | rx_ch_desc * rx_desc = &memmap->rx_descs[vc]; | 
|  | 817 |  | 
|  | 818 | int was_idle = 0; | 
|  | 819 |  | 
|  | 820 | spin_lock_irqsave (&dev->mem_lock, flags); | 
|  | 821 | value = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK; | 
|  | 822 | spin_unlock_irqrestore (&dev->mem_lock, flags); | 
|  | 823 |  | 
|  | 824 | if (value == RX_CHANNEL_DISABLED) { | 
|  | 825 | // I suppose this could happen once we deal with _NONE traffic properly | 
|  | 826 | PRINTD (DBG_VCC, "closing VC: RX channel %u already disabled", vc); | 
|  | 827 | return; | 
|  | 828 | } | 
|  | 829 | if (value == RX_CHANNEL_IDLE) | 
|  | 830 | was_idle = 1; | 
|  | 831 |  | 
|  | 832 | spin_lock_irqsave (&dev->mem_lock, flags); | 
|  | 833 |  | 
|  | 834 | for (;;) { | 
|  | 835 | wr_mem (dev, &rx_desc->wr_buf_type, RX_CHANNEL_DISABLED); | 
|  | 836 |  | 
|  | 837 | if ((rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK) == RX_CHANNEL_DISABLED) | 
|  | 838 | break; | 
|  | 839 |  | 
|  | 840 | was_idle = 0; | 
|  | 841 | } | 
|  | 842 |  | 
|  | 843 | if (was_idle) { | 
|  | 844 | spin_unlock_irqrestore (&dev->mem_lock, flags); | 
|  | 845 | return; | 
|  | 846 | } | 
|  | 847 |  | 
|  | 848 | WAIT_FLUSH_RX_COMPLETE(dev); | 
|  | 849 |  | 
|  | 850 | // XXX Is this all really necessary? We can rely on the rx_data_av | 
|  | 851 | // handler to discard frames that remain queued for delivery. If the | 
|  | 852 | // worry is that immediately reopening the channel (perhaps by a | 
|  | 853 | // different process) may cause some data to be mis-delivered then | 
|  | 854 | // there may still be a simpler solution (such as busy-waiting on | 
|  | 855 | // rx_busy once the channel is disabled or before a new one is | 
|  | 856 | // opened - does this leave any holes?). Arguably setting up and | 
|  | 857 | // tearing down the TX and RX halves of each virtual circuit could | 
|  | 858 | // most safely be done within ?x_busy protected regions. | 
|  | 859 |  | 
|  | 860 | // OK, current changes are that Simon's marker is disabled and we DO | 
|  | 861 | // look for NULL rxer elsewhere. The code here seems flush frames | 
|  | 862 | // and then remember the last dead cell belonging to the channel | 
|  | 863 | // just disabled - the cell gets relinked at the next vc_open. | 
|  | 864 | // However, when all VCs are closed or only a few opened there are a | 
|  | 865 | // handful of buffers that are unusable. | 
|  | 866 |  | 
|  | 867 | // Does anyone feel like documenting spare_buffers properly? | 
|  | 868 | // Does anyone feel like fixing this in a nicer way? | 
|  | 869 |  | 
|  | 870 | // Flush any data which is left in the channel | 
|  | 871 | for (;;) { | 
|  | 872 | // Change the rx channel port to something different to the RX | 
|  | 873 | // channel we are trying to close to force Horizon to flush the rx | 
|  | 874 | // channel read and write pointers. | 
|  | 875 |  | 
|  | 876 | u16 other = vc^(RX_CHANS/2); | 
|  | 877 |  | 
|  | 878 | SELECT_RX_CHANNEL (dev, other); | 
|  | 879 | WAIT_UPDATE_COMPLETE (dev); | 
|  | 880 |  | 
|  | 881 | r1 = rd_mem (dev, &rx_desc->rd_buf_type); | 
|  | 882 |  | 
|  | 883 | // Select this RX channel. Flush doesn't seem to work unless we | 
|  | 884 | // select an RX channel before hand | 
|  | 885 |  | 
|  | 886 | SELECT_RX_CHANNEL (dev, vc); | 
|  | 887 | WAIT_UPDATE_COMPLETE (dev); | 
|  | 888 |  | 
|  | 889 | // Attempt to flush a frame on this RX channel | 
|  | 890 |  | 
|  | 891 | FLUSH_RX_CHANNEL (dev, vc); | 
|  | 892 | WAIT_FLUSH_RX_COMPLETE (dev); | 
|  | 893 |  | 
|  | 894 | // Force Horizon to flush rx channel read and write pointers as before | 
|  | 895 |  | 
|  | 896 | SELECT_RX_CHANNEL (dev, other); | 
|  | 897 | WAIT_UPDATE_COMPLETE (dev); | 
|  | 898 |  | 
|  | 899 | r2 = rd_mem (dev, &rx_desc->rd_buf_type); | 
|  | 900 |  | 
|  | 901 | PRINTD (DBG_VCC|DBG_RX, "r1 = %u, r2 = %u", r1, r2); | 
|  | 902 |  | 
|  | 903 | if (r1 == r2) { | 
|  | 904 | dev->spare_buffers[dev->noof_spare_buffers++] = (u16)r1; | 
|  | 905 | break; | 
|  | 906 | } | 
|  | 907 | } | 
|  | 908 |  | 
|  | 909 | #if 0 | 
|  | 910 | { | 
|  | 911 | rx_q_entry * wr_ptr = &memmap->rx_q_entries[rd_regw (dev, RX_QUEUE_WR_PTR_OFF)]; | 
|  | 912 | rx_q_entry * rd_ptr = dev->rx_q_entry; | 
|  | 913 |  | 
|  | 914 | PRINTD (DBG_VCC|DBG_RX, "rd_ptr = %u, wr_ptr = %u", rd_ptr, wr_ptr); | 
|  | 915 |  | 
|  | 916 | while (rd_ptr != wr_ptr) { | 
|  | 917 | u32 x = rd_mem (dev, (HDW *) rd_ptr); | 
|  | 918 |  | 
|  | 919 | if (vc == rx_q_entry_to_rx_channel (x)) { | 
|  | 920 | x |= SIMONS_DODGEY_MARKER; | 
|  | 921 |  | 
|  | 922 | PRINTD (DBG_RX|DBG_VCC|DBG_WARN, "marking a frame as dodgey"); | 
|  | 923 |  | 
|  | 924 | wr_mem (dev, (HDW *) rd_ptr, x); | 
|  | 925 | } | 
|  | 926 |  | 
|  | 927 | if (rd_ptr == dev->rx_q_wrap) | 
|  | 928 | rd_ptr = dev->rx_q_reset; | 
|  | 929 | else | 
|  | 930 | rd_ptr++; | 
|  | 931 | } | 
|  | 932 | } | 
|  | 933 | #endif | 
|  | 934 |  | 
|  | 935 | spin_unlock_irqrestore (&dev->mem_lock, flags); | 
|  | 936 |  | 
|  | 937 | return; | 
|  | 938 | } | 
|  | 939 |  | 
|  | 940 | /********** schedule RX transfers **********/ | 
|  | 941 |  | 
|  | 942 | // Note on tail recursion: a GCC developer said that it is not likely | 
|  | 943 | // to be fixed soon, so do not define TAILRECUSRIONWORKS unless you | 
|  | 944 | // are sure it does as you may otherwise overflow the kernel stack. | 
|  | 945 |  | 
|  | 946 | // giving this fn a return value would help GCC, alledgedly | 
|  | 947 |  | 
|  | 948 | static void rx_schedule (hrz_dev * dev, int irq) { | 
|  | 949 | unsigned int rx_bytes; | 
|  | 950 |  | 
|  | 951 | int pio_instead = 0; | 
|  | 952 | #ifndef TAILRECURSIONWORKS | 
|  | 953 | pio_instead = 1; | 
|  | 954 | while (pio_instead) { | 
|  | 955 | #endif | 
|  | 956 | // bytes waiting for RX transfer | 
|  | 957 | rx_bytes = dev->rx_bytes; | 
|  | 958 |  | 
|  | 959 | #if 0 | 
|  | 960 | spin_count = 0; | 
|  | 961 | while (rd_regl (dev, MASTER_RX_COUNT_REG_OFF)) { | 
|  | 962 | PRINTD (DBG_RX|DBG_WARN, "RX error: other PCI Bus Master RX still in progress!"); | 
|  | 963 | if (++spin_count > 10) { | 
|  | 964 | PRINTD (DBG_RX|DBG_ERR, "spun out waiting PCI Bus Master RX completion"); | 
|  | 965 | wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0); | 
|  | 966 | clear_bit (rx_busy, &dev->flags); | 
|  | 967 | hrz_kfree_skb (dev->rx_skb); | 
|  | 968 | return; | 
|  | 969 | } | 
|  | 970 | } | 
|  | 971 | #endif | 
|  | 972 |  | 
|  | 973 | // this code follows the TX code but (at the moment) there is only | 
|  | 974 | // one region - the skb itself. I don't know if this will change, | 
|  | 975 | // but it doesn't hurt to have the code here, disabled. | 
|  | 976 |  | 
|  | 977 | if (rx_bytes) { | 
|  | 978 | // start next transfer within same region | 
|  | 979 | if (rx_bytes <= MAX_PIO_COUNT) { | 
|  | 980 | PRINTD (DBG_RX|DBG_BUS, "(pio)"); | 
|  | 981 | pio_instead = 1; | 
|  | 982 | } | 
|  | 983 | if (rx_bytes <= MAX_TRANSFER_COUNT) { | 
|  | 984 | PRINTD (DBG_RX|DBG_BUS, "(simple or last multi)"); | 
|  | 985 | dev->rx_bytes = 0; | 
|  | 986 | } else { | 
|  | 987 | PRINTD (DBG_RX|DBG_BUS, "(continuing multi)"); | 
|  | 988 | dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT; | 
|  | 989 | rx_bytes = MAX_TRANSFER_COUNT; | 
|  | 990 | } | 
|  | 991 | } else { | 
|  | 992 | // rx_bytes == 0 -- we're between regions | 
|  | 993 | // regions remaining to transfer | 
|  | 994 | #if 0 | 
|  | 995 | unsigned int rx_regions = dev->rx_regions; | 
|  | 996 | #else | 
|  | 997 | unsigned int rx_regions = 0; | 
|  | 998 | #endif | 
|  | 999 |  | 
|  | 1000 | if (rx_regions) { | 
|  | 1001 | #if 0 | 
|  | 1002 | // start a new region | 
|  | 1003 | dev->rx_addr = dev->rx_iovec->iov_base; | 
|  | 1004 | rx_bytes = dev->rx_iovec->iov_len; | 
|  | 1005 | ++dev->rx_iovec; | 
|  | 1006 | dev->rx_regions = rx_regions - 1; | 
|  | 1007 |  | 
|  | 1008 | if (rx_bytes <= MAX_PIO_COUNT) { | 
|  | 1009 | PRINTD (DBG_RX|DBG_BUS, "(pio)"); | 
|  | 1010 | pio_instead = 1; | 
|  | 1011 | } | 
|  | 1012 | if (rx_bytes <= MAX_TRANSFER_COUNT) { | 
|  | 1013 | PRINTD (DBG_RX|DBG_BUS, "(full region)"); | 
|  | 1014 | dev->rx_bytes = 0; | 
|  | 1015 | } else { | 
|  | 1016 | PRINTD (DBG_RX|DBG_BUS, "(start multi region)"); | 
|  | 1017 | dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT; | 
|  | 1018 | rx_bytes = MAX_TRANSFER_COUNT; | 
|  | 1019 | } | 
|  | 1020 | #endif | 
|  | 1021 | } else { | 
|  | 1022 | // rx_regions == 0 | 
|  | 1023 | // that's all folks - end of frame | 
|  | 1024 | struct sk_buff * skb = dev->rx_skb; | 
|  | 1025 | // dev->rx_iovec = 0; | 
|  | 1026 |  | 
|  | 1027 | FLUSH_RX_CHANNEL (dev, dev->rx_channel); | 
|  | 1028 |  | 
|  | 1029 | dump_skb ("<<<", dev->rx_channel, skb); | 
|  | 1030 |  | 
|  | 1031 | PRINTD (DBG_RX|DBG_SKB, "push %p %u", skb->data, skb->len); | 
|  | 1032 |  | 
|  | 1033 | { | 
|  | 1034 | struct atm_vcc * vcc = ATM_SKB(skb)->vcc; | 
|  | 1035 | // VC layer stats | 
|  | 1036 | atomic_inc(&vcc->stats->rx); | 
| Patrick McHardy | a61bbcf | 2005-08-14 17:24:31 -0700 | [diff] [blame] | 1037 | __net_timestamp(skb); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1038 | // end of our responsability | 
|  | 1039 | vcc->push (vcc, skb); | 
|  | 1040 | } | 
|  | 1041 | } | 
|  | 1042 | } | 
|  | 1043 |  | 
|  | 1044 | // note: writing RX_COUNT clears any interrupt condition | 
|  | 1045 | if (rx_bytes) { | 
|  | 1046 | if (pio_instead) { | 
|  | 1047 | if (irq) | 
|  | 1048 | wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0); | 
|  | 1049 | rds_regb (dev, DATA_PORT_OFF, dev->rx_addr, rx_bytes); | 
|  | 1050 | } else { | 
|  | 1051 | wr_regl (dev, MASTER_RX_ADDR_REG_OFF, virt_to_bus (dev->rx_addr)); | 
|  | 1052 | wr_regl (dev, MASTER_RX_COUNT_REG_OFF, rx_bytes); | 
|  | 1053 | } | 
|  | 1054 | dev->rx_addr += rx_bytes; | 
|  | 1055 | } else { | 
|  | 1056 | if (irq) | 
|  | 1057 | wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0); | 
|  | 1058 | // allow another RX thread to start | 
|  | 1059 | YELLOW_LED_ON(dev); | 
|  | 1060 | clear_bit (rx_busy, &dev->flags); | 
|  | 1061 | PRINTD (DBG_RX, "cleared rx_busy for dev %p", dev); | 
|  | 1062 | } | 
|  | 1063 |  | 
|  | 1064 | #ifdef TAILRECURSIONWORKS | 
|  | 1065 | // and we all bless optimised tail calls | 
|  | 1066 | if (pio_instead) | 
|  | 1067 | return rx_schedule (dev, 0); | 
|  | 1068 | return; | 
|  | 1069 | #else | 
|  | 1070 | // grrrrrrr! | 
|  | 1071 | irq = 0; | 
|  | 1072 | } | 
|  | 1073 | return; | 
|  | 1074 | #endif | 
|  | 1075 | } | 
|  | 1076 |  | 
|  | 1077 | /********** handle RX bus master complete events **********/ | 
|  | 1078 |  | 
|  | 1079 | static inline void rx_bus_master_complete_handler (hrz_dev * dev) { | 
|  | 1080 | if (test_bit (rx_busy, &dev->flags)) { | 
|  | 1081 | rx_schedule (dev, 1); | 
|  | 1082 | } else { | 
|  | 1083 | PRINTD (DBG_RX|DBG_ERR, "unexpected RX bus master completion"); | 
|  | 1084 | // clear interrupt condition on adapter | 
|  | 1085 | wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0); | 
|  | 1086 | } | 
|  | 1087 | return; | 
|  | 1088 | } | 
|  | 1089 |  | 
|  | 1090 | /********** (queue to) become the next TX thread **********/ | 
|  | 1091 |  | 
|  | 1092 | static inline int tx_hold (hrz_dev * dev) { | 
|  | 1093 | PRINTD (DBG_TX, "sleeping at tx lock %p %lu", dev, dev->flags); | 
|  | 1094 | wait_event_interruptible(dev->tx_queue, (!test_and_set_bit(tx_busy, &dev->flags))); | 
|  | 1095 | PRINTD (DBG_TX, "woken at tx lock %p %lu", dev, dev->flags); | 
|  | 1096 | if (signal_pending (current)) | 
|  | 1097 | return -1; | 
|  | 1098 | PRINTD (DBG_TX, "set tx_busy for dev %p", dev); | 
|  | 1099 | return 0; | 
|  | 1100 | } | 
|  | 1101 |  | 
|  | 1102 | /********** allow another TX thread to start **********/ | 
|  | 1103 |  | 
|  | 1104 | static inline void tx_release (hrz_dev * dev) { | 
|  | 1105 | clear_bit (tx_busy, &dev->flags); | 
|  | 1106 | PRINTD (DBG_TX, "cleared tx_busy for dev %p", dev); | 
|  | 1107 | wake_up_interruptible (&dev->tx_queue); | 
|  | 1108 | } | 
|  | 1109 |  | 
|  | 1110 | /********** schedule TX transfers **********/ | 
|  | 1111 |  | 
|  | 1112 | static void tx_schedule (hrz_dev * const dev, int irq) { | 
|  | 1113 | unsigned int tx_bytes; | 
|  | 1114 |  | 
|  | 1115 | int append_desc = 0; | 
|  | 1116 |  | 
|  | 1117 | int pio_instead = 0; | 
|  | 1118 | #ifndef TAILRECURSIONWORKS | 
|  | 1119 | pio_instead = 1; | 
|  | 1120 | while (pio_instead) { | 
|  | 1121 | #endif | 
|  | 1122 | // bytes in current region waiting for TX transfer | 
|  | 1123 | tx_bytes = dev->tx_bytes; | 
|  | 1124 |  | 
|  | 1125 | #if 0 | 
|  | 1126 | spin_count = 0; | 
|  | 1127 | while (rd_regl (dev, MASTER_TX_COUNT_REG_OFF)) { | 
|  | 1128 | PRINTD (DBG_TX|DBG_WARN, "TX error: other PCI Bus Master TX still in progress!"); | 
|  | 1129 | if (++spin_count > 10) { | 
|  | 1130 | PRINTD (DBG_TX|DBG_ERR, "spun out waiting PCI Bus Master TX completion"); | 
|  | 1131 | wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0); | 
|  | 1132 | tx_release (dev); | 
|  | 1133 | hrz_kfree_skb (dev->tx_skb); | 
|  | 1134 | return; | 
|  | 1135 | } | 
|  | 1136 | } | 
|  | 1137 | #endif | 
|  | 1138 |  | 
|  | 1139 | if (tx_bytes) { | 
|  | 1140 | // start next transfer within same region | 
|  | 1141 | if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) { | 
|  | 1142 | PRINTD (DBG_TX|DBG_BUS, "(pio)"); | 
|  | 1143 | pio_instead = 1; | 
|  | 1144 | } | 
|  | 1145 | if (tx_bytes <= MAX_TRANSFER_COUNT) { | 
|  | 1146 | PRINTD (DBG_TX|DBG_BUS, "(simple or last multi)"); | 
|  | 1147 | if (!dev->tx_iovec) { | 
|  | 1148 | // end of last region | 
|  | 1149 | append_desc = 1; | 
|  | 1150 | } | 
|  | 1151 | dev->tx_bytes = 0; | 
|  | 1152 | } else { | 
|  | 1153 | PRINTD (DBG_TX|DBG_BUS, "(continuing multi)"); | 
|  | 1154 | dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT; | 
|  | 1155 | tx_bytes = MAX_TRANSFER_COUNT; | 
|  | 1156 | } | 
|  | 1157 | } else { | 
|  | 1158 | // tx_bytes == 0 -- we're between regions | 
|  | 1159 | // regions remaining to transfer | 
|  | 1160 | unsigned int tx_regions = dev->tx_regions; | 
|  | 1161 |  | 
|  | 1162 | if (tx_regions) { | 
|  | 1163 | // start a new region | 
|  | 1164 | dev->tx_addr = dev->tx_iovec->iov_base; | 
|  | 1165 | tx_bytes = dev->tx_iovec->iov_len; | 
|  | 1166 | ++dev->tx_iovec; | 
|  | 1167 | dev->tx_regions = tx_regions - 1; | 
|  | 1168 |  | 
|  | 1169 | if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) { | 
|  | 1170 | PRINTD (DBG_TX|DBG_BUS, "(pio)"); | 
|  | 1171 | pio_instead = 1; | 
|  | 1172 | } | 
|  | 1173 | if (tx_bytes <= MAX_TRANSFER_COUNT) { | 
|  | 1174 | PRINTD (DBG_TX|DBG_BUS, "(full region)"); | 
|  | 1175 | dev->tx_bytes = 0; | 
|  | 1176 | } else { | 
|  | 1177 | PRINTD (DBG_TX|DBG_BUS, "(start multi region)"); | 
|  | 1178 | dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT; | 
|  | 1179 | tx_bytes = MAX_TRANSFER_COUNT; | 
|  | 1180 | } | 
|  | 1181 | } else { | 
|  | 1182 | // tx_regions == 0 | 
|  | 1183 | // that's all folks - end of frame | 
|  | 1184 | struct sk_buff * skb = dev->tx_skb; | 
|  | 1185 | dev->tx_iovec = NULL; | 
|  | 1186 |  | 
|  | 1187 | // VC layer stats | 
|  | 1188 | atomic_inc(&ATM_SKB(skb)->vcc->stats->tx); | 
|  | 1189 |  | 
|  | 1190 | // free the skb | 
|  | 1191 | hrz_kfree_skb (skb); | 
|  | 1192 | } | 
|  | 1193 | } | 
|  | 1194 |  | 
|  | 1195 | // note: writing TX_COUNT clears any interrupt condition | 
|  | 1196 | if (tx_bytes) { | 
|  | 1197 | if (pio_instead) { | 
|  | 1198 | if (irq) | 
|  | 1199 | wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0); | 
|  | 1200 | wrs_regb (dev, DATA_PORT_OFF, dev->tx_addr, tx_bytes); | 
|  | 1201 | if (append_desc) | 
|  | 1202 | wr_regl (dev, TX_DESCRIPTOR_PORT_OFF, cpu_to_be32 (dev->tx_skb->len)); | 
|  | 1203 | } else { | 
|  | 1204 | wr_regl (dev, MASTER_TX_ADDR_REG_OFF, virt_to_bus (dev->tx_addr)); | 
|  | 1205 | if (append_desc) | 
|  | 1206 | wr_regl (dev, TX_DESCRIPTOR_REG_OFF, cpu_to_be32 (dev->tx_skb->len)); | 
|  | 1207 | wr_regl (dev, MASTER_TX_COUNT_REG_OFF, | 
|  | 1208 | append_desc | 
|  | 1209 | ? tx_bytes | MASTER_TX_AUTO_APPEND_DESC | 
|  | 1210 | : tx_bytes); | 
|  | 1211 | } | 
|  | 1212 | dev->tx_addr += tx_bytes; | 
|  | 1213 | } else { | 
|  | 1214 | if (irq) | 
|  | 1215 | wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0); | 
|  | 1216 | YELLOW_LED_ON(dev); | 
|  | 1217 | tx_release (dev); | 
|  | 1218 | } | 
|  | 1219 |  | 
|  | 1220 | #ifdef TAILRECURSIONWORKS | 
|  | 1221 | // and we all bless optimised tail calls | 
|  | 1222 | if (pio_instead) | 
|  | 1223 | return tx_schedule (dev, 0); | 
|  | 1224 | return; | 
|  | 1225 | #else | 
|  | 1226 | // grrrrrrr! | 
|  | 1227 | irq = 0; | 
|  | 1228 | } | 
|  | 1229 | return; | 
|  | 1230 | #endif | 
|  | 1231 | } | 
|  | 1232 |  | 
|  | 1233 | /********** handle TX bus master complete events **********/ | 
|  | 1234 |  | 
|  | 1235 | static inline void tx_bus_master_complete_handler (hrz_dev * dev) { | 
|  | 1236 | if (test_bit (tx_busy, &dev->flags)) { | 
|  | 1237 | tx_schedule (dev, 1); | 
|  | 1238 | } else { | 
|  | 1239 | PRINTD (DBG_TX|DBG_ERR, "unexpected TX bus master completion"); | 
|  | 1240 | // clear interrupt condition on adapter | 
|  | 1241 | wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0); | 
|  | 1242 | } | 
|  | 1243 | return; | 
|  | 1244 | } | 
|  | 1245 |  | 
|  | 1246 | /********** move RX Q pointer to next item in circular buffer **********/ | 
|  | 1247 |  | 
|  | 1248 | // called only from IRQ sub-handler | 
|  | 1249 | static inline u32 rx_queue_entry_next (hrz_dev * dev) { | 
|  | 1250 | u32 rx_queue_entry; | 
|  | 1251 | spin_lock (&dev->mem_lock); | 
|  | 1252 | rx_queue_entry = rd_mem (dev, &dev->rx_q_entry->entry); | 
|  | 1253 | if (dev->rx_q_entry == dev->rx_q_wrap) | 
|  | 1254 | dev->rx_q_entry = dev->rx_q_reset; | 
|  | 1255 | else | 
|  | 1256 | dev->rx_q_entry++; | 
|  | 1257 | wr_regw (dev, RX_QUEUE_RD_PTR_OFF, dev->rx_q_entry - dev->rx_q_reset); | 
|  | 1258 | spin_unlock (&dev->mem_lock); | 
|  | 1259 | return rx_queue_entry; | 
|  | 1260 | } | 
|  | 1261 |  | 
|  | 1262 | /********** handle RX disabled by device **********/ | 
|  | 1263 |  | 
|  | 1264 | static inline void rx_disabled_handler (hrz_dev * dev) { | 
|  | 1265 | wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE); | 
|  | 1266 | // count me please | 
|  | 1267 | PRINTK (KERN_WARNING, "RX was disabled!"); | 
|  | 1268 | } | 
|  | 1269 |  | 
|  | 1270 | /********** handle RX data received by device **********/ | 
|  | 1271 |  | 
|  | 1272 | // called from IRQ handler | 
|  | 1273 | static inline void rx_data_av_handler (hrz_dev * dev) { | 
|  | 1274 | u32 rx_queue_entry; | 
|  | 1275 | u32 rx_queue_entry_flags; | 
|  | 1276 | u16 rx_len; | 
|  | 1277 | u16 rx_channel; | 
|  | 1278 |  | 
|  | 1279 | PRINTD (DBG_FLOW, "hrz_data_av_handler"); | 
|  | 1280 |  | 
|  | 1281 | // try to grab rx lock (not possible during RX bus mastering) | 
|  | 1282 | if (test_and_set_bit (rx_busy, &dev->flags)) { | 
|  | 1283 | PRINTD (DBG_RX, "locked out of rx lock"); | 
|  | 1284 | return; | 
|  | 1285 | } | 
|  | 1286 | PRINTD (DBG_RX, "set rx_busy for dev %p", dev); | 
|  | 1287 | // lock is cleared if we fail now, o/w after bus master completion | 
|  | 1288 |  | 
|  | 1289 | YELLOW_LED_OFF(dev); | 
|  | 1290 |  | 
|  | 1291 | rx_queue_entry = rx_queue_entry_next (dev); | 
|  | 1292 |  | 
|  | 1293 | rx_len = rx_q_entry_to_length (rx_queue_entry); | 
|  | 1294 | rx_channel = rx_q_entry_to_rx_channel (rx_queue_entry); | 
|  | 1295 |  | 
|  | 1296 | WAIT_FLUSH_RX_COMPLETE (dev); | 
|  | 1297 |  | 
|  | 1298 | SELECT_RX_CHANNEL (dev, rx_channel); | 
|  | 1299 |  | 
|  | 1300 | PRINTD (DBG_RX, "rx_queue_entry is: %#x", rx_queue_entry); | 
|  | 1301 | rx_queue_entry_flags = rx_queue_entry & (RX_CRC_32_OK|RX_COMPLETE_FRAME|SIMONS_DODGEY_MARKER); | 
|  | 1302 |  | 
|  | 1303 | if (!rx_len) { | 
|  | 1304 | // (at least) bus-mastering breaks if we try to handle a | 
|  | 1305 | // zero-length frame, besides AAL5 does not support them | 
|  | 1306 | PRINTK (KERN_ERR, "zero-length frame!"); | 
|  | 1307 | rx_queue_entry_flags &= ~RX_COMPLETE_FRAME; | 
|  | 1308 | } | 
|  | 1309 |  | 
|  | 1310 | if (rx_queue_entry_flags & SIMONS_DODGEY_MARKER) { | 
|  | 1311 | PRINTD (DBG_RX|DBG_ERR, "Simon's marker detected!"); | 
|  | 1312 | } | 
|  | 1313 | if (rx_queue_entry_flags == (RX_CRC_32_OK | RX_COMPLETE_FRAME)) { | 
|  | 1314 | struct atm_vcc * atm_vcc; | 
|  | 1315 |  | 
|  | 1316 | PRINTD (DBG_RX, "got a frame on rx_channel %x len %u", rx_channel, rx_len); | 
|  | 1317 |  | 
|  | 1318 | atm_vcc = dev->rxer[rx_channel]; | 
|  | 1319 | // if no vcc is assigned to this channel, we should drop the frame | 
|  | 1320 | // (is this what SIMONS etc. was trying to achieve?) | 
|  | 1321 |  | 
|  | 1322 | if (atm_vcc) { | 
|  | 1323 |  | 
|  | 1324 | if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) { | 
|  | 1325 |  | 
|  | 1326 | if (rx_len <= atm_vcc->qos.rxtp.max_sdu) { | 
|  | 1327 |  | 
|  | 1328 | struct sk_buff * skb = atm_alloc_charge (atm_vcc, rx_len, GFP_ATOMIC); | 
|  | 1329 | if (skb) { | 
|  | 1330 | // remember this so we can push it later | 
|  | 1331 | dev->rx_skb = skb; | 
|  | 1332 | // remember this so we can flush it later | 
|  | 1333 | dev->rx_channel = rx_channel; | 
|  | 1334 |  | 
|  | 1335 | // prepare socket buffer | 
|  | 1336 | skb_put (skb, rx_len); | 
|  | 1337 | ATM_SKB(skb)->vcc = atm_vcc; | 
|  | 1338 |  | 
|  | 1339 | // simple transfer | 
|  | 1340 | // dev->rx_regions = 0; | 
|  | 1341 | // dev->rx_iovec = 0; | 
|  | 1342 | dev->rx_bytes = rx_len; | 
|  | 1343 | dev->rx_addr = skb->data; | 
|  | 1344 | PRINTD (DBG_RX, "RX start simple transfer (addr %p, len %d)", | 
|  | 1345 | skb->data, rx_len); | 
|  | 1346 |  | 
|  | 1347 | // do the business | 
|  | 1348 | rx_schedule (dev, 0); | 
|  | 1349 | return; | 
|  | 1350 |  | 
|  | 1351 | } else { | 
|  | 1352 | PRINTD (DBG_SKB|DBG_WARN, "failed to get skb"); | 
|  | 1353 | } | 
|  | 1354 |  | 
|  | 1355 | } else { | 
|  | 1356 | PRINTK (KERN_INFO, "frame received on TX-only VC %x", rx_channel); | 
|  | 1357 | // do we count this? | 
|  | 1358 | } | 
|  | 1359 |  | 
|  | 1360 | } else { | 
|  | 1361 | PRINTK (KERN_WARNING, "dropped over-size frame"); | 
|  | 1362 | // do we count this? | 
|  | 1363 | } | 
|  | 1364 |  | 
|  | 1365 | } else { | 
|  | 1366 | PRINTD (DBG_WARN|DBG_VCC|DBG_RX, "no VCC for this frame (VC closed)"); | 
|  | 1367 | // do we count this? | 
|  | 1368 | } | 
|  | 1369 |  | 
|  | 1370 | } else { | 
|  | 1371 | // Wait update complete ? SPONG | 
|  | 1372 | } | 
|  | 1373 |  | 
|  | 1374 | // RX was aborted | 
|  | 1375 | YELLOW_LED_ON(dev); | 
|  | 1376 |  | 
|  | 1377 | FLUSH_RX_CHANNEL (dev,rx_channel); | 
|  | 1378 | clear_bit (rx_busy, &dev->flags); | 
|  | 1379 |  | 
|  | 1380 | return; | 
|  | 1381 | } | 
|  | 1382 |  | 
|  | 1383 | /********** interrupt handler **********/ | 
|  | 1384 |  | 
|  | 1385 | static irqreturn_t interrupt_handler(int irq, void *dev_id, | 
|  | 1386 | struct pt_regs *pt_regs) { | 
|  | 1387 | hrz_dev * dev = (hrz_dev *) dev_id; | 
|  | 1388 | u32 int_source; | 
|  | 1389 | unsigned int irq_ok; | 
|  | 1390 | (void) pt_regs; | 
|  | 1391 |  | 
|  | 1392 | PRINTD (DBG_FLOW, "interrupt_handler: %p", dev_id); | 
|  | 1393 |  | 
|  | 1394 | if (!dev_id) { | 
|  | 1395 | PRINTD (DBG_IRQ|DBG_ERR, "irq with NULL dev_id: %d", irq); | 
|  | 1396 | return IRQ_NONE; | 
|  | 1397 | } | 
|  | 1398 | if (irq != dev->irq) { | 
|  | 1399 | PRINTD (DBG_IRQ|DBG_ERR, "irq mismatch: %d", irq); | 
|  | 1400 | return IRQ_NONE; | 
|  | 1401 | } | 
|  | 1402 |  | 
|  | 1403 | // definitely for us | 
|  | 1404 | irq_ok = 0; | 
|  | 1405 | while ((int_source = rd_regl (dev, INT_SOURCE_REG_OFF) | 
|  | 1406 | & INTERESTING_INTERRUPTS)) { | 
|  | 1407 | // In the interests of fairness, the (inline) handlers below are | 
|  | 1408 | // called in sequence and without immediate return to the head of | 
|  | 1409 | // the while loop. This is only of issue for slow hosts (or when | 
|  | 1410 | // debugging messages are on). Really slow hosts may find a fast | 
|  | 1411 | // sender keeps them permanently in the IRQ handler. :( | 
|  | 1412 |  | 
|  | 1413 | // (only an issue for slow hosts) RX completion goes before | 
|  | 1414 | // rx_data_av as the former implies rx_busy and so the latter | 
|  | 1415 | // would just abort. If it reschedules another transfer | 
|  | 1416 | // (continuing the same frame) then it will not clear rx_busy. | 
|  | 1417 |  | 
|  | 1418 | // (only an issue for slow hosts) TX completion goes before RX | 
|  | 1419 | // data available as it is a much shorter routine - there is the | 
|  | 1420 | // chance that any further transfers it schedules will be complete | 
|  | 1421 | // by the time of the return to the head of the while loop | 
|  | 1422 |  | 
|  | 1423 | if (int_source & RX_BUS_MASTER_COMPLETE) { | 
|  | 1424 | ++irq_ok; | 
|  | 1425 | PRINTD (DBG_IRQ|DBG_BUS|DBG_RX, "rx_bus_master_complete asserted"); | 
|  | 1426 | rx_bus_master_complete_handler (dev); | 
|  | 1427 | } | 
|  | 1428 | if (int_source & TX_BUS_MASTER_COMPLETE) { | 
|  | 1429 | ++irq_ok; | 
|  | 1430 | PRINTD (DBG_IRQ|DBG_BUS|DBG_TX, "tx_bus_master_complete asserted"); | 
|  | 1431 | tx_bus_master_complete_handler (dev); | 
|  | 1432 | } | 
|  | 1433 | if (int_source & RX_DATA_AV) { | 
|  | 1434 | ++irq_ok; | 
|  | 1435 | PRINTD (DBG_IRQ|DBG_RX, "rx_data_av asserted"); | 
|  | 1436 | rx_data_av_handler (dev); | 
|  | 1437 | } | 
|  | 1438 | } | 
|  | 1439 | if (irq_ok) { | 
|  | 1440 | PRINTD (DBG_IRQ, "work done: %u", irq_ok); | 
|  | 1441 | } else { | 
|  | 1442 | PRINTD (DBG_IRQ|DBG_WARN, "spurious interrupt source: %#x", int_source); | 
|  | 1443 | } | 
|  | 1444 |  | 
|  | 1445 | PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id); | 
|  | 1446 | if (irq_ok) | 
|  | 1447 | return IRQ_HANDLED; | 
|  | 1448 | return IRQ_NONE; | 
|  | 1449 | } | 
|  | 1450 |  | 
|  | 1451 | /********** housekeeping **********/ | 
|  | 1452 |  | 
|  | 1453 | static void do_housekeeping (unsigned long arg) { | 
|  | 1454 | // just stats at the moment | 
|  | 1455 | hrz_dev * dev = (hrz_dev *) arg; | 
|  | 1456 |  | 
|  | 1457 | // collect device-specific (not driver/atm-linux) stats here | 
|  | 1458 | dev->tx_cell_count += rd_regw (dev, TX_CELL_COUNT_OFF); | 
|  | 1459 | dev->rx_cell_count += rd_regw (dev, RX_CELL_COUNT_OFF); | 
|  | 1460 | dev->hec_error_count += rd_regw (dev, HEC_ERROR_COUNT_OFF); | 
|  | 1461 | dev->unassigned_cell_count += rd_regw (dev, UNASSIGNED_CELL_COUNT_OFF); | 
|  | 1462 |  | 
|  | 1463 | mod_timer (&dev->housekeeping, jiffies + HZ/10); | 
|  | 1464 |  | 
|  | 1465 | return; | 
|  | 1466 | } | 
|  | 1467 |  | 
|  | 1468 | /********** find an idle channel for TX and set it up **********/ | 
|  | 1469 |  | 
|  | 1470 | // called with tx_busy set | 
|  | 1471 | static inline short setup_idle_tx_channel (hrz_dev * dev, hrz_vcc * vcc) { | 
|  | 1472 | unsigned short idle_channels; | 
|  | 1473 | short tx_channel = -1; | 
|  | 1474 | unsigned int spin_count; | 
|  | 1475 | PRINTD (DBG_FLOW|DBG_TX, "setup_idle_tx_channel %p", dev); | 
|  | 1476 |  | 
|  | 1477 | // better would be to fail immediately, the caller can then decide whether | 
|  | 1478 | // to wait or drop (depending on whether this is UBR etc.) | 
|  | 1479 | spin_count = 0; | 
|  | 1480 | while (!(idle_channels = rd_regw (dev, TX_STATUS_OFF) & IDLE_CHANNELS_MASK)) { | 
|  | 1481 | PRINTD (DBG_TX|DBG_WARN, "waiting for idle TX channel"); | 
|  | 1482 | // delay a bit here | 
|  | 1483 | if (++spin_count > 100) { | 
|  | 1484 | PRINTD (DBG_TX|DBG_ERR, "spun out waiting for idle TX channel"); | 
|  | 1485 | return -EBUSY; | 
|  | 1486 | } | 
|  | 1487 | } | 
|  | 1488 |  | 
|  | 1489 | // got an idle channel | 
|  | 1490 | { | 
|  | 1491 | // tx_idle ensures we look for idle channels in RR order | 
|  | 1492 | int chan = dev->tx_idle; | 
|  | 1493 |  | 
|  | 1494 | int keep_going = 1; | 
|  | 1495 | while (keep_going) { | 
|  | 1496 | if (idle_channels & (1<<chan)) { | 
|  | 1497 | tx_channel = chan; | 
|  | 1498 | keep_going = 0; | 
|  | 1499 | } | 
|  | 1500 | ++chan; | 
|  | 1501 | if (chan == TX_CHANS) | 
|  | 1502 | chan = 0; | 
|  | 1503 | } | 
|  | 1504 |  | 
|  | 1505 | dev->tx_idle = chan; | 
|  | 1506 | } | 
|  | 1507 |  | 
|  | 1508 | // set up the channel we found | 
|  | 1509 | { | 
|  | 1510 | // Initialise the cell header in the transmit channel descriptor | 
|  | 1511 | // a.k.a. prepare the channel and remember that we have done so. | 
|  | 1512 |  | 
|  | 1513 | tx_ch_desc * tx_desc = &memmap->tx_descs[tx_channel]; | 
| Dave Jones | b925556 | 2005-11-10 12:55:52 -0800 | [diff] [blame] | 1514 | u32 rd_ptr; | 
|  | 1515 | u32 wr_ptr; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1516 | u16 channel = vcc->channel; | 
|  | 1517 |  | 
|  | 1518 | unsigned long flags; | 
|  | 1519 | spin_lock_irqsave (&dev->mem_lock, flags); | 
|  | 1520 |  | 
|  | 1521 | // Update the transmit channel record. | 
|  | 1522 | dev->tx_channel_record[tx_channel] = channel; | 
|  | 1523 |  | 
|  | 1524 | // xBR channel | 
|  | 1525 | update_tx_channel_config (dev, tx_channel, RATE_TYPE_ACCESS, | 
|  | 1526 | vcc->tx_xbr_bits); | 
|  | 1527 |  | 
|  | 1528 | // Update the PCR counter preload value etc. | 
|  | 1529 | update_tx_channel_config (dev, tx_channel, PCR_TIMER_ACCESS, | 
|  | 1530 | vcc->tx_pcr_bits); | 
|  | 1531 |  | 
|  | 1532 | #if 0 | 
|  | 1533 | if (vcc->tx_xbr_bits == VBR_RATE_TYPE) { | 
|  | 1534 | // SCR timer | 
|  | 1535 | update_tx_channel_config (dev, tx_channel, SCR_TIMER_ACCESS, | 
|  | 1536 | vcc->tx_scr_bits); | 
|  | 1537 |  | 
|  | 1538 | // Bucket size... | 
|  | 1539 | update_tx_channel_config (dev, tx_channel, BUCKET_CAPACITY_ACCESS, | 
|  | 1540 | vcc->tx_bucket_bits); | 
|  | 1541 |  | 
|  | 1542 | // ... and fullness | 
|  | 1543 | update_tx_channel_config (dev, tx_channel, BUCKET_FULLNESS_ACCESS, | 
|  | 1544 | vcc->tx_bucket_bits); | 
|  | 1545 | } | 
|  | 1546 | #endif | 
|  | 1547 |  | 
|  | 1548 | // Initialise the read and write buffer pointers | 
|  | 1549 | rd_ptr = rd_mem (dev, &tx_desc->rd_buf_type) & BUFFER_PTR_MASK; | 
|  | 1550 | wr_ptr = rd_mem (dev, &tx_desc->wr_buf_type) & BUFFER_PTR_MASK; | 
|  | 1551 |  | 
|  | 1552 | // idle TX channels should have identical pointers | 
|  | 1553 | if (rd_ptr != wr_ptr) { | 
|  | 1554 | PRINTD (DBG_TX|DBG_ERR, "TX buffer pointers are broken!"); | 
|  | 1555 | // spin_unlock... return -E... | 
|  | 1556 | // I wonder if gcc would get rid of one of the pointer aliases | 
|  | 1557 | } | 
|  | 1558 | PRINTD (DBG_TX, "TX buffer pointers are: rd %x, wr %x.", | 
|  | 1559 | rd_ptr, wr_ptr); | 
|  | 1560 |  | 
|  | 1561 | switch (vcc->aal) { | 
|  | 1562 | case aal0: | 
|  | 1563 | PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal0"); | 
|  | 1564 | rd_ptr |= CHANNEL_TYPE_RAW_CELLS; | 
|  | 1565 | wr_ptr |= CHANNEL_TYPE_RAW_CELLS; | 
|  | 1566 | break; | 
|  | 1567 | case aal34: | 
|  | 1568 | PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal34"); | 
|  | 1569 | rd_ptr |= CHANNEL_TYPE_AAL3_4; | 
|  | 1570 | wr_ptr |= CHANNEL_TYPE_AAL3_4; | 
|  | 1571 | break; | 
|  | 1572 | case aal5: | 
|  | 1573 | rd_ptr |= CHANNEL_TYPE_AAL5; | 
|  | 1574 | wr_ptr |= CHANNEL_TYPE_AAL5; | 
|  | 1575 | // Initialise the CRC | 
|  | 1576 | wr_mem (dev, &tx_desc->partial_crc, INITIAL_CRC); | 
|  | 1577 | break; | 
|  | 1578 | } | 
|  | 1579 |  | 
|  | 1580 | wr_mem (dev, &tx_desc->rd_buf_type, rd_ptr); | 
|  | 1581 | wr_mem (dev, &tx_desc->wr_buf_type, wr_ptr); | 
|  | 1582 |  | 
|  | 1583 | // Write the Cell Header | 
|  | 1584 | // Payload Type, CLP and GFC would go here if non-zero | 
|  | 1585 | wr_mem (dev, &tx_desc->cell_header, channel); | 
|  | 1586 |  | 
|  | 1587 | spin_unlock_irqrestore (&dev->mem_lock, flags); | 
|  | 1588 | } | 
|  | 1589 |  | 
|  | 1590 | return tx_channel; | 
|  | 1591 | } | 
|  | 1592 |  | 
|  | 1593 | /********** send a frame **********/ | 
|  | 1594 |  | 
|  | 1595 | static int hrz_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) { | 
|  | 1596 | unsigned int spin_count; | 
|  | 1597 | int free_buffers; | 
|  | 1598 | hrz_dev * dev = HRZ_DEV(atm_vcc->dev); | 
|  | 1599 | hrz_vcc * vcc = HRZ_VCC(atm_vcc); | 
|  | 1600 | u16 channel = vcc->channel; | 
|  | 1601 |  | 
|  | 1602 | u32 buffers_required; | 
|  | 1603 |  | 
|  | 1604 | /* signed for error return */ | 
|  | 1605 | short tx_channel; | 
|  | 1606 |  | 
|  | 1607 | PRINTD (DBG_FLOW|DBG_TX, "hrz_send vc %x data %p len %u", | 
|  | 1608 | channel, skb->data, skb->len); | 
|  | 1609 |  | 
|  | 1610 | dump_skb (">>>", channel, skb); | 
|  | 1611 |  | 
|  | 1612 | if (atm_vcc->qos.txtp.traffic_class == ATM_NONE) { | 
|  | 1613 | PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", channel); | 
|  | 1614 | hrz_kfree_skb (skb); | 
|  | 1615 | return -EIO; | 
|  | 1616 | } | 
|  | 1617 |  | 
|  | 1618 | // don't understand this | 
|  | 1619 | ATM_SKB(skb)->vcc = atm_vcc; | 
|  | 1620 |  | 
|  | 1621 | if (skb->len > atm_vcc->qos.txtp.max_sdu) { | 
|  | 1622 | PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping..."); | 
|  | 1623 | hrz_kfree_skb (skb); | 
|  | 1624 | return -EIO; | 
|  | 1625 | } | 
|  | 1626 |  | 
|  | 1627 | if (!channel) { | 
|  | 1628 | PRINTD (DBG_ERR|DBG_TX, "attempt to transmit on zero (rx_)channel"); | 
|  | 1629 | hrz_kfree_skb (skb); | 
|  | 1630 | return -EIO; | 
|  | 1631 | } | 
|  | 1632 |  | 
|  | 1633 | #if 0 | 
|  | 1634 | { | 
|  | 1635 | // where would be a better place for this? housekeeping? | 
|  | 1636 | u16 status; | 
|  | 1637 | pci_read_config_word (dev->pci_dev, PCI_STATUS, &status); | 
|  | 1638 | if (status & PCI_STATUS_REC_MASTER_ABORT) { | 
|  | 1639 | PRINTD (DBG_BUS|DBG_ERR, "Clearing PCI Master Abort (and cleaning up)"); | 
|  | 1640 | status &= ~PCI_STATUS_REC_MASTER_ABORT; | 
|  | 1641 | pci_write_config_word (dev->pci_dev, PCI_STATUS, status); | 
|  | 1642 | if (test_bit (tx_busy, &dev->flags)) { | 
|  | 1643 | hrz_kfree_skb (dev->tx_skb); | 
|  | 1644 | tx_release (dev); | 
|  | 1645 | } | 
|  | 1646 | } | 
|  | 1647 | } | 
|  | 1648 | #endif | 
|  | 1649 |  | 
|  | 1650 | #ifdef DEBUG_HORIZON | 
|  | 1651 | /* wey-hey! */ | 
|  | 1652 | if (channel == 1023) { | 
|  | 1653 | unsigned int i; | 
|  | 1654 | unsigned short d = 0; | 
|  | 1655 | char * s = skb->data; | 
|  | 1656 | if (*s++ == 'D') { | 
|  | 1657 | for (i = 0; i < 4; ++i) { | 
|  | 1658 | d = (d<<4) | ((*s <= '9') ? (*s - '0') : (*s - 'a' + 10)); | 
|  | 1659 | ++s; | 
|  | 1660 | } | 
|  | 1661 | PRINTK (KERN_INFO, "debug bitmap is now %hx", debug = d); | 
|  | 1662 | } | 
|  | 1663 | } | 
|  | 1664 | #endif | 
|  | 1665 |  | 
|  | 1666 | // wait until TX is free and grab lock | 
|  | 1667 | if (tx_hold (dev)) { | 
|  | 1668 | hrz_kfree_skb (skb); | 
|  | 1669 | return -ERESTARTSYS; | 
|  | 1670 | } | 
|  | 1671 |  | 
|  | 1672 | // Wait for enough space to be available in transmit buffer memory. | 
|  | 1673 |  | 
|  | 1674 | // should be number of cells needed + 2 (according to hardware docs) | 
|  | 1675 | // = ((framelen+8)+47) / 48 + 2 | 
|  | 1676 | // = (framelen+7) / 48 + 3, hmm... faster to put addition inside XXX | 
|  | 1677 | buffers_required = (skb->len+(ATM_AAL5_TRAILER-1)) / ATM_CELL_PAYLOAD + 3; | 
|  | 1678 |  | 
|  | 1679 | // replace with timer and sleep, add dev->tx_buffers_queue (max 1 entry) | 
|  | 1680 | spin_count = 0; | 
|  | 1681 | while ((free_buffers = rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF)) < buffers_required) { | 
|  | 1682 | PRINTD (DBG_TX, "waiting for free TX buffers, got %d of %d", | 
|  | 1683 | free_buffers, buffers_required); | 
|  | 1684 | // what is the appropriate delay? implement a timeout? (depending on line speed?) | 
|  | 1685 | // mdelay (1); | 
|  | 1686 | // what happens if we kill (current_pid, SIGKILL) ? | 
|  | 1687 | schedule(); | 
|  | 1688 | if (++spin_count > 1000) { | 
|  | 1689 | PRINTD (DBG_TX|DBG_ERR, "spun out waiting for tx buffers, got %d of %d", | 
|  | 1690 | free_buffers, buffers_required); | 
|  | 1691 | tx_release (dev); | 
|  | 1692 | hrz_kfree_skb (skb); | 
|  | 1693 | return -ERESTARTSYS; | 
|  | 1694 | } | 
|  | 1695 | } | 
|  | 1696 |  | 
|  | 1697 | // Select a channel to transmit the frame on. | 
|  | 1698 | if (channel == dev->last_vc) { | 
|  | 1699 | PRINTD (DBG_TX, "last vc hack: hit"); | 
|  | 1700 | tx_channel = dev->tx_last; | 
|  | 1701 | } else { | 
|  | 1702 | PRINTD (DBG_TX, "last vc hack: miss"); | 
|  | 1703 | // Are we currently transmitting this VC on one of the channels? | 
|  | 1704 | for (tx_channel = 0; tx_channel < TX_CHANS; ++tx_channel) | 
|  | 1705 | if (dev->tx_channel_record[tx_channel] == channel) { | 
|  | 1706 | PRINTD (DBG_TX, "vc already on channel: hit"); | 
|  | 1707 | break; | 
|  | 1708 | } | 
|  | 1709 | if (tx_channel == TX_CHANS) { | 
|  | 1710 | PRINTD (DBG_TX, "vc already on channel: miss"); | 
|  | 1711 | // Find and set up an idle channel. | 
|  | 1712 | tx_channel = setup_idle_tx_channel (dev, vcc); | 
|  | 1713 | if (tx_channel < 0) { | 
|  | 1714 | PRINTD (DBG_TX|DBG_ERR, "failed to get channel"); | 
|  | 1715 | tx_release (dev); | 
|  | 1716 | return tx_channel; | 
|  | 1717 | } | 
|  | 1718 | } | 
|  | 1719 |  | 
|  | 1720 | PRINTD (DBG_TX, "got channel"); | 
|  | 1721 | SELECT_TX_CHANNEL(dev, tx_channel); | 
|  | 1722 |  | 
|  | 1723 | dev->last_vc = channel; | 
|  | 1724 | dev->tx_last = tx_channel; | 
|  | 1725 | } | 
|  | 1726 |  | 
|  | 1727 | PRINTD (DBG_TX, "using channel %u", tx_channel); | 
|  | 1728 |  | 
|  | 1729 | YELLOW_LED_OFF(dev); | 
|  | 1730 |  | 
|  | 1731 | // TX start transfer | 
|  | 1732 |  | 
|  | 1733 | { | 
|  | 1734 | unsigned int tx_len = skb->len; | 
|  | 1735 | unsigned int tx_iovcnt = skb_shinfo(skb)->nr_frags; | 
|  | 1736 | // remember this so we can free it later | 
|  | 1737 | dev->tx_skb = skb; | 
|  | 1738 |  | 
|  | 1739 | if (tx_iovcnt) { | 
|  | 1740 | // scatter gather transfer | 
|  | 1741 | dev->tx_regions = tx_iovcnt; | 
|  | 1742 | dev->tx_iovec = NULL;		/* @@@ needs rewritten */ | 
|  | 1743 | dev->tx_bytes = 0; | 
|  | 1744 | PRINTD (DBG_TX|DBG_BUS, "TX start scatter-gather transfer (iovec %p, len %d)", | 
|  | 1745 | skb->data, tx_len); | 
|  | 1746 | tx_release (dev); | 
|  | 1747 | hrz_kfree_skb (skb); | 
|  | 1748 | return -EIO; | 
|  | 1749 | } else { | 
|  | 1750 | // simple transfer | 
|  | 1751 | dev->tx_regions = 0; | 
|  | 1752 | dev->tx_iovec = NULL; | 
|  | 1753 | dev->tx_bytes = tx_len; | 
|  | 1754 | dev->tx_addr = skb->data; | 
|  | 1755 | PRINTD (DBG_TX|DBG_BUS, "TX start simple transfer (addr %p, len %d)", | 
|  | 1756 | skb->data, tx_len); | 
|  | 1757 | } | 
|  | 1758 |  | 
|  | 1759 | // and do the business | 
|  | 1760 | tx_schedule (dev, 0); | 
|  | 1761 |  | 
|  | 1762 | } | 
|  | 1763 |  | 
|  | 1764 | return 0; | 
|  | 1765 | } | 
|  | 1766 |  | 
|  | 1767 | /********** reset a card **********/ | 
|  | 1768 |  | 
|  | 1769 | static void hrz_reset (const hrz_dev * dev) { | 
|  | 1770 | u32 control_0_reg = rd_regl (dev, CONTROL_0_REG); | 
|  | 1771 |  | 
|  | 1772 | // why not set RESET_HORIZON to one and wait for the card to | 
|  | 1773 | // reassert that bit as zero? Like so: | 
|  | 1774 | control_0_reg = control_0_reg & RESET_HORIZON; | 
|  | 1775 | wr_regl (dev, CONTROL_0_REG, control_0_reg); | 
|  | 1776 | while (control_0_reg & RESET_HORIZON) | 
|  | 1777 | control_0_reg = rd_regl (dev, CONTROL_0_REG); | 
|  | 1778 |  | 
|  | 1779 | // old reset code retained: | 
|  | 1780 | wr_regl (dev, CONTROL_0_REG, control_0_reg | | 
|  | 1781 | RESET_ATM | RESET_RX | RESET_TX | RESET_HOST); | 
|  | 1782 | // just guessing here | 
|  | 1783 | udelay (1000); | 
|  | 1784 |  | 
|  | 1785 | wr_regl (dev, CONTROL_0_REG, control_0_reg); | 
|  | 1786 | } | 
|  | 1787 |  | 
|  | 1788 | /********** read the burnt in address **********/ | 
|  | 1789 |  | 
|  | 1790 | static inline void WRITE_IT_WAIT (const hrz_dev *dev, u32 ctrl) | 
|  | 1791 | { | 
|  | 1792 | wr_regl (dev, CONTROL_0_REG, ctrl); | 
|  | 1793 | udelay (5); | 
|  | 1794 | } | 
|  | 1795 |  | 
|  | 1796 | static inline void CLOCK_IT (const hrz_dev *dev, u32 ctrl) | 
|  | 1797 | { | 
|  | 1798 | // DI must be valid around rising SK edge | 
|  | 1799 | WRITE_IT_WAIT(dev, ctrl & ~SEEPROM_SK); | 
|  | 1800 | WRITE_IT_WAIT(dev, ctrl | SEEPROM_SK); | 
|  | 1801 | } | 
|  | 1802 |  | 
|  | 1803 | static u16 __init read_bia (const hrz_dev * dev, u16 addr) | 
|  | 1804 | { | 
|  | 1805 | u32 ctrl = rd_regl (dev, CONTROL_0_REG); | 
|  | 1806 |  | 
|  | 1807 | const unsigned int addr_bits = 6; | 
|  | 1808 | const unsigned int data_bits = 16; | 
|  | 1809 |  | 
|  | 1810 | unsigned int i; | 
|  | 1811 |  | 
|  | 1812 | u16 res; | 
|  | 1813 |  | 
|  | 1814 | ctrl &= ~(SEEPROM_CS | SEEPROM_SK | SEEPROM_DI); | 
|  | 1815 | WRITE_IT_WAIT(dev, ctrl); | 
|  | 1816 |  | 
|  | 1817 | // wake Serial EEPROM and send 110 (READ) command | 
|  | 1818 | ctrl |=  (SEEPROM_CS | SEEPROM_DI); | 
|  | 1819 | CLOCK_IT(dev, ctrl); | 
|  | 1820 |  | 
|  | 1821 | ctrl |= SEEPROM_DI; | 
|  | 1822 | CLOCK_IT(dev, ctrl); | 
|  | 1823 |  | 
|  | 1824 | ctrl &= ~SEEPROM_DI; | 
|  | 1825 | CLOCK_IT(dev, ctrl); | 
|  | 1826 |  | 
|  | 1827 | for (i=0; i<addr_bits; i++) { | 
|  | 1828 | if (addr & (1 << (addr_bits-1))) | 
|  | 1829 | ctrl |= SEEPROM_DI; | 
|  | 1830 | else | 
|  | 1831 | ctrl &= ~SEEPROM_DI; | 
|  | 1832 |  | 
|  | 1833 | CLOCK_IT(dev, ctrl); | 
|  | 1834 |  | 
|  | 1835 | addr = addr << 1; | 
|  | 1836 | } | 
|  | 1837 |  | 
|  | 1838 | // we could check that we have DO = 0 here | 
|  | 1839 | ctrl &= ~SEEPROM_DI; | 
|  | 1840 |  | 
|  | 1841 | res = 0; | 
|  | 1842 | for (i=0;i<data_bits;i++) { | 
|  | 1843 | res = res >> 1; | 
|  | 1844 |  | 
|  | 1845 | CLOCK_IT(dev, ctrl); | 
|  | 1846 |  | 
|  | 1847 | if (rd_regl (dev, CONTROL_0_REG) & SEEPROM_DO) | 
|  | 1848 | res |= (1 << (data_bits-1)); | 
|  | 1849 | } | 
|  | 1850 |  | 
|  | 1851 | ctrl &= ~(SEEPROM_SK | SEEPROM_CS); | 
|  | 1852 | WRITE_IT_WAIT(dev, ctrl); | 
|  | 1853 |  | 
|  | 1854 | return res; | 
|  | 1855 | } | 
|  | 1856 |  | 
|  | 1857 | /********** initialise a card **********/ | 
|  | 1858 |  | 
|  | 1859 | static int __init hrz_init (hrz_dev * dev) { | 
|  | 1860 | int onefivefive; | 
|  | 1861 |  | 
|  | 1862 | u16 chan; | 
|  | 1863 |  | 
|  | 1864 | int buff_count; | 
|  | 1865 |  | 
|  | 1866 | HDW * mem; | 
|  | 1867 |  | 
|  | 1868 | cell_buf * tx_desc; | 
|  | 1869 | cell_buf * rx_desc; | 
|  | 1870 |  | 
|  | 1871 | u32 ctrl; | 
|  | 1872 |  | 
|  | 1873 | ctrl = rd_regl (dev, CONTROL_0_REG); | 
|  | 1874 | PRINTD (DBG_INFO, "ctrl0reg is %#x", ctrl); | 
|  | 1875 | onefivefive = ctrl & ATM_LAYER_STATUS; | 
|  | 1876 |  | 
|  | 1877 | if (onefivefive) | 
|  | 1878 | printk (DEV_LABEL ": Horizon Ultra (at 155.52 MBps)"); | 
|  | 1879 | else | 
|  | 1880 | printk (DEV_LABEL ": Horizon (at 25 MBps)"); | 
|  | 1881 |  | 
|  | 1882 | printk (":"); | 
|  | 1883 | // Reset the card to get everything in a known state | 
|  | 1884 |  | 
|  | 1885 | printk (" reset"); | 
|  | 1886 | hrz_reset (dev); | 
|  | 1887 |  | 
|  | 1888 | // Clear all the buffer memory | 
|  | 1889 |  | 
|  | 1890 | printk (" clearing memory"); | 
|  | 1891 |  | 
|  | 1892 | for (mem = (HDW *) memmap; mem < (HDW *) (memmap + 1); ++mem) | 
|  | 1893 | wr_mem (dev, mem, 0); | 
|  | 1894 |  | 
|  | 1895 | printk (" tx channels"); | 
|  | 1896 |  | 
|  | 1897 | // All transmit eight channels are set up as AAL5 ABR channels with | 
|  | 1898 | // a 16us cell spacing. Why? | 
|  | 1899 |  | 
|  | 1900 | // Channel 0 gets the free buffer at 100h, channel 1 gets the free | 
|  | 1901 | // buffer at 110h etc. | 
|  | 1902 |  | 
|  | 1903 | for (chan = 0; chan < TX_CHANS; ++chan) { | 
|  | 1904 | tx_ch_desc * tx_desc = &memmap->tx_descs[chan]; | 
|  | 1905 | cell_buf * buf = &memmap->inittxbufs[chan]; | 
|  | 1906 |  | 
|  | 1907 | // initialise the read and write buffer pointers | 
|  | 1908 | wr_mem (dev, &tx_desc->rd_buf_type, BUF_PTR(buf)); | 
|  | 1909 | wr_mem (dev, &tx_desc->wr_buf_type, BUF_PTR(buf)); | 
|  | 1910 |  | 
|  | 1911 | // set the status of the initial buffers to empty | 
|  | 1912 | wr_mem (dev, &buf->next, BUFF_STATUS_EMPTY); | 
|  | 1913 | } | 
|  | 1914 |  | 
|  | 1915 | // Use space bufn3 at the moment for tx buffers | 
|  | 1916 |  | 
|  | 1917 | printk (" tx buffers"); | 
|  | 1918 |  | 
|  | 1919 | tx_desc = memmap->bufn3; | 
|  | 1920 |  | 
|  | 1921 | wr_mem (dev, &memmap->txfreebufstart.next, BUF_PTR(tx_desc) | BUFF_STATUS_EMPTY); | 
|  | 1922 |  | 
|  | 1923 | for (buff_count = 0; buff_count < BUFN3_SIZE-1; buff_count++) { | 
|  | 1924 | wr_mem (dev, &tx_desc->next, BUF_PTR(tx_desc+1) | BUFF_STATUS_EMPTY); | 
|  | 1925 | tx_desc++; | 
|  | 1926 | } | 
|  | 1927 |  | 
|  | 1928 | wr_mem (dev, &tx_desc->next, BUF_PTR(&memmap->txfreebufend) | BUFF_STATUS_EMPTY); | 
|  | 1929 |  | 
|  | 1930 | // Initialise the transmit free buffer count | 
|  | 1931 | wr_regw (dev, TX_FREE_BUFFER_COUNT_OFF, BUFN3_SIZE); | 
|  | 1932 |  | 
|  | 1933 | printk (" rx channels"); | 
|  | 1934 |  | 
|  | 1935 | // Initialise all of the receive channels to be AAL5 disabled with | 
|  | 1936 | // an interrupt threshold of 0 | 
|  | 1937 |  | 
|  | 1938 | for (chan = 0; chan < RX_CHANS; ++chan) { | 
|  | 1939 | rx_ch_desc * rx_desc = &memmap->rx_descs[chan]; | 
|  | 1940 |  | 
|  | 1941 | wr_mem (dev, &rx_desc->wr_buf_type, CHANNEL_TYPE_AAL5 | RX_CHANNEL_DISABLED); | 
|  | 1942 | } | 
|  | 1943 |  | 
|  | 1944 | printk (" rx buffers"); | 
|  | 1945 |  | 
|  | 1946 | // Use space bufn4 at the moment for rx buffers | 
|  | 1947 |  | 
|  | 1948 | rx_desc = memmap->bufn4; | 
|  | 1949 |  | 
|  | 1950 | wr_mem (dev, &memmap->rxfreebufstart.next, BUF_PTR(rx_desc) | BUFF_STATUS_EMPTY); | 
|  | 1951 |  | 
|  | 1952 | for (buff_count = 0; buff_count < BUFN4_SIZE-1; buff_count++) { | 
|  | 1953 | wr_mem (dev, &rx_desc->next, BUF_PTR(rx_desc+1) | BUFF_STATUS_EMPTY); | 
|  | 1954 |  | 
|  | 1955 | rx_desc++; | 
|  | 1956 | } | 
|  | 1957 |  | 
|  | 1958 | wr_mem (dev, &rx_desc->next, BUF_PTR(&memmap->rxfreebufend) | BUFF_STATUS_EMPTY); | 
|  | 1959 |  | 
|  | 1960 | // Initialise the receive free buffer count | 
|  | 1961 | wr_regw (dev, RX_FREE_BUFFER_COUNT_OFF, BUFN4_SIZE); | 
|  | 1962 |  | 
|  | 1963 | // Initialize Horizons registers | 
|  | 1964 |  | 
|  | 1965 | // TX config | 
|  | 1966 | wr_regw (dev, TX_CONFIG_OFF, | 
|  | 1967 | ABR_ROUND_ROBIN | TX_NORMAL_OPERATION | DRVR_DRVRBAR_ENABLE); | 
|  | 1968 |  | 
|  | 1969 | // RX config. Use 10-x VC bits, x VP bits, non user cells in channel 0. | 
|  | 1970 | wr_regw (dev, RX_CONFIG_OFF, | 
|  | 1971 | DISCARD_UNUSED_VPI_VCI_BITS_SET | NON_USER_CELLS_IN_ONE_CHANNEL | vpi_bits); | 
|  | 1972 |  | 
|  | 1973 | // RX line config | 
|  | 1974 | wr_regw (dev, RX_LINE_CONFIG_OFF, | 
|  | 1975 | LOCK_DETECT_ENABLE | FREQUENCY_DETECT_ENABLE | GXTALOUT_SELECT_DIV4); | 
|  | 1976 |  | 
|  | 1977 | // Set the max AAL5 cell count to be just enough to contain the | 
|  | 1978 | // largest AAL5 frame that the user wants to receive | 
|  | 1979 | wr_regw (dev, MAX_AAL5_CELL_COUNT_OFF, | 
|  | 1980 | (max_rx_size + ATM_AAL5_TRAILER + ATM_CELL_PAYLOAD - 1) / ATM_CELL_PAYLOAD); | 
|  | 1981 |  | 
|  | 1982 | // Enable receive | 
|  | 1983 | wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE); | 
|  | 1984 |  | 
|  | 1985 | printk (" control"); | 
|  | 1986 |  | 
|  | 1987 | // Drive the OE of the LEDs then turn the green LED on | 
|  | 1988 | ctrl |= GREEN_LED_OE | YELLOW_LED_OE | GREEN_LED | YELLOW_LED; | 
|  | 1989 | wr_regl (dev, CONTROL_0_REG, ctrl); | 
|  | 1990 |  | 
|  | 1991 | // Test for a 155-capable card | 
|  | 1992 |  | 
|  | 1993 | if (onefivefive) { | 
|  | 1994 | // Select 155 mode... make this a choice (or: how do we detect | 
|  | 1995 | // external line speed and switch?) | 
|  | 1996 | ctrl |= ATM_LAYER_SELECT; | 
|  | 1997 | wr_regl (dev, CONTROL_0_REG, ctrl); | 
|  | 1998 |  | 
|  | 1999 | // test SUNI-lite vs SAMBA | 
|  | 2000 |  | 
|  | 2001 | // Register 0x00 in the SUNI will have some of bits 3-7 set, and | 
|  | 2002 | // they will always be zero for the SAMBA.  Ha!  Bloody hardware | 
|  | 2003 | // engineers.  It'll never work. | 
|  | 2004 |  | 
|  | 2005 | if (rd_framer (dev, 0) & 0x00f0) { | 
|  | 2006 | // SUNI | 
|  | 2007 | printk (" SUNI"); | 
|  | 2008 |  | 
|  | 2009 | // Reset, just in case | 
|  | 2010 | wr_framer (dev, 0x00, 0x0080); | 
|  | 2011 | wr_framer (dev, 0x00, 0x0000); | 
|  | 2012 |  | 
|  | 2013 | // Configure transmit FIFO | 
|  | 2014 | wr_framer (dev, 0x63, rd_framer (dev, 0x63) | 0x0002); | 
|  | 2015 |  | 
|  | 2016 | // Set line timed mode | 
|  | 2017 | wr_framer (dev, 0x05, rd_framer (dev, 0x05) | 0x0001); | 
|  | 2018 | } else { | 
|  | 2019 | // SAMBA | 
|  | 2020 | printk (" SAMBA"); | 
|  | 2021 |  | 
|  | 2022 | // Reset, just in case | 
|  | 2023 | wr_framer (dev, 0, rd_framer (dev, 0) | 0x0001); | 
|  | 2024 | wr_framer (dev, 0, rd_framer (dev, 0) &~ 0x0001); | 
|  | 2025 |  | 
|  | 2026 | // Turn off diagnostic loopback and enable line-timed mode | 
|  | 2027 | wr_framer (dev, 0, 0x0002); | 
|  | 2028 |  | 
|  | 2029 | // Turn on transmit outputs | 
|  | 2030 | wr_framer (dev, 2, 0x0B80); | 
|  | 2031 | } | 
|  | 2032 | } else { | 
|  | 2033 | // Select 25 mode | 
|  | 2034 | ctrl &= ~ATM_LAYER_SELECT; | 
|  | 2035 |  | 
|  | 2036 | // Madge B154 setup | 
|  | 2037 | // none required? | 
|  | 2038 | } | 
|  | 2039 |  | 
|  | 2040 | printk (" LEDs"); | 
|  | 2041 |  | 
|  | 2042 | GREEN_LED_ON(dev); | 
|  | 2043 | YELLOW_LED_ON(dev); | 
|  | 2044 |  | 
|  | 2045 | printk (" ESI="); | 
|  | 2046 |  | 
|  | 2047 | { | 
|  | 2048 | u16 b = 0; | 
|  | 2049 | int i; | 
|  | 2050 | u8 * esi = dev->atm_dev->esi; | 
|  | 2051 |  | 
|  | 2052 | // in the card I have, EEPROM | 
|  | 2053 | // addresses 0, 1, 2 contain 0 | 
|  | 2054 | // addresess 5, 6 etc. contain ffff | 
|  | 2055 | // NB: Madge prefix is 00 00 f6 (which is 00 00 6f in Ethernet bit order) | 
|  | 2056 | // the read_bia routine gets the BIA in Ethernet bit order | 
|  | 2057 |  | 
|  | 2058 | for (i=0; i < ESI_LEN; ++i) { | 
|  | 2059 | if (i % 2 == 0) | 
|  | 2060 | b = read_bia (dev, i/2 + 2); | 
|  | 2061 | else | 
|  | 2062 | b = b >> 8; | 
|  | 2063 | esi[i] = b & 0xFF; | 
|  | 2064 | printk ("%02x", esi[i]); | 
|  | 2065 | } | 
|  | 2066 | } | 
|  | 2067 |  | 
|  | 2068 | // Enable RX_Q and ?X_COMPLETE interrupts only | 
|  | 2069 | wr_regl (dev, INT_ENABLE_REG_OFF, INTERESTING_INTERRUPTS); | 
|  | 2070 | printk (" IRQ on"); | 
|  | 2071 |  | 
|  | 2072 | printk (".\n"); | 
|  | 2073 |  | 
|  | 2074 | return onefivefive; | 
|  | 2075 | } | 
|  | 2076 |  | 
|  | 2077 | /********** check max_sdu **********/ | 
|  | 2078 |  | 
|  | 2079 | static int check_max_sdu (hrz_aal aal, struct atm_trafprm * tp, unsigned int max_frame_size) { | 
|  | 2080 | PRINTD (DBG_FLOW|DBG_QOS, "check_max_sdu"); | 
|  | 2081 |  | 
|  | 2082 | switch (aal) { | 
|  | 2083 | case aal0: | 
|  | 2084 | if (!(tp->max_sdu)) { | 
|  | 2085 | PRINTD (DBG_QOS, "defaulting max_sdu"); | 
|  | 2086 | tp->max_sdu = ATM_AAL0_SDU; | 
|  | 2087 | } else if (tp->max_sdu != ATM_AAL0_SDU) { | 
|  | 2088 | PRINTD (DBG_QOS|DBG_ERR, "rejecting max_sdu"); | 
|  | 2089 | return -EINVAL; | 
|  | 2090 | } | 
|  | 2091 | break; | 
|  | 2092 | case aal34: | 
|  | 2093 | if (tp->max_sdu == 0 || tp->max_sdu > ATM_MAX_AAL34_PDU) { | 
|  | 2094 | PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default"); | 
|  | 2095 | tp->max_sdu = ATM_MAX_AAL34_PDU; | 
|  | 2096 | } | 
|  | 2097 | break; | 
|  | 2098 | case aal5: | 
|  | 2099 | if (tp->max_sdu == 0 || tp->max_sdu > max_frame_size) { | 
|  | 2100 | PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default"); | 
|  | 2101 | tp->max_sdu = max_frame_size; | 
|  | 2102 | } | 
|  | 2103 | break; | 
|  | 2104 | } | 
|  | 2105 | return 0; | 
|  | 2106 | } | 
|  | 2107 |  | 
|  | 2108 | /********** check pcr **********/ | 
|  | 2109 |  | 
|  | 2110 | // something like this should be part of ATM Linux | 
|  | 2111 | static int atm_pcr_check (struct atm_trafprm * tp, unsigned int pcr) { | 
|  | 2112 | // we are assuming non-UBR, and non-special values of pcr | 
|  | 2113 | if (tp->min_pcr == ATM_MAX_PCR) | 
|  | 2114 | PRINTD (DBG_QOS, "luser gave min_pcr = ATM_MAX_PCR"); | 
|  | 2115 | else if (tp->min_pcr < 0) | 
|  | 2116 | PRINTD (DBG_QOS, "luser gave negative min_pcr"); | 
|  | 2117 | else if (tp->min_pcr && tp->min_pcr > pcr) | 
|  | 2118 | PRINTD (DBG_QOS, "pcr less than min_pcr"); | 
|  | 2119 | else | 
|  | 2120 | // !! max_pcr = UNSPEC (0) is equivalent to max_pcr = MAX (-1) | 
|  | 2121 | // easier to #define ATM_MAX_PCR 0 and have all rates unsigned? | 
|  | 2122 | // [this would get rid of next two conditionals] | 
|  | 2123 | if ((0) && tp->max_pcr == ATM_MAX_PCR) | 
|  | 2124 | PRINTD (DBG_QOS, "luser gave max_pcr = ATM_MAX_PCR"); | 
|  | 2125 | else if ((tp->max_pcr != ATM_MAX_PCR) && tp->max_pcr < 0) | 
|  | 2126 | PRINTD (DBG_QOS, "luser gave negative max_pcr"); | 
|  | 2127 | else if (tp->max_pcr && tp->max_pcr != ATM_MAX_PCR && tp->max_pcr < pcr) | 
|  | 2128 | PRINTD (DBG_QOS, "pcr greater than max_pcr"); | 
|  | 2129 | else { | 
|  | 2130 | // each limit unspecified or not violated | 
|  | 2131 | PRINTD (DBG_QOS, "xBR(pcr) OK"); | 
|  | 2132 | return 0; | 
|  | 2133 | } | 
|  | 2134 | PRINTD (DBG_QOS, "pcr=%u, tp: min_pcr=%d, pcr=%d, max_pcr=%d", | 
|  | 2135 | pcr, tp->min_pcr, tp->pcr, tp->max_pcr); | 
|  | 2136 | return -EINVAL; | 
|  | 2137 | } | 
|  | 2138 |  | 
|  | 2139 | /********** open VC **********/ | 
|  | 2140 |  | 
|  | 2141 | static int hrz_open (struct atm_vcc *atm_vcc) | 
|  | 2142 | { | 
|  | 2143 | int error; | 
|  | 2144 | u16 channel; | 
|  | 2145 |  | 
|  | 2146 | struct atm_qos * qos; | 
|  | 2147 | struct atm_trafprm * txtp; | 
|  | 2148 | struct atm_trafprm * rxtp; | 
|  | 2149 |  | 
|  | 2150 | hrz_dev * dev = HRZ_DEV(atm_vcc->dev); | 
|  | 2151 | hrz_vcc vcc; | 
|  | 2152 | hrz_vcc * vccp; // allocated late | 
|  | 2153 | short vpi = atm_vcc->vpi; | 
|  | 2154 | int vci = atm_vcc->vci; | 
|  | 2155 | PRINTD (DBG_FLOW|DBG_VCC, "hrz_open %x %x", vpi, vci); | 
|  | 2156 |  | 
|  | 2157 | #ifdef ATM_VPI_UNSPEC | 
|  | 2158 | // UNSPEC is deprecated, remove this code eventually | 
|  | 2159 | if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) { | 
|  | 2160 | PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)"); | 
|  | 2161 | return -EINVAL; | 
|  | 2162 | } | 
|  | 2163 | #endif | 
|  | 2164 |  | 
|  | 2165 | error = vpivci_to_channel (&channel, vpi, vci); | 
|  | 2166 | if (error) { | 
|  | 2167 | PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci); | 
|  | 2168 | return error; | 
|  | 2169 | } | 
|  | 2170 |  | 
|  | 2171 | vcc.channel = channel; | 
|  | 2172 | // max speed for the moment | 
|  | 2173 | vcc.tx_rate = 0x0; | 
|  | 2174 |  | 
|  | 2175 | qos = &atm_vcc->qos; | 
|  | 2176 |  | 
|  | 2177 | // check AAL and remember it | 
|  | 2178 | switch (qos->aal) { | 
|  | 2179 | case ATM_AAL0: | 
|  | 2180 | // we would if it were 48 bytes and not 52! | 
|  | 2181 | PRINTD (DBG_QOS|DBG_VCC, "AAL0"); | 
|  | 2182 | vcc.aal = aal0; | 
|  | 2183 | break; | 
|  | 2184 | case ATM_AAL34: | 
|  | 2185 | // we would if I knew how do the SAR! | 
|  | 2186 | PRINTD (DBG_QOS|DBG_VCC, "AAL3/4"); | 
|  | 2187 | vcc.aal = aal34; | 
|  | 2188 | break; | 
|  | 2189 | case ATM_AAL5: | 
|  | 2190 | PRINTD (DBG_QOS|DBG_VCC, "AAL5"); | 
|  | 2191 | vcc.aal = aal5; | 
|  | 2192 | break; | 
|  | 2193 | default: | 
|  | 2194 | PRINTD (DBG_QOS|DBG_VCC, "Bad AAL!"); | 
|  | 2195 | return -EINVAL; | 
|  | 2196 | break; | 
|  | 2197 | } | 
|  | 2198 |  | 
|  | 2199 | // TX traffic parameters | 
|  | 2200 |  | 
|  | 2201 | // there are two, interrelated problems here: 1. the reservation of | 
|  | 2202 | // PCR is not a binary choice, we are given bounds and/or a | 
|  | 2203 | // desirable value; 2. the device is only capable of certain values, | 
|  | 2204 | // most of which are not integers. It is almost certainly acceptable | 
|  | 2205 | // to be off by a maximum of 1 to 10 cps. | 
|  | 2206 |  | 
|  | 2207 | // Pragmatic choice: always store an integral PCR as that which has | 
|  | 2208 | // been allocated, even if we allocate a little (or a lot) less, | 
|  | 2209 | // after rounding. The actual allocation depends on what we can | 
|  | 2210 | // manage with our rate selection algorithm. The rate selection | 
|  | 2211 | // algorithm is given an integral PCR and a tolerance and told | 
|  | 2212 | // whether it should round the value up or down if the tolerance is | 
|  | 2213 | // exceeded; it returns: a) the actual rate selected (rounded up to | 
|  | 2214 | // the nearest integer), b) a bit pattern to feed to the timer | 
|  | 2215 | // register, and c) a failure value if no applicable rate exists. | 
|  | 2216 |  | 
|  | 2217 | // Part of the job is done by atm_pcr_goal which gives us a PCR | 
|  | 2218 | // specification which says: EITHER grab the maximum available PCR | 
|  | 2219 | // (and perhaps a lower bound which we musn't pass), OR grab this | 
|  | 2220 | // amount, rounding down if you have to (and perhaps a lower bound | 
|  | 2221 | // which we musn't pass) OR grab this amount, rounding up if you | 
|  | 2222 | // have to (and perhaps an upper bound which we musn't pass). If any | 
|  | 2223 | // bounds ARE passed we fail. Note that rounding is only rounding to | 
|  | 2224 | // match device limitations, we do not round down to satisfy | 
|  | 2225 | // bandwidth availability even if this would not violate any given | 
|  | 2226 | // lower bound. | 
|  | 2227 |  | 
|  | 2228 | // Note: telephony = 64kb/s = 48 byte cell payload @ 500/3 cells/s | 
|  | 2229 | // (say) so this is not even a binary fixpoint cell rate (but this | 
|  | 2230 | // device can do it). To avoid this sort of hassle we use a | 
|  | 2231 | // tolerance parameter (currently fixed at 10 cps). | 
|  | 2232 |  | 
|  | 2233 | PRINTD (DBG_QOS, "TX:"); | 
|  | 2234 |  | 
|  | 2235 | txtp = &qos->txtp; | 
|  | 2236 |  | 
|  | 2237 | // set up defaults for no traffic | 
|  | 2238 | vcc.tx_rate = 0; | 
|  | 2239 | // who knows what would actually happen if you try and send on this? | 
|  | 2240 | vcc.tx_xbr_bits = IDLE_RATE_TYPE; | 
|  | 2241 | vcc.tx_pcr_bits = CLOCK_DISABLE; | 
|  | 2242 | #if 0 | 
|  | 2243 | vcc.tx_scr_bits = CLOCK_DISABLE; | 
|  | 2244 | vcc.tx_bucket_bits = 0; | 
|  | 2245 | #endif | 
|  | 2246 |  | 
|  | 2247 | if (txtp->traffic_class != ATM_NONE) { | 
|  | 2248 | error = check_max_sdu (vcc.aal, txtp, max_tx_size); | 
|  | 2249 | if (error) { | 
|  | 2250 | PRINTD (DBG_QOS, "TX max_sdu check failed"); | 
|  | 2251 | return error; | 
|  | 2252 | } | 
|  | 2253 |  | 
|  | 2254 | switch (txtp->traffic_class) { | 
|  | 2255 | case ATM_UBR: { | 
|  | 2256 | // we take "the PCR" as a rate-cap | 
|  | 2257 | // not reserved | 
|  | 2258 | vcc.tx_rate = 0; | 
|  | 2259 | make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, NULL); | 
|  | 2260 | vcc.tx_xbr_bits = ABR_RATE_TYPE; | 
|  | 2261 | break; | 
|  | 2262 | } | 
|  | 2263 | #if 0 | 
|  | 2264 | case ATM_ABR: { | 
|  | 2265 | // reserve min, allow up to max | 
|  | 2266 | vcc.tx_rate = 0; // ? | 
|  | 2267 | make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, 0); | 
|  | 2268 | vcc.tx_xbr_bits = ABR_RATE_TYPE; | 
|  | 2269 | break; | 
|  | 2270 | } | 
|  | 2271 | #endif | 
|  | 2272 | case ATM_CBR: { | 
|  | 2273 | int pcr = atm_pcr_goal (txtp); | 
|  | 2274 | rounding r; | 
|  | 2275 | if (!pcr) { | 
|  | 2276 | // down vs. up, remaining bandwidth vs. unlimited bandwidth!! | 
|  | 2277 | // should really have: once someone gets unlimited bandwidth | 
|  | 2278 | // that no more non-UBR channels can be opened until the | 
|  | 2279 | // unlimited one closes?? For the moment, round_down means | 
|  | 2280 | // greedy people actually get something and not nothing | 
|  | 2281 | r = round_down; | 
|  | 2282 | // slight race (no locking) here so we may get -EAGAIN | 
|  | 2283 | // later; the greedy bastards would deserve it :) | 
|  | 2284 | PRINTD (DBG_QOS, "snatching all remaining TX bandwidth"); | 
|  | 2285 | pcr = dev->tx_avail; | 
|  | 2286 | } else if (pcr < 0) { | 
|  | 2287 | r = round_down; | 
|  | 2288 | pcr = -pcr; | 
|  | 2289 | } else { | 
|  | 2290 | r = round_up; | 
|  | 2291 | } | 
|  | 2292 | error = make_rate_with_tolerance (dev, pcr, r, 10, | 
|  | 2293 | &vcc.tx_pcr_bits, &vcc.tx_rate); | 
|  | 2294 | if (error) { | 
|  | 2295 | PRINTD (DBG_QOS, "could not make rate from TX PCR"); | 
|  | 2296 | return error; | 
|  | 2297 | } | 
|  | 2298 | // not really clear what further checking is needed | 
|  | 2299 | error = atm_pcr_check (txtp, vcc.tx_rate); | 
|  | 2300 | if (error) { | 
|  | 2301 | PRINTD (DBG_QOS, "TX PCR failed consistency check"); | 
|  | 2302 | return error; | 
|  | 2303 | } | 
|  | 2304 | vcc.tx_xbr_bits = CBR_RATE_TYPE; | 
|  | 2305 | break; | 
|  | 2306 | } | 
|  | 2307 | #if 0 | 
|  | 2308 | case ATM_VBR: { | 
|  | 2309 | int pcr = atm_pcr_goal (txtp); | 
|  | 2310 | // int scr = atm_scr_goal (txtp); | 
|  | 2311 | int scr = pcr/2; // just for fun | 
|  | 2312 | unsigned int mbs = 60; // just for fun | 
|  | 2313 | rounding pr; | 
|  | 2314 | rounding sr; | 
|  | 2315 | unsigned int bucket; | 
|  | 2316 | if (!pcr) { | 
|  | 2317 | pr = round_nearest; | 
|  | 2318 | pcr = 1<<30; | 
|  | 2319 | } else if (pcr < 0) { | 
|  | 2320 | pr = round_down; | 
|  | 2321 | pcr = -pcr; | 
|  | 2322 | } else { | 
|  | 2323 | pr = round_up; | 
|  | 2324 | } | 
|  | 2325 | error = make_rate_with_tolerance (dev, pcr, pr, 10, | 
|  | 2326 | &vcc.tx_pcr_bits, 0); | 
|  | 2327 | if (!scr) { | 
|  | 2328 | // see comments for PCR with CBR above | 
|  | 2329 | sr = round_down; | 
|  | 2330 | // slight race (no locking) here so we may get -EAGAIN | 
|  | 2331 | // later; the greedy bastards would deserve it :) | 
|  | 2332 | PRINTD (DBG_QOS, "snatching all remaining TX bandwidth"); | 
|  | 2333 | scr = dev->tx_avail; | 
|  | 2334 | } else if (scr < 0) { | 
|  | 2335 | sr = round_down; | 
|  | 2336 | scr = -scr; | 
|  | 2337 | } else { | 
|  | 2338 | sr = round_up; | 
|  | 2339 | } | 
|  | 2340 | error = make_rate_with_tolerance (dev, scr, sr, 10, | 
|  | 2341 | &vcc.tx_scr_bits, &vcc.tx_rate); | 
|  | 2342 | if (error) { | 
|  | 2343 | PRINTD (DBG_QOS, "could not make rate from TX SCR"); | 
|  | 2344 | return error; | 
|  | 2345 | } | 
|  | 2346 | // not really clear what further checking is needed | 
|  | 2347 | // error = atm_scr_check (txtp, vcc.tx_rate); | 
|  | 2348 | if (error) { | 
|  | 2349 | PRINTD (DBG_QOS, "TX SCR failed consistency check"); | 
|  | 2350 | return error; | 
|  | 2351 | } | 
|  | 2352 | // bucket calculations (from a piece of paper...) cell bucket | 
|  | 2353 | // capacity must be largest integer smaller than m(p-s)/p + 1 | 
|  | 2354 | // where m = max burst size, p = pcr, s = scr | 
|  | 2355 | bucket = mbs*(pcr-scr)/pcr; | 
|  | 2356 | if (bucket*pcr != mbs*(pcr-scr)) | 
|  | 2357 | bucket += 1; | 
|  | 2358 | if (bucket > BUCKET_MAX_SIZE) { | 
|  | 2359 | PRINTD (DBG_QOS, "shrinking bucket from %u to %u", | 
|  | 2360 | bucket, BUCKET_MAX_SIZE); | 
|  | 2361 | bucket = BUCKET_MAX_SIZE; | 
|  | 2362 | } | 
|  | 2363 | vcc.tx_xbr_bits = VBR_RATE_TYPE; | 
|  | 2364 | vcc.tx_bucket_bits = bucket; | 
|  | 2365 | break; | 
|  | 2366 | } | 
|  | 2367 | #endif | 
|  | 2368 | default: { | 
|  | 2369 | PRINTD (DBG_QOS, "unsupported TX traffic class"); | 
|  | 2370 | return -EINVAL; | 
|  | 2371 | break; | 
|  | 2372 | } | 
|  | 2373 | } | 
|  | 2374 | } | 
|  | 2375 |  | 
|  | 2376 | // RX traffic parameters | 
|  | 2377 |  | 
|  | 2378 | PRINTD (DBG_QOS, "RX:"); | 
|  | 2379 |  | 
|  | 2380 | rxtp = &qos->rxtp; | 
|  | 2381 |  | 
|  | 2382 | // set up defaults for no traffic | 
|  | 2383 | vcc.rx_rate = 0; | 
|  | 2384 |  | 
|  | 2385 | if (rxtp->traffic_class != ATM_NONE) { | 
|  | 2386 | error = check_max_sdu (vcc.aal, rxtp, max_rx_size); | 
|  | 2387 | if (error) { | 
|  | 2388 | PRINTD (DBG_QOS, "RX max_sdu check failed"); | 
|  | 2389 | return error; | 
|  | 2390 | } | 
|  | 2391 | switch (rxtp->traffic_class) { | 
|  | 2392 | case ATM_UBR: { | 
|  | 2393 | // not reserved | 
|  | 2394 | break; | 
|  | 2395 | } | 
|  | 2396 | #if 0 | 
|  | 2397 | case ATM_ABR: { | 
|  | 2398 | // reserve min | 
|  | 2399 | vcc.rx_rate = 0; // ? | 
|  | 2400 | break; | 
|  | 2401 | } | 
|  | 2402 | #endif | 
|  | 2403 | case ATM_CBR: { | 
|  | 2404 | int pcr = atm_pcr_goal (rxtp); | 
|  | 2405 | if (!pcr) { | 
|  | 2406 | // slight race (no locking) here so we may get -EAGAIN | 
|  | 2407 | // later; the greedy bastards would deserve it :) | 
|  | 2408 | PRINTD (DBG_QOS, "snatching all remaining RX bandwidth"); | 
|  | 2409 | pcr = dev->rx_avail; | 
|  | 2410 | } else if (pcr < 0) { | 
|  | 2411 | pcr = -pcr; | 
|  | 2412 | } | 
|  | 2413 | vcc.rx_rate = pcr; | 
|  | 2414 | // not really clear what further checking is needed | 
|  | 2415 | error = atm_pcr_check (rxtp, vcc.rx_rate); | 
|  | 2416 | if (error) { | 
|  | 2417 | PRINTD (DBG_QOS, "RX PCR failed consistency check"); | 
|  | 2418 | return error; | 
|  | 2419 | } | 
|  | 2420 | break; | 
|  | 2421 | } | 
|  | 2422 | #if 0 | 
|  | 2423 | case ATM_VBR: { | 
|  | 2424 | // int scr = atm_scr_goal (rxtp); | 
|  | 2425 | int scr = 1<<16; // just for fun | 
|  | 2426 | if (!scr) { | 
|  | 2427 | // slight race (no locking) here so we may get -EAGAIN | 
|  | 2428 | // later; the greedy bastards would deserve it :) | 
|  | 2429 | PRINTD (DBG_QOS, "snatching all remaining RX bandwidth"); | 
|  | 2430 | scr = dev->rx_avail; | 
|  | 2431 | } else if (scr < 0) { | 
|  | 2432 | scr = -scr; | 
|  | 2433 | } | 
|  | 2434 | vcc.rx_rate = scr; | 
|  | 2435 | // not really clear what further checking is needed | 
|  | 2436 | // error = atm_scr_check (rxtp, vcc.rx_rate); | 
|  | 2437 | if (error) { | 
|  | 2438 | PRINTD (DBG_QOS, "RX SCR failed consistency check"); | 
|  | 2439 | return error; | 
|  | 2440 | } | 
|  | 2441 | break; | 
|  | 2442 | } | 
|  | 2443 | #endif | 
|  | 2444 | default: { | 
|  | 2445 | PRINTD (DBG_QOS, "unsupported RX traffic class"); | 
|  | 2446 | return -EINVAL; | 
|  | 2447 | break; | 
|  | 2448 | } | 
|  | 2449 | } | 
|  | 2450 | } | 
|  | 2451 |  | 
|  | 2452 |  | 
|  | 2453 | // late abort useful for diagnostics | 
|  | 2454 | if (vcc.aal != aal5) { | 
|  | 2455 | PRINTD (DBG_QOS, "AAL not supported"); | 
|  | 2456 | return -EINVAL; | 
|  | 2457 | } | 
|  | 2458 |  | 
|  | 2459 | // get space for our vcc stuff and copy parameters into it | 
|  | 2460 | vccp = kmalloc (sizeof(hrz_vcc), GFP_KERNEL); | 
|  | 2461 | if (!vccp) { | 
|  | 2462 | PRINTK (KERN_ERR, "out of memory!"); | 
|  | 2463 | return -ENOMEM; | 
|  | 2464 | } | 
|  | 2465 | *vccp = vcc; | 
|  | 2466 |  | 
|  | 2467 | // clear error and grab cell rate resource lock | 
|  | 2468 | error = 0; | 
|  | 2469 | spin_lock (&dev->rate_lock); | 
|  | 2470 |  | 
|  | 2471 | if (vcc.tx_rate > dev->tx_avail) { | 
|  | 2472 | PRINTD (DBG_QOS, "not enough TX PCR left"); | 
|  | 2473 | error = -EAGAIN; | 
|  | 2474 | } | 
|  | 2475 |  | 
|  | 2476 | if (vcc.rx_rate > dev->rx_avail) { | 
|  | 2477 | PRINTD (DBG_QOS, "not enough RX PCR left"); | 
|  | 2478 | error = -EAGAIN; | 
|  | 2479 | } | 
|  | 2480 |  | 
|  | 2481 | if (!error) { | 
|  | 2482 | // really consume cell rates | 
|  | 2483 | dev->tx_avail -= vcc.tx_rate; | 
|  | 2484 | dev->rx_avail -= vcc.rx_rate; | 
|  | 2485 | PRINTD (DBG_QOS|DBG_VCC, "reserving %u TX PCR and %u RX PCR", | 
|  | 2486 | vcc.tx_rate, vcc.rx_rate); | 
|  | 2487 | } | 
|  | 2488 |  | 
|  | 2489 | // release lock and exit on error | 
|  | 2490 | spin_unlock (&dev->rate_lock); | 
|  | 2491 | if (error) { | 
|  | 2492 | PRINTD (DBG_QOS|DBG_VCC, "insufficient cell rate resources"); | 
|  | 2493 | kfree (vccp); | 
|  | 2494 | return error; | 
|  | 2495 | } | 
|  | 2496 |  | 
|  | 2497 | // this is "immediately before allocating the connection identifier | 
|  | 2498 | // in hardware" - so long as the next call does not fail :) | 
|  | 2499 | set_bit(ATM_VF_ADDR,&atm_vcc->flags); | 
|  | 2500 |  | 
|  | 2501 | // any errors here are very serious and should never occur | 
|  | 2502 |  | 
|  | 2503 | if (rxtp->traffic_class != ATM_NONE) { | 
|  | 2504 | if (dev->rxer[channel]) { | 
|  | 2505 | PRINTD (DBG_ERR|DBG_VCC, "VC already open for RX"); | 
|  | 2506 | error = -EBUSY; | 
|  | 2507 | } | 
|  | 2508 | if (!error) | 
|  | 2509 | error = hrz_open_rx (dev, channel); | 
|  | 2510 | if (error) { | 
|  | 2511 | kfree (vccp); | 
|  | 2512 | return error; | 
|  | 2513 | } | 
|  | 2514 | // this link allows RX frames through | 
|  | 2515 | dev->rxer[channel] = atm_vcc; | 
|  | 2516 | } | 
|  | 2517 |  | 
|  | 2518 | // success, set elements of atm_vcc | 
|  | 2519 | atm_vcc->dev_data = (void *) vccp; | 
|  | 2520 |  | 
|  | 2521 | // indicate readiness | 
|  | 2522 | set_bit(ATM_VF_READY,&atm_vcc->flags); | 
|  | 2523 |  | 
|  | 2524 | return 0; | 
|  | 2525 | } | 
|  | 2526 |  | 
|  | 2527 | /********** close VC **********/ | 
|  | 2528 |  | 
|  | 2529 | static void hrz_close (struct atm_vcc * atm_vcc) { | 
|  | 2530 | hrz_dev * dev = HRZ_DEV(atm_vcc->dev); | 
|  | 2531 | hrz_vcc * vcc = HRZ_VCC(atm_vcc); | 
|  | 2532 | u16 channel = vcc->channel; | 
|  | 2533 | PRINTD (DBG_VCC|DBG_FLOW, "hrz_close"); | 
|  | 2534 |  | 
|  | 2535 | // indicate unreadiness | 
|  | 2536 | clear_bit(ATM_VF_READY,&atm_vcc->flags); | 
|  | 2537 |  | 
|  | 2538 | if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) { | 
|  | 2539 | unsigned int i; | 
|  | 2540 |  | 
|  | 2541 | // let any TX on this channel that has started complete | 
|  | 2542 | // no restart, just keep trying | 
|  | 2543 | while (tx_hold (dev)) | 
|  | 2544 | ; | 
|  | 2545 | // remove record of any tx_channel having been setup for this channel | 
|  | 2546 | for (i = 0; i < TX_CHANS; ++i) | 
|  | 2547 | if (dev->tx_channel_record[i] == channel) { | 
|  | 2548 | dev->tx_channel_record[i] = -1; | 
|  | 2549 | break; | 
|  | 2550 | } | 
|  | 2551 | if (dev->last_vc == channel) | 
|  | 2552 | dev->tx_last = -1; | 
|  | 2553 | tx_release (dev); | 
|  | 2554 | } | 
|  | 2555 |  | 
|  | 2556 | if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) { | 
|  | 2557 | // disable RXing - it tries quite hard | 
|  | 2558 | hrz_close_rx (dev, channel); | 
|  | 2559 | // forget the vcc - no more skbs will be pushed | 
|  | 2560 | if (atm_vcc != dev->rxer[channel]) | 
|  | 2561 | PRINTK (KERN_ERR, "%s atm_vcc=%p rxer[channel]=%p", | 
|  | 2562 | "arghhh! we're going to die!", | 
|  | 2563 | atm_vcc, dev->rxer[channel]); | 
|  | 2564 | dev->rxer[channel] = NULL; | 
|  | 2565 | } | 
|  | 2566 |  | 
|  | 2567 | // atomically release our rate reservation | 
|  | 2568 | spin_lock (&dev->rate_lock); | 
|  | 2569 | PRINTD (DBG_QOS|DBG_VCC, "releasing %u TX PCR and %u RX PCR", | 
|  | 2570 | vcc->tx_rate, vcc->rx_rate); | 
|  | 2571 | dev->tx_avail += vcc->tx_rate; | 
|  | 2572 | dev->rx_avail += vcc->rx_rate; | 
|  | 2573 | spin_unlock (&dev->rate_lock); | 
|  | 2574 |  | 
|  | 2575 | // free our structure | 
|  | 2576 | kfree (vcc); | 
|  | 2577 | // say the VPI/VCI is free again | 
|  | 2578 | clear_bit(ATM_VF_ADDR,&atm_vcc->flags); | 
|  | 2579 | } | 
|  | 2580 |  | 
|  | 2581 | #if 0 | 
|  | 2582 | static int hrz_getsockopt (struct atm_vcc * atm_vcc, int level, int optname, | 
|  | 2583 | void *optval, int optlen) { | 
|  | 2584 | hrz_dev * dev = HRZ_DEV(atm_vcc->dev); | 
|  | 2585 | PRINTD (DBG_FLOW|DBG_VCC, "hrz_getsockopt"); | 
|  | 2586 | switch (level) { | 
|  | 2587 | case SOL_SOCKET: | 
|  | 2588 | switch (optname) { | 
|  | 2589 | //	case SO_BCTXOPT: | 
|  | 2590 | //	  break; | 
|  | 2591 | //	case SO_BCRXOPT: | 
|  | 2592 | //	  break; | 
|  | 2593 | default: | 
|  | 2594 | return -ENOPROTOOPT; | 
|  | 2595 | break; | 
|  | 2596 | }; | 
|  | 2597 | break; | 
|  | 2598 | } | 
|  | 2599 | return -EINVAL; | 
|  | 2600 | } | 
|  | 2601 |  | 
|  | 2602 | static int hrz_setsockopt (struct atm_vcc * atm_vcc, int level, int optname, | 
|  | 2603 | void *optval, int optlen) { | 
|  | 2604 | hrz_dev * dev = HRZ_DEV(atm_vcc->dev); | 
|  | 2605 | PRINTD (DBG_FLOW|DBG_VCC, "hrz_setsockopt"); | 
|  | 2606 | switch (level) { | 
|  | 2607 | case SOL_SOCKET: | 
|  | 2608 | switch (optname) { | 
|  | 2609 | //	case SO_BCTXOPT: | 
|  | 2610 | //	  break; | 
|  | 2611 | //	case SO_BCRXOPT: | 
|  | 2612 | //	  break; | 
|  | 2613 | default: | 
|  | 2614 | return -ENOPROTOOPT; | 
|  | 2615 | break; | 
|  | 2616 | }; | 
|  | 2617 | break; | 
|  | 2618 | } | 
|  | 2619 | return -EINVAL; | 
|  | 2620 | } | 
|  | 2621 | #endif | 
|  | 2622 |  | 
|  | 2623 | #if 0 | 
|  | 2624 | static int hrz_ioctl (struct atm_dev * atm_dev, unsigned int cmd, void *arg) { | 
|  | 2625 | hrz_dev * dev = HRZ_DEV(atm_dev); | 
|  | 2626 | PRINTD (DBG_FLOW, "hrz_ioctl"); | 
|  | 2627 | return -1; | 
|  | 2628 | } | 
|  | 2629 |  | 
|  | 2630 | unsigned char hrz_phy_get (struct atm_dev * atm_dev, unsigned long addr) { | 
|  | 2631 | hrz_dev * dev = HRZ_DEV(atm_dev); | 
|  | 2632 | PRINTD (DBG_FLOW, "hrz_phy_get"); | 
|  | 2633 | return 0; | 
|  | 2634 | } | 
|  | 2635 |  | 
|  | 2636 | static void hrz_phy_put (struct atm_dev * atm_dev, unsigned char value, | 
|  | 2637 | unsigned long addr) { | 
|  | 2638 | hrz_dev * dev = HRZ_DEV(atm_dev); | 
|  | 2639 | PRINTD (DBG_FLOW, "hrz_phy_put"); | 
|  | 2640 | } | 
|  | 2641 |  | 
|  | 2642 | static int hrz_change_qos (struct atm_vcc * atm_vcc, struct atm_qos *qos, int flgs) { | 
|  | 2643 | hrz_dev * dev = HRZ_DEV(vcc->dev); | 
|  | 2644 | PRINTD (DBG_FLOW, "hrz_change_qos"); | 
|  | 2645 | return -1; | 
|  | 2646 | } | 
|  | 2647 | #endif | 
|  | 2648 |  | 
|  | 2649 | /********** proc file contents **********/ | 
|  | 2650 |  | 
|  | 2651 | static int hrz_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) { | 
|  | 2652 | hrz_dev * dev = HRZ_DEV(atm_dev); | 
|  | 2653 | int left = *pos; | 
|  | 2654 | PRINTD (DBG_FLOW, "hrz_proc_read"); | 
|  | 2655 |  | 
|  | 2656 | /* more diagnostics here? */ | 
|  | 2657 |  | 
|  | 2658 | #if 0 | 
|  | 2659 | if (!left--) { | 
|  | 2660 | unsigned int count = sprintf (page, "vbr buckets:"); | 
|  | 2661 | unsigned int i; | 
|  | 2662 | for (i = 0; i < TX_CHANS; ++i) | 
|  | 2663 | count += sprintf (page, " %u/%u", | 
|  | 2664 | query_tx_channel_config (dev, i, BUCKET_FULLNESS_ACCESS), | 
|  | 2665 | query_tx_channel_config (dev, i, BUCKET_CAPACITY_ACCESS)); | 
|  | 2666 | count += sprintf (page+count, ".\n"); | 
|  | 2667 | return count; | 
|  | 2668 | } | 
|  | 2669 | #endif | 
|  | 2670 |  | 
|  | 2671 | if (!left--) | 
|  | 2672 | return sprintf (page, | 
|  | 2673 | "cells: TX %lu, RX %lu, HEC errors %lu, unassigned %lu.\n", | 
|  | 2674 | dev->tx_cell_count, dev->rx_cell_count, | 
|  | 2675 | dev->hec_error_count, dev->unassigned_cell_count); | 
|  | 2676 |  | 
|  | 2677 | if (!left--) | 
|  | 2678 | return sprintf (page, | 
|  | 2679 | "free cell buffers: TX %hu, RX %hu+%hu.\n", | 
|  | 2680 | rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF), | 
|  | 2681 | rd_regw (dev, RX_FREE_BUFFER_COUNT_OFF), | 
|  | 2682 | dev->noof_spare_buffers); | 
|  | 2683 |  | 
|  | 2684 | if (!left--) | 
|  | 2685 | return sprintf (page, | 
|  | 2686 | "cps remaining: TX %u, RX %u\n", | 
|  | 2687 | dev->tx_avail, dev->rx_avail); | 
|  | 2688 |  | 
|  | 2689 | return 0; | 
|  | 2690 | } | 
|  | 2691 |  | 
|  | 2692 | static const struct atmdev_ops hrz_ops = { | 
|  | 2693 | .open	= hrz_open, | 
|  | 2694 | .close	= hrz_close, | 
|  | 2695 | .send	= hrz_send, | 
|  | 2696 | .proc_read	= hrz_proc_read, | 
|  | 2697 | .owner	= THIS_MODULE, | 
|  | 2698 | }; | 
|  | 2699 |  | 
|  | 2700 | static int __devinit hrz_probe(struct pci_dev *pci_dev, const struct pci_device_id *pci_ent) | 
|  | 2701 | { | 
|  | 2702 | hrz_dev * dev; | 
|  | 2703 | int err = 0; | 
|  | 2704 |  | 
|  | 2705 | // adapter slot free, read resources from PCI configuration space | 
|  | 2706 | u32 iobase = pci_resource_start (pci_dev, 0); | 
|  | 2707 | u32 * membase = bus_to_virt (pci_resource_start (pci_dev, 1)); | 
|  | 2708 | unsigned int irq; | 
|  | 2709 | unsigned char lat; | 
|  | 2710 |  | 
|  | 2711 | PRINTD (DBG_FLOW, "hrz_probe"); | 
|  | 2712 |  | 
|  | 2713 | if (pci_enable_device(pci_dev)) | 
|  | 2714 | return -EINVAL; | 
|  | 2715 |  | 
|  | 2716 | /* XXX DEV_LABEL is a guess */ | 
|  | 2717 | if (!request_region(iobase, HRZ_IO_EXTENT, DEV_LABEL)) { | 
|  | 2718 | return -EINVAL; | 
|  | 2719 | goto out_disable; | 
|  | 2720 | } | 
|  | 2721 |  | 
|  | 2722 | dev = kmalloc(sizeof(hrz_dev), GFP_KERNEL); | 
|  | 2723 | if (!dev) { | 
|  | 2724 | // perhaps we should be nice: deregister all adapters and abort? | 
|  | 2725 | PRINTD(DBG_ERR, "out of memory"); | 
|  | 2726 | err = -ENOMEM; | 
|  | 2727 | goto out_release; | 
|  | 2728 | } | 
|  | 2729 |  | 
|  | 2730 | memset(dev, 0, sizeof(hrz_dev)); | 
|  | 2731 |  | 
|  | 2732 | pci_set_drvdata(pci_dev, dev); | 
|  | 2733 |  | 
|  | 2734 | // grab IRQ and install handler - move this someplace more sensible | 
|  | 2735 | irq = pci_dev->irq; | 
|  | 2736 | if (request_irq(irq, | 
|  | 2737 | interrupt_handler, | 
|  | 2738 | SA_SHIRQ, /* irqflags guess */ | 
|  | 2739 | DEV_LABEL, /* name guess */ | 
|  | 2740 | dev)) { | 
|  | 2741 | PRINTD(DBG_WARN, "request IRQ failed!"); | 
|  | 2742 | err = -EINVAL; | 
|  | 2743 | goto out_free; | 
|  | 2744 | } | 
|  | 2745 |  | 
|  | 2746 | PRINTD(DBG_INFO, "found Madge ATM adapter (hrz) at: IO %x, IRQ %u, MEM %p", | 
|  | 2747 | iobase, irq, membase); | 
|  | 2748 |  | 
|  | 2749 | dev->atm_dev = atm_dev_register(DEV_LABEL, &hrz_ops, -1, NULL); | 
|  | 2750 | if (!(dev->atm_dev)) { | 
|  | 2751 | PRINTD(DBG_ERR, "failed to register Madge ATM adapter"); | 
|  | 2752 | err = -EINVAL; | 
|  | 2753 | goto out_free_irq; | 
|  | 2754 | } | 
|  | 2755 |  | 
|  | 2756 | PRINTD(DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p", | 
|  | 2757 | dev->atm_dev->number, dev, dev->atm_dev); | 
|  | 2758 | dev->atm_dev->dev_data = (void *) dev; | 
|  | 2759 | dev->pci_dev = pci_dev; | 
|  | 2760 |  | 
|  | 2761 | // enable bus master accesses | 
|  | 2762 | pci_set_master(pci_dev); | 
|  | 2763 |  | 
|  | 2764 | // frobnicate latency (upwards, usually) | 
|  | 2765 | pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &lat); | 
|  | 2766 | if (pci_lat) { | 
|  | 2767 | PRINTD(DBG_INFO, "%s PCI latency timer from %hu to %hu", | 
|  | 2768 | "changing", lat, pci_lat); | 
|  | 2769 | pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat); | 
|  | 2770 | } else if (lat < MIN_PCI_LATENCY) { | 
|  | 2771 | PRINTK(KERN_INFO, "%s PCI latency timer from %hu to %hu", | 
|  | 2772 | "increasing", lat, MIN_PCI_LATENCY); | 
|  | 2773 | pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, MIN_PCI_LATENCY); | 
|  | 2774 | } | 
|  | 2775 |  | 
|  | 2776 | dev->iobase = iobase; | 
|  | 2777 | dev->irq = irq; | 
|  | 2778 | dev->membase = membase; | 
|  | 2779 |  | 
|  | 2780 | dev->rx_q_entry = dev->rx_q_reset = &memmap->rx_q_entries[0]; | 
|  | 2781 | dev->rx_q_wrap  = &memmap->rx_q_entries[RX_CHANS-1]; | 
|  | 2782 |  | 
|  | 2783 | // these next three are performance hacks | 
|  | 2784 | dev->last_vc = -1; | 
|  | 2785 | dev->tx_last = -1; | 
|  | 2786 | dev->tx_idle = 0; | 
|  | 2787 |  | 
|  | 2788 | dev->tx_regions = 0; | 
|  | 2789 | dev->tx_bytes = 0; | 
|  | 2790 | dev->tx_skb = NULL; | 
|  | 2791 | dev->tx_iovec = NULL; | 
|  | 2792 |  | 
|  | 2793 | dev->tx_cell_count = 0; | 
|  | 2794 | dev->rx_cell_count = 0; | 
|  | 2795 | dev->hec_error_count = 0; | 
|  | 2796 | dev->unassigned_cell_count = 0; | 
|  | 2797 |  | 
|  | 2798 | dev->noof_spare_buffers = 0; | 
|  | 2799 |  | 
|  | 2800 | { | 
|  | 2801 | unsigned int i; | 
|  | 2802 | for (i = 0; i < TX_CHANS; ++i) | 
|  | 2803 | dev->tx_channel_record[i] = -1; | 
|  | 2804 | } | 
|  | 2805 |  | 
|  | 2806 | dev->flags = 0; | 
|  | 2807 |  | 
|  | 2808 | // Allocate cell rates and remember ASIC version | 
|  | 2809 | // Fibre: ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53 | 
|  | 2810 | // Copper: (WRONG) we want 6 into the above, close to 25Mb/s | 
|  | 2811 | // Copper: (plagarise!) 25600000/8/270*260/53 - n/53 | 
|  | 2812 |  | 
|  | 2813 | if (hrz_init(dev)) { | 
|  | 2814 | // to be really pedantic, this should be ATM_OC3c_PCR | 
|  | 2815 | dev->tx_avail = ATM_OC3_PCR; | 
|  | 2816 | dev->rx_avail = ATM_OC3_PCR; | 
|  | 2817 | set_bit(ultra, &dev->flags); // NOT "|= ultra" ! | 
|  | 2818 | } else { | 
|  | 2819 | dev->tx_avail = ((25600000/8)*26)/(27*53); | 
|  | 2820 | dev->rx_avail = ((25600000/8)*26)/(27*53); | 
|  | 2821 | PRINTD(DBG_WARN, "Buggy ASIC: no TX bus-mastering."); | 
|  | 2822 | } | 
|  | 2823 |  | 
|  | 2824 | // rate changes spinlock | 
|  | 2825 | spin_lock_init(&dev->rate_lock); | 
|  | 2826 |  | 
|  | 2827 | // on-board memory access spinlock; we want atomic reads and | 
|  | 2828 | // writes to adapter memory (handles IRQ and SMP) | 
|  | 2829 | spin_lock_init(&dev->mem_lock); | 
|  | 2830 |  | 
|  | 2831 | init_waitqueue_head(&dev->tx_queue); | 
|  | 2832 |  | 
|  | 2833 | // vpi in 0..4, vci in 6..10 | 
|  | 2834 | dev->atm_dev->ci_range.vpi_bits = vpi_bits; | 
|  | 2835 | dev->atm_dev->ci_range.vci_bits = 10-vpi_bits; | 
|  | 2836 |  | 
|  | 2837 | init_timer(&dev->housekeeping); | 
|  | 2838 | dev->housekeeping.function = do_housekeeping; | 
|  | 2839 | dev->housekeeping.data = (unsigned long) dev; | 
|  | 2840 | mod_timer(&dev->housekeeping, jiffies); | 
|  | 2841 |  | 
|  | 2842 | out: | 
|  | 2843 | return err; | 
|  | 2844 |  | 
|  | 2845 | out_free_irq: | 
|  | 2846 | free_irq(dev->irq, dev); | 
|  | 2847 | out_free: | 
|  | 2848 | kfree(dev); | 
|  | 2849 | out_release: | 
|  | 2850 | release_region(iobase, HRZ_IO_EXTENT); | 
|  | 2851 | out_disable: | 
|  | 2852 | pci_disable_device(pci_dev); | 
|  | 2853 | goto out; | 
|  | 2854 | } | 
|  | 2855 |  | 
|  | 2856 | static void __devexit hrz_remove_one(struct pci_dev *pci_dev) | 
|  | 2857 | { | 
|  | 2858 | hrz_dev *dev; | 
|  | 2859 |  | 
|  | 2860 | dev = pci_get_drvdata(pci_dev); | 
|  | 2861 |  | 
|  | 2862 | PRINTD(DBG_INFO, "closing %p (atm_dev = %p)", dev, dev->atm_dev); | 
|  | 2863 | del_timer_sync(&dev->housekeeping); | 
|  | 2864 | hrz_reset(dev); | 
|  | 2865 | atm_dev_deregister(dev->atm_dev); | 
|  | 2866 | free_irq(dev->irq, dev); | 
|  | 2867 | release_region(dev->iobase, HRZ_IO_EXTENT); | 
|  | 2868 | kfree(dev); | 
|  | 2869 |  | 
|  | 2870 | pci_disable_device(pci_dev); | 
|  | 2871 | } | 
|  | 2872 |  | 
|  | 2873 | static void __init hrz_check_args (void) { | 
|  | 2874 | #ifdef DEBUG_HORIZON | 
|  | 2875 | PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK); | 
|  | 2876 | #else | 
|  | 2877 | if (debug) | 
|  | 2878 | PRINTK (KERN_NOTICE, "no debug support in this image"); | 
|  | 2879 | #endif | 
|  | 2880 |  | 
|  | 2881 | if (vpi_bits > HRZ_MAX_VPI) | 
|  | 2882 | PRINTK (KERN_ERR, "vpi_bits has been limited to %hu", | 
|  | 2883 | vpi_bits = HRZ_MAX_VPI); | 
|  | 2884 |  | 
|  | 2885 | if (max_tx_size < 0 || max_tx_size > TX_AAL5_LIMIT) | 
|  | 2886 | PRINTK (KERN_NOTICE, "max_tx_size has been limited to %hu", | 
|  | 2887 | max_tx_size = TX_AAL5_LIMIT); | 
|  | 2888 |  | 
|  | 2889 | if (max_rx_size < 0 || max_rx_size > RX_AAL5_LIMIT) | 
|  | 2890 | PRINTK (KERN_NOTICE, "max_rx_size has been limited to %hu", | 
|  | 2891 | max_rx_size = RX_AAL5_LIMIT); | 
|  | 2892 |  | 
|  | 2893 | return; | 
|  | 2894 | } | 
|  | 2895 |  | 
|  | 2896 | MODULE_AUTHOR(maintainer_string); | 
|  | 2897 | MODULE_DESCRIPTION(description_string); | 
|  | 2898 | MODULE_LICENSE("GPL"); | 
|  | 2899 | module_param(debug, ushort, 0644); | 
|  | 2900 | module_param(vpi_bits, ushort, 0); | 
|  | 2901 | module_param(max_tx_size, int, 0); | 
|  | 2902 | module_param(max_rx_size, int, 0); | 
|  | 2903 | module_param(pci_lat, byte, 0); | 
|  | 2904 | MODULE_PARM_DESC(debug, "debug bitmap, see .h file"); | 
|  | 2905 | MODULE_PARM_DESC(vpi_bits, "number of bits (0..4) to allocate to VPIs"); | 
|  | 2906 | MODULE_PARM_DESC(max_tx_size, "maximum size of TX AAL5 frames"); | 
|  | 2907 | MODULE_PARM_DESC(max_rx_size, "maximum size of RX AAL5 frames"); | 
|  | 2908 | MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles"); | 
|  | 2909 |  | 
|  | 2910 | static struct pci_device_id hrz_pci_tbl[] = { | 
|  | 2911 | { PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_HORIZON, PCI_ANY_ID, PCI_ANY_ID, | 
|  | 2912 | 0, 0, 0 }, | 
|  | 2913 | { 0, } | 
|  | 2914 | }; | 
|  | 2915 |  | 
|  | 2916 | MODULE_DEVICE_TABLE(pci, hrz_pci_tbl); | 
|  | 2917 |  | 
|  | 2918 | static struct pci_driver hrz_driver = { | 
|  | 2919 | .name =		"horizon", | 
|  | 2920 | .probe =	hrz_probe, | 
|  | 2921 | .remove =	__devexit_p(hrz_remove_one), | 
|  | 2922 | .id_table =	hrz_pci_tbl, | 
|  | 2923 | }; | 
|  | 2924 |  | 
|  | 2925 | /********** module entry **********/ | 
|  | 2926 |  | 
|  | 2927 | static int __init hrz_module_init (void) { | 
|  | 2928 | // sanity check - cast is needed since printk does not support %Zu | 
|  | 2929 | if (sizeof(struct MEMMAP) != 128*1024/4) { | 
|  | 2930 | PRINTK (KERN_ERR, "Fix struct MEMMAP (is %lu fakewords).", | 
|  | 2931 | (unsigned long) sizeof(struct MEMMAP)); | 
|  | 2932 | return -ENOMEM; | 
|  | 2933 | } | 
|  | 2934 |  | 
|  | 2935 | show_version(); | 
|  | 2936 |  | 
|  | 2937 | // check arguments | 
|  | 2938 | hrz_check_args(); | 
|  | 2939 |  | 
|  | 2940 | // get the juice | 
|  | 2941 | return pci_register_driver(&hrz_driver); | 
|  | 2942 | } | 
|  | 2943 |  | 
|  | 2944 | /********** module exit **********/ | 
|  | 2945 |  | 
|  | 2946 | static void __exit hrz_module_exit (void) { | 
|  | 2947 | PRINTD (DBG_FLOW, "cleanup_module"); | 
|  | 2948 |  | 
|  | 2949 | return pci_unregister_driver(&hrz_driver); | 
|  | 2950 | } | 
|  | 2951 |  | 
|  | 2952 | module_init(hrz_module_init); | 
|  | 2953 | module_exit(hrz_module_exit); |