| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  * linux/drivers/ide/ide-iops.c	Version 0.37	Mar 05, 2003 | 
 | 3 |  * | 
 | 4 |  *  Copyright (C) 2000-2002	Andre Hedrick <andre@linux-ide.org> | 
 | 5 |  *  Copyright (C) 2003		Red Hat <alan@redhat.com> | 
 | 6 |  * | 
 | 7 |  */ | 
 | 8 |  | 
 | 9 | #include <linux/config.h> | 
 | 10 | #include <linux/module.h> | 
 | 11 | #include <linux/types.h> | 
 | 12 | #include <linux/string.h> | 
 | 13 | #include <linux/kernel.h> | 
 | 14 | #include <linux/timer.h> | 
 | 15 | #include <linux/mm.h> | 
 | 16 | #include <linux/interrupt.h> | 
 | 17 | #include <linux/major.h> | 
 | 18 | #include <linux/errno.h> | 
 | 19 | #include <linux/genhd.h> | 
 | 20 | #include <linux/blkpg.h> | 
 | 21 | #include <linux/slab.h> | 
 | 22 | #include <linux/pci.h> | 
 | 23 | #include <linux/delay.h> | 
 | 24 | #include <linux/hdreg.h> | 
 | 25 | #include <linux/ide.h> | 
 | 26 | #include <linux/bitops.h> | 
 | 27 |  | 
 | 28 | #include <asm/byteorder.h> | 
 | 29 | #include <asm/irq.h> | 
 | 30 | #include <asm/uaccess.h> | 
 | 31 | #include <asm/io.h> | 
 | 32 |  | 
 | 33 | /* | 
 | 34 |  *	Conventional PIO operations for ATA devices | 
 | 35 |  */ | 
 | 36 |  | 
 | 37 | static u8 ide_inb (unsigned long port) | 
 | 38 | { | 
 | 39 | 	return (u8) inb(port); | 
 | 40 | } | 
 | 41 |  | 
 | 42 | static u16 ide_inw (unsigned long port) | 
 | 43 | { | 
 | 44 | 	return (u16) inw(port); | 
 | 45 | } | 
 | 46 |  | 
 | 47 | static void ide_insw (unsigned long port, void *addr, u32 count) | 
 | 48 | { | 
 | 49 | 	insw(port, addr, count); | 
 | 50 | } | 
 | 51 |  | 
 | 52 | static u32 ide_inl (unsigned long port) | 
 | 53 | { | 
 | 54 | 	return (u32) inl(port); | 
 | 55 | } | 
 | 56 |  | 
 | 57 | static void ide_insl (unsigned long port, void *addr, u32 count) | 
 | 58 | { | 
 | 59 | 	insl(port, addr, count); | 
 | 60 | } | 
 | 61 |  | 
 | 62 | static void ide_outb (u8 val, unsigned long port) | 
 | 63 | { | 
 | 64 | 	outb(val, port); | 
 | 65 | } | 
 | 66 |  | 
 | 67 | static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port) | 
 | 68 | { | 
 | 69 | 	outb(addr, port); | 
 | 70 | } | 
 | 71 |  | 
 | 72 | static void ide_outw (u16 val, unsigned long port) | 
 | 73 | { | 
 | 74 | 	outw(val, port); | 
 | 75 | } | 
 | 76 |  | 
 | 77 | static void ide_outsw (unsigned long port, void *addr, u32 count) | 
 | 78 | { | 
 | 79 | 	outsw(port, addr, count); | 
 | 80 | } | 
 | 81 |  | 
 | 82 | static void ide_outl (u32 val, unsigned long port) | 
 | 83 | { | 
 | 84 | 	outl(val, port); | 
 | 85 | } | 
 | 86 |  | 
 | 87 | static void ide_outsl (unsigned long port, void *addr, u32 count) | 
 | 88 | { | 
 | 89 | 	outsl(port, addr, count); | 
 | 90 | } | 
 | 91 |  | 
 | 92 | void default_hwif_iops (ide_hwif_t *hwif) | 
 | 93 | { | 
 | 94 | 	hwif->OUTB	= ide_outb; | 
 | 95 | 	hwif->OUTBSYNC	= ide_outbsync; | 
 | 96 | 	hwif->OUTW	= ide_outw; | 
 | 97 | 	hwif->OUTL	= ide_outl; | 
 | 98 | 	hwif->OUTSW	= ide_outsw; | 
 | 99 | 	hwif->OUTSL	= ide_outsl; | 
 | 100 | 	hwif->INB	= ide_inb; | 
 | 101 | 	hwif->INW	= ide_inw; | 
 | 102 | 	hwif->INL	= ide_inl; | 
 | 103 | 	hwif->INSW	= ide_insw; | 
 | 104 | 	hwif->INSL	= ide_insl; | 
 | 105 | } | 
 | 106 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 107 | /* | 
 | 108 |  *	MMIO operations, typically used for SATA controllers | 
 | 109 |  */ | 
 | 110 |  | 
 | 111 | static u8 ide_mm_inb (unsigned long port) | 
 | 112 | { | 
 | 113 | 	return (u8) readb((void __iomem *) port); | 
 | 114 | } | 
 | 115 |  | 
 | 116 | static u16 ide_mm_inw (unsigned long port) | 
 | 117 | { | 
 | 118 | 	return (u16) readw((void __iomem *) port); | 
 | 119 | } | 
 | 120 |  | 
 | 121 | static void ide_mm_insw (unsigned long port, void *addr, u32 count) | 
 | 122 | { | 
 | 123 | 	__ide_mm_insw((void __iomem *) port, addr, count); | 
 | 124 | } | 
 | 125 |  | 
 | 126 | static u32 ide_mm_inl (unsigned long port) | 
 | 127 | { | 
 | 128 | 	return (u32) readl((void __iomem *) port); | 
 | 129 | } | 
 | 130 |  | 
 | 131 | static void ide_mm_insl (unsigned long port, void *addr, u32 count) | 
 | 132 | { | 
 | 133 | 	__ide_mm_insl((void __iomem *) port, addr, count); | 
 | 134 | } | 
 | 135 |  | 
 | 136 | static void ide_mm_outb (u8 value, unsigned long port) | 
 | 137 | { | 
 | 138 | 	writeb(value, (void __iomem *) port); | 
 | 139 | } | 
 | 140 |  | 
 | 141 | static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port) | 
 | 142 | { | 
 | 143 | 	writeb(value, (void __iomem *) port); | 
 | 144 | } | 
 | 145 |  | 
 | 146 | static void ide_mm_outw (u16 value, unsigned long port) | 
 | 147 | { | 
 | 148 | 	writew(value, (void __iomem *) port); | 
 | 149 | } | 
 | 150 |  | 
 | 151 | static void ide_mm_outsw (unsigned long port, void *addr, u32 count) | 
 | 152 | { | 
 | 153 | 	__ide_mm_outsw((void __iomem *) port, addr, count); | 
 | 154 | } | 
 | 155 |  | 
 | 156 | static void ide_mm_outl (u32 value, unsigned long port) | 
 | 157 | { | 
 | 158 | 	writel(value, (void __iomem *) port); | 
 | 159 | } | 
 | 160 |  | 
 | 161 | static void ide_mm_outsl (unsigned long port, void *addr, u32 count) | 
 | 162 | { | 
 | 163 | 	__ide_mm_outsl((void __iomem *) port, addr, count); | 
 | 164 | } | 
 | 165 |  | 
 | 166 | void default_hwif_mmiops (ide_hwif_t *hwif) | 
 | 167 | { | 
 | 168 | 	hwif->OUTB	= ide_mm_outb; | 
 | 169 | 	/* Most systems will need to override OUTBSYNC, alas however | 
 | 170 | 	   this one is controller specific! */ | 
 | 171 | 	hwif->OUTBSYNC	= ide_mm_outbsync; | 
 | 172 | 	hwif->OUTW	= ide_mm_outw; | 
 | 173 | 	hwif->OUTL	= ide_mm_outl; | 
 | 174 | 	hwif->OUTSW	= ide_mm_outsw; | 
 | 175 | 	hwif->OUTSL	= ide_mm_outsl; | 
 | 176 | 	hwif->INB	= ide_mm_inb; | 
 | 177 | 	hwif->INW	= ide_mm_inw; | 
 | 178 | 	hwif->INL	= ide_mm_inl; | 
 | 179 | 	hwif->INSW	= ide_mm_insw; | 
 | 180 | 	hwif->INSL	= ide_mm_insl; | 
 | 181 | } | 
 | 182 |  | 
 | 183 | EXPORT_SYMBOL(default_hwif_mmiops); | 
 | 184 |  | 
 | 185 | u32 ide_read_24 (ide_drive_t *drive) | 
 | 186 | { | 
 | 187 | 	u8 hcyl = HWIF(drive)->INB(IDE_HCYL_REG); | 
 | 188 | 	u8 lcyl = HWIF(drive)->INB(IDE_LCYL_REG); | 
 | 189 | 	u8 sect = HWIF(drive)->INB(IDE_SECTOR_REG); | 
 | 190 | 	return (hcyl<<16)|(lcyl<<8)|sect; | 
 | 191 | } | 
 | 192 |  | 
 | 193 | void SELECT_DRIVE (ide_drive_t *drive) | 
 | 194 | { | 
 | 195 | 	if (HWIF(drive)->selectproc) | 
 | 196 | 		HWIF(drive)->selectproc(drive); | 
 | 197 | 	HWIF(drive)->OUTB(drive->select.all, IDE_SELECT_REG); | 
 | 198 | } | 
 | 199 |  | 
 | 200 | EXPORT_SYMBOL(SELECT_DRIVE); | 
 | 201 |  | 
 | 202 | void SELECT_INTERRUPT (ide_drive_t *drive) | 
 | 203 | { | 
 | 204 | 	if (HWIF(drive)->intrproc) | 
 | 205 | 		HWIF(drive)->intrproc(drive); | 
 | 206 | 	else | 
 | 207 | 		HWIF(drive)->OUTB(drive->ctl|2, IDE_CONTROL_REG); | 
 | 208 | } | 
 | 209 |  | 
 | 210 | void SELECT_MASK (ide_drive_t *drive, int mask) | 
 | 211 | { | 
 | 212 | 	if (HWIF(drive)->maskproc) | 
 | 213 | 		HWIF(drive)->maskproc(drive, mask); | 
 | 214 | } | 
 | 215 |  | 
 | 216 | void QUIRK_LIST (ide_drive_t *drive) | 
 | 217 | { | 
 | 218 | 	if (HWIF(drive)->quirkproc) | 
 | 219 | 		drive->quirk_list = HWIF(drive)->quirkproc(drive); | 
 | 220 | } | 
 | 221 |  | 
 | 222 | /* | 
 | 223 |  * Some localbus EIDE interfaces require a special access sequence | 
 | 224 |  * when using 32-bit I/O instructions to transfer data.  We call this | 
 | 225 |  * the "vlb_sync" sequence, which consists of three successive reads | 
 | 226 |  * of the sector count register location, with interrupts disabled | 
 | 227 |  * to ensure that the reads all happen together. | 
 | 228 |  */ | 
 | 229 | static void ata_vlb_sync(ide_drive_t *drive, unsigned long port) | 
 | 230 | { | 
 | 231 | 	(void) HWIF(drive)->INB(port); | 
 | 232 | 	(void) HWIF(drive)->INB(port); | 
 | 233 | 	(void) HWIF(drive)->INB(port); | 
 | 234 | } | 
 | 235 |  | 
 | 236 | /* | 
 | 237 |  * This is used for most PIO data transfers *from* the IDE interface | 
 | 238 |  */ | 
 | 239 | static void ata_input_data(ide_drive_t *drive, void *buffer, u32 wcount) | 
 | 240 | { | 
 | 241 | 	ide_hwif_t *hwif	= HWIF(drive); | 
 | 242 | 	u8 io_32bit		= drive->io_32bit; | 
 | 243 |  | 
 | 244 | 	if (io_32bit) { | 
 | 245 | 		if (io_32bit & 2) { | 
 | 246 | 			unsigned long flags; | 
 | 247 | 			local_irq_save(flags); | 
 | 248 | 			ata_vlb_sync(drive, IDE_NSECTOR_REG); | 
 | 249 | 			hwif->INSL(IDE_DATA_REG, buffer, wcount); | 
 | 250 | 			local_irq_restore(flags); | 
 | 251 | 		} else | 
 | 252 | 			hwif->INSL(IDE_DATA_REG, buffer, wcount); | 
 | 253 | 	} else { | 
 | 254 | 		hwif->INSW(IDE_DATA_REG, buffer, wcount<<1); | 
 | 255 | 	} | 
 | 256 | } | 
 | 257 |  | 
 | 258 | /* | 
 | 259 |  * This is used for most PIO data transfers *to* the IDE interface | 
 | 260 |  */ | 
 | 261 | static void ata_output_data(ide_drive_t *drive, void *buffer, u32 wcount) | 
 | 262 | { | 
 | 263 | 	ide_hwif_t *hwif	= HWIF(drive); | 
 | 264 | 	u8 io_32bit		= drive->io_32bit; | 
 | 265 |  | 
 | 266 | 	if (io_32bit) { | 
 | 267 | 		if (io_32bit & 2) { | 
 | 268 | 			unsigned long flags; | 
 | 269 | 			local_irq_save(flags); | 
 | 270 | 			ata_vlb_sync(drive, IDE_NSECTOR_REG); | 
 | 271 | 			hwif->OUTSL(IDE_DATA_REG, buffer, wcount); | 
 | 272 | 			local_irq_restore(flags); | 
 | 273 | 		} else | 
 | 274 | 			hwif->OUTSL(IDE_DATA_REG, buffer, wcount); | 
 | 275 | 	} else { | 
 | 276 | 		hwif->OUTSW(IDE_DATA_REG, buffer, wcount<<1); | 
 | 277 | 	} | 
 | 278 | } | 
 | 279 |  | 
 | 280 | /* | 
 | 281 |  * The following routines are mainly used by the ATAPI drivers. | 
 | 282 |  * | 
 | 283 |  * These routines will round up any request for an odd number of bytes, | 
 | 284 |  * so if an odd bytecount is specified, be sure that there's at least one | 
 | 285 |  * extra byte allocated for the buffer. | 
 | 286 |  */ | 
 | 287 |  | 
 | 288 | static void atapi_input_bytes(ide_drive_t *drive, void *buffer, u32 bytecount) | 
 | 289 | { | 
 | 290 | 	ide_hwif_t *hwif = HWIF(drive); | 
 | 291 |  | 
 | 292 | 	++bytecount; | 
 | 293 | #if defined(CONFIG_ATARI) || defined(CONFIG_Q40) | 
 | 294 | 	if (MACH_IS_ATARI || MACH_IS_Q40) { | 
 | 295 | 		/* Atari has a byte-swapped IDE interface */ | 
 | 296 | 		insw_swapw(IDE_DATA_REG, buffer, bytecount / 2); | 
 | 297 | 		return; | 
 | 298 | 	} | 
 | 299 | #endif /* CONFIG_ATARI || CONFIG_Q40 */ | 
 | 300 | 	hwif->ata_input_data(drive, buffer, bytecount / 4); | 
 | 301 | 	if ((bytecount & 0x03) >= 2) | 
 | 302 | 		hwif->INSW(IDE_DATA_REG, ((u8 *)buffer)+(bytecount & ~0x03), 1); | 
 | 303 | } | 
 | 304 |  | 
 | 305 | static void atapi_output_bytes(ide_drive_t *drive, void *buffer, u32 bytecount) | 
 | 306 | { | 
 | 307 | 	ide_hwif_t *hwif = HWIF(drive); | 
 | 308 |  | 
 | 309 | 	++bytecount; | 
 | 310 | #if defined(CONFIG_ATARI) || defined(CONFIG_Q40) | 
 | 311 | 	if (MACH_IS_ATARI || MACH_IS_Q40) { | 
 | 312 | 		/* Atari has a byte-swapped IDE interface */ | 
 | 313 | 		outsw_swapw(IDE_DATA_REG, buffer, bytecount / 2); | 
 | 314 | 		return; | 
 | 315 | 	} | 
 | 316 | #endif /* CONFIG_ATARI || CONFIG_Q40 */ | 
 | 317 | 	hwif->ata_output_data(drive, buffer, bytecount / 4); | 
 | 318 | 	if ((bytecount & 0x03) >= 2) | 
 | 319 | 		hwif->OUTSW(IDE_DATA_REG, ((u8*)buffer)+(bytecount & ~0x03), 1); | 
 | 320 | } | 
 | 321 |  | 
 | 322 | void default_hwif_transport(ide_hwif_t *hwif) | 
 | 323 | { | 
 | 324 | 	hwif->ata_input_data		= ata_input_data; | 
 | 325 | 	hwif->ata_output_data		= ata_output_data; | 
 | 326 | 	hwif->atapi_input_bytes		= atapi_input_bytes; | 
 | 327 | 	hwif->atapi_output_bytes	= atapi_output_bytes; | 
 | 328 | } | 
 | 329 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 330 | /* | 
 | 331 |  * Beginning of Taskfile OPCODE Library and feature sets. | 
 | 332 |  */ | 
 | 333 | void ide_fix_driveid (struct hd_driveid *id) | 
 | 334 | { | 
 | 335 | #ifndef __LITTLE_ENDIAN | 
 | 336 | # ifdef __BIG_ENDIAN | 
 | 337 | 	int i; | 
 | 338 | 	u16 *stringcast; | 
 | 339 |  | 
 | 340 | 	id->config         = __le16_to_cpu(id->config); | 
 | 341 | 	id->cyls           = __le16_to_cpu(id->cyls); | 
 | 342 | 	id->reserved2      = __le16_to_cpu(id->reserved2); | 
 | 343 | 	id->heads          = __le16_to_cpu(id->heads); | 
 | 344 | 	id->track_bytes    = __le16_to_cpu(id->track_bytes); | 
 | 345 | 	id->sector_bytes   = __le16_to_cpu(id->sector_bytes); | 
 | 346 | 	id->sectors        = __le16_to_cpu(id->sectors); | 
 | 347 | 	id->vendor0        = __le16_to_cpu(id->vendor0); | 
 | 348 | 	id->vendor1        = __le16_to_cpu(id->vendor1); | 
 | 349 | 	id->vendor2        = __le16_to_cpu(id->vendor2); | 
 | 350 | 	stringcast = (u16 *)&id->serial_no[0]; | 
 | 351 | 	for (i = 0; i < (20/2); i++) | 
 | 352 | 		stringcast[i] = __le16_to_cpu(stringcast[i]); | 
 | 353 | 	id->buf_type       = __le16_to_cpu(id->buf_type); | 
 | 354 | 	id->buf_size       = __le16_to_cpu(id->buf_size); | 
 | 355 | 	id->ecc_bytes      = __le16_to_cpu(id->ecc_bytes); | 
 | 356 | 	stringcast = (u16 *)&id->fw_rev[0]; | 
 | 357 | 	for (i = 0; i < (8/2); i++) | 
 | 358 | 		stringcast[i] = __le16_to_cpu(stringcast[i]); | 
 | 359 | 	stringcast = (u16 *)&id->model[0]; | 
 | 360 | 	for (i = 0; i < (40/2); i++) | 
 | 361 | 		stringcast[i] = __le16_to_cpu(stringcast[i]); | 
 | 362 | 	id->dword_io       = __le16_to_cpu(id->dword_io); | 
 | 363 | 	id->reserved50     = __le16_to_cpu(id->reserved50); | 
 | 364 | 	id->field_valid    = __le16_to_cpu(id->field_valid); | 
 | 365 | 	id->cur_cyls       = __le16_to_cpu(id->cur_cyls); | 
 | 366 | 	id->cur_heads      = __le16_to_cpu(id->cur_heads); | 
 | 367 | 	id->cur_sectors    = __le16_to_cpu(id->cur_sectors); | 
 | 368 | 	id->cur_capacity0  = __le16_to_cpu(id->cur_capacity0); | 
 | 369 | 	id->cur_capacity1  = __le16_to_cpu(id->cur_capacity1); | 
 | 370 | 	id->lba_capacity   = __le32_to_cpu(id->lba_capacity); | 
 | 371 | 	id->dma_1word      = __le16_to_cpu(id->dma_1word); | 
 | 372 | 	id->dma_mword      = __le16_to_cpu(id->dma_mword); | 
 | 373 | 	id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes); | 
 | 374 | 	id->eide_dma_min   = __le16_to_cpu(id->eide_dma_min); | 
 | 375 | 	id->eide_dma_time  = __le16_to_cpu(id->eide_dma_time); | 
 | 376 | 	id->eide_pio       = __le16_to_cpu(id->eide_pio); | 
 | 377 | 	id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy); | 
 | 378 | 	for (i = 0; i < 2; ++i) | 
 | 379 | 		id->words69_70[i] = __le16_to_cpu(id->words69_70[i]); | 
 | 380 | 	for (i = 0; i < 4; ++i) | 
 | 381 | 		id->words71_74[i] = __le16_to_cpu(id->words71_74[i]); | 
 | 382 | 	id->queue_depth    = __le16_to_cpu(id->queue_depth); | 
 | 383 | 	for (i = 0; i < 4; ++i) | 
 | 384 | 		id->words76_79[i] = __le16_to_cpu(id->words76_79[i]); | 
 | 385 | 	id->major_rev_num  = __le16_to_cpu(id->major_rev_num); | 
 | 386 | 	id->minor_rev_num  = __le16_to_cpu(id->minor_rev_num); | 
 | 387 | 	id->command_set_1  = __le16_to_cpu(id->command_set_1); | 
 | 388 | 	id->command_set_2  = __le16_to_cpu(id->command_set_2); | 
 | 389 | 	id->cfsse          = __le16_to_cpu(id->cfsse); | 
 | 390 | 	id->cfs_enable_1   = __le16_to_cpu(id->cfs_enable_1); | 
 | 391 | 	id->cfs_enable_2   = __le16_to_cpu(id->cfs_enable_2); | 
 | 392 | 	id->csf_default    = __le16_to_cpu(id->csf_default); | 
 | 393 | 	id->dma_ultra      = __le16_to_cpu(id->dma_ultra); | 
 | 394 | 	id->trseuc         = __le16_to_cpu(id->trseuc); | 
 | 395 | 	id->trsEuc         = __le16_to_cpu(id->trsEuc); | 
 | 396 | 	id->CurAPMvalues   = __le16_to_cpu(id->CurAPMvalues); | 
 | 397 | 	id->mprc           = __le16_to_cpu(id->mprc); | 
 | 398 | 	id->hw_config      = __le16_to_cpu(id->hw_config); | 
 | 399 | 	id->acoustic       = __le16_to_cpu(id->acoustic); | 
 | 400 | 	id->msrqs          = __le16_to_cpu(id->msrqs); | 
 | 401 | 	id->sxfert         = __le16_to_cpu(id->sxfert); | 
 | 402 | 	id->sal            = __le16_to_cpu(id->sal); | 
 | 403 | 	id->spg            = __le32_to_cpu(id->spg); | 
 | 404 | 	id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2); | 
 | 405 | 	for (i = 0; i < 22; i++) | 
 | 406 | 		id->words104_125[i]   = __le16_to_cpu(id->words104_125[i]); | 
 | 407 | 	id->last_lun       = __le16_to_cpu(id->last_lun); | 
 | 408 | 	id->word127        = __le16_to_cpu(id->word127); | 
 | 409 | 	id->dlf            = __le16_to_cpu(id->dlf); | 
 | 410 | 	id->csfo           = __le16_to_cpu(id->csfo); | 
 | 411 | 	for (i = 0; i < 26; i++) | 
 | 412 | 		id->words130_155[i] = __le16_to_cpu(id->words130_155[i]); | 
 | 413 | 	id->word156        = __le16_to_cpu(id->word156); | 
 | 414 | 	for (i = 0; i < 3; i++) | 
 | 415 | 		id->words157_159[i] = __le16_to_cpu(id->words157_159[i]); | 
 | 416 | 	id->cfa_power      = __le16_to_cpu(id->cfa_power); | 
 | 417 | 	for (i = 0; i < 14; i++) | 
 | 418 | 		id->words161_175[i] = __le16_to_cpu(id->words161_175[i]); | 
 | 419 | 	for (i = 0; i < 31; i++) | 
 | 420 | 		id->words176_205[i] = __le16_to_cpu(id->words176_205[i]); | 
 | 421 | 	for (i = 0; i < 48; i++) | 
 | 422 | 		id->words206_254[i] = __le16_to_cpu(id->words206_254[i]); | 
 | 423 | 	id->integrity_word  = __le16_to_cpu(id->integrity_word); | 
 | 424 | # else | 
 | 425 | #  error "Please fix <asm/byteorder.h>" | 
 | 426 | # endif | 
 | 427 | #endif | 
 | 428 | } | 
 | 429 |  | 
 | 430 | /* FIXME: exported for use by the USB storage (isd200.c) code only */ | 
 | 431 | EXPORT_SYMBOL(ide_fix_driveid); | 
 | 432 |  | 
 | 433 | void ide_fixstring (u8 *s, const int bytecount, const int byteswap) | 
 | 434 | { | 
 | 435 | 	u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */ | 
 | 436 |  | 
 | 437 | 	if (byteswap) { | 
 | 438 | 		/* convert from big-endian to host byte order */ | 
 | 439 | 		for (p = end ; p != s;) { | 
 | 440 | 			unsigned short *pp = (unsigned short *) (p -= 2); | 
 | 441 | 			*pp = ntohs(*pp); | 
 | 442 | 		} | 
 | 443 | 	} | 
 | 444 | 	/* strip leading blanks */ | 
 | 445 | 	while (s != end && *s == ' ') | 
 | 446 | 		++s; | 
 | 447 | 	/* compress internal blanks and strip trailing blanks */ | 
 | 448 | 	while (s != end && *s) { | 
 | 449 | 		if (*s++ != ' ' || (s != end && *s && *s != ' ')) | 
 | 450 | 			*p++ = *(s-1); | 
 | 451 | 	} | 
 | 452 | 	/* wipe out trailing garbage */ | 
 | 453 | 	while (p != end) | 
 | 454 | 		*p++ = '\0'; | 
 | 455 | } | 
 | 456 |  | 
 | 457 | EXPORT_SYMBOL(ide_fixstring); | 
 | 458 |  | 
 | 459 | /* | 
 | 460 |  * Needed for PCI irq sharing | 
 | 461 |  */ | 
 | 462 | int drive_is_ready (ide_drive_t *drive) | 
 | 463 | { | 
 | 464 | 	ide_hwif_t *hwif	= HWIF(drive); | 
 | 465 | 	u8 stat			= 0; | 
 | 466 |  | 
 | 467 | 	if (drive->waiting_for_dma) | 
 | 468 | 		return hwif->ide_dma_test_irq(drive); | 
 | 469 |  | 
 | 470 | #if 0 | 
 | 471 | 	/* need to guarantee 400ns since last command was issued */ | 
 | 472 | 	udelay(1); | 
 | 473 | #endif | 
 | 474 |  | 
 | 475 | #ifdef CONFIG_IDEPCI_SHARE_IRQ | 
 | 476 | 	/* | 
 | 477 | 	 * We do a passive status test under shared PCI interrupts on | 
 | 478 | 	 * cards that truly share the ATA side interrupt, but may also share | 
 | 479 | 	 * an interrupt with another pci card/device.  We make no assumptions | 
 | 480 | 	 * about possible isa-pnp and pci-pnp issues yet. | 
 | 481 | 	 */ | 
 | 482 | 	if (IDE_CONTROL_REG) | 
 | 483 | 		stat = hwif->INB(IDE_ALTSTATUS_REG); | 
 | 484 | 	else | 
 | 485 | #endif /* CONFIG_IDEPCI_SHARE_IRQ */ | 
 | 486 | 		/* Note: this may clear a pending IRQ!! */ | 
 | 487 | 		stat = hwif->INB(IDE_STATUS_REG); | 
 | 488 |  | 
 | 489 | 	if (stat & BUSY_STAT) | 
 | 490 | 		/* drive busy:  definitely not interrupting */ | 
 | 491 | 		return 0; | 
 | 492 |  | 
 | 493 | 	/* drive ready: *might* be interrupting */ | 
 | 494 | 	return 1; | 
 | 495 | } | 
 | 496 |  | 
 | 497 | EXPORT_SYMBOL(drive_is_ready); | 
 | 498 |  | 
 | 499 | /* | 
 | 500 |  * Global for All, and taken from ide-pmac.c. Can be called | 
 | 501 |  * with spinlock held & IRQs disabled, so don't schedule ! | 
 | 502 |  */ | 
 | 503 | int wait_for_ready (ide_drive_t *drive, int timeout) | 
 | 504 | { | 
 | 505 | 	ide_hwif_t *hwif	= HWIF(drive); | 
 | 506 | 	u8 stat			= 0; | 
 | 507 |  | 
 | 508 | 	while(--timeout) { | 
 | 509 | 		stat = hwif->INB(IDE_STATUS_REG); | 
 | 510 | 		if (!(stat & BUSY_STAT)) { | 
 | 511 | 			if (drive->ready_stat == 0) | 
 | 512 | 				break; | 
 | 513 | 			else if ((stat & drive->ready_stat)||(stat & ERR_STAT)) | 
 | 514 | 				break; | 
 | 515 | 		} | 
 | 516 | 		mdelay(1); | 
 | 517 | 	} | 
 | 518 | 	if ((stat & ERR_STAT) || timeout <= 0) { | 
 | 519 | 		if (stat & ERR_STAT) { | 
 | 520 | 			printk(KERN_ERR "%s: wait_for_ready, " | 
 | 521 | 				"error status: %x\n", drive->name, stat); | 
 | 522 | 		} | 
 | 523 | 		return 1; | 
 | 524 | 	} | 
 | 525 | 	return 0; | 
 | 526 | } | 
 | 527 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 528 | /* | 
 | 529 |  * This routine busy-waits for the drive status to be not "busy". | 
 | 530 |  * It then checks the status for all of the "good" bits and none | 
 | 531 |  * of the "bad" bits, and if all is okay it returns 0.  All other | 
 | 532 |  * cases return 1 after invoking ide_error() -- caller should just return. | 
 | 533 |  * | 
 | 534 |  * This routine should get fixed to not hog the cpu during extra long waits.. | 
 | 535 |  * That could be done by busy-waiting for the first jiffy or two, and then | 
 | 536 |  * setting a timer to wake up at half second intervals thereafter, | 
 | 537 |  * until timeout is achieved, before timing out. | 
 | 538 |  */ | 
 | 539 | int ide_wait_stat (ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout) | 
 | 540 | { | 
 | 541 | 	ide_hwif_t *hwif = HWIF(drive); | 
 | 542 | 	u8 stat; | 
 | 543 | 	int i; | 
 | 544 | 	unsigned long flags; | 
 | 545 |   | 
 | 546 | 	/* bail early if we've exceeded max_failures */ | 
 | 547 | 	if (drive->max_failures && (drive->failures > drive->max_failures)) { | 
 | 548 | 		*startstop = ide_stopped; | 
 | 549 | 		return 1; | 
 | 550 | 	} | 
 | 551 |  | 
 | 552 | 	udelay(1);	/* spec allows drive 400ns to assert "BUSY" */ | 
 | 553 | 	if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) { | 
 | 554 | 		local_irq_set(flags); | 
 | 555 | 		timeout += jiffies; | 
 | 556 | 		while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) { | 
 | 557 | 			if (time_after(jiffies, timeout)) { | 
 | 558 | 				/* | 
 | 559 | 				 * One last read after the timeout in case | 
 | 560 | 				 * heavy interrupt load made us not make any | 
 | 561 | 				 * progress during the timeout.. | 
 | 562 | 				 */ | 
 | 563 | 				stat = hwif->INB(IDE_STATUS_REG); | 
 | 564 | 				if (!(stat & BUSY_STAT)) | 
 | 565 | 					break; | 
 | 566 |  | 
 | 567 | 				local_irq_restore(flags); | 
 | 568 | 				*startstop = ide_error(drive, "status timeout", stat); | 
 | 569 | 				return 1; | 
 | 570 | 			} | 
 | 571 | 		} | 
 | 572 | 		local_irq_restore(flags); | 
 | 573 | 	} | 
 | 574 | 	/* | 
 | 575 | 	 * Allow status to settle, then read it again. | 
 | 576 | 	 * A few rare drives vastly violate the 400ns spec here, | 
 | 577 | 	 * so we'll wait up to 10usec for a "good" status | 
 | 578 | 	 * rather than expensively fail things immediately. | 
 | 579 | 	 * This fix courtesy of Matthew Faupel & Niccolo Rigacci. | 
 | 580 | 	 */ | 
 | 581 | 	for (i = 0; i < 10; i++) { | 
 | 582 | 		udelay(1); | 
 | 583 | 		if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), good, bad)) | 
 | 584 | 			return 0; | 
 | 585 | 	} | 
 | 586 | 	*startstop = ide_error(drive, "status error", stat); | 
 | 587 | 	return 1; | 
 | 588 | } | 
 | 589 |  | 
 | 590 | EXPORT_SYMBOL(ide_wait_stat); | 
 | 591 |  | 
 | 592 | /* | 
 | 593 |  *  All hosts that use the 80c ribbon must use! | 
 | 594 |  *  The name is derived from upper byte of word 93 and the 80c ribbon. | 
 | 595 |  */ | 
 | 596 | u8 eighty_ninty_three (ide_drive_t *drive) | 
 | 597 | { | 
| Alan Cox | d7d7634 | 2005-09-13 01:25:04 -0700 | [diff] [blame] | 598 | 	if(HWIF(drive)->udma_four == 0) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 599 | 		return 0; | 
| Alan Cox | d7d7634 | 2005-09-13 01:25:04 -0700 | [diff] [blame] | 600 | 	if (!(drive->id->hw_config & 0x6000)) | 
 | 601 | 		return 0; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 602 | #ifndef CONFIG_IDEDMA_IVB | 
| Alan Cox | d7d7634 | 2005-09-13 01:25:04 -0700 | [diff] [blame] | 603 | 	if(!(drive->id->hw_config & 0x4000)) | 
 | 604 | 		return 0; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 605 | #endif /* CONFIG_IDEDMA_IVB */ | 
| Alan Cox | d7d7634 | 2005-09-13 01:25:04 -0700 | [diff] [blame] | 606 | 	return 1; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 607 | } | 
 | 608 |  | 
 | 609 | EXPORT_SYMBOL(eighty_ninty_three); | 
 | 610 |  | 
 | 611 | int ide_ata66_check (ide_drive_t *drive, ide_task_t *args) | 
 | 612 | { | 
 | 613 | 	if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) && | 
 | 614 | 	    (args->tfRegister[IDE_SECTOR_OFFSET] > XFER_UDMA_2) && | 
 | 615 | 	    (args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER)) { | 
 | 616 | #ifndef CONFIG_IDEDMA_IVB | 
 | 617 | 		if ((drive->id->hw_config & 0x6000) == 0) { | 
 | 618 | #else /* !CONFIG_IDEDMA_IVB */ | 
 | 619 | 		if (((drive->id->hw_config & 0x2000) == 0) || | 
 | 620 | 		    ((drive->id->hw_config & 0x4000) == 0)) { | 
 | 621 | #endif /* CONFIG_IDEDMA_IVB */ | 
 | 622 | 			printk("%s: Speed warnings UDMA 3/4/5 is not " | 
 | 623 | 				"functional.\n", drive->name); | 
 | 624 | 			return 1; | 
 | 625 | 		} | 
 | 626 | 		if (!HWIF(drive)->udma_four) { | 
 | 627 | 			printk("%s: Speed warnings UDMA 3/4/5 is not " | 
 | 628 | 				"functional.\n", | 
 | 629 | 				HWIF(drive)->name); | 
 | 630 | 			return 1; | 
 | 631 | 		} | 
 | 632 | 	} | 
 | 633 | 	return 0; | 
 | 634 | } | 
 | 635 |  | 
 | 636 | /* | 
 | 637 |  * Backside of HDIO_DRIVE_CMD call of SETFEATURES_XFER. | 
 | 638 |  * 1 : Safe to update drive->id DMA registers. | 
 | 639 |  * 0 : OOPs not allowed. | 
 | 640 |  */ | 
 | 641 | int set_transfer (ide_drive_t *drive, ide_task_t *args) | 
 | 642 | { | 
 | 643 | 	if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) && | 
 | 644 | 	    (args->tfRegister[IDE_SECTOR_OFFSET] >= XFER_SW_DMA_0) && | 
 | 645 | 	    (args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER) && | 
 | 646 | 	    (drive->id->dma_ultra || | 
 | 647 | 	     drive->id->dma_mword || | 
 | 648 | 	     drive->id->dma_1word)) | 
 | 649 | 		return 1; | 
 | 650 |  | 
 | 651 | 	return 0; | 
 | 652 | } | 
 | 653 |  | 
 | 654 | #ifdef CONFIG_BLK_DEV_IDEDMA | 
 | 655 | static u8 ide_auto_reduce_xfer (ide_drive_t *drive) | 
 | 656 | { | 
 | 657 | 	if (!drive->crc_count) | 
 | 658 | 		return drive->current_speed; | 
 | 659 | 	drive->crc_count = 0; | 
 | 660 |  | 
 | 661 | 	switch(drive->current_speed) { | 
 | 662 | 		case XFER_UDMA_7:	return XFER_UDMA_6; | 
 | 663 | 		case XFER_UDMA_6:	return XFER_UDMA_5; | 
 | 664 | 		case XFER_UDMA_5:	return XFER_UDMA_4; | 
 | 665 | 		case XFER_UDMA_4:	return XFER_UDMA_3; | 
 | 666 | 		case XFER_UDMA_3:	return XFER_UDMA_2; | 
 | 667 | 		case XFER_UDMA_2:	return XFER_UDMA_1; | 
 | 668 | 		case XFER_UDMA_1:	return XFER_UDMA_0; | 
 | 669 | 			/* | 
 | 670 | 			 * OOPS we do not goto non Ultra DMA modes | 
 | 671 | 			 * without iCRC's available we force | 
 | 672 | 			 * the system to PIO and make the user | 
 | 673 | 			 * invoke the ATA-1 ATA-2 DMA modes. | 
 | 674 | 			 */ | 
 | 675 | 		case XFER_UDMA_0: | 
 | 676 | 		default:		return XFER_PIO_4; | 
 | 677 | 	} | 
 | 678 | } | 
 | 679 | #endif /* CONFIG_BLK_DEV_IDEDMA */ | 
 | 680 |  | 
 | 681 | /* | 
 | 682 |  * Update the  | 
 | 683 |  */ | 
 | 684 | int ide_driveid_update (ide_drive_t *drive) | 
 | 685 | { | 
 | 686 | 	ide_hwif_t *hwif	= HWIF(drive); | 
 | 687 | 	struct hd_driveid *id; | 
 | 688 | #if 0 | 
 | 689 | 	id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC); | 
 | 690 | 	if (!id) | 
 | 691 | 		return 0; | 
 | 692 |  | 
 | 693 | 	taskfile_lib_get_identify(drive, (char *)&id); | 
 | 694 |  | 
 | 695 | 	ide_fix_driveid(id); | 
 | 696 | 	if (id) { | 
 | 697 | 		drive->id->dma_ultra = id->dma_ultra; | 
 | 698 | 		drive->id->dma_mword = id->dma_mword; | 
 | 699 | 		drive->id->dma_1word = id->dma_1word; | 
 | 700 | 		/* anything more ? */ | 
 | 701 | 		kfree(id); | 
 | 702 | 	} | 
 | 703 | 	return 1; | 
 | 704 | #else | 
 | 705 | 	/* | 
 | 706 | 	 * Re-read drive->id for possible DMA mode | 
 | 707 | 	 * change (copied from ide-probe.c) | 
 | 708 | 	 */ | 
 | 709 | 	unsigned long timeout, flags; | 
 | 710 |  | 
 | 711 | 	SELECT_MASK(drive, 1); | 
 | 712 | 	if (IDE_CONTROL_REG) | 
 | 713 | 		hwif->OUTB(drive->ctl,IDE_CONTROL_REG); | 
 | 714 | 	msleep(50); | 
 | 715 | 	hwif->OUTB(WIN_IDENTIFY, IDE_COMMAND_REG); | 
 | 716 | 	timeout = jiffies + WAIT_WORSTCASE; | 
 | 717 | 	do { | 
 | 718 | 		if (time_after(jiffies, timeout)) { | 
 | 719 | 			SELECT_MASK(drive, 0); | 
 | 720 | 			return 0;	/* drive timed-out */ | 
 | 721 | 		} | 
 | 722 | 		msleep(50);	/* give drive a breather */ | 
 | 723 | 	} while (hwif->INB(IDE_ALTSTATUS_REG) & BUSY_STAT); | 
 | 724 | 	msleep(50);	/* wait for IRQ and DRQ_STAT */ | 
 | 725 | 	if (!OK_STAT(hwif->INB(IDE_STATUS_REG),DRQ_STAT,BAD_R_STAT)) { | 
 | 726 | 		SELECT_MASK(drive, 0); | 
 | 727 | 		printk("%s: CHECK for good STATUS\n", drive->name); | 
 | 728 | 		return 0; | 
 | 729 | 	} | 
 | 730 | 	local_irq_save(flags); | 
 | 731 | 	SELECT_MASK(drive, 0); | 
 | 732 | 	id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC); | 
 | 733 | 	if (!id) { | 
 | 734 | 		local_irq_restore(flags); | 
 | 735 | 		return 0; | 
 | 736 | 	} | 
 | 737 | 	ata_input_data(drive, id, SECTOR_WORDS); | 
 | 738 | 	(void) hwif->INB(IDE_STATUS_REG);	/* clear drive IRQ */ | 
 | 739 | 	local_irq_enable(); | 
 | 740 | 	local_irq_restore(flags); | 
 | 741 | 	ide_fix_driveid(id); | 
 | 742 | 	if (id) { | 
 | 743 | 		drive->id->dma_ultra = id->dma_ultra; | 
 | 744 | 		drive->id->dma_mword = id->dma_mword; | 
 | 745 | 		drive->id->dma_1word = id->dma_1word; | 
 | 746 | 		/* anything more ? */ | 
 | 747 | 		kfree(id); | 
 | 748 | 	} | 
 | 749 |  | 
 | 750 | 	return 1; | 
 | 751 | #endif | 
 | 752 | } | 
 | 753 |  | 
 | 754 | /* | 
 | 755 |  * Similar to ide_wait_stat(), except it never calls ide_error internally. | 
 | 756 |  * This is a kludge to handle the new ide_config_drive_speed() function, | 
 | 757 |  * and should not otherwise be used anywhere.  Eventually, the tuneproc's | 
 | 758 |  * should be updated to return ide_startstop_t, in which case we can get | 
 | 759 |  * rid of this abomination again.  :)   -ml | 
 | 760 |  * | 
 | 761 |  * It is gone.......... | 
 | 762 |  * | 
 | 763 |  * const char *msg == consider adding for verbose errors. | 
 | 764 |  */ | 
 | 765 | int ide_config_drive_speed (ide_drive_t *drive, u8 speed) | 
 | 766 | { | 
 | 767 | 	ide_hwif_t *hwif	= HWIF(drive); | 
 | 768 | 	int	i, error	= 1; | 
 | 769 | 	u8 stat; | 
 | 770 |  | 
 | 771 | //	while (HWGROUP(drive)->busy) | 
 | 772 | //		msleep(50); | 
 | 773 |  | 
 | 774 | #ifdef CONFIG_BLK_DEV_IDEDMA | 
 | 775 | 	if (hwif->ide_dma_check)	 /* check if host supports DMA */ | 
 | 776 | 		hwif->ide_dma_host_off(drive); | 
 | 777 | #endif | 
 | 778 |  | 
 | 779 | 	/* | 
 | 780 | 	 * Don't use ide_wait_cmd here - it will | 
 | 781 | 	 * attempt to set_geometry and recalibrate, | 
 | 782 | 	 * but for some reason these don't work at | 
 | 783 | 	 * this point (lost interrupt). | 
 | 784 | 	 */ | 
 | 785 |         /* | 
 | 786 |          * Select the drive, and issue the SETFEATURES command | 
 | 787 |          */ | 
 | 788 | 	disable_irq_nosync(hwif->irq); | 
 | 789 | 	 | 
 | 790 | 	/* | 
 | 791 | 	 *	FIXME: we race against the running IRQ here if | 
 | 792 | 	 *	this is called from non IRQ context. If we use | 
 | 793 | 	 *	disable_irq() we hang on the error path. Work | 
 | 794 | 	 *	is needed. | 
 | 795 | 	 */ | 
 | 796 | 	  | 
 | 797 | 	udelay(1); | 
 | 798 | 	SELECT_DRIVE(drive); | 
 | 799 | 	SELECT_MASK(drive, 0); | 
 | 800 | 	udelay(1); | 
 | 801 | 	if (IDE_CONTROL_REG) | 
 | 802 | 		hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG); | 
 | 803 | 	hwif->OUTB(speed, IDE_NSECTOR_REG); | 
 | 804 | 	hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG); | 
 | 805 | 	hwif->OUTB(WIN_SETFEATURES, IDE_COMMAND_REG); | 
 | 806 | 	if ((IDE_CONTROL_REG) && (drive->quirk_list == 2)) | 
 | 807 | 		hwif->OUTB(drive->ctl, IDE_CONTROL_REG); | 
 | 808 | 	udelay(1); | 
 | 809 | 	/* | 
 | 810 | 	 * Wait for drive to become non-BUSY | 
 | 811 | 	 */ | 
 | 812 | 	if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) { | 
 | 813 | 		unsigned long flags, timeout; | 
 | 814 | 		local_irq_set(flags); | 
 | 815 | 		timeout = jiffies + WAIT_CMD; | 
 | 816 | 		while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) { | 
 | 817 | 			if (time_after(jiffies, timeout)) | 
 | 818 | 				break; | 
 | 819 | 		} | 
 | 820 | 		local_irq_restore(flags); | 
 | 821 | 	} | 
 | 822 |  | 
 | 823 | 	/* | 
 | 824 | 	 * Allow status to settle, then read it again. | 
 | 825 | 	 * A few rare drives vastly violate the 400ns spec here, | 
 | 826 | 	 * so we'll wait up to 10usec for a "good" status | 
 | 827 | 	 * rather than expensively fail things immediately. | 
 | 828 | 	 * This fix courtesy of Matthew Faupel & Niccolo Rigacci. | 
 | 829 | 	 */ | 
 | 830 | 	for (i = 0; i < 10; i++) { | 
 | 831 | 		udelay(1); | 
 | 832 | 		if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), DRIVE_READY, BUSY_STAT|DRQ_STAT|ERR_STAT)) { | 
 | 833 | 			error = 0; | 
 | 834 | 			break; | 
 | 835 | 		} | 
 | 836 | 	} | 
 | 837 |  | 
 | 838 | 	SELECT_MASK(drive, 0); | 
 | 839 |  | 
 | 840 | 	enable_irq(hwif->irq); | 
 | 841 |  | 
 | 842 | 	if (error) { | 
 | 843 | 		(void) ide_dump_status(drive, "set_drive_speed_status", stat); | 
 | 844 | 		return error; | 
 | 845 | 	} | 
 | 846 |  | 
 | 847 | 	drive->id->dma_ultra &= ~0xFF00; | 
 | 848 | 	drive->id->dma_mword &= ~0x0F00; | 
 | 849 | 	drive->id->dma_1word &= ~0x0F00; | 
 | 850 |  | 
 | 851 | #ifdef CONFIG_BLK_DEV_IDEDMA | 
 | 852 | 	if (speed >= XFER_SW_DMA_0) | 
 | 853 | 		hwif->ide_dma_host_on(drive); | 
 | 854 | 	else if (hwif->ide_dma_check)	/* check if host supports DMA */ | 
 | 855 | 		hwif->ide_dma_off_quietly(drive); | 
 | 856 | #endif | 
 | 857 |  | 
 | 858 | 	switch(speed) { | 
 | 859 | 		case XFER_UDMA_7:   drive->id->dma_ultra |= 0x8080; break; | 
 | 860 | 		case XFER_UDMA_6:   drive->id->dma_ultra |= 0x4040; break; | 
 | 861 | 		case XFER_UDMA_5:   drive->id->dma_ultra |= 0x2020; break; | 
 | 862 | 		case XFER_UDMA_4:   drive->id->dma_ultra |= 0x1010; break; | 
 | 863 | 		case XFER_UDMA_3:   drive->id->dma_ultra |= 0x0808; break; | 
 | 864 | 		case XFER_UDMA_2:   drive->id->dma_ultra |= 0x0404; break; | 
 | 865 | 		case XFER_UDMA_1:   drive->id->dma_ultra |= 0x0202; break; | 
 | 866 | 		case XFER_UDMA_0:   drive->id->dma_ultra |= 0x0101; break; | 
 | 867 | 		case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break; | 
 | 868 | 		case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break; | 
 | 869 | 		case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break; | 
 | 870 | 		case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break; | 
 | 871 | 		case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break; | 
 | 872 | 		case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break; | 
 | 873 | 		default: break; | 
 | 874 | 	} | 
 | 875 | 	if (!drive->init_speed) | 
 | 876 | 		drive->init_speed = speed; | 
 | 877 | 	drive->current_speed = speed; | 
 | 878 | 	return error; | 
 | 879 | } | 
 | 880 |  | 
 | 881 | EXPORT_SYMBOL(ide_config_drive_speed); | 
 | 882 |  | 
 | 883 |  | 
 | 884 | /* | 
 | 885 |  * This should get invoked any time we exit the driver to | 
 | 886 |  * wait for an interrupt response from a drive.  handler() points | 
 | 887 |  * at the appropriate code to handle the next interrupt, and a | 
 | 888 |  * timer is started to prevent us from waiting forever in case | 
 | 889 |  * something goes wrong (see the ide_timer_expiry() handler later on). | 
 | 890 |  * | 
 | 891 |  * See also ide_execute_command | 
 | 892 |  */ | 
 | 893 | static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler, | 
 | 894 | 		      unsigned int timeout, ide_expiry_t *expiry) | 
 | 895 | { | 
 | 896 | 	ide_hwgroup_t *hwgroup = HWGROUP(drive); | 
 | 897 |  | 
 | 898 | 	if (hwgroup->handler != NULL) { | 
 | 899 | 		printk(KERN_CRIT "%s: ide_set_handler: handler not null; " | 
 | 900 | 			"old=%p, new=%p\n", | 
 | 901 | 			drive->name, hwgroup->handler, handler); | 
 | 902 | 	} | 
 | 903 | 	hwgroup->handler	= handler; | 
 | 904 | 	hwgroup->expiry		= expiry; | 
 | 905 | 	hwgroup->timer.expires	= jiffies + timeout; | 
 | 906 | 	add_timer(&hwgroup->timer); | 
 | 907 | } | 
 | 908 |  | 
 | 909 | void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler, | 
 | 910 | 		      unsigned int timeout, ide_expiry_t *expiry) | 
 | 911 | { | 
 | 912 | 	unsigned long flags; | 
 | 913 | 	spin_lock_irqsave(&ide_lock, flags); | 
 | 914 | 	__ide_set_handler(drive, handler, timeout, expiry); | 
 | 915 | 	spin_unlock_irqrestore(&ide_lock, flags); | 
 | 916 | } | 
 | 917 |  | 
 | 918 | EXPORT_SYMBOL(ide_set_handler); | 
 | 919 |   | 
 | 920 | /** | 
 | 921 |  *	ide_execute_command	-	execute an IDE command | 
 | 922 |  *	@drive: IDE drive to issue the command against | 
 | 923 |  *	@command: command byte to write | 
 | 924 |  *	@handler: handler for next phase | 
 | 925 |  *	@timeout: timeout for command | 
 | 926 |  *	@expiry:  handler to run on timeout | 
 | 927 |  * | 
 | 928 |  *	Helper function to issue an IDE command. This handles the | 
 | 929 |  *	atomicity requirements, command timing and ensures that the  | 
 | 930 |  *	handler and IRQ setup do not race. All IDE command kick off | 
 | 931 |  *	should go via this function or do equivalent locking. | 
 | 932 |  */ | 
 | 933 |   | 
 | 934 | void ide_execute_command(ide_drive_t *drive, task_ioreg_t cmd, ide_handler_t *handler, unsigned timeout, ide_expiry_t *expiry) | 
 | 935 | { | 
 | 936 | 	unsigned long flags; | 
 | 937 | 	ide_hwgroup_t *hwgroup = HWGROUP(drive); | 
 | 938 | 	ide_hwif_t *hwif = HWIF(drive); | 
 | 939 | 	 | 
 | 940 | 	spin_lock_irqsave(&ide_lock, flags); | 
 | 941 | 	 | 
 | 942 | 	if(hwgroup->handler) | 
 | 943 | 		BUG(); | 
 | 944 | 	hwgroup->handler	= handler; | 
 | 945 | 	hwgroup->expiry		= expiry; | 
 | 946 | 	hwgroup->timer.expires	= jiffies + timeout; | 
 | 947 | 	add_timer(&hwgroup->timer); | 
 | 948 | 	hwif->OUTBSYNC(drive, cmd, IDE_COMMAND_REG); | 
 | 949 | 	/* Drive takes 400nS to respond, we must avoid the IRQ being | 
 | 950 | 	   serviced before that.  | 
 | 951 | 	    | 
 | 952 | 	   FIXME: we could skip this delay with care on non shared | 
 | 953 | 	   devices  | 
 | 954 | 	*/ | 
 | 955 | 	ndelay(400); | 
 | 956 | 	spin_unlock_irqrestore(&ide_lock, flags); | 
 | 957 | } | 
 | 958 |  | 
 | 959 | EXPORT_SYMBOL(ide_execute_command); | 
 | 960 |  | 
 | 961 |  | 
 | 962 | /* needed below */ | 
 | 963 | static ide_startstop_t do_reset1 (ide_drive_t *, int); | 
 | 964 |  | 
 | 965 | /* | 
 | 966 |  * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms | 
 | 967 |  * during an atapi drive reset operation. If the drive has not yet responded, | 
 | 968 |  * and we have not yet hit our maximum waiting time, then the timer is restarted | 
 | 969 |  * for another 50ms. | 
 | 970 |  */ | 
 | 971 | static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive) | 
 | 972 | { | 
 | 973 | 	ide_hwgroup_t *hwgroup	= HWGROUP(drive); | 
 | 974 | 	ide_hwif_t *hwif	= HWIF(drive); | 
 | 975 | 	u8 stat; | 
 | 976 |  | 
 | 977 | 	SELECT_DRIVE(drive); | 
 | 978 | 	udelay (10); | 
 | 979 |  | 
 | 980 | 	if (OK_STAT(stat = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) { | 
 | 981 | 		printk("%s: ATAPI reset complete\n", drive->name); | 
 | 982 | 	} else { | 
 | 983 | 		if (time_before(jiffies, hwgroup->poll_timeout)) { | 
 | 984 | 			if (HWGROUP(drive)->handler != NULL) | 
 | 985 | 				BUG(); | 
 | 986 | 			ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL); | 
 | 987 | 			/* continue polling */ | 
 | 988 | 			return ide_started; | 
 | 989 | 		} | 
 | 990 | 		/* end of polling */ | 
 | 991 | 		hwgroup->polling = 0; | 
 | 992 | 		printk("%s: ATAPI reset timed-out, status=0x%02x\n", | 
 | 993 | 				drive->name, stat); | 
 | 994 | 		/* do it the old fashioned way */ | 
 | 995 | 		return do_reset1(drive, 1); | 
 | 996 | 	} | 
 | 997 | 	/* done polling */ | 
 | 998 | 	hwgroup->polling = 0; | 
 | 999 | 	return ide_stopped; | 
 | 1000 | } | 
 | 1001 |  | 
 | 1002 | /* | 
 | 1003 |  * reset_pollfunc() gets invoked to poll the interface for completion every 50ms | 
 | 1004 |  * during an ide reset operation. If the drives have not yet responded, | 
 | 1005 |  * and we have not yet hit our maximum waiting time, then the timer is restarted | 
 | 1006 |  * for another 50ms. | 
 | 1007 |  */ | 
 | 1008 | static ide_startstop_t reset_pollfunc (ide_drive_t *drive) | 
 | 1009 | { | 
 | 1010 | 	ide_hwgroup_t *hwgroup	= HWGROUP(drive); | 
 | 1011 | 	ide_hwif_t *hwif	= HWIF(drive); | 
 | 1012 | 	u8 tmp; | 
 | 1013 |  | 
 | 1014 | 	if (hwif->reset_poll != NULL) { | 
 | 1015 | 		if (hwif->reset_poll(drive)) { | 
 | 1016 | 			printk(KERN_ERR "%s: host reset_poll failure for %s.\n", | 
 | 1017 | 				hwif->name, drive->name); | 
 | 1018 | 			return ide_stopped; | 
 | 1019 | 		} | 
 | 1020 | 	} | 
 | 1021 |  | 
 | 1022 | 	if (!OK_STAT(tmp = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) { | 
 | 1023 | 		if (time_before(jiffies, hwgroup->poll_timeout)) { | 
 | 1024 | 			if (HWGROUP(drive)->handler != NULL) | 
 | 1025 | 				BUG(); | 
 | 1026 | 			ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL); | 
 | 1027 | 			/* continue polling */ | 
 | 1028 | 			return ide_started; | 
 | 1029 | 		} | 
 | 1030 | 		printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp); | 
 | 1031 | 		drive->failures++; | 
 | 1032 | 	} else  { | 
 | 1033 | 		printk("%s: reset: ", hwif->name); | 
 | 1034 | 		if ((tmp = hwif->INB(IDE_ERROR_REG)) == 1) { | 
 | 1035 | 			printk("success\n"); | 
 | 1036 | 			drive->failures = 0; | 
 | 1037 | 		} else { | 
 | 1038 | 			drive->failures++; | 
 | 1039 | 			printk("master: "); | 
 | 1040 | 			switch (tmp & 0x7f) { | 
 | 1041 | 				case 1: printk("passed"); | 
 | 1042 | 					break; | 
 | 1043 | 				case 2: printk("formatter device error"); | 
 | 1044 | 					break; | 
 | 1045 | 				case 3: printk("sector buffer error"); | 
 | 1046 | 					break; | 
 | 1047 | 				case 4: printk("ECC circuitry error"); | 
 | 1048 | 					break; | 
 | 1049 | 				case 5: printk("controlling MPU error"); | 
 | 1050 | 					break; | 
 | 1051 | 				default:printk("error (0x%02x?)", tmp); | 
 | 1052 | 			} | 
 | 1053 | 			if (tmp & 0x80) | 
 | 1054 | 				printk("; slave: failed"); | 
 | 1055 | 			printk("\n"); | 
 | 1056 | 		} | 
 | 1057 | 	} | 
 | 1058 | 	hwgroup->polling = 0;	/* done polling */ | 
 | 1059 | 	return ide_stopped; | 
 | 1060 | } | 
 | 1061 |  | 
 | 1062 | static void check_dma_crc(ide_drive_t *drive) | 
 | 1063 | { | 
 | 1064 | #ifdef CONFIG_BLK_DEV_IDEDMA | 
 | 1065 | 	if (drive->crc_count) { | 
 | 1066 | 		(void) HWIF(drive)->ide_dma_off_quietly(drive); | 
 | 1067 | 		ide_set_xfer_rate(drive, ide_auto_reduce_xfer(drive)); | 
 | 1068 | 		if (drive->current_speed >= XFER_SW_DMA_0) | 
 | 1069 | 			(void) HWIF(drive)->ide_dma_on(drive); | 
 | 1070 | 	} else | 
 | 1071 | 		(void)__ide_dma_off(drive); | 
 | 1072 | #endif | 
 | 1073 | } | 
 | 1074 |  | 
 | 1075 | static void ide_disk_pre_reset(ide_drive_t *drive) | 
 | 1076 | { | 
 | 1077 | 	int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1; | 
 | 1078 |  | 
 | 1079 | 	drive->special.all = 0; | 
 | 1080 | 	drive->special.b.set_geometry = legacy; | 
 | 1081 | 	drive->special.b.recalibrate  = legacy; | 
 | 1082 | 	if (OK_TO_RESET_CONTROLLER) | 
 | 1083 | 		drive->mult_count = 0; | 
 | 1084 | 	if (!drive->keep_settings && !drive->using_dma) | 
 | 1085 | 		drive->mult_req = 0; | 
 | 1086 | 	if (drive->mult_req != drive->mult_count) | 
 | 1087 | 		drive->special.b.set_multmode = 1; | 
 | 1088 | } | 
 | 1089 |  | 
 | 1090 | static void pre_reset(ide_drive_t *drive) | 
 | 1091 | { | 
 | 1092 | 	if (drive->media == ide_disk) | 
 | 1093 | 		ide_disk_pre_reset(drive); | 
 | 1094 | 	else | 
 | 1095 | 		drive->post_reset = 1; | 
 | 1096 |  | 
 | 1097 | 	if (!drive->keep_settings) { | 
 | 1098 | 		if (drive->using_dma) { | 
 | 1099 | 			check_dma_crc(drive); | 
 | 1100 | 		} else { | 
 | 1101 | 			drive->unmask = 0; | 
 | 1102 | 			drive->io_32bit = 0; | 
 | 1103 | 		} | 
 | 1104 | 		return; | 
 | 1105 | 	} | 
 | 1106 | 	if (drive->using_dma) | 
 | 1107 | 		check_dma_crc(drive); | 
 | 1108 |  | 
 | 1109 | 	if (HWIF(drive)->pre_reset != NULL) | 
 | 1110 | 		HWIF(drive)->pre_reset(drive); | 
 | 1111 |  | 
 | 1112 | } | 
 | 1113 |  | 
 | 1114 | /* | 
 | 1115 |  * do_reset1() attempts to recover a confused drive by resetting it. | 
 | 1116 |  * Unfortunately, resetting a disk drive actually resets all devices on | 
 | 1117 |  * the same interface, so it can really be thought of as resetting the | 
 | 1118 |  * interface rather than resetting the drive. | 
 | 1119 |  * | 
 | 1120 |  * ATAPI devices have their own reset mechanism which allows them to be | 
 | 1121 |  * individually reset without clobbering other devices on the same interface. | 
 | 1122 |  * | 
 | 1123 |  * Unfortunately, the IDE interface does not generate an interrupt to let | 
 | 1124 |  * us know when the reset operation has finished, so we must poll for this. | 
 | 1125 |  * Equally poor, though, is the fact that this may a very long time to complete, | 
 | 1126 |  * (up to 30 seconds worstcase).  So, instead of busy-waiting here for it, | 
 | 1127 |  * we set a timer to poll at 50ms intervals. | 
 | 1128 |  */ | 
 | 1129 | static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi) | 
 | 1130 | { | 
 | 1131 | 	unsigned int unit; | 
 | 1132 | 	unsigned long flags; | 
 | 1133 | 	ide_hwif_t *hwif; | 
 | 1134 | 	ide_hwgroup_t *hwgroup; | 
 | 1135 | 	 | 
 | 1136 | 	spin_lock_irqsave(&ide_lock, flags); | 
 | 1137 | 	hwif = HWIF(drive); | 
 | 1138 | 	hwgroup = HWGROUP(drive); | 
 | 1139 |  | 
 | 1140 | 	/* We must not reset with running handlers */ | 
 | 1141 | 	if(hwgroup->handler != NULL) | 
 | 1142 | 		BUG(); | 
 | 1143 |  | 
 | 1144 | 	/* For an ATAPI device, first try an ATAPI SRST. */ | 
 | 1145 | 	if (drive->media != ide_disk && !do_not_try_atapi) { | 
 | 1146 | 		pre_reset(drive); | 
 | 1147 | 		SELECT_DRIVE(drive); | 
 | 1148 | 		udelay (20); | 
| Alan Cox | 68ad991 | 2005-06-27 15:24:25 -0700 | [diff] [blame] | 1149 | 		hwif->OUTBSYNC(drive, WIN_SRST, IDE_COMMAND_REG); | 
 | 1150 | 		ndelay(400); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1151 | 		hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE; | 
 | 1152 | 		hwgroup->polling = 1; | 
 | 1153 | 		__ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL); | 
 | 1154 | 		spin_unlock_irqrestore(&ide_lock, flags); | 
 | 1155 | 		return ide_started; | 
 | 1156 | 	} | 
 | 1157 |  | 
 | 1158 | 	/* | 
 | 1159 | 	 * First, reset any device state data we were maintaining | 
 | 1160 | 	 * for any of the drives on this interface. | 
 | 1161 | 	 */ | 
 | 1162 | 	for (unit = 0; unit < MAX_DRIVES; ++unit) | 
 | 1163 | 		pre_reset(&hwif->drives[unit]); | 
 | 1164 |  | 
 | 1165 | #if OK_TO_RESET_CONTROLLER | 
 | 1166 | 	if (!IDE_CONTROL_REG) { | 
 | 1167 | 		spin_unlock_irqrestore(&ide_lock, flags); | 
 | 1168 | 		return ide_stopped; | 
 | 1169 | 	} | 
 | 1170 |  | 
 | 1171 | 	/* | 
 | 1172 | 	 * Note that we also set nIEN while resetting the device, | 
 | 1173 | 	 * to mask unwanted interrupts from the interface during the reset. | 
 | 1174 | 	 * However, due to the design of PC hardware, this will cause an | 
 | 1175 | 	 * immediate interrupt due to the edge transition it produces. | 
 | 1176 | 	 * This single interrupt gives us a "fast poll" for drives that | 
 | 1177 | 	 * recover from reset very quickly, saving us the first 50ms wait time. | 
 | 1178 | 	 */ | 
 | 1179 | 	/* set SRST and nIEN */ | 
 | 1180 | 	hwif->OUTBSYNC(drive, drive->ctl|6,IDE_CONTROL_REG); | 
 | 1181 | 	/* more than enough time */ | 
 | 1182 | 	udelay(10); | 
 | 1183 | 	if (drive->quirk_list == 2) { | 
 | 1184 | 		/* clear SRST and nIEN */ | 
 | 1185 | 		hwif->OUTBSYNC(drive, drive->ctl, IDE_CONTROL_REG); | 
 | 1186 | 	} else { | 
 | 1187 | 		/* clear SRST, leave nIEN */ | 
 | 1188 | 		hwif->OUTBSYNC(drive, drive->ctl|2, IDE_CONTROL_REG); | 
 | 1189 | 	} | 
 | 1190 | 	/* more than enough time */ | 
 | 1191 | 	udelay(10); | 
 | 1192 | 	hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE; | 
 | 1193 | 	hwgroup->polling = 1; | 
 | 1194 | 	__ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL); | 
 | 1195 |  | 
 | 1196 | 	/* | 
 | 1197 | 	 * Some weird controller like resetting themselves to a strange | 
 | 1198 | 	 * state when the disks are reset this way. At least, the Winbond | 
 | 1199 | 	 * 553 documentation says that | 
 | 1200 | 	 */ | 
 | 1201 | 	if (hwif->resetproc != NULL) { | 
 | 1202 | 		hwif->resetproc(drive); | 
 | 1203 | 	} | 
 | 1204 | 	 | 
 | 1205 | #endif	/* OK_TO_RESET_CONTROLLER */ | 
 | 1206 |  | 
 | 1207 | 	spin_unlock_irqrestore(&ide_lock, flags); | 
 | 1208 | 	return ide_started; | 
 | 1209 | } | 
 | 1210 |  | 
 | 1211 | /* | 
 | 1212 |  * ide_do_reset() is the entry point to the drive/interface reset code. | 
 | 1213 |  */ | 
 | 1214 |  | 
 | 1215 | ide_startstop_t ide_do_reset (ide_drive_t *drive) | 
 | 1216 | { | 
 | 1217 | 	return do_reset1(drive, 0); | 
 | 1218 | } | 
 | 1219 |  | 
 | 1220 | EXPORT_SYMBOL(ide_do_reset); | 
 | 1221 |  | 
 | 1222 | /* | 
 | 1223 |  * ide_wait_not_busy() waits for the currently selected device on the hwif | 
 | 1224 |  * to report a non-busy status, see comments in probe_hwif(). | 
 | 1225 |  */ | 
 | 1226 | int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout) | 
 | 1227 | { | 
 | 1228 | 	u8 stat = 0; | 
 | 1229 |  | 
 | 1230 | 	while(timeout--) { | 
 | 1231 | 		/* | 
 | 1232 | 		 * Turn this into a schedule() sleep once I'm sure | 
 | 1233 | 		 * about locking issues (2.5 work ?). | 
 | 1234 | 		 */ | 
 | 1235 | 		mdelay(1); | 
 | 1236 | 		stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]); | 
 | 1237 | 		if ((stat & BUSY_STAT) == 0) | 
 | 1238 | 			return 0; | 
 | 1239 | 		/* | 
 | 1240 | 		 * Assume a value of 0xff means nothing is connected to | 
 | 1241 | 		 * the interface and it doesn't implement the pull-down | 
 | 1242 | 		 * resistor on D7. | 
 | 1243 | 		 */ | 
 | 1244 | 		if (stat == 0xff) | 
 | 1245 | 			return -ENODEV; | 
 | 1246 | 	} | 
 | 1247 | 	return -EBUSY; | 
 | 1248 | } | 
 | 1249 |  | 
 | 1250 | EXPORT_SYMBOL_GPL(ide_wait_not_busy); | 
 | 1251 |  |