| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | *  linux/kernel/profile.c | 
|  | 3 | *  Simple profiling. Manages a direct-mapped profile hit count buffer, | 
|  | 4 | *  with configurable resolution, support for restricting the cpus on | 
|  | 5 | *  which profiling is done, and switching between cpu time and | 
|  | 6 | *  schedule() calls via kernel command line parameters passed at boot. | 
|  | 7 | * | 
|  | 8 | *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar, | 
|  | 9 | *	Red Hat, July 2004 | 
|  | 10 | *  Consolidation of architecture support code for profiling, | 
|  | 11 | *	William Irwin, Oracle, July 2004 | 
|  | 12 | *  Amortized hit count accounting via per-cpu open-addressed hashtables | 
|  | 13 | *	to resolve timer interrupt livelocks, William Irwin, Oracle, 2004 | 
|  | 14 | */ | 
|  | 15 |  | 
|  | 16 | #include <linux/config.h> | 
|  | 17 | #include <linux/module.h> | 
|  | 18 | #include <linux/profile.h> | 
|  | 19 | #include <linux/bootmem.h> | 
|  | 20 | #include <linux/notifier.h> | 
|  | 21 | #include <linux/mm.h> | 
|  | 22 | #include <linux/cpumask.h> | 
|  | 23 | #include <linux/cpu.h> | 
|  | 24 | #include <linux/profile.h> | 
|  | 25 | #include <linux/highmem.h> | 
|  | 26 | #include <asm/sections.h> | 
|  | 27 | #include <asm/semaphore.h> | 
|  | 28 |  | 
|  | 29 | struct profile_hit { | 
|  | 30 | u32 pc, hits; | 
|  | 31 | }; | 
|  | 32 | #define PROFILE_GRPSHIFT	3 | 
|  | 33 | #define PROFILE_GRPSZ		(1 << PROFILE_GRPSHIFT) | 
|  | 34 | #define NR_PROFILE_HIT		(PAGE_SIZE/sizeof(struct profile_hit)) | 
|  | 35 | #define NR_PROFILE_GRP		(NR_PROFILE_HIT/PROFILE_GRPSZ) | 
|  | 36 |  | 
|  | 37 | /* Oprofile timer tick hook */ | 
| Christoph Lameter | 6c03652 | 2005-07-07 17:56:59 -0700 | [diff] [blame] | 38 | int (*timer_hook)(struct pt_regs *) __read_mostly; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 39 |  | 
|  | 40 | static atomic_t *prof_buffer; | 
|  | 41 | static unsigned long prof_len, prof_shift; | 
| Christoph Lameter | 6c03652 | 2005-07-07 17:56:59 -0700 | [diff] [blame] | 42 | static int prof_on __read_mostly; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 43 | static cpumask_t prof_cpu_mask = CPU_MASK_ALL; | 
|  | 44 | #ifdef CONFIG_SMP | 
|  | 45 | static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits); | 
|  | 46 | static DEFINE_PER_CPU(int, cpu_profile_flip); | 
|  | 47 | static DECLARE_MUTEX(profile_flip_mutex); | 
|  | 48 | #endif /* CONFIG_SMP */ | 
|  | 49 |  | 
|  | 50 | static int __init profile_setup(char * str) | 
|  | 51 | { | 
| William Lee Irwin III | dfaa9c9 | 2005-05-16 21:53:58 -0700 | [diff] [blame] | 52 | static char __initdata schedstr[] = "schedule"; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 53 | int par; | 
|  | 54 |  | 
| William Lee Irwin III | dfaa9c9 | 2005-05-16 21:53:58 -0700 | [diff] [blame] | 55 | if (!strncmp(str, schedstr, strlen(schedstr))) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 56 | prof_on = SCHED_PROFILING; | 
| William Lee Irwin III | dfaa9c9 | 2005-05-16 21:53:58 -0700 | [diff] [blame] | 57 | if (str[strlen(schedstr)] == ',') | 
|  | 58 | str += strlen(schedstr) + 1; | 
|  | 59 | if (get_option(&str, &par)) | 
|  | 60 | prof_shift = par; | 
|  | 61 | printk(KERN_INFO | 
|  | 62 | "kernel schedule profiling enabled (shift: %ld)\n", | 
|  | 63 | prof_shift); | 
|  | 64 | } else if (get_option(&str, &par)) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 65 | prof_shift = par; | 
|  | 66 | prof_on = CPU_PROFILING; | 
|  | 67 | printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n", | 
|  | 68 | prof_shift); | 
|  | 69 | } | 
|  | 70 | return 1; | 
|  | 71 | } | 
|  | 72 | __setup("profile=", profile_setup); | 
|  | 73 |  | 
|  | 74 |  | 
|  | 75 | void __init profile_init(void) | 
|  | 76 | { | 
|  | 77 | if (!prof_on) | 
|  | 78 | return; | 
|  | 79 |  | 
|  | 80 | /* only text is profiled */ | 
|  | 81 | prof_len = (_etext - _stext) >> prof_shift; | 
|  | 82 | prof_buffer = alloc_bootmem(prof_len*sizeof(atomic_t)); | 
|  | 83 | } | 
|  | 84 |  | 
|  | 85 | /* Profile event notifications */ | 
|  | 86 |  | 
|  | 87 | #ifdef CONFIG_PROFILING | 
|  | 88 |  | 
|  | 89 | static DECLARE_RWSEM(profile_rwsem); | 
|  | 90 | static DEFINE_RWLOCK(handoff_lock); | 
|  | 91 | static struct notifier_block * task_exit_notifier; | 
|  | 92 | static struct notifier_block * task_free_notifier; | 
|  | 93 | static struct notifier_block * munmap_notifier; | 
|  | 94 |  | 
|  | 95 | void profile_task_exit(struct task_struct * task) | 
|  | 96 | { | 
|  | 97 | down_read(&profile_rwsem); | 
|  | 98 | notifier_call_chain(&task_exit_notifier, 0, task); | 
|  | 99 | up_read(&profile_rwsem); | 
|  | 100 | } | 
|  | 101 |  | 
|  | 102 | int profile_handoff_task(struct task_struct * task) | 
|  | 103 | { | 
|  | 104 | int ret; | 
|  | 105 | read_lock(&handoff_lock); | 
|  | 106 | ret = notifier_call_chain(&task_free_notifier, 0, task); | 
|  | 107 | read_unlock(&handoff_lock); | 
|  | 108 | return (ret == NOTIFY_OK) ? 1 : 0; | 
|  | 109 | } | 
|  | 110 |  | 
|  | 111 | void profile_munmap(unsigned long addr) | 
|  | 112 | { | 
|  | 113 | down_read(&profile_rwsem); | 
|  | 114 | notifier_call_chain(&munmap_notifier, 0, (void *)addr); | 
|  | 115 | up_read(&profile_rwsem); | 
|  | 116 | } | 
|  | 117 |  | 
|  | 118 | int task_handoff_register(struct notifier_block * n) | 
|  | 119 | { | 
|  | 120 | int err = -EINVAL; | 
|  | 121 |  | 
|  | 122 | write_lock(&handoff_lock); | 
|  | 123 | err = notifier_chain_register(&task_free_notifier, n); | 
|  | 124 | write_unlock(&handoff_lock); | 
|  | 125 | return err; | 
|  | 126 | } | 
|  | 127 |  | 
|  | 128 | int task_handoff_unregister(struct notifier_block * n) | 
|  | 129 | { | 
|  | 130 | int err = -EINVAL; | 
|  | 131 |  | 
|  | 132 | write_lock(&handoff_lock); | 
|  | 133 | err = notifier_chain_unregister(&task_free_notifier, n); | 
|  | 134 | write_unlock(&handoff_lock); | 
|  | 135 | return err; | 
|  | 136 | } | 
|  | 137 |  | 
|  | 138 | int profile_event_register(enum profile_type type, struct notifier_block * n) | 
|  | 139 | { | 
|  | 140 | int err = -EINVAL; | 
|  | 141 |  | 
|  | 142 | down_write(&profile_rwsem); | 
|  | 143 |  | 
|  | 144 | switch (type) { | 
|  | 145 | case PROFILE_TASK_EXIT: | 
|  | 146 | err = notifier_chain_register(&task_exit_notifier, n); | 
|  | 147 | break; | 
|  | 148 | case PROFILE_MUNMAP: | 
|  | 149 | err = notifier_chain_register(&munmap_notifier, n); | 
|  | 150 | break; | 
|  | 151 | } | 
|  | 152 |  | 
|  | 153 | up_write(&profile_rwsem); | 
|  | 154 |  | 
|  | 155 | return err; | 
|  | 156 | } | 
|  | 157 |  | 
|  | 158 |  | 
|  | 159 | int profile_event_unregister(enum profile_type type, struct notifier_block * n) | 
|  | 160 | { | 
|  | 161 | int err = -EINVAL; | 
|  | 162 |  | 
|  | 163 | down_write(&profile_rwsem); | 
|  | 164 |  | 
|  | 165 | switch (type) { | 
|  | 166 | case PROFILE_TASK_EXIT: | 
|  | 167 | err = notifier_chain_unregister(&task_exit_notifier, n); | 
|  | 168 | break; | 
|  | 169 | case PROFILE_MUNMAP: | 
|  | 170 | err = notifier_chain_unregister(&munmap_notifier, n); | 
|  | 171 | break; | 
|  | 172 | } | 
|  | 173 |  | 
|  | 174 | up_write(&profile_rwsem); | 
|  | 175 | return err; | 
|  | 176 | } | 
|  | 177 |  | 
|  | 178 | int register_timer_hook(int (*hook)(struct pt_regs *)) | 
|  | 179 | { | 
|  | 180 | if (timer_hook) | 
|  | 181 | return -EBUSY; | 
|  | 182 | timer_hook = hook; | 
|  | 183 | return 0; | 
|  | 184 | } | 
|  | 185 |  | 
|  | 186 | void unregister_timer_hook(int (*hook)(struct pt_regs *)) | 
|  | 187 | { | 
|  | 188 | WARN_ON(hook != timer_hook); | 
|  | 189 | timer_hook = NULL; | 
|  | 190 | /* make sure all CPUs see the NULL hook */ | 
| Paul E. McKenney | fbd568a3e | 2005-05-01 08:59:04 -0700 | [diff] [blame] | 191 | synchronize_sched();  /* Allow ongoing interrupts to complete. */ | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 192 | } | 
|  | 193 |  | 
|  | 194 | EXPORT_SYMBOL_GPL(register_timer_hook); | 
|  | 195 | EXPORT_SYMBOL_GPL(unregister_timer_hook); | 
|  | 196 | EXPORT_SYMBOL_GPL(task_handoff_register); | 
|  | 197 | EXPORT_SYMBOL_GPL(task_handoff_unregister); | 
|  | 198 |  | 
|  | 199 | #endif /* CONFIG_PROFILING */ | 
|  | 200 |  | 
|  | 201 | EXPORT_SYMBOL_GPL(profile_event_register); | 
|  | 202 | EXPORT_SYMBOL_GPL(profile_event_unregister); | 
|  | 203 |  | 
|  | 204 | #ifdef CONFIG_SMP | 
|  | 205 | /* | 
|  | 206 | * Each cpu has a pair of open-addressed hashtables for pending | 
|  | 207 | * profile hits. read_profile() IPI's all cpus to request them | 
|  | 208 | * to flip buffers and flushes their contents to prof_buffer itself. | 
|  | 209 | * Flip requests are serialized by the profile_flip_mutex. The sole | 
|  | 210 | * use of having a second hashtable is for avoiding cacheline | 
|  | 211 | * contention that would otherwise happen during flushes of pending | 
|  | 212 | * profile hits required for the accuracy of reported profile hits | 
|  | 213 | * and so resurrect the interrupt livelock issue. | 
|  | 214 | * | 
|  | 215 | * The open-addressed hashtables are indexed by profile buffer slot | 
|  | 216 | * and hold the number of pending hits to that profile buffer slot on | 
|  | 217 | * a cpu in an entry. When the hashtable overflows, all pending hits | 
|  | 218 | * are accounted to their corresponding profile buffer slots with | 
|  | 219 | * atomic_add() and the hashtable emptied. As numerous pending hits | 
|  | 220 | * may be accounted to a profile buffer slot in a hashtable entry, | 
|  | 221 | * this amortizes a number of atomic profile buffer increments likely | 
|  | 222 | * to be far larger than the number of entries in the hashtable, | 
|  | 223 | * particularly given that the number of distinct profile buffer | 
|  | 224 | * positions to which hits are accounted during short intervals (e.g. | 
|  | 225 | * several seconds) is usually very small. Exclusion from buffer | 
|  | 226 | * flipping is provided by interrupt disablement (note that for | 
|  | 227 | * SCHED_PROFILING profile_hit() may be called from process context). | 
|  | 228 | * The hash function is meant to be lightweight as opposed to strong, | 
|  | 229 | * and was vaguely inspired by ppc64 firmware-supported inverted | 
|  | 230 | * pagetable hash functions, but uses a full hashtable full of finite | 
|  | 231 | * collision chains, not just pairs of them. | 
|  | 232 | * | 
|  | 233 | * -- wli | 
|  | 234 | */ | 
|  | 235 | static void __profile_flip_buffers(void *unused) | 
|  | 236 | { | 
|  | 237 | int cpu = smp_processor_id(); | 
|  | 238 |  | 
|  | 239 | per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu); | 
|  | 240 | } | 
|  | 241 |  | 
|  | 242 | static void profile_flip_buffers(void) | 
|  | 243 | { | 
|  | 244 | int i, j, cpu; | 
|  | 245 |  | 
|  | 246 | down(&profile_flip_mutex); | 
|  | 247 | j = per_cpu(cpu_profile_flip, get_cpu()); | 
|  | 248 | put_cpu(); | 
|  | 249 | on_each_cpu(__profile_flip_buffers, NULL, 0, 1); | 
|  | 250 | for_each_online_cpu(cpu) { | 
|  | 251 | struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j]; | 
|  | 252 | for (i = 0; i < NR_PROFILE_HIT; ++i) { | 
|  | 253 | if (!hits[i].hits) { | 
|  | 254 | if (hits[i].pc) | 
|  | 255 | hits[i].pc = 0; | 
|  | 256 | continue; | 
|  | 257 | } | 
|  | 258 | atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); | 
|  | 259 | hits[i].hits = hits[i].pc = 0; | 
|  | 260 | } | 
|  | 261 | } | 
|  | 262 | up(&profile_flip_mutex); | 
|  | 263 | } | 
|  | 264 |  | 
|  | 265 | static void profile_discard_flip_buffers(void) | 
|  | 266 | { | 
|  | 267 | int i, cpu; | 
|  | 268 |  | 
|  | 269 | down(&profile_flip_mutex); | 
|  | 270 | i = per_cpu(cpu_profile_flip, get_cpu()); | 
|  | 271 | put_cpu(); | 
|  | 272 | on_each_cpu(__profile_flip_buffers, NULL, 0, 1); | 
|  | 273 | for_each_online_cpu(cpu) { | 
|  | 274 | struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i]; | 
|  | 275 | memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit)); | 
|  | 276 | } | 
|  | 277 | up(&profile_flip_mutex); | 
|  | 278 | } | 
|  | 279 |  | 
|  | 280 | void profile_hit(int type, void *__pc) | 
|  | 281 | { | 
|  | 282 | unsigned long primary, secondary, flags, pc = (unsigned long)__pc; | 
|  | 283 | int i, j, cpu; | 
|  | 284 | struct profile_hit *hits; | 
|  | 285 |  | 
|  | 286 | if (prof_on != type || !prof_buffer) | 
|  | 287 | return; | 
|  | 288 | pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1); | 
|  | 289 | i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; | 
|  | 290 | secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; | 
|  | 291 | cpu = get_cpu(); | 
|  | 292 | hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)]; | 
|  | 293 | if (!hits) { | 
|  | 294 | put_cpu(); | 
|  | 295 | return; | 
|  | 296 | } | 
|  | 297 | local_irq_save(flags); | 
|  | 298 | do { | 
|  | 299 | for (j = 0; j < PROFILE_GRPSZ; ++j) { | 
|  | 300 | if (hits[i + j].pc == pc) { | 
|  | 301 | hits[i + j].hits++; | 
|  | 302 | goto out; | 
|  | 303 | } else if (!hits[i + j].hits) { | 
|  | 304 | hits[i + j].pc = pc; | 
|  | 305 | hits[i + j].hits = 1; | 
|  | 306 | goto out; | 
|  | 307 | } | 
|  | 308 | } | 
|  | 309 | i = (i + secondary) & (NR_PROFILE_HIT - 1); | 
|  | 310 | } while (i != primary); | 
|  | 311 | atomic_inc(&prof_buffer[pc]); | 
|  | 312 | for (i = 0; i < NR_PROFILE_HIT; ++i) { | 
|  | 313 | atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); | 
|  | 314 | hits[i].pc = hits[i].hits = 0; | 
|  | 315 | } | 
|  | 316 | out: | 
|  | 317 | local_irq_restore(flags); | 
|  | 318 | put_cpu(); | 
|  | 319 | } | 
|  | 320 |  | 
|  | 321 | #ifdef CONFIG_HOTPLUG_CPU | 
|  | 322 | static int __devinit profile_cpu_callback(struct notifier_block *info, | 
|  | 323 | unsigned long action, void *__cpu) | 
|  | 324 | { | 
|  | 325 | int node, cpu = (unsigned long)__cpu; | 
|  | 326 | struct page *page; | 
|  | 327 |  | 
|  | 328 | switch (action) { | 
|  | 329 | case CPU_UP_PREPARE: | 
|  | 330 | node = cpu_to_node(cpu); | 
|  | 331 | per_cpu(cpu_profile_flip, cpu) = 0; | 
|  | 332 | if (!per_cpu(cpu_profile_hits, cpu)[1]) { | 
|  | 333 | page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); | 
|  | 334 | if (!page) | 
|  | 335 | return NOTIFY_BAD; | 
|  | 336 | per_cpu(cpu_profile_hits, cpu)[1] = page_address(page); | 
|  | 337 | } | 
|  | 338 | if (!per_cpu(cpu_profile_hits, cpu)[0]) { | 
|  | 339 | page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); | 
|  | 340 | if (!page) | 
|  | 341 | goto out_free; | 
|  | 342 | per_cpu(cpu_profile_hits, cpu)[0] = page_address(page); | 
|  | 343 | } | 
|  | 344 | break; | 
|  | 345 | out_free: | 
|  | 346 | page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); | 
|  | 347 | per_cpu(cpu_profile_hits, cpu)[1] = NULL; | 
|  | 348 | __free_page(page); | 
|  | 349 | return NOTIFY_BAD; | 
|  | 350 | case CPU_ONLINE: | 
|  | 351 | cpu_set(cpu, prof_cpu_mask); | 
|  | 352 | break; | 
|  | 353 | case CPU_UP_CANCELED: | 
|  | 354 | case CPU_DEAD: | 
|  | 355 | cpu_clear(cpu, prof_cpu_mask); | 
|  | 356 | if (per_cpu(cpu_profile_hits, cpu)[0]) { | 
|  | 357 | page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]); | 
|  | 358 | per_cpu(cpu_profile_hits, cpu)[0] = NULL; | 
|  | 359 | __free_page(page); | 
|  | 360 | } | 
|  | 361 | if (per_cpu(cpu_profile_hits, cpu)[1]) { | 
|  | 362 | page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); | 
|  | 363 | per_cpu(cpu_profile_hits, cpu)[1] = NULL; | 
|  | 364 | __free_page(page); | 
|  | 365 | } | 
|  | 366 | break; | 
|  | 367 | } | 
|  | 368 | return NOTIFY_OK; | 
|  | 369 | } | 
|  | 370 | #endif /* CONFIG_HOTPLUG_CPU */ | 
|  | 371 | #else /* !CONFIG_SMP */ | 
|  | 372 | #define profile_flip_buffers()		do { } while (0) | 
|  | 373 | #define profile_discard_flip_buffers()	do { } while (0) | 
|  | 374 |  | 
|  | 375 | void profile_hit(int type, void *__pc) | 
|  | 376 | { | 
|  | 377 | unsigned long pc; | 
|  | 378 |  | 
|  | 379 | if (prof_on != type || !prof_buffer) | 
|  | 380 | return; | 
|  | 381 | pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift; | 
|  | 382 | atomic_inc(&prof_buffer[min(pc, prof_len - 1)]); | 
|  | 383 | } | 
|  | 384 | #endif /* !CONFIG_SMP */ | 
|  | 385 |  | 
|  | 386 | void profile_tick(int type, struct pt_regs *regs) | 
|  | 387 | { | 
|  | 388 | if (type == CPU_PROFILING && timer_hook) | 
|  | 389 | timer_hook(regs); | 
|  | 390 | if (!user_mode(regs) && cpu_isset(smp_processor_id(), prof_cpu_mask)) | 
|  | 391 | profile_hit(type, (void *)profile_pc(regs)); | 
|  | 392 | } | 
|  | 393 |  | 
|  | 394 | #ifdef CONFIG_PROC_FS | 
|  | 395 | #include <linux/proc_fs.h> | 
|  | 396 | #include <asm/uaccess.h> | 
|  | 397 | #include <asm/ptrace.h> | 
|  | 398 |  | 
|  | 399 | static int prof_cpu_mask_read_proc (char *page, char **start, off_t off, | 
|  | 400 | int count, int *eof, void *data) | 
|  | 401 | { | 
|  | 402 | int len = cpumask_scnprintf(page, count, *(cpumask_t *)data); | 
|  | 403 | if (count - len < 2) | 
|  | 404 | return -EINVAL; | 
|  | 405 | len += sprintf(page + len, "\n"); | 
|  | 406 | return len; | 
|  | 407 | } | 
|  | 408 |  | 
|  | 409 | static int prof_cpu_mask_write_proc (struct file *file, const char __user *buffer, | 
|  | 410 | unsigned long count, void *data) | 
|  | 411 | { | 
|  | 412 | cpumask_t *mask = (cpumask_t *)data; | 
|  | 413 | unsigned long full_count = count, err; | 
|  | 414 | cpumask_t new_value; | 
|  | 415 |  | 
|  | 416 | err = cpumask_parse(buffer, count, new_value); | 
|  | 417 | if (err) | 
|  | 418 | return err; | 
|  | 419 |  | 
|  | 420 | *mask = new_value; | 
|  | 421 | return full_count; | 
|  | 422 | } | 
|  | 423 |  | 
|  | 424 | void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir) | 
|  | 425 | { | 
|  | 426 | struct proc_dir_entry *entry; | 
|  | 427 |  | 
|  | 428 | /* create /proc/irq/prof_cpu_mask */ | 
|  | 429 | if (!(entry = create_proc_entry("prof_cpu_mask", 0600, root_irq_dir))) | 
|  | 430 | return; | 
|  | 431 | entry->nlink = 1; | 
|  | 432 | entry->data = (void *)&prof_cpu_mask; | 
|  | 433 | entry->read_proc = prof_cpu_mask_read_proc; | 
|  | 434 | entry->write_proc = prof_cpu_mask_write_proc; | 
|  | 435 | } | 
|  | 436 |  | 
|  | 437 | /* | 
|  | 438 | * This function accesses profiling information. The returned data is | 
|  | 439 | * binary: the sampling step and the actual contents of the profile | 
|  | 440 | * buffer. Use of the program readprofile is recommended in order to | 
|  | 441 | * get meaningful info out of these data. | 
|  | 442 | */ | 
|  | 443 | static ssize_t | 
|  | 444 | read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos) | 
|  | 445 | { | 
|  | 446 | unsigned long p = *ppos; | 
|  | 447 | ssize_t read; | 
|  | 448 | char * pnt; | 
|  | 449 | unsigned int sample_step = 1 << prof_shift; | 
|  | 450 |  | 
|  | 451 | profile_flip_buffers(); | 
|  | 452 | if (p >= (prof_len+1)*sizeof(unsigned int)) | 
|  | 453 | return 0; | 
|  | 454 | if (count > (prof_len+1)*sizeof(unsigned int) - p) | 
|  | 455 | count = (prof_len+1)*sizeof(unsigned int) - p; | 
|  | 456 | read = 0; | 
|  | 457 |  | 
|  | 458 | while (p < sizeof(unsigned int) && count > 0) { | 
|  | 459 | put_user(*((char *)(&sample_step)+p),buf); | 
|  | 460 | buf++; p++; count--; read++; | 
|  | 461 | } | 
|  | 462 | pnt = (char *)prof_buffer + p - sizeof(atomic_t); | 
|  | 463 | if (copy_to_user(buf,(void *)pnt,count)) | 
|  | 464 | return -EFAULT; | 
|  | 465 | read += count; | 
|  | 466 | *ppos += read; | 
|  | 467 | return read; | 
|  | 468 | } | 
|  | 469 |  | 
|  | 470 | /* | 
|  | 471 | * Writing to /proc/profile resets the counters | 
|  | 472 | * | 
|  | 473 | * Writing a 'profiling multiplier' value into it also re-sets the profiling | 
|  | 474 | * interrupt frequency, on architectures that support this. | 
|  | 475 | */ | 
|  | 476 | static ssize_t write_profile(struct file *file, const char __user *buf, | 
|  | 477 | size_t count, loff_t *ppos) | 
|  | 478 | { | 
|  | 479 | #ifdef CONFIG_SMP | 
|  | 480 | extern int setup_profiling_timer (unsigned int multiplier); | 
|  | 481 |  | 
|  | 482 | if (count == sizeof(int)) { | 
|  | 483 | unsigned int multiplier; | 
|  | 484 |  | 
|  | 485 | if (copy_from_user(&multiplier, buf, sizeof(int))) | 
|  | 486 | return -EFAULT; | 
|  | 487 |  | 
|  | 488 | if (setup_profiling_timer(multiplier)) | 
|  | 489 | return -EINVAL; | 
|  | 490 | } | 
|  | 491 | #endif | 
|  | 492 | profile_discard_flip_buffers(); | 
|  | 493 | memset(prof_buffer, 0, prof_len * sizeof(atomic_t)); | 
|  | 494 | return count; | 
|  | 495 | } | 
|  | 496 |  | 
|  | 497 | static struct file_operations proc_profile_operations = { | 
|  | 498 | .read		= read_profile, | 
|  | 499 | .write		= write_profile, | 
|  | 500 | }; | 
|  | 501 |  | 
|  | 502 | #ifdef CONFIG_SMP | 
|  | 503 | static void __init profile_nop(void *unused) | 
|  | 504 | { | 
|  | 505 | } | 
|  | 506 |  | 
|  | 507 | static int __init create_hash_tables(void) | 
|  | 508 | { | 
|  | 509 | int cpu; | 
|  | 510 |  | 
|  | 511 | for_each_online_cpu(cpu) { | 
|  | 512 | int node = cpu_to_node(cpu); | 
|  | 513 | struct page *page; | 
|  | 514 |  | 
|  | 515 | page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); | 
|  | 516 | if (!page) | 
|  | 517 | goto out_cleanup; | 
|  | 518 | per_cpu(cpu_profile_hits, cpu)[1] | 
|  | 519 | = (struct profile_hit *)page_address(page); | 
|  | 520 | page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); | 
|  | 521 | if (!page) | 
|  | 522 | goto out_cleanup; | 
|  | 523 | per_cpu(cpu_profile_hits, cpu)[0] | 
|  | 524 | = (struct profile_hit *)page_address(page); | 
|  | 525 | } | 
|  | 526 | return 0; | 
|  | 527 | out_cleanup: | 
|  | 528 | prof_on = 0; | 
| akpm@osdl.org | d59dd46 | 2005-05-01 08:58:47 -0700 | [diff] [blame] | 529 | smp_mb(); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 530 | on_each_cpu(profile_nop, NULL, 0, 1); | 
|  | 531 | for_each_online_cpu(cpu) { | 
|  | 532 | struct page *page; | 
|  | 533 |  | 
|  | 534 | if (per_cpu(cpu_profile_hits, cpu)[0]) { | 
|  | 535 | page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]); | 
|  | 536 | per_cpu(cpu_profile_hits, cpu)[0] = NULL; | 
|  | 537 | __free_page(page); | 
|  | 538 | } | 
|  | 539 | if (per_cpu(cpu_profile_hits, cpu)[1]) { | 
|  | 540 | page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); | 
|  | 541 | per_cpu(cpu_profile_hits, cpu)[1] = NULL; | 
|  | 542 | __free_page(page); | 
|  | 543 | } | 
|  | 544 | } | 
|  | 545 | return -1; | 
|  | 546 | } | 
|  | 547 | #else | 
|  | 548 | #define create_hash_tables()			({ 0; }) | 
|  | 549 | #endif | 
|  | 550 |  | 
|  | 551 | static int __init create_proc_profile(void) | 
|  | 552 | { | 
|  | 553 | struct proc_dir_entry *entry; | 
|  | 554 |  | 
|  | 555 | if (!prof_on) | 
|  | 556 | return 0; | 
|  | 557 | if (create_hash_tables()) | 
|  | 558 | return -1; | 
|  | 559 | if (!(entry = create_proc_entry("profile", S_IWUSR | S_IRUGO, NULL))) | 
|  | 560 | return 0; | 
|  | 561 | entry->proc_fops = &proc_profile_operations; | 
|  | 562 | entry->size = (1+prof_len) * sizeof(atomic_t); | 
|  | 563 | hotcpu_notifier(profile_cpu_callback, 0); | 
|  | 564 | return 0; | 
|  | 565 | } | 
|  | 566 | module_init(create_proc_profile); | 
|  | 567 | #endif /* CONFIG_PROC_FS */ |