blob: 35661b8afb4e042b16ad79fc9b718df74089c94d [file] [log] [blame]
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
Peter Zijlstra21805082007-08-25 18:41:53 +020018 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020021 */
22
Arjan van de Ven97455122008-01-25 21:08:34 +010023#include <linux/latencytop.h>
Christian Ehrhardt1983a922009-11-30 12:16:47 +010024#include <linux/sched.h>
Sisir Koppaka3436ae12011-03-26 18:22:55 +053025#include <linux/cpumask.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020026#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
Peter Zijlstracbee9f82012-10-25 14:16:43 +020029#include <linux/mempolicy.h>
Mel Gormane14808b2012-11-19 10:59:15 +000030#include <linux/migrate.h>
Peter Zijlstracbee9f82012-10-25 14:16:43 +020031#include <linux/task_work.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020032
33#include <trace/events/sched.h>
34
35#include "sched.h"
Arjan van de Ven97455122008-01-25 21:08:34 +010036
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020037/*
Peter Zijlstra21805082007-08-25 18:41:53 +020038 * Targeted preemption latency for CPU-bound tasks:
Takuya Yoshikawa864616e2010-10-14 16:09:13 +090039 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020040 *
Peter Zijlstra21805082007-08-25 18:41:53 +020041 * NOTE: this latency value is not the same as the concept of
Ingo Molnard274a4c2007-10-15 17:00:14 +020042 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020045 *
Ingo Molnard274a4c2007-10-15 17:00:14 +020046 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020048 */
Mike Galbraith21406922010-03-11 17:17:15 +010049unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020051
52/*
Christian Ehrhardt1983a922009-11-30 12:16:47 +010053 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
64/*
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010065 * Minimal preemption granularity for CPU-bound tasks:
Takuya Yoshikawa864616e2010-10-14 16:09:13 +090066 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010067 */
Ingo Molnar0bf377b2010-09-12 08:14:52 +020068unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010070
71/*
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
Ingo Molnar0bf377b2010-09-12 08:14:52 +020074static unsigned int sched_nr_latency = 8;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010075
76/*
Mike Galbraith2bba22c2009-09-09 15:41:37 +020077 * After fork, child runs first. If set to 0 (default) then
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020078 * parent will (try to) run first.
79 */
Mike Galbraith2bba22c2009-09-09 15:41:37 +020080unsigned int sysctl_sched_child_runs_first __read_mostly;
Peter Zijlstra21805082007-08-25 18:41:53 +020081
82/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020083 * SCHED_OTHER wake-up granularity.
Mike Galbraith172e0822009-09-09 15:41:37 +020084 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020085 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
Mike Galbraith172e0822009-09-09 15:41:37 +020090unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +010091unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020092
Ingo Molnarda84d962007-10-15 17:00:18 +020093const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
Paul Turnera7a4f8a2010-11-15 15:47:06 -080095/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
Paul Turnerec12cb72011-07-21 09:43:30 -0700102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
Paul Gortmaker85276322013-04-19 15:10:50 -0400116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
Peter Zijlstra029632f2011-10-25 10:00:11 +0200134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
181#if BITS_PER_LONG == 32
182# define WMULT_CONST (~0UL)
183#else
184# define WMULT_CONST (1UL << 32)
185#endif
186
187#define WMULT_SHIFT 32
188
189/*
190 * Shift right and round:
191 */
192#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194/*
195 * delta *= weight / lw
196 */
197static unsigned long
198calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200{
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234}
235
236
237const struct sched_class fair_sched_class;
Peter Zijlstraa4c2f002008-10-17 19:27:03 +0200238
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200239/**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
243#ifdef CONFIG_FAIR_GROUP_SCHED
244
245/* cpu runqueue to which this cfs_rq is attached */
246static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247{
248 return cfs_rq->rq;
249}
250
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200251/* An entity is a task if it doesn't "own" a runqueue */
252#define entity_is_task(se) (!se->my_q)
253
Peter Zijlstra8f488942009-07-24 12:25:30 +0200254static inline struct task_struct *task_of(struct sched_entity *se)
255{
256#ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258#endif
259 return container_of(se, struct task_struct, se);
260}
261
Peter Zijlstrab7581492008-04-19 19:45:00 +0200262/* Walk up scheduling entities hierarchy */
263#define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267{
268 return p->se.cfs_rq;
269}
270
271/* runqueue on which this entity is (to be) queued */
272static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273{
274 return se->cfs_rq;
275}
276
277/* runqueue "owned" by this group */
278static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279{
280 return grp->my_q;
281}
282
Paul Turneraff3e492012-10-04 13:18:30 +0200283static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
Paul Turner9ee474f2012-10-04 13:18:30 +0200285
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
Paul Turner67e86252010-11-15 15:47:05 -0800289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
Paul Turner67e86252010-11-15 15:47:05 -0800299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 }
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800303
304 cfs_rq->on_list = 1;
Paul Turner9ee474f2012-10-04 13:18:30 +0200305 /* We should have no load, but we need to update last_decay. */
Paul Turneraff3e492012-10-04 13:18:30 +0200306 update_cfs_rq_blocked_load(cfs_rq, 0);
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800307 }
308}
309
310static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311{
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316}
317
Peter Zijlstrab7581492008-04-19 19:45:00 +0200318/* Iterate thr' all leaf cfs_rq's on a runqueue */
319#define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322/* Do the two (enqueued) entities belong to the same group ? */
323static inline int
324is_same_group(struct sched_entity *se, struct sched_entity *pse)
325{
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330}
331
332static inline struct sched_entity *parent_entity(struct sched_entity *se)
333{
334 return se->parent;
335}
336
Peter Zijlstra464b7522008-10-24 11:06:15 +0200337/* return depth at which a sched entity is present in the hierarchy */
338static inline int depth_se(struct sched_entity *se)
339{
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346}
347
348static void
349find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350{
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378}
379
Peter Zijlstra8f488942009-07-24 12:25:30 +0200380#else /* !CONFIG_FAIR_GROUP_SCHED */
381
382static inline struct task_struct *task_of(struct sched_entity *se)
383{
384 return container_of(se, struct task_struct, se);
385}
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200386
387static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388{
389 return container_of(cfs_rq, struct rq, cfs);
390}
391
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200392#define entity_is_task(se) 1
393
Peter Zijlstrab7581492008-04-19 19:45:00 +0200394#define for_each_sched_entity(se) \
395 for (; se; se = NULL)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200396
Peter Zijlstrab7581492008-04-19 19:45:00 +0200397static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200398{
Peter Zijlstrab7581492008-04-19 19:45:00 +0200399 return &task_rq(p)->cfs;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200400}
401
Peter Zijlstrab7581492008-04-19 19:45:00 +0200402static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403{
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408}
409
410/* runqueue "owned" by this group */
411static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412{
413 return NULL;
414}
415
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800416static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417{
418}
419
420static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421{
422}
423
Peter Zijlstrab7581492008-04-19 19:45:00 +0200424#define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427static inline int
428is_same_group(struct sched_entity *se, struct sched_entity *pse)
429{
430 return 1;
431}
432
433static inline struct sched_entity *parent_entity(struct sched_entity *se)
434{
435 return NULL;
436}
437
Peter Zijlstra464b7522008-10-24 11:06:15 +0200438static inline void
439find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440{
441}
442
Peter Zijlstrab7581492008-04-19 19:45:00 +0200443#endif /* CONFIG_FAIR_GROUP_SCHED */
444
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -0700445static __always_inline
446void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200447
448/**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
Andrei Epure1bf08232013-03-12 21:12:24 +0200452static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
Peter Zijlstra02e04312007-10-15 17:00:07 +0200453{
Andrei Epure1bf08232013-03-12 21:12:24 +0200454 s64 delta = (s64)(vruntime - max_vruntime);
Peter Zijlstra368059a2007-10-15 17:00:11 +0200455 if (delta > 0)
Andrei Epure1bf08232013-03-12 21:12:24 +0200456 max_vruntime = vruntime;
Peter Zijlstra02e04312007-10-15 17:00:07 +0200457
Andrei Epure1bf08232013-03-12 21:12:24 +0200458 return max_vruntime;
Peter Zijlstra02e04312007-10-15 17:00:07 +0200459}
460
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200461static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
Peter Zijlstrab0ffd242007-10-15 17:00:12 +0200462{
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468}
469
Fabio Checconi54fdc582009-07-16 12:32:27 +0200470static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472{
473 return (s64)(a->vruntime - b->vruntime) < 0;
474}
475
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200476static void update_min_vruntime(struct cfs_rq *cfs_rq)
477{
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
Peter Zijlstrae17036d2009-01-15 14:53:39 +0100488 if (!cfs_rq->curr)
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
Andrei Epure1bf08232013-03-12 21:12:24 +0200494 /* ensure we never gain time by being placed backwards. */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
Peter Zijlstra3fe16982011-04-05 17:23:48 +0200496#ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499#endif
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200500}
501
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200502/*
503 * Enqueue an entity into the rb-tree:
504 */
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200505static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200506{
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
Stephan Baerwolf2bd2d6f2011-07-20 14:46:59 +0200522 if (entity_before(se, entry)) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200534 if (leftmost)
Ingo Molnar57cb4992007-10-15 17:00:11 +0200535 cfs_rq->rb_leftmost = &se->run_node;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200539}
540
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200541static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200542{
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100548 }
Ingo Molnare9acbff2007-10-15 17:00:04 +0200549
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200551}
552
Peter Zijlstra029632f2011-10-25 10:00:11 +0200553struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200554{
Peter Zijlstraf4b67552008-11-04 21:25:07 +0100555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200561}
562
Rik van Rielac53db52011-02-01 09:51:03 -0500563static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564{
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571}
572
573#ifdef CONFIG_SCHED_DEBUG
Peter Zijlstra029632f2011-10-25 10:00:11 +0200574struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200575{
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200577
Balbir Singh70eee742008-02-22 13:25:53 +0530578 if (!last)
579 return NULL;
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100580
581 return rb_entry(last, struct sched_entity, run_node);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200582}
583
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200584/**************************************************************
585 * Scheduling class statistics methods:
586 */
587
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100588int sched_proc_update_handler(struct ctl_table *table, int write,
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700589 void __user *buffer, size_t *lenp,
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100590 loff_t *ppos)
591{
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100593 int factor = get_update_sysctl_factor();
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100601#define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100606#undef WRT_SYSCTL
607
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100608 return 0;
609}
610#endif
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200611
612/*
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200613 * delta /= w
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200614 */
615static inline unsigned long
616calc_delta_fair(unsigned long delta, struct sched_entity *se)
617{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200620
621 return delta;
622}
623
624/*
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200625 * The idea is to set a period in which each task runs once.
626 *
Borislav Petkov532b1852012-08-08 16:16:04 +0200627 * When there are too many tasks (sched_nr_latency) we have to stretch
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200632static u64 __sched_period(unsigned long nr_running)
633{
634 u64 period = sysctl_sched_latency;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100635 unsigned long nr_latency = sched_nr_latency;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200636
637 if (unlikely(nr_running > nr_latency)) {
Peter Zijlstra4bf0b772008-01-25 21:08:21 +0100638 period = sysctl_sched_min_granularity;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200639 period *= nr_running;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200640 }
641
642 return period;
643}
644
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200645/*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200649 * s = p*P[w/rw]
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200650 */
Peter Zijlstra6d0f0eb2007-10-15 17:00:05 +0200651static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Peter Zijlstra21805082007-08-25 18:41:53 +0200652{
Mike Galbraith0a582442009-01-02 12:16:42 +0100653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200654
Mike Galbraith0a582442009-01-02 12:16:42 +0100655 for_each_sched_entity(se) {
Lin Ming6272d682009-01-15 17:17:15 +0100656 struct load_weight *load;
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200657 struct load_weight lw;
Lin Ming6272d682009-01-15 17:17:15 +0100658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200661
Mike Galbraith0a582442009-01-02 12:16:42 +0100662 if (unlikely(!se->on_rq)) {
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200663 lw = cfs_rq->load;
Mike Galbraith0a582442009-01-02 12:16:42 +0100664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200671}
672
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200673/*
Andrei Epure660cc002013-03-11 12:03:20 +0200674 * We calculate the vruntime slice of a to-be-inserted task.
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200675 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200676 * vs = s/w
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200677 */
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200678static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200679{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200681}
682
Alex Shia75cdaa2013-06-20 10:18:47 +0800683#ifdef CONFIG_SMP
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100684static unsigned long task_h_load(struct task_struct *p);
685
Alex Shia75cdaa2013-06-20 10:18:47 +0800686static inline void __update_task_entity_contrib(struct sched_entity *se);
687
688/* Give new task start runnable values to heavy its load in infant time */
689void init_task_runnable_average(struct task_struct *p)
690{
691 u32 slice;
692
693 p->se.avg.decay_count = 0;
694 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
695 p->se.avg.runnable_avg_sum = slice;
696 p->se.avg.runnable_avg_period = slice;
697 __update_task_entity_contrib(&p->se);
698}
699#else
700void init_task_runnable_average(struct task_struct *p)
701{
702}
703#endif
704
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200705/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200706 * Update the current task's runtime statistics. Skip current tasks that
707 * are not in our scheduling class.
708 */
709static inline void
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200710__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
711 unsigned long delta_exec)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200712{
Ingo Molnarbbdba7c2007-10-15 17:00:06 +0200713 unsigned long delta_exec_weighted;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200714
Lucas De Marchi41acab82010-03-10 23:37:45 -0300715 schedstat_set(curr->statistics.exec_max,
716 max((u64)delta_exec, curr->statistics.exec_max));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200717
718 curr->sum_exec_runtime += delta_exec;
Ingo Molnar7a62eab2007-10-15 17:00:06 +0200719 schedstat_add(cfs_rq, exec_clock, delta_exec);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200720 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +0100721
Ingo Molnare9acbff2007-10-15 17:00:04 +0200722 curr->vruntime += delta_exec_weighted;
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200723 update_min_vruntime(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200724}
725
Ingo Molnarb7cc0892007-08-09 11:16:47 +0200726static void update_curr(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200727{
Ingo Molnar429d43b2007-10-15 17:00:03 +0200728 struct sched_entity *curr = cfs_rq->curr;
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200729 u64 now = rq_clock_task(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200730 unsigned long delta_exec;
731
732 if (unlikely(!curr))
733 return;
734
735 /*
736 * Get the amount of time the current task was running
737 * since the last time we changed load (this cannot
738 * overflow on 32 bits):
739 */
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200740 delta_exec = (unsigned long)(now - curr->exec_start);
Peter Zijlstra34f28ec2008-12-16 08:45:31 +0100741 if (!delta_exec)
742 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200743
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200744 __update_curr(cfs_rq, curr, delta_exec);
745 curr->exec_start = now;
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100746
747 if (entity_is_task(curr)) {
748 struct task_struct *curtask = task_of(curr);
749
Ingo Molnarf977bb42009-09-13 18:15:54 +0200750 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100751 cpuacct_charge(curtask, delta_exec);
Frank Mayharf06febc2008-09-12 09:54:39 -0700752 account_group_exec_runtime(curtask, delta_exec);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100753 }
Paul Turnerec12cb72011-07-21 09:43:30 -0700754
755 account_cfs_rq_runtime(cfs_rq, delta_exec);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200756}
757
758static inline void
Ingo Molnar5870db52007-08-09 11:16:47 +0200759update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200760{
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200761 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200762}
763
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200764/*
765 * Task is being enqueued - update stats:
766 */
Ingo Molnard2417e52007-08-09 11:16:47 +0200767static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200768{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200769 /*
770 * Are we enqueueing a waiting task? (for current tasks
771 * a dequeue/enqueue event is a NOP)
772 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200773 if (se != cfs_rq->curr)
Ingo Molnar5870db52007-08-09 11:16:47 +0200774 update_stats_wait_start(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200775}
776
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200777static void
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200778update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200779{
Lucas De Marchi41acab82010-03-10 23:37:45 -0300780 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200781 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
Lucas De Marchi41acab82010-03-10 23:37:45 -0300782 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
783 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200784 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200785#ifdef CONFIG_SCHEDSTATS
786 if (entity_is_task(se)) {
787 trace_sched_stat_wait(task_of(se),
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200788 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200789 }
790#endif
Lucas De Marchi41acab82010-03-10 23:37:45 -0300791 schedstat_set(se->statistics.wait_start, 0);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200792}
793
794static inline void
Ingo Molnar19b6a2e2007-08-09 11:16:48 +0200795update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200796{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200797 /*
798 * Mark the end of the wait period if dequeueing a
799 * waiting task:
800 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200801 if (se != cfs_rq->curr)
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200802 update_stats_wait_end(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200803}
804
805/*
806 * We are picking a new current task - update its stats:
807 */
808static inline void
Ingo Molnar79303e92007-08-09 11:16:47 +0200809update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200810{
811 /*
812 * We are starting a new run period:
813 */
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200814 se->exec_start = rq_clock_task(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200815}
816
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200817/**************************************************
818 * Scheduling class queueing methods:
819 */
820
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200821#ifdef CONFIG_NUMA_BALANCING
822/*
Mel Gorman598f0ec2013-10-07 11:28:55 +0100823 * Approximate time to scan a full NUMA task in ms. The task scan period is
824 * calculated based on the tasks virtual memory size and
825 * numa_balancing_scan_size.
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200826 */
Mel Gorman598f0ec2013-10-07 11:28:55 +0100827unsigned int sysctl_numa_balancing_scan_period_min = 1000;
828unsigned int sysctl_numa_balancing_scan_period_max = 60000;
829unsigned int sysctl_numa_balancing_scan_period_reset = 60000;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200830
831/* Portion of address space to scan in MB */
832unsigned int sysctl_numa_balancing_scan_size = 256;
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200833
Peter Zijlstra4b96a292012-10-25 14:16:47 +0200834/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
835unsigned int sysctl_numa_balancing_scan_delay = 1000;
836
Mel Gorman598f0ec2013-10-07 11:28:55 +0100837static unsigned int task_nr_scan_windows(struct task_struct *p)
838{
839 unsigned long rss = 0;
840 unsigned long nr_scan_pages;
841
842 /*
843 * Calculations based on RSS as non-present and empty pages are skipped
844 * by the PTE scanner and NUMA hinting faults should be trapped based
845 * on resident pages
846 */
847 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
848 rss = get_mm_rss(p->mm);
849 if (!rss)
850 rss = nr_scan_pages;
851
852 rss = round_up(rss, nr_scan_pages);
853 return rss / nr_scan_pages;
854}
855
856/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
857#define MAX_SCAN_WINDOW 2560
858
859static unsigned int task_scan_min(struct task_struct *p)
860{
861 unsigned int scan, floor;
862 unsigned int windows = 1;
863
864 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
865 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
866 floor = 1000 / windows;
867
868 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
869 return max_t(unsigned int, floor, scan);
870}
871
872static unsigned int task_scan_max(struct task_struct *p)
873{
874 unsigned int smin = task_scan_min(p);
875 unsigned int smax;
876
877 /* Watch for min being lower than max due to floor calculations */
878 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
879 return max(smin, smax);
880}
881
Mel Gorman3a7053b2013-10-07 11:29:00 +0100882/*
883 * Once a preferred node is selected the scheduler balancer will prefer moving
884 * a task to that node for sysctl_numa_balancing_settle_count number of PTE
885 * scans. This will give the process the chance to accumulate more faults on
886 * the preferred node but still allow the scheduler to move the task again if
887 * the nodes CPUs are overloaded.
888 */
Rik van Riel6fe6b2d2013-10-07 11:29:08 +0100889unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
Mel Gorman3a7053b2013-10-07 11:29:00 +0100890
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100891struct numa_group {
892 atomic_t refcount;
893
894 spinlock_t lock; /* nr_tasks, tasks */
895 int nr_tasks;
Mel Gormane29cf082013-10-07 11:29:22 +0100896 pid_t gid;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100897 struct list_head task_list;
898
899 struct rcu_head rcu;
900 atomic_long_t faults[0];
901};
902
Mel Gormane29cf082013-10-07 11:29:22 +0100903pid_t task_numa_group_id(struct task_struct *p)
904{
905 return p->numa_group ? p->numa_group->gid : 0;
906}
907
Mel Gormanac8e8952013-10-07 11:29:03 +0100908static inline int task_faults_idx(int nid, int priv)
909{
910 return 2 * nid + priv;
911}
912
913static inline unsigned long task_faults(struct task_struct *p, int nid)
914{
915 if (!p->numa_faults)
916 return 0;
917
918 return p->numa_faults[task_faults_idx(nid, 0)] +
919 p->numa_faults[task_faults_idx(nid, 1)];
920}
921
Mel Gormane6628d52013-10-07 11:29:02 +0100922static unsigned long weighted_cpuload(const int cpu);
Mel Gorman58d081b2013-10-07 11:29:10 +0100923static unsigned long source_load(int cpu, int type);
924static unsigned long target_load(int cpu, int type);
925static unsigned long power_of(int cpu);
926static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
Mel Gormane6628d52013-10-07 11:29:02 +0100927
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100928/* Cached statistics for all CPUs within a node */
Mel Gorman58d081b2013-10-07 11:29:10 +0100929struct numa_stats {
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100930 unsigned long nr_running;
Mel Gorman58d081b2013-10-07 11:29:10 +0100931 unsigned long load;
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100932
933 /* Total compute capacity of CPUs on a node */
934 unsigned long power;
935
936 /* Approximate capacity in terms of runnable tasks on a node */
937 unsigned long capacity;
938 int has_capacity;
Mel Gorman58d081b2013-10-07 11:29:10 +0100939};
Mel Gormane6628d52013-10-07 11:29:02 +0100940
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100941/*
942 * XXX borrowed from update_sg_lb_stats
943 */
944static void update_numa_stats(struct numa_stats *ns, int nid)
945{
946 int cpu;
947
948 memset(ns, 0, sizeof(*ns));
949 for_each_cpu(cpu, cpumask_of_node(nid)) {
950 struct rq *rq = cpu_rq(cpu);
951
952 ns->nr_running += rq->nr_running;
953 ns->load += weighted_cpuload(cpu);
954 ns->power += power_of(cpu);
955 }
956
957 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
958 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
959 ns->has_capacity = (ns->nr_running < ns->capacity);
960}
961
Mel Gorman58d081b2013-10-07 11:29:10 +0100962struct task_numa_env {
963 struct task_struct *p;
964
965 int src_cpu, src_nid;
966 int dst_cpu, dst_nid;
967
968 struct numa_stats src_stats, dst_stats;
969
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100970 int imbalance_pct, idx;
971
972 struct task_struct *best_task;
973 long best_imp;
Mel Gorman58d081b2013-10-07 11:29:10 +0100974 int best_cpu;
975};
976
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100977static void task_numa_assign(struct task_numa_env *env,
978 struct task_struct *p, long imp)
979{
980 if (env->best_task)
981 put_task_struct(env->best_task);
982 if (p)
983 get_task_struct(p);
984
985 env->best_task = p;
986 env->best_imp = imp;
987 env->best_cpu = env->dst_cpu;
988}
989
990/*
991 * This checks if the overall compute and NUMA accesses of the system would
992 * be improved if the source tasks was migrated to the target dst_cpu taking
993 * into account that it might be best if task running on the dst_cpu should
994 * be exchanged with the source task
995 */
996static void task_numa_compare(struct task_numa_env *env, long imp)
997{
998 struct rq *src_rq = cpu_rq(env->src_cpu);
999 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1000 struct task_struct *cur;
1001 long dst_load, src_load;
1002 long load;
1003
1004 rcu_read_lock();
1005 cur = ACCESS_ONCE(dst_rq->curr);
1006 if (cur->pid == 0) /* idle */
1007 cur = NULL;
1008
1009 /*
1010 * "imp" is the fault differential for the source task between the
1011 * source and destination node. Calculate the total differential for
1012 * the source task and potential destination task. The more negative
1013 * the value is, the more rmeote accesses that would be expected to
1014 * be incurred if the tasks were swapped.
1015 */
1016 if (cur) {
1017 /* Skip this swap candidate if cannot move to the source cpu */
1018 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1019 goto unlock;
1020
1021 imp += task_faults(cur, env->src_nid) -
1022 task_faults(cur, env->dst_nid);
1023 }
1024
1025 if (imp < env->best_imp)
1026 goto unlock;
1027
1028 if (!cur) {
1029 /* Is there capacity at our destination? */
1030 if (env->src_stats.has_capacity &&
1031 !env->dst_stats.has_capacity)
1032 goto unlock;
1033
1034 goto balance;
1035 }
1036
1037 /* Balance doesn't matter much if we're running a task per cpu */
1038 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1039 goto assign;
1040
1041 /*
1042 * In the overloaded case, try and keep the load balanced.
1043 */
1044balance:
1045 dst_load = env->dst_stats.load;
1046 src_load = env->src_stats.load;
1047
1048 /* XXX missing power terms */
1049 load = task_h_load(env->p);
1050 dst_load += load;
1051 src_load -= load;
1052
1053 if (cur) {
1054 load = task_h_load(cur);
1055 dst_load -= load;
1056 src_load += load;
1057 }
1058
1059 /* make src_load the smaller */
1060 if (dst_load < src_load)
1061 swap(dst_load, src_load);
1062
1063 if (src_load * env->imbalance_pct < dst_load * 100)
1064 goto unlock;
1065
1066assign:
1067 task_numa_assign(env, cur, imp);
1068unlock:
1069 rcu_read_unlock();
1070}
1071
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001072static void task_numa_find_cpu(struct task_numa_env *env, long imp)
1073{
1074 int cpu;
1075
1076 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1077 /* Skip this CPU if the source task cannot migrate */
1078 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1079 continue;
1080
1081 env->dst_cpu = cpu;
1082 task_numa_compare(env, imp);
1083 }
1084}
1085
Mel Gorman58d081b2013-10-07 11:29:10 +01001086static int task_numa_migrate(struct task_struct *p)
Mel Gormane6628d52013-10-07 11:29:02 +01001087{
Mel Gorman58d081b2013-10-07 11:29:10 +01001088 struct task_numa_env env = {
1089 .p = p,
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001090
Mel Gorman58d081b2013-10-07 11:29:10 +01001091 .src_cpu = task_cpu(p),
1092 .src_nid = cpu_to_node(task_cpu(p)),
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001093
1094 .imbalance_pct = 112,
1095
1096 .best_task = NULL,
1097 .best_imp = 0,
1098 .best_cpu = -1
Mel Gorman58d081b2013-10-07 11:29:10 +01001099 };
1100 struct sched_domain *sd;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001101 unsigned long faults;
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001102 int nid, ret;
1103 long imp;
Mel Gormane6628d52013-10-07 11:29:02 +01001104
Mel Gorman58d081b2013-10-07 11:29:10 +01001105 /*
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001106 * Pick the lowest SD_NUMA domain, as that would have the smallest
1107 * imbalance and would be the first to start moving tasks about.
1108 *
1109 * And we want to avoid any moving of tasks about, as that would create
1110 * random movement of tasks -- counter the numa conditions we're trying
1111 * to satisfy here.
Mel Gorman58d081b2013-10-07 11:29:10 +01001112 */
Mel Gormane6628d52013-10-07 11:29:02 +01001113 rcu_read_lock();
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001114 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1115 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
Mel Gormane6628d52013-10-07 11:29:02 +01001116 rcu_read_unlock();
1117
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001118 faults = task_faults(p, env.src_nid);
1119 update_numa_stats(&env.src_stats, env.src_nid);
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001120 env.dst_nid = p->numa_preferred_nid;
1121 imp = task_faults(env.p, env.dst_nid) - faults;
1122 update_numa_stats(&env.dst_stats, env.dst_nid);
Mel Gorman58d081b2013-10-07 11:29:10 +01001123
Rik van Riele1dda8a2013-10-07 11:29:19 +01001124 /* If the preferred nid has capacity, try to use it. */
1125 if (env.dst_stats.has_capacity)
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001126 task_numa_find_cpu(&env, imp);
Rik van Riele1dda8a2013-10-07 11:29:19 +01001127
1128 /* No space available on the preferred nid. Look elsewhere. */
1129 if (env.best_cpu == -1) {
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001130 for_each_online_node(nid) {
1131 if (nid == env.src_nid || nid == p->numa_preferred_nid)
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001132 continue;
1133
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001134 /* Only consider nodes that recorded more faults */
1135 imp = task_faults(env.p, nid) - faults;
1136 if (imp < 0)
1137 continue;
1138
1139 env.dst_nid = nid;
1140 update_numa_stats(&env.dst_stats, env.dst_nid);
1141 task_numa_find_cpu(&env, imp);
Mel Gorman58d081b2013-10-07 11:29:10 +01001142 }
1143 }
1144
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001145 /* No better CPU than the current one was found. */
1146 if (env.best_cpu == -1)
1147 return -EAGAIN;
1148
1149 if (env.best_task == NULL) {
1150 int ret = migrate_task_to(p, env.best_cpu);
1151 return ret;
1152 }
1153
1154 ret = migrate_swap(p, env.best_task);
1155 put_task_struct(env.best_task);
1156 return ret;
Mel Gormane6628d52013-10-07 11:29:02 +01001157}
1158
Mel Gorman6b9a7462013-10-07 11:29:11 +01001159/* Attempt to migrate a task to a CPU on the preferred node. */
1160static void numa_migrate_preferred(struct task_struct *p)
1161{
1162 /* Success if task is already running on preferred CPU */
1163 p->numa_migrate_retry = 0;
Rik van Riel06ea5e02013-10-07 11:29:12 +01001164 if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid) {
1165 /*
1166 * If migration is temporarily disabled due to a task migration
1167 * then re-enable it now as the task is running on its
1168 * preferred node and memory should migrate locally
1169 */
1170 if (!p->numa_migrate_seq)
1171 p->numa_migrate_seq++;
Mel Gorman6b9a7462013-10-07 11:29:11 +01001172 return;
Rik van Riel06ea5e02013-10-07 11:29:12 +01001173 }
Mel Gorman6b9a7462013-10-07 11:29:11 +01001174
1175 /* This task has no NUMA fault statistics yet */
1176 if (unlikely(p->numa_preferred_nid == -1))
1177 return;
1178
1179 /* Otherwise, try migrate to a CPU on the preferred node */
1180 if (task_numa_migrate(p) != 0)
1181 p->numa_migrate_retry = jiffies + HZ*5;
1182}
1183
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001184static void task_numa_placement(struct task_struct *p)
1185{
Mel Gorman688b7582013-10-07 11:28:58 +01001186 int seq, nid, max_nid = -1;
1187 unsigned long max_faults = 0;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001188
Hugh Dickins2832bc12012-12-19 17:42:16 -08001189 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001190 if (p->numa_scan_seq == seq)
1191 return;
1192 p->numa_scan_seq = seq;
Mel Gorman3a7053b2013-10-07 11:29:00 +01001193 p->numa_migrate_seq++;
Mel Gorman598f0ec2013-10-07 11:28:55 +01001194 p->numa_scan_period_max = task_scan_max(p);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001195
Mel Gorman688b7582013-10-07 11:28:58 +01001196 /* Find the node with the highest number of faults */
1197 for_each_online_node(nid) {
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001198 unsigned long faults = 0;
Mel Gormanac8e8952013-10-07 11:29:03 +01001199 int priv, i;
Mel Gorman745d6142013-10-07 11:28:59 +01001200
Mel Gormanac8e8952013-10-07 11:29:03 +01001201 for (priv = 0; priv < 2; priv++) {
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001202 long diff;
1203
Mel Gormanac8e8952013-10-07 11:29:03 +01001204 i = task_faults_idx(nid, priv);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001205 diff = -p->numa_faults[i];
Mel Gorman745d6142013-10-07 11:28:59 +01001206
Mel Gormanac8e8952013-10-07 11:29:03 +01001207 /* Decay existing window, copy faults since last scan */
1208 p->numa_faults[i] >>= 1;
1209 p->numa_faults[i] += p->numa_faults_buffer[i];
1210 p->numa_faults_buffer[i] = 0;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001211
1212 faults += p->numa_faults[i];
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001213 diff += p->numa_faults[i];
1214 if (p->numa_group) {
1215 /* safe because we can only change our own group */
1216 atomic_long_add(diff, &p->numa_group->faults[i]);
1217 }
Mel Gormanac8e8952013-10-07 11:29:03 +01001218 }
1219
Mel Gorman688b7582013-10-07 11:28:58 +01001220 if (faults > max_faults) {
1221 max_faults = faults;
1222 max_nid = nid;
1223 }
1224 }
1225
Mel Gorman6b9a7462013-10-07 11:29:11 +01001226 /* Preferred node as the node with the most faults */
Mel Gorman3a7053b2013-10-07 11:29:00 +01001227 if (max_faults && max_nid != p->numa_preferred_nid) {
Mel Gormane6628d52013-10-07 11:29:02 +01001228 /* Update the preferred nid and migrate task if possible */
Mel Gorman688b7582013-10-07 11:28:58 +01001229 p->numa_preferred_nid = max_nid;
Rik van Riel6fe6b2d2013-10-07 11:29:08 +01001230 p->numa_migrate_seq = 1;
Mel Gorman6b9a7462013-10-07 11:29:11 +01001231 numa_migrate_preferred(p);
Mel Gorman3a7053b2013-10-07 11:29:00 +01001232 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001233}
1234
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001235static inline int get_numa_group(struct numa_group *grp)
1236{
1237 return atomic_inc_not_zero(&grp->refcount);
1238}
1239
1240static inline void put_numa_group(struct numa_group *grp)
1241{
1242 if (atomic_dec_and_test(&grp->refcount))
1243 kfree_rcu(grp, rcu);
1244}
1245
1246static void double_lock(spinlock_t *l1, spinlock_t *l2)
1247{
1248 if (l1 > l2)
1249 swap(l1, l2);
1250
1251 spin_lock(l1);
1252 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1253}
1254
1255static void task_numa_group(struct task_struct *p, int cpupid)
1256{
1257 struct numa_group *grp, *my_grp;
1258 struct task_struct *tsk;
1259 bool join = false;
1260 int cpu = cpupid_to_cpu(cpupid);
1261 int i;
1262
1263 if (unlikely(!p->numa_group)) {
1264 unsigned int size = sizeof(struct numa_group) +
1265 2*nr_node_ids*sizeof(atomic_long_t);
1266
1267 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1268 if (!grp)
1269 return;
1270
1271 atomic_set(&grp->refcount, 1);
1272 spin_lock_init(&grp->lock);
1273 INIT_LIST_HEAD(&grp->task_list);
Mel Gormane29cf082013-10-07 11:29:22 +01001274 grp->gid = p->pid;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001275
1276 for (i = 0; i < 2*nr_node_ids; i++)
1277 atomic_long_set(&grp->faults[i], p->numa_faults[i]);
1278
1279 list_add(&p->numa_entry, &grp->task_list);
1280 grp->nr_tasks++;
1281 rcu_assign_pointer(p->numa_group, grp);
1282 }
1283
1284 rcu_read_lock();
1285 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1286
1287 if (!cpupid_match_pid(tsk, cpupid))
1288 goto unlock;
1289
1290 grp = rcu_dereference(tsk->numa_group);
1291 if (!grp)
1292 goto unlock;
1293
1294 my_grp = p->numa_group;
1295 if (grp == my_grp)
1296 goto unlock;
1297
1298 /*
1299 * Only join the other group if its bigger; if we're the bigger group,
1300 * the other task will join us.
1301 */
1302 if (my_grp->nr_tasks > grp->nr_tasks)
1303 goto unlock;
1304
1305 /*
1306 * Tie-break on the grp address.
1307 */
1308 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1309 goto unlock;
1310
1311 if (!get_numa_group(grp))
1312 goto unlock;
1313
1314 join = true;
1315
1316unlock:
1317 rcu_read_unlock();
1318
1319 if (!join)
1320 return;
1321
1322 for (i = 0; i < 2*nr_node_ids; i++) {
1323 atomic_long_sub(p->numa_faults[i], &my_grp->faults[i]);
1324 atomic_long_add(p->numa_faults[i], &grp->faults[i]);
1325 }
1326
1327 double_lock(&my_grp->lock, &grp->lock);
1328
1329 list_move(&p->numa_entry, &grp->task_list);
1330 my_grp->nr_tasks--;
1331 grp->nr_tasks++;
1332
1333 spin_unlock(&my_grp->lock);
1334 spin_unlock(&grp->lock);
1335
1336 rcu_assign_pointer(p->numa_group, grp);
1337
1338 put_numa_group(my_grp);
1339}
1340
1341void task_numa_free(struct task_struct *p)
1342{
1343 struct numa_group *grp = p->numa_group;
1344 int i;
1345
1346 if (grp) {
1347 for (i = 0; i < 2*nr_node_ids; i++)
1348 atomic_long_sub(p->numa_faults[i], &grp->faults[i]);
1349
1350 spin_lock(&grp->lock);
1351 list_del(&p->numa_entry);
1352 grp->nr_tasks--;
1353 spin_unlock(&grp->lock);
1354 rcu_assign_pointer(p->numa_group, NULL);
1355 put_numa_group(grp);
1356 }
1357
1358 kfree(p->numa_faults);
1359}
1360
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001361/*
1362 * Got a PROT_NONE fault for a page on @node.
1363 */
Peter Zijlstra6688cc02013-10-07 11:29:24 +01001364void task_numa_fault(int last_cpupid, int node, int pages, int flags)
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001365{
1366 struct task_struct *p = current;
Peter Zijlstra6688cc02013-10-07 11:29:24 +01001367 bool migrated = flags & TNF_MIGRATED;
Mel Gormanac8e8952013-10-07 11:29:03 +01001368 int priv;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001369
Dave Kleikamp10e84b92013-07-31 13:53:35 -07001370 if (!numabalancing_enabled)
Mel Gorman1a687c22012-11-22 11:16:36 +00001371 return;
1372
Mel Gorman9ff1d9f2013-10-07 11:29:04 +01001373 /* for example, ksmd faulting in a user's mm */
1374 if (!p->mm)
1375 return;
1376
Mel Gormanf809ca92013-10-07 11:28:57 +01001377 /* Allocate buffer to track faults on a per-node basis */
1378 if (unlikely(!p->numa_faults)) {
Mel Gormanac8e8952013-10-07 11:29:03 +01001379 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
Mel Gormanf809ca92013-10-07 11:28:57 +01001380
Mel Gorman745d6142013-10-07 11:28:59 +01001381 /* numa_faults and numa_faults_buffer share the allocation */
1382 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
Mel Gormanf809ca92013-10-07 11:28:57 +01001383 if (!p->numa_faults)
1384 return;
Mel Gorman745d6142013-10-07 11:28:59 +01001385
1386 BUG_ON(p->numa_faults_buffer);
Mel Gormanac8e8952013-10-07 11:29:03 +01001387 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
Mel Gormanf809ca92013-10-07 11:28:57 +01001388 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001389
Mel Gormanfb003b82012-11-15 09:01:14 +00001390 /*
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001391 * First accesses are treated as private, otherwise consider accesses
1392 * to be private if the accessing pid has not changed
1393 */
1394 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1395 priv = 1;
1396 } else {
1397 priv = cpupid_match_pid(p, last_cpupid);
Peter Zijlstra6688cc02013-10-07 11:29:24 +01001398 if (!priv && !(flags & TNF_NO_GROUP))
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001399 task_numa_group(p, last_cpupid);
1400 }
1401
1402 /*
Mel Gormanb8593bf2012-11-21 01:18:23 +00001403 * If pages are properly placed (did not migrate) then scan slower.
1404 * This is reset periodically in case of phase changes
Mel Gormanfb003b82012-11-15 09:01:14 +00001405 */
Mel Gorman598f0ec2013-10-07 11:28:55 +01001406 if (!migrated) {
1407 /* Initialise if necessary */
1408 if (!p->numa_scan_period_max)
1409 p->numa_scan_period_max = task_scan_max(p);
1410
1411 p->numa_scan_period = min(p->numa_scan_period_max,
1412 p->numa_scan_period + 10);
1413 }
Mel Gormanfb003b82012-11-15 09:01:14 +00001414
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001415 task_numa_placement(p);
Mel Gormanf809ca92013-10-07 11:28:57 +01001416
Mel Gorman6b9a7462013-10-07 11:29:11 +01001417 /* Retry task to preferred node migration if it previously failed */
1418 if (p->numa_migrate_retry && time_after(jiffies, p->numa_migrate_retry))
1419 numa_migrate_preferred(p);
1420
Mel Gormanac8e8952013-10-07 11:29:03 +01001421 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001422}
1423
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001424static void reset_ptenuma_scan(struct task_struct *p)
1425{
1426 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1427 p->mm->numa_scan_offset = 0;
1428}
1429
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001430/*
1431 * The expensive part of numa migration is done from task_work context.
1432 * Triggered from task_tick_numa().
1433 */
1434void task_numa_work(struct callback_head *work)
1435{
1436 unsigned long migrate, next_scan, now = jiffies;
1437 struct task_struct *p = current;
1438 struct mm_struct *mm = p->mm;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001439 struct vm_area_struct *vma;
Mel Gorman9f406042012-11-14 18:34:32 +00001440 unsigned long start, end;
Mel Gorman598f0ec2013-10-07 11:28:55 +01001441 unsigned long nr_pte_updates = 0;
Mel Gorman9f406042012-11-14 18:34:32 +00001442 long pages;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001443
1444 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1445
1446 work->next = work; /* protect against double add */
1447 /*
1448 * Who cares about NUMA placement when they're dying.
1449 *
1450 * NOTE: make sure not to dereference p->mm before this check,
1451 * exit_task_work() happens _after_ exit_mm() so we could be called
1452 * without p->mm even though we still had it when we enqueued this
1453 * work.
1454 */
1455 if (p->flags & PF_EXITING)
1456 return;
1457
Mel Gorman7e8d16b2013-10-07 11:28:54 +01001458 if (!mm->numa_next_reset || !mm->numa_next_scan) {
1459 mm->numa_next_scan = now +
1460 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1461 mm->numa_next_reset = now +
1462 msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1463 }
1464
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001465 /*
Mel Gormanb8593bf2012-11-21 01:18:23 +00001466 * Reset the scan period if enough time has gone by. Objective is that
1467 * scanning will be reduced if pages are properly placed. As tasks
1468 * can enter different phases this needs to be re-examined. Lacking
1469 * proper tracking of reference behaviour, this blunt hammer is used.
1470 */
1471 migrate = mm->numa_next_reset;
1472 if (time_after(now, migrate)) {
Mel Gorman598f0ec2013-10-07 11:28:55 +01001473 p->numa_scan_period = task_scan_min(p);
Mel Gormanb8593bf2012-11-21 01:18:23 +00001474 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1475 xchg(&mm->numa_next_reset, next_scan);
1476 }
1477
1478 /*
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001479 * Enforce maximal scan/migration frequency..
1480 */
1481 migrate = mm->numa_next_scan;
1482 if (time_before(now, migrate))
1483 return;
1484
Mel Gorman598f0ec2013-10-07 11:28:55 +01001485 if (p->numa_scan_period == 0) {
1486 p->numa_scan_period_max = task_scan_max(p);
1487 p->numa_scan_period = task_scan_min(p);
1488 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001489
Mel Gormanfb003b82012-11-15 09:01:14 +00001490 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001491 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1492 return;
1493
Mel Gormane14808b2012-11-19 10:59:15 +00001494 /*
Peter Zijlstra19a78d12013-10-07 11:28:51 +01001495 * Delay this task enough that another task of this mm will likely win
1496 * the next time around.
1497 */
1498 p->node_stamp += 2 * TICK_NSEC;
1499
Mel Gorman9f406042012-11-14 18:34:32 +00001500 start = mm->numa_scan_offset;
1501 pages = sysctl_numa_balancing_scan_size;
1502 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1503 if (!pages)
1504 return;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001505
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001506 down_read(&mm->mmap_sem);
Mel Gorman9f406042012-11-14 18:34:32 +00001507 vma = find_vma(mm, start);
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001508 if (!vma) {
1509 reset_ptenuma_scan(p);
Mel Gorman9f406042012-11-14 18:34:32 +00001510 start = 0;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001511 vma = mm->mmap;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001512 }
Mel Gorman9f406042012-11-14 18:34:32 +00001513 for (; vma; vma = vma->vm_next) {
Mel Gormanfc3147242013-10-07 11:29:09 +01001514 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001515 continue;
1516
Mel Gorman4591ce4f2013-10-07 11:29:13 +01001517 /*
1518 * Shared library pages mapped by multiple processes are not
1519 * migrated as it is expected they are cache replicated. Avoid
1520 * hinting faults in read-only file-backed mappings or the vdso
1521 * as migrating the pages will be of marginal benefit.
1522 */
1523 if (!vma->vm_mm ||
1524 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1525 continue;
1526
Mel Gorman9f406042012-11-14 18:34:32 +00001527 do {
1528 start = max(start, vma->vm_start);
1529 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1530 end = min(end, vma->vm_end);
Mel Gorman598f0ec2013-10-07 11:28:55 +01001531 nr_pte_updates += change_prot_numa(vma, start, end);
1532
1533 /*
1534 * Scan sysctl_numa_balancing_scan_size but ensure that
1535 * at least one PTE is updated so that unused virtual
1536 * address space is quickly skipped.
1537 */
1538 if (nr_pte_updates)
1539 pages -= (end - start) >> PAGE_SHIFT;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001540
Mel Gorman9f406042012-11-14 18:34:32 +00001541 start = end;
1542 if (pages <= 0)
1543 goto out;
1544 } while (end != vma->vm_end);
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001545 }
1546
Mel Gorman9f406042012-11-14 18:34:32 +00001547out:
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001548 /*
Mel Gormanf307cd12013-10-07 11:28:56 +01001549 * If the whole process was scanned without updates then no NUMA
1550 * hinting faults are being recorded and scan rate should be lower.
1551 */
1552 if (mm->numa_scan_offset == 0 && !nr_pte_updates) {
1553 p->numa_scan_period = min(p->numa_scan_period_max,
1554 p->numa_scan_period << 1);
1555
1556 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1557 mm->numa_next_scan = next_scan;
1558 }
1559
1560 /*
Peter Zijlstrac69307d2013-10-07 11:28:41 +01001561 * It is possible to reach the end of the VMA list but the last few
1562 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1563 * would find the !migratable VMA on the next scan but not reset the
1564 * scanner to the start so check it now.
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001565 */
1566 if (vma)
Mel Gorman9f406042012-11-14 18:34:32 +00001567 mm->numa_scan_offset = start;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001568 else
1569 reset_ptenuma_scan(p);
1570 up_read(&mm->mmap_sem);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001571}
1572
1573/*
1574 * Drive the periodic memory faults..
1575 */
1576void task_tick_numa(struct rq *rq, struct task_struct *curr)
1577{
1578 struct callback_head *work = &curr->numa_work;
1579 u64 period, now;
1580
1581 /*
1582 * We don't care about NUMA placement if we don't have memory.
1583 */
1584 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1585 return;
1586
1587 /*
1588 * Using runtime rather than walltime has the dual advantage that
1589 * we (mostly) drive the selection from busy threads and that the
1590 * task needs to have done some actual work before we bother with
1591 * NUMA placement.
1592 */
1593 now = curr->se.sum_exec_runtime;
1594 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1595
1596 if (now - curr->node_stamp > period) {
Peter Zijlstra4b96a292012-10-25 14:16:47 +02001597 if (!curr->node_stamp)
Mel Gorman598f0ec2013-10-07 11:28:55 +01001598 curr->numa_scan_period = task_scan_min(curr);
Peter Zijlstra19a78d12013-10-07 11:28:51 +01001599 curr->node_stamp += period;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001600
1601 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1602 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1603 task_work_add(curr, work, true);
1604 }
1605 }
1606}
1607#else
1608static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1609{
1610}
1611#endif /* CONFIG_NUMA_BALANCING */
1612
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001613static void
1614account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1615{
1616 update_load_add(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +02001617 if (!parent_entity(se))
Peter Zijlstra029632f2011-10-25 10:00:11 +02001618 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
Peter Zijlstra367456c2012-02-20 21:49:09 +01001619#ifdef CONFIG_SMP
1620 if (entity_is_task(se))
Peter Zijlstraeb953082012-04-17 13:38:40 +02001621 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
Peter Zijlstra367456c2012-02-20 21:49:09 +01001622#endif
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001623 cfs_rq->nr_running++;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001624}
1625
1626static void
1627account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1628{
1629 update_load_sub(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +02001630 if (!parent_entity(se))
Peter Zijlstra029632f2011-10-25 10:00:11 +02001631 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
Peter Zijlstra367456c2012-02-20 21:49:09 +01001632 if (entity_is_task(se))
Bharata B Raob87f1722008-09-25 09:53:54 +05301633 list_del_init(&se->group_node);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001634 cfs_rq->nr_running--;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001635}
1636
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001637#ifdef CONFIG_FAIR_GROUP_SCHED
1638# ifdef CONFIG_SMP
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001639static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1640{
1641 long tg_weight;
1642
1643 /*
1644 * Use this CPU's actual weight instead of the last load_contribution
1645 * to gain a more accurate current total weight. See
1646 * update_cfs_rq_load_contribution().
1647 */
Alex Shibf5b9862013-06-20 10:18:54 +08001648 tg_weight = atomic_long_read(&tg->load_avg);
Paul Turner82958362012-10-04 13:18:31 +02001649 tg_weight -= cfs_rq->tg_load_contrib;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001650 tg_weight += cfs_rq->load.weight;
1651
1652 return tg_weight;
1653}
1654
Paul Turner6d5ab292011-01-21 20:45:01 -08001655static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001656{
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001657 long tg_weight, load, shares;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001658
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001659 tg_weight = calc_tg_weight(tg, cfs_rq);
Paul Turner6d5ab292011-01-21 20:45:01 -08001660 load = cfs_rq->load.weight;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001661
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001662 shares = (tg->shares * load);
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001663 if (tg_weight)
1664 shares /= tg_weight;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001665
1666 if (shares < MIN_SHARES)
1667 shares = MIN_SHARES;
1668 if (shares > tg->shares)
1669 shares = tg->shares;
1670
1671 return shares;
1672}
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001673# else /* CONFIG_SMP */
Paul Turner6d5ab292011-01-21 20:45:01 -08001674static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001675{
1676 return tg->shares;
1677}
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001678# endif /* CONFIG_SMP */
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001679static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1680 unsigned long weight)
1681{
Paul Turner19e5eeb2010-12-15 19:10:18 -08001682 if (se->on_rq) {
1683 /* commit outstanding execution time */
1684 if (cfs_rq->curr == se)
1685 update_curr(cfs_rq);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001686 account_entity_dequeue(cfs_rq, se);
Paul Turner19e5eeb2010-12-15 19:10:18 -08001687 }
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001688
1689 update_load_set(&se->load, weight);
1690
1691 if (se->on_rq)
1692 account_entity_enqueue(cfs_rq, se);
1693}
1694
Paul Turner82958362012-10-04 13:18:31 +02001695static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1696
Paul Turner6d5ab292011-01-21 20:45:01 -08001697static void update_cfs_shares(struct cfs_rq *cfs_rq)
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001698{
1699 struct task_group *tg;
1700 struct sched_entity *se;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001701 long shares;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001702
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001703 tg = cfs_rq->tg;
1704 se = tg->se[cpu_of(rq_of(cfs_rq))];
Paul Turner64660c82011-07-21 09:43:36 -07001705 if (!se || throttled_hierarchy(cfs_rq))
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001706 return;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001707#ifndef CONFIG_SMP
1708 if (likely(se->load.weight == tg->shares))
1709 return;
1710#endif
Paul Turner6d5ab292011-01-21 20:45:01 -08001711 shares = calc_cfs_shares(cfs_rq, tg);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001712
1713 reweight_entity(cfs_rq_of(se), se, shares);
1714}
1715#else /* CONFIG_FAIR_GROUP_SCHED */
Paul Turner6d5ab292011-01-21 20:45:01 -08001716static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001717{
1718}
1719#endif /* CONFIG_FAIR_GROUP_SCHED */
1720
Alex Shi141965c2013-06-26 13:05:39 +08001721#ifdef CONFIG_SMP
Paul Turner9d85f212012-10-04 13:18:29 +02001722/*
Paul Turner5b51f2f2012-10-04 13:18:32 +02001723 * We choose a half-life close to 1 scheduling period.
1724 * Note: The tables below are dependent on this value.
1725 */
1726#define LOAD_AVG_PERIOD 32
1727#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1728#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1729
1730/* Precomputed fixed inverse multiplies for multiplication by y^n */
1731static const u32 runnable_avg_yN_inv[] = {
1732 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1733 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1734 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1735 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1736 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1737 0x85aac367, 0x82cd8698,
1738};
1739
1740/*
1741 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1742 * over-estimates when re-combining.
1743 */
1744static const u32 runnable_avg_yN_sum[] = {
1745 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1746 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1747 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1748};
1749
1750/*
Paul Turner9d85f212012-10-04 13:18:29 +02001751 * Approximate:
1752 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1753 */
1754static __always_inline u64 decay_load(u64 val, u64 n)
1755{
Paul Turner5b51f2f2012-10-04 13:18:32 +02001756 unsigned int local_n;
1757
1758 if (!n)
1759 return val;
1760 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1761 return 0;
1762
1763 /* after bounds checking we can collapse to 32-bit */
1764 local_n = n;
1765
1766 /*
1767 * As y^PERIOD = 1/2, we can combine
1768 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1769 * With a look-up table which covers k^n (n<PERIOD)
1770 *
1771 * To achieve constant time decay_load.
1772 */
1773 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1774 val >>= local_n / LOAD_AVG_PERIOD;
1775 local_n %= LOAD_AVG_PERIOD;
Paul Turner9d85f212012-10-04 13:18:29 +02001776 }
1777
Paul Turner5b51f2f2012-10-04 13:18:32 +02001778 val *= runnable_avg_yN_inv[local_n];
1779 /* We don't use SRR here since we always want to round down. */
1780 return val >> 32;
1781}
1782
1783/*
1784 * For updates fully spanning n periods, the contribution to runnable
1785 * average will be: \Sum 1024*y^n
1786 *
1787 * We can compute this reasonably efficiently by combining:
1788 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1789 */
1790static u32 __compute_runnable_contrib(u64 n)
1791{
1792 u32 contrib = 0;
1793
1794 if (likely(n <= LOAD_AVG_PERIOD))
1795 return runnable_avg_yN_sum[n];
1796 else if (unlikely(n >= LOAD_AVG_MAX_N))
1797 return LOAD_AVG_MAX;
1798
1799 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1800 do {
1801 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1802 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1803
1804 n -= LOAD_AVG_PERIOD;
1805 } while (n > LOAD_AVG_PERIOD);
1806
1807 contrib = decay_load(contrib, n);
1808 return contrib + runnable_avg_yN_sum[n];
Paul Turner9d85f212012-10-04 13:18:29 +02001809}
1810
1811/*
1812 * We can represent the historical contribution to runnable average as the
1813 * coefficients of a geometric series. To do this we sub-divide our runnable
1814 * history into segments of approximately 1ms (1024us); label the segment that
1815 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1816 *
1817 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1818 * p0 p1 p2
1819 * (now) (~1ms ago) (~2ms ago)
1820 *
1821 * Let u_i denote the fraction of p_i that the entity was runnable.
1822 *
1823 * We then designate the fractions u_i as our co-efficients, yielding the
1824 * following representation of historical load:
1825 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1826 *
1827 * We choose y based on the with of a reasonably scheduling period, fixing:
1828 * y^32 = 0.5
1829 *
1830 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1831 * approximately half as much as the contribution to load within the last ms
1832 * (u_0).
1833 *
1834 * When a period "rolls over" and we have new u_0`, multiplying the previous
1835 * sum again by y is sufficient to update:
1836 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1837 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1838 */
1839static __always_inline int __update_entity_runnable_avg(u64 now,
1840 struct sched_avg *sa,
1841 int runnable)
1842{
Paul Turner5b51f2f2012-10-04 13:18:32 +02001843 u64 delta, periods;
1844 u32 runnable_contrib;
Paul Turner9d85f212012-10-04 13:18:29 +02001845 int delta_w, decayed = 0;
1846
1847 delta = now - sa->last_runnable_update;
1848 /*
1849 * This should only happen when time goes backwards, which it
1850 * unfortunately does during sched clock init when we swap over to TSC.
1851 */
1852 if ((s64)delta < 0) {
1853 sa->last_runnable_update = now;
1854 return 0;
1855 }
1856
1857 /*
1858 * Use 1024ns as the unit of measurement since it's a reasonable
1859 * approximation of 1us and fast to compute.
1860 */
1861 delta >>= 10;
1862 if (!delta)
1863 return 0;
1864 sa->last_runnable_update = now;
1865
1866 /* delta_w is the amount already accumulated against our next period */
1867 delta_w = sa->runnable_avg_period % 1024;
1868 if (delta + delta_w >= 1024) {
1869 /* period roll-over */
1870 decayed = 1;
1871
1872 /*
1873 * Now that we know we're crossing a period boundary, figure
1874 * out how much from delta we need to complete the current
1875 * period and accrue it.
1876 */
1877 delta_w = 1024 - delta_w;
Paul Turner5b51f2f2012-10-04 13:18:32 +02001878 if (runnable)
1879 sa->runnable_avg_sum += delta_w;
1880 sa->runnable_avg_period += delta_w;
Paul Turner9d85f212012-10-04 13:18:29 +02001881
Paul Turner5b51f2f2012-10-04 13:18:32 +02001882 delta -= delta_w;
Paul Turner9d85f212012-10-04 13:18:29 +02001883
Paul Turner5b51f2f2012-10-04 13:18:32 +02001884 /* Figure out how many additional periods this update spans */
1885 periods = delta / 1024;
1886 delta %= 1024;
1887
1888 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1889 periods + 1);
1890 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1891 periods + 1);
1892
1893 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
1894 runnable_contrib = __compute_runnable_contrib(periods);
1895 if (runnable)
1896 sa->runnable_avg_sum += runnable_contrib;
1897 sa->runnable_avg_period += runnable_contrib;
Paul Turner9d85f212012-10-04 13:18:29 +02001898 }
1899
1900 /* Remainder of delta accrued against u_0` */
1901 if (runnable)
1902 sa->runnable_avg_sum += delta;
1903 sa->runnable_avg_period += delta;
1904
1905 return decayed;
1906}
1907
Paul Turner9ee474f2012-10-04 13:18:30 +02001908/* Synchronize an entity's decay with its parenting cfs_rq.*/
Paul Turneraff3e492012-10-04 13:18:30 +02001909static inline u64 __synchronize_entity_decay(struct sched_entity *se)
Paul Turner9ee474f2012-10-04 13:18:30 +02001910{
1911 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1912 u64 decays = atomic64_read(&cfs_rq->decay_counter);
1913
1914 decays -= se->avg.decay_count;
1915 if (!decays)
Paul Turneraff3e492012-10-04 13:18:30 +02001916 return 0;
Paul Turner9ee474f2012-10-04 13:18:30 +02001917
1918 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
1919 se->avg.decay_count = 0;
Paul Turneraff3e492012-10-04 13:18:30 +02001920
1921 return decays;
Paul Turner9ee474f2012-10-04 13:18:30 +02001922}
1923
Paul Turnerc566e8e2012-10-04 13:18:30 +02001924#ifdef CONFIG_FAIR_GROUP_SCHED
1925static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1926 int force_update)
1927{
1928 struct task_group *tg = cfs_rq->tg;
Alex Shibf5b9862013-06-20 10:18:54 +08001929 long tg_contrib;
Paul Turnerc566e8e2012-10-04 13:18:30 +02001930
1931 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
1932 tg_contrib -= cfs_rq->tg_load_contrib;
1933
Alex Shibf5b9862013-06-20 10:18:54 +08001934 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
1935 atomic_long_add(tg_contrib, &tg->load_avg);
Paul Turnerc566e8e2012-10-04 13:18:30 +02001936 cfs_rq->tg_load_contrib += tg_contrib;
1937 }
1938}
Paul Turner8165e142012-10-04 13:18:31 +02001939
Paul Turnerbb17f652012-10-04 13:18:31 +02001940/*
1941 * Aggregate cfs_rq runnable averages into an equivalent task_group
1942 * representation for computing load contributions.
1943 */
1944static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1945 struct cfs_rq *cfs_rq)
1946{
1947 struct task_group *tg = cfs_rq->tg;
1948 long contrib;
1949
1950 /* The fraction of a cpu used by this cfs_rq */
1951 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
1952 sa->runnable_avg_period + 1);
1953 contrib -= cfs_rq->tg_runnable_contrib;
1954
1955 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
1956 atomic_add(contrib, &tg->runnable_avg);
1957 cfs_rq->tg_runnable_contrib += contrib;
1958 }
1959}
1960
Paul Turner8165e142012-10-04 13:18:31 +02001961static inline void __update_group_entity_contrib(struct sched_entity *se)
1962{
1963 struct cfs_rq *cfs_rq = group_cfs_rq(se);
1964 struct task_group *tg = cfs_rq->tg;
Paul Turnerbb17f652012-10-04 13:18:31 +02001965 int runnable_avg;
1966
Paul Turner8165e142012-10-04 13:18:31 +02001967 u64 contrib;
1968
1969 contrib = cfs_rq->tg_load_contrib * tg->shares;
Alex Shibf5b9862013-06-20 10:18:54 +08001970 se->avg.load_avg_contrib = div_u64(contrib,
1971 atomic_long_read(&tg->load_avg) + 1);
Paul Turnerbb17f652012-10-04 13:18:31 +02001972
1973 /*
1974 * For group entities we need to compute a correction term in the case
1975 * that they are consuming <1 cpu so that we would contribute the same
1976 * load as a task of equal weight.
1977 *
1978 * Explicitly co-ordinating this measurement would be expensive, but
1979 * fortunately the sum of each cpus contribution forms a usable
1980 * lower-bound on the true value.
1981 *
1982 * Consider the aggregate of 2 contributions. Either they are disjoint
1983 * (and the sum represents true value) or they are disjoint and we are
1984 * understating by the aggregate of their overlap.
1985 *
1986 * Extending this to N cpus, for a given overlap, the maximum amount we
1987 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
1988 * cpus that overlap for this interval and w_i is the interval width.
1989 *
1990 * On a small machine; the first term is well-bounded which bounds the
1991 * total error since w_i is a subset of the period. Whereas on a
1992 * larger machine, while this first term can be larger, if w_i is the
1993 * of consequential size guaranteed to see n_i*w_i quickly converge to
1994 * our upper bound of 1-cpu.
1995 */
1996 runnable_avg = atomic_read(&tg->runnable_avg);
1997 if (runnable_avg < NICE_0_LOAD) {
1998 se->avg.load_avg_contrib *= runnable_avg;
1999 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2000 }
Paul Turner8165e142012-10-04 13:18:31 +02002001}
Paul Turnerc566e8e2012-10-04 13:18:30 +02002002#else
2003static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2004 int force_update) {}
Paul Turnerbb17f652012-10-04 13:18:31 +02002005static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2006 struct cfs_rq *cfs_rq) {}
Paul Turner8165e142012-10-04 13:18:31 +02002007static inline void __update_group_entity_contrib(struct sched_entity *se) {}
Paul Turnerc566e8e2012-10-04 13:18:30 +02002008#endif
2009
Paul Turner8165e142012-10-04 13:18:31 +02002010static inline void __update_task_entity_contrib(struct sched_entity *se)
2011{
2012 u32 contrib;
2013
2014 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2015 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2016 contrib /= (se->avg.runnable_avg_period + 1);
2017 se->avg.load_avg_contrib = scale_load(contrib);
2018}
2019
Paul Turner2dac7542012-10-04 13:18:30 +02002020/* Compute the current contribution to load_avg by se, return any delta */
2021static long __update_entity_load_avg_contrib(struct sched_entity *se)
2022{
2023 long old_contrib = se->avg.load_avg_contrib;
2024
Paul Turner8165e142012-10-04 13:18:31 +02002025 if (entity_is_task(se)) {
2026 __update_task_entity_contrib(se);
2027 } else {
Paul Turnerbb17f652012-10-04 13:18:31 +02002028 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
Paul Turner8165e142012-10-04 13:18:31 +02002029 __update_group_entity_contrib(se);
2030 }
Paul Turner2dac7542012-10-04 13:18:30 +02002031
2032 return se->avg.load_avg_contrib - old_contrib;
2033}
2034
Paul Turner9ee474f2012-10-04 13:18:30 +02002035static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2036 long load_contrib)
2037{
2038 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2039 cfs_rq->blocked_load_avg -= load_contrib;
2040 else
2041 cfs_rq->blocked_load_avg = 0;
2042}
2043
Paul Turnerf1b17282012-10-04 13:18:31 +02002044static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2045
Paul Turner9d85f212012-10-04 13:18:29 +02002046/* Update a sched_entity's runnable average */
Paul Turner9ee474f2012-10-04 13:18:30 +02002047static inline void update_entity_load_avg(struct sched_entity *se,
2048 int update_cfs_rq)
Paul Turner9d85f212012-10-04 13:18:29 +02002049{
Paul Turner2dac7542012-10-04 13:18:30 +02002050 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2051 long contrib_delta;
Paul Turnerf1b17282012-10-04 13:18:31 +02002052 u64 now;
Paul Turner2dac7542012-10-04 13:18:30 +02002053
Paul Turnerf1b17282012-10-04 13:18:31 +02002054 /*
2055 * For a group entity we need to use their owned cfs_rq_clock_task() in
2056 * case they are the parent of a throttled hierarchy.
2057 */
2058 if (entity_is_task(se))
2059 now = cfs_rq_clock_task(cfs_rq);
2060 else
2061 now = cfs_rq_clock_task(group_cfs_rq(se));
2062
2063 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
Paul Turner2dac7542012-10-04 13:18:30 +02002064 return;
2065
2066 contrib_delta = __update_entity_load_avg_contrib(se);
Paul Turner9ee474f2012-10-04 13:18:30 +02002067
2068 if (!update_cfs_rq)
2069 return;
2070
Paul Turner2dac7542012-10-04 13:18:30 +02002071 if (se->on_rq)
2072 cfs_rq->runnable_load_avg += contrib_delta;
Paul Turner9ee474f2012-10-04 13:18:30 +02002073 else
2074 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2075}
2076
2077/*
2078 * Decay the load contributed by all blocked children and account this so that
2079 * their contribution may appropriately discounted when they wake up.
2080 */
Paul Turneraff3e492012-10-04 13:18:30 +02002081static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
Paul Turner9ee474f2012-10-04 13:18:30 +02002082{
Paul Turnerf1b17282012-10-04 13:18:31 +02002083 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
Paul Turner9ee474f2012-10-04 13:18:30 +02002084 u64 decays;
2085
2086 decays = now - cfs_rq->last_decay;
Paul Turneraff3e492012-10-04 13:18:30 +02002087 if (!decays && !force_update)
Paul Turner9ee474f2012-10-04 13:18:30 +02002088 return;
2089
Alex Shi25099402013-06-20 10:18:55 +08002090 if (atomic_long_read(&cfs_rq->removed_load)) {
2091 unsigned long removed_load;
2092 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
Paul Turneraff3e492012-10-04 13:18:30 +02002093 subtract_blocked_load_contrib(cfs_rq, removed_load);
2094 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002095
Paul Turneraff3e492012-10-04 13:18:30 +02002096 if (decays) {
2097 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2098 decays);
2099 atomic64_add(decays, &cfs_rq->decay_counter);
2100 cfs_rq->last_decay = now;
2101 }
Paul Turnerc566e8e2012-10-04 13:18:30 +02002102
2103 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
Paul Turner9d85f212012-10-04 13:18:29 +02002104}
Ben Segall18bf2802012-10-04 12:51:20 +02002105
2106static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2107{
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002108 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
Paul Turnerbb17f652012-10-04 13:18:31 +02002109 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
Ben Segall18bf2802012-10-04 12:51:20 +02002110}
Paul Turner2dac7542012-10-04 13:18:30 +02002111
2112/* Add the load generated by se into cfs_rq's child load-average */
2113static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002114 struct sched_entity *se,
2115 int wakeup)
Paul Turner2dac7542012-10-04 13:18:30 +02002116{
Paul Turneraff3e492012-10-04 13:18:30 +02002117 /*
2118 * We track migrations using entity decay_count <= 0, on a wake-up
2119 * migration we use a negative decay count to track the remote decays
2120 * accumulated while sleeping.
Alex Shia75cdaa2013-06-20 10:18:47 +08002121 *
2122 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2123 * are seen by enqueue_entity_load_avg() as a migration with an already
2124 * constructed load_avg_contrib.
Paul Turneraff3e492012-10-04 13:18:30 +02002125 */
2126 if (unlikely(se->avg.decay_count <= 0)) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002127 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
Paul Turneraff3e492012-10-04 13:18:30 +02002128 if (se->avg.decay_count) {
2129 /*
2130 * In a wake-up migration we have to approximate the
2131 * time sleeping. This is because we can't synchronize
2132 * clock_task between the two cpus, and it is not
2133 * guaranteed to be read-safe. Instead, we can
2134 * approximate this using our carried decays, which are
2135 * explicitly atomically readable.
2136 */
2137 se->avg.last_runnable_update -= (-se->avg.decay_count)
2138 << 20;
2139 update_entity_load_avg(se, 0);
2140 /* Indicate that we're now synchronized and on-rq */
2141 se->avg.decay_count = 0;
2142 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002143 wakeup = 0;
2144 } else {
Alex Shi282cf492013-06-20 10:18:48 +08002145 /*
2146 * Task re-woke on same cpu (or else migrate_task_rq_fair()
2147 * would have made count negative); we must be careful to avoid
2148 * double-accounting blocked time after synchronizing decays.
2149 */
2150 se->avg.last_runnable_update += __synchronize_entity_decay(se)
2151 << 20;
Paul Turner9ee474f2012-10-04 13:18:30 +02002152 }
2153
Paul Turneraff3e492012-10-04 13:18:30 +02002154 /* migrated tasks did not contribute to our blocked load */
2155 if (wakeup) {
Paul Turner9ee474f2012-10-04 13:18:30 +02002156 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
Paul Turneraff3e492012-10-04 13:18:30 +02002157 update_entity_load_avg(se, 0);
2158 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002159
Paul Turner2dac7542012-10-04 13:18:30 +02002160 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
Paul Turneraff3e492012-10-04 13:18:30 +02002161 /* we force update consideration on load-balancer moves */
2162 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
Paul Turner2dac7542012-10-04 13:18:30 +02002163}
2164
Paul Turner9ee474f2012-10-04 13:18:30 +02002165/*
2166 * Remove se's load from this cfs_rq child load-average, if the entity is
2167 * transitioning to a blocked state we track its projected decay using
2168 * blocked_load_avg.
2169 */
Paul Turner2dac7542012-10-04 13:18:30 +02002170static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002171 struct sched_entity *se,
2172 int sleep)
Paul Turner2dac7542012-10-04 13:18:30 +02002173{
Paul Turner9ee474f2012-10-04 13:18:30 +02002174 update_entity_load_avg(se, 1);
Paul Turneraff3e492012-10-04 13:18:30 +02002175 /* we force update consideration on load-balancer moves */
2176 update_cfs_rq_blocked_load(cfs_rq, !sleep);
Paul Turner9ee474f2012-10-04 13:18:30 +02002177
Paul Turner2dac7542012-10-04 13:18:30 +02002178 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
Paul Turner9ee474f2012-10-04 13:18:30 +02002179 if (sleep) {
2180 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2181 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2182 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
Paul Turner2dac7542012-10-04 13:18:30 +02002183}
Vincent Guittot642dbc32013-04-18 18:34:26 +02002184
2185/*
2186 * Update the rq's load with the elapsed running time before entering
2187 * idle. if the last scheduled task is not a CFS task, idle_enter will
2188 * be the only way to update the runnable statistic.
2189 */
2190void idle_enter_fair(struct rq *this_rq)
2191{
2192 update_rq_runnable_avg(this_rq, 1);
2193}
2194
2195/*
2196 * Update the rq's load with the elapsed idle time before a task is
2197 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2198 * be the only way to update the runnable statistic.
2199 */
2200void idle_exit_fair(struct rq *this_rq)
2201{
2202 update_rq_runnable_avg(this_rq, 0);
2203}
2204
Paul Turner9d85f212012-10-04 13:18:29 +02002205#else
Paul Turner9ee474f2012-10-04 13:18:30 +02002206static inline void update_entity_load_avg(struct sched_entity *se,
2207 int update_cfs_rq) {}
Ben Segall18bf2802012-10-04 12:51:20 +02002208static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
Paul Turner2dac7542012-10-04 13:18:30 +02002209static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002210 struct sched_entity *se,
2211 int wakeup) {}
Paul Turner2dac7542012-10-04 13:18:30 +02002212static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002213 struct sched_entity *se,
2214 int sleep) {}
Paul Turneraff3e492012-10-04 13:18:30 +02002215static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2216 int force_update) {}
Paul Turner9d85f212012-10-04 13:18:29 +02002217#endif
2218
Ingo Molnar2396af62007-08-09 11:16:48 +02002219static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002220{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002221#ifdef CONFIG_SCHEDSTATS
Peter Zijlstrae4143142009-07-23 20:13:26 +02002222 struct task_struct *tsk = NULL;
2223
2224 if (entity_is_task(se))
2225 tsk = task_of(se);
2226
Lucas De Marchi41acab82010-03-10 23:37:45 -03002227 if (se->statistics.sleep_start) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002228 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002229
2230 if ((s64)delta < 0)
2231 delta = 0;
2232
Lucas De Marchi41acab82010-03-10 23:37:45 -03002233 if (unlikely(delta > se->statistics.sleep_max))
2234 se->statistics.sleep_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002235
Peter Zijlstra8c79a042012-01-30 14:51:37 +01002236 se->statistics.sleep_start = 0;
Lucas De Marchi41acab82010-03-10 23:37:45 -03002237 se->statistics.sum_sleep_runtime += delta;
Arjan van de Ven97455122008-01-25 21:08:34 +01002238
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002239 if (tsk) {
Peter Zijlstrae4143142009-07-23 20:13:26 +02002240 account_scheduler_latency(tsk, delta >> 10, 1);
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002241 trace_sched_stat_sleep(tsk, delta);
2242 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002243 }
Lucas De Marchi41acab82010-03-10 23:37:45 -03002244 if (se->statistics.block_start) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002245 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002246
2247 if ((s64)delta < 0)
2248 delta = 0;
2249
Lucas De Marchi41acab82010-03-10 23:37:45 -03002250 if (unlikely(delta > se->statistics.block_max))
2251 se->statistics.block_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002252
Peter Zijlstra8c79a042012-01-30 14:51:37 +01002253 se->statistics.block_start = 0;
Lucas De Marchi41acab82010-03-10 23:37:45 -03002254 se->statistics.sum_sleep_runtime += delta;
Ingo Molnar30084fb2007-10-02 14:13:08 +02002255
Peter Zijlstrae4143142009-07-23 20:13:26 +02002256 if (tsk) {
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -07002257 if (tsk->in_iowait) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03002258 se->statistics.iowait_sum += delta;
2259 se->statistics.iowait_count++;
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002260 trace_sched_stat_iowait(tsk, delta);
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -07002261 }
2262
Andrew Vaginb781a602011-11-28 12:03:35 +03002263 trace_sched_stat_blocked(tsk, delta);
2264
Peter Zijlstrae4143142009-07-23 20:13:26 +02002265 /*
2266 * Blocking time is in units of nanosecs, so shift by
2267 * 20 to get a milliseconds-range estimation of the
2268 * amount of time that the task spent sleeping:
2269 */
2270 if (unlikely(prof_on == SLEEP_PROFILING)) {
2271 profile_hits(SLEEP_PROFILING,
2272 (void *)get_wchan(tsk),
2273 delta >> 20);
2274 }
2275 account_scheduler_latency(tsk, delta >> 10, 0);
Ingo Molnar30084fb2007-10-02 14:13:08 +02002276 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002277 }
2278#endif
2279}
2280
Peter Zijlstraddc97292007-10-15 17:00:10 +02002281static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2282{
2283#ifdef CONFIG_SCHED_DEBUG
2284 s64 d = se->vruntime - cfs_rq->min_vruntime;
2285
2286 if (d < 0)
2287 d = -d;
2288
2289 if (d > 3*sysctl_sched_latency)
2290 schedstat_inc(cfs_rq, nr_spread_over);
2291#endif
2292}
2293
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002294static void
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002295place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2296{
Peter Zijlstra1af5f732008-10-24 11:06:13 +02002297 u64 vruntime = cfs_rq->min_vruntime;
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +02002298
Peter Zijlstra2cb86002007-11-09 22:39:37 +01002299 /*
2300 * The 'current' period is already promised to the current tasks,
2301 * however the extra weight of the new task will slow them down a
2302 * little, place the new task so that it fits in the slot that
2303 * stays open at the end.
2304 */
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +02002305 if (initial && sched_feat(START_DEBIT))
Peter Zijlstraf9c0b092008-10-17 19:27:04 +02002306 vruntime += sched_vslice(cfs_rq, se);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002307
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002308 /* sleeps up to a single latency don't count. */
Mike Galbraith5ca98802010-03-11 17:17:17 +01002309 if (!initial) {
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002310 unsigned long thresh = sysctl_sched_latency;
Peter Zijlstraa7be37a2008-06-27 13:41:11 +02002311
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002312 /*
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002313 * Halve their sleep time's effect, to allow
2314 * for a gentler effect of sleepers:
2315 */
2316 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2317 thresh >>= 1;
Ingo Molnar51e03042009-09-16 08:54:45 +02002318
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002319 vruntime -= thresh;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002320 }
2321
Mike Galbraithb5d9d732009-09-08 11:12:28 +02002322 /* ensure we never gain time by being placed backwards. */
Viresh Kumar16c8f1c2012-11-08 13:33:46 +05302323 se->vruntime = max_vruntime(se->vruntime, vruntime);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002324}
2325
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002326static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2327
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002328static void
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002329enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002330{
2331 /*
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002332 * Update the normalized vruntime before updating min_vruntime
Kamalesh Babulal0fc576d2013-06-27 11:24:18 +05302333 * through calling update_curr().
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002334 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002335 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002336 se->vruntime += cfs_rq->min_vruntime;
2337
2338 /*
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002339 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002340 */
Ingo Molnarb7cc0892007-08-09 11:16:47 +02002341 update_curr(cfs_rq);
Paul Turnerf269ae02012-10-04 13:18:31 +02002342 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002343 account_entity_enqueue(cfs_rq, se);
2344 update_cfs_shares(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002345
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002346 if (flags & ENQUEUE_WAKEUP) {
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002347 place_entity(cfs_rq, se, 0);
Ingo Molnar2396af62007-08-09 11:16:48 +02002348 enqueue_sleeper(cfs_rq, se);
Ingo Molnare9acbff2007-10-15 17:00:04 +02002349 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002350
Ingo Molnard2417e52007-08-09 11:16:47 +02002351 update_stats_enqueue(cfs_rq, se);
Peter Zijlstraddc97292007-10-15 17:00:10 +02002352 check_spread(cfs_rq, se);
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002353 if (se != cfs_rq->curr)
2354 __enqueue_entity(cfs_rq, se);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002355 se->on_rq = 1;
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -08002356
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002357 if (cfs_rq->nr_running == 1) {
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -08002358 list_add_leaf_cfs_rq(cfs_rq);
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002359 check_enqueue_throttle(cfs_rq);
2360 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002361}
2362
Rik van Riel2c13c9192011-02-01 09:48:37 -05002363static void __clear_buddies_last(struct sched_entity *se)
Peter Zijlstra2002c692008-11-11 11:52:33 +01002364{
Rik van Riel2c13c9192011-02-01 09:48:37 -05002365 for_each_sched_entity(se) {
2366 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2367 if (cfs_rq->last == se)
2368 cfs_rq->last = NULL;
2369 else
2370 break;
2371 }
2372}
Peter Zijlstra2002c692008-11-11 11:52:33 +01002373
Rik van Riel2c13c9192011-02-01 09:48:37 -05002374static void __clear_buddies_next(struct sched_entity *se)
2375{
2376 for_each_sched_entity(se) {
2377 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2378 if (cfs_rq->next == se)
2379 cfs_rq->next = NULL;
2380 else
2381 break;
2382 }
Peter Zijlstra2002c692008-11-11 11:52:33 +01002383}
2384
Rik van Rielac53db52011-02-01 09:51:03 -05002385static void __clear_buddies_skip(struct sched_entity *se)
2386{
2387 for_each_sched_entity(se) {
2388 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2389 if (cfs_rq->skip == se)
2390 cfs_rq->skip = NULL;
2391 else
2392 break;
2393 }
2394}
2395
Peter Zijlstraa571bbe2009-01-28 14:51:40 +01002396static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2397{
Rik van Riel2c13c9192011-02-01 09:48:37 -05002398 if (cfs_rq->last == se)
2399 __clear_buddies_last(se);
2400
2401 if (cfs_rq->next == se)
2402 __clear_buddies_next(se);
Rik van Rielac53db52011-02-01 09:51:03 -05002403
2404 if (cfs_rq->skip == se)
2405 __clear_buddies_skip(se);
Peter Zijlstraa571bbe2009-01-28 14:51:40 +01002406}
2407
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07002408static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
Paul Turnerd8b49862011-07-21 09:43:41 -07002409
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002410static void
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002411dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002412{
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002413 /*
2414 * Update run-time statistics of the 'current'.
2415 */
2416 update_curr(cfs_rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002417 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002418
Ingo Molnar19b6a2e2007-08-09 11:16:48 +02002419 update_stats_dequeue(cfs_rq, se);
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002420 if (flags & DEQUEUE_SLEEP) {
Peter Zijlstra67e9fb22007-10-15 17:00:10 +02002421#ifdef CONFIG_SCHEDSTATS
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002422 if (entity_is_task(se)) {
2423 struct task_struct *tsk = task_of(se);
2424
2425 if (tsk->state & TASK_INTERRUPTIBLE)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002426 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002427 if (tsk->state & TASK_UNINTERRUPTIBLE)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002428 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002429 }
Dmitry Adamushkodb36cc72007-10-15 17:00:06 +02002430#endif
Peter Zijlstra67e9fb22007-10-15 17:00:10 +02002431 }
2432
Peter Zijlstra2002c692008-11-11 11:52:33 +01002433 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +01002434
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002435 if (se != cfs_rq->curr)
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002436 __dequeue_entity(cfs_rq, se);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002437 se->on_rq = 0;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002438 account_entity_dequeue(cfs_rq, se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002439
2440 /*
2441 * Normalize the entity after updating the min_vruntime because the
2442 * update can refer to the ->curr item and we need to reflect this
2443 * movement in our normalized position.
2444 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002445 if (!(flags & DEQUEUE_SLEEP))
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002446 se->vruntime -= cfs_rq->min_vruntime;
Peter Zijlstra1e876232011-05-17 16:21:10 -07002447
Paul Turnerd8b49862011-07-21 09:43:41 -07002448 /* return excess runtime on last dequeue */
2449 return_cfs_rq_runtime(cfs_rq);
2450
Peter Zijlstra1e876232011-05-17 16:21:10 -07002451 update_min_vruntime(cfs_rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002452 update_cfs_shares(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002453}
2454
2455/*
2456 * Preempt the current task with a newly woken task if needed:
2457 */
Peter Zijlstra7c92e542007-09-05 14:32:49 +02002458static void
Ingo Molnar2e09bf52007-10-15 17:00:05 +02002459check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002460{
Peter Zijlstra11697832007-09-05 14:32:49 +02002461 unsigned long ideal_runtime, delta_exec;
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002462 struct sched_entity *se;
2463 s64 delta;
Peter Zijlstra11697832007-09-05 14:32:49 +02002464
Peter Zijlstra6d0f0eb2007-10-15 17:00:05 +02002465 ideal_runtime = sched_slice(cfs_rq, curr);
Peter Zijlstra11697832007-09-05 14:32:49 +02002466 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +01002467 if (delta_exec > ideal_runtime) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002468 resched_task(rq_of(cfs_rq)->curr);
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +01002469 /*
2470 * The current task ran long enough, ensure it doesn't get
2471 * re-elected due to buddy favours.
2472 */
2473 clear_buddies(cfs_rq, curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +02002474 return;
2475 }
2476
2477 /*
2478 * Ensure that a task that missed wakeup preemption by a
2479 * narrow margin doesn't have to wait for a full slice.
2480 * This also mitigates buddy induced latencies under load.
2481 */
Mike Galbraithf685cea2009-10-23 23:09:22 +02002482 if (delta_exec < sysctl_sched_min_granularity)
2483 return;
2484
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002485 se = __pick_first_entity(cfs_rq);
2486 delta = curr->vruntime - se->vruntime;
Mike Galbraithf685cea2009-10-23 23:09:22 +02002487
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002488 if (delta < 0)
2489 return;
Mike Galbraithd7d82942011-01-05 05:41:17 +01002490
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002491 if (delta > ideal_runtime)
2492 resched_task(rq_of(cfs_rq)->curr);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002493}
2494
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002495static void
Ingo Molnar8494f412007-08-09 11:16:48 +02002496set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002497{
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002498 /* 'current' is not kept within the tree. */
2499 if (se->on_rq) {
2500 /*
2501 * Any task has to be enqueued before it get to execute on
2502 * a CPU. So account for the time it spent waiting on the
2503 * runqueue.
2504 */
2505 update_stats_wait_end(cfs_rq, se);
2506 __dequeue_entity(cfs_rq, se);
2507 }
2508
Ingo Molnar79303e92007-08-09 11:16:47 +02002509 update_stats_curr_start(cfs_rq, se);
Ingo Molnar429d43b2007-10-15 17:00:03 +02002510 cfs_rq->curr = se;
Ingo Molnareba1ed42007-10-15 17:00:02 +02002511#ifdef CONFIG_SCHEDSTATS
2512 /*
2513 * Track our maximum slice length, if the CPU's load is at
2514 * least twice that of our own weight (i.e. dont track it
2515 * when there are only lesser-weight tasks around):
2516 */
Dmitry Adamushko495eca42007-10-15 17:00:06 +02002517 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03002518 se->statistics.slice_max = max(se->statistics.slice_max,
Ingo Molnareba1ed42007-10-15 17:00:02 +02002519 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2520 }
2521#endif
Peter Zijlstra4a55b452007-09-05 14:32:49 +02002522 se->prev_sum_exec_runtime = se->sum_exec_runtime;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002523}
2524
Peter Zijlstra3f3a4902008-10-24 11:06:16 +02002525static int
2526wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2527
Rik van Rielac53db52011-02-01 09:51:03 -05002528/*
2529 * Pick the next process, keeping these things in mind, in this order:
2530 * 1) keep things fair between processes/task groups
2531 * 2) pick the "next" process, since someone really wants that to run
2532 * 3) pick the "last" process, for cache locality
2533 * 4) do not run the "skip" process, if something else is available
2534 */
Peter Zijlstraf4b67552008-11-04 21:25:07 +01002535static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002536{
Rik van Rielac53db52011-02-01 09:51:03 -05002537 struct sched_entity *se = __pick_first_entity(cfs_rq);
Mike Galbraithf685cea2009-10-23 23:09:22 +02002538 struct sched_entity *left = se;
Peter Zijlstraf4b67552008-11-04 21:25:07 +01002539
Rik van Rielac53db52011-02-01 09:51:03 -05002540 /*
2541 * Avoid running the skip buddy, if running something else can
2542 * be done without getting too unfair.
2543 */
2544 if (cfs_rq->skip == se) {
2545 struct sched_entity *second = __pick_next_entity(se);
2546 if (second && wakeup_preempt_entity(second, left) < 1)
2547 se = second;
2548 }
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002549
Mike Galbraithf685cea2009-10-23 23:09:22 +02002550 /*
2551 * Prefer last buddy, try to return the CPU to a preempted task.
2552 */
2553 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2554 se = cfs_rq->last;
2555
Rik van Rielac53db52011-02-01 09:51:03 -05002556 /*
2557 * Someone really wants this to run. If it's not unfair, run it.
2558 */
2559 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2560 se = cfs_rq->next;
2561
Mike Galbraithf685cea2009-10-23 23:09:22 +02002562 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +01002563
2564 return se;
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002565}
2566
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002567static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2568
Ingo Molnarab6cde22007-08-09 11:16:48 +02002569static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002570{
2571 /*
2572 * If still on the runqueue then deactivate_task()
2573 * was not called and update_curr() has to be done:
2574 */
2575 if (prev->on_rq)
Ingo Molnarb7cc0892007-08-09 11:16:47 +02002576 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002577
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002578 /* throttle cfs_rqs exceeding runtime */
2579 check_cfs_rq_runtime(cfs_rq);
2580
Peter Zijlstraddc97292007-10-15 17:00:10 +02002581 check_spread(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002582 if (prev->on_rq) {
Ingo Molnar5870db52007-08-09 11:16:47 +02002583 update_stats_wait_start(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002584 /* Put 'current' back into the tree. */
2585 __enqueue_entity(cfs_rq, prev);
Paul Turner9d85f212012-10-04 13:18:29 +02002586 /* in !on_rq case, update occurred at dequeue */
Paul Turner9ee474f2012-10-04 13:18:30 +02002587 update_entity_load_avg(prev, 1);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002588 }
Ingo Molnar429d43b2007-10-15 17:00:03 +02002589 cfs_rq->curr = NULL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002590}
2591
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002592static void
2593entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002594{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002595 /*
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002596 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002597 */
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002598 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002599
Paul Turner43365bd2010-12-15 19:10:17 -08002600 /*
Paul Turner9d85f212012-10-04 13:18:29 +02002601 * Ensure that runnable average is periodically updated.
2602 */
Paul Turner9ee474f2012-10-04 13:18:30 +02002603 update_entity_load_avg(curr, 1);
Paul Turneraff3e492012-10-04 13:18:30 +02002604 update_cfs_rq_blocked_load(cfs_rq, 1);
Peter Zijlstrabf0bd942013-07-26 23:48:42 +02002605 update_cfs_shares(cfs_rq);
Paul Turner9d85f212012-10-04 13:18:29 +02002606
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002607#ifdef CONFIG_SCHED_HRTICK
2608 /*
2609 * queued ticks are scheduled to match the slice, so don't bother
2610 * validating it and just reschedule.
2611 */
Harvey Harrison983ed7a2008-04-24 18:17:55 -07002612 if (queued) {
2613 resched_task(rq_of(cfs_rq)->curr);
2614 return;
2615 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002616 /*
2617 * don't let the period tick interfere with the hrtick preemption
2618 */
2619 if (!sched_feat(DOUBLE_TICK) &&
2620 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2621 return;
2622#endif
2623
Yong Zhang2c2efae2011-07-29 16:20:33 +08002624 if (cfs_rq->nr_running > 1)
Ingo Molnar2e09bf52007-10-15 17:00:05 +02002625 check_preempt_tick(cfs_rq, curr);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002626}
2627
Paul Turnerab84d312011-07-21 09:43:28 -07002628
2629/**************************************************
2630 * CFS bandwidth control machinery
2631 */
2632
2633#ifdef CONFIG_CFS_BANDWIDTH
Peter Zijlstra029632f2011-10-25 10:00:11 +02002634
2635#ifdef HAVE_JUMP_LABEL
Ingo Molnarc5905af2012-02-24 08:31:31 +01002636static struct static_key __cfs_bandwidth_used;
Peter Zijlstra029632f2011-10-25 10:00:11 +02002637
2638static inline bool cfs_bandwidth_used(void)
2639{
Ingo Molnarc5905af2012-02-24 08:31:31 +01002640 return static_key_false(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002641}
2642
2643void account_cfs_bandwidth_used(int enabled, int was_enabled)
2644{
2645 /* only need to count groups transitioning between enabled/!enabled */
2646 if (enabled && !was_enabled)
Ingo Molnarc5905af2012-02-24 08:31:31 +01002647 static_key_slow_inc(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002648 else if (!enabled && was_enabled)
Ingo Molnarc5905af2012-02-24 08:31:31 +01002649 static_key_slow_dec(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002650}
2651#else /* HAVE_JUMP_LABEL */
2652static bool cfs_bandwidth_used(void)
2653{
2654 return true;
2655}
2656
2657void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2658#endif /* HAVE_JUMP_LABEL */
2659
Paul Turnerab84d312011-07-21 09:43:28 -07002660/*
2661 * default period for cfs group bandwidth.
2662 * default: 0.1s, units: nanoseconds
2663 */
2664static inline u64 default_cfs_period(void)
2665{
2666 return 100000000ULL;
2667}
Paul Turnerec12cb72011-07-21 09:43:30 -07002668
2669static inline u64 sched_cfs_bandwidth_slice(void)
2670{
2671 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2672}
2673
Paul Turnera9cf55b2011-07-21 09:43:32 -07002674/*
2675 * Replenish runtime according to assigned quota and update expiration time.
2676 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2677 * additional synchronization around rq->lock.
2678 *
2679 * requires cfs_b->lock
2680 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02002681void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
Paul Turnera9cf55b2011-07-21 09:43:32 -07002682{
2683 u64 now;
2684
2685 if (cfs_b->quota == RUNTIME_INF)
2686 return;
2687
2688 now = sched_clock_cpu(smp_processor_id());
2689 cfs_b->runtime = cfs_b->quota;
2690 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2691}
2692
Peter Zijlstra029632f2011-10-25 10:00:11 +02002693static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2694{
2695 return &tg->cfs_bandwidth;
2696}
2697
Paul Turnerf1b17282012-10-04 13:18:31 +02002698/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2699static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2700{
2701 if (unlikely(cfs_rq->throttle_count))
2702 return cfs_rq->throttled_clock_task;
2703
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002704 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
Paul Turnerf1b17282012-10-04 13:18:31 +02002705}
2706
Paul Turner85dac902011-07-21 09:43:33 -07002707/* returns 0 on failure to allocate runtime */
2708static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
Paul Turnerec12cb72011-07-21 09:43:30 -07002709{
2710 struct task_group *tg = cfs_rq->tg;
2711 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002712 u64 amount = 0, min_amount, expires;
Paul Turnerec12cb72011-07-21 09:43:30 -07002713
2714 /* note: this is a positive sum as runtime_remaining <= 0 */
2715 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2716
2717 raw_spin_lock(&cfs_b->lock);
2718 if (cfs_b->quota == RUNTIME_INF)
2719 amount = min_amount;
Paul Turner58088ad2011-07-21 09:43:31 -07002720 else {
Paul Turnera9cf55b2011-07-21 09:43:32 -07002721 /*
2722 * If the bandwidth pool has become inactive, then at least one
2723 * period must have elapsed since the last consumption.
2724 * Refresh the global state and ensure bandwidth timer becomes
2725 * active.
2726 */
2727 if (!cfs_b->timer_active) {
2728 __refill_cfs_bandwidth_runtime(cfs_b);
Paul Turner58088ad2011-07-21 09:43:31 -07002729 __start_cfs_bandwidth(cfs_b);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002730 }
Paul Turner58088ad2011-07-21 09:43:31 -07002731
2732 if (cfs_b->runtime > 0) {
2733 amount = min(cfs_b->runtime, min_amount);
2734 cfs_b->runtime -= amount;
2735 cfs_b->idle = 0;
2736 }
Paul Turnerec12cb72011-07-21 09:43:30 -07002737 }
Paul Turnera9cf55b2011-07-21 09:43:32 -07002738 expires = cfs_b->runtime_expires;
Paul Turnerec12cb72011-07-21 09:43:30 -07002739 raw_spin_unlock(&cfs_b->lock);
2740
2741 cfs_rq->runtime_remaining += amount;
Paul Turnera9cf55b2011-07-21 09:43:32 -07002742 /*
2743 * we may have advanced our local expiration to account for allowed
2744 * spread between our sched_clock and the one on which runtime was
2745 * issued.
2746 */
2747 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2748 cfs_rq->runtime_expires = expires;
Paul Turner85dac902011-07-21 09:43:33 -07002749
2750 return cfs_rq->runtime_remaining > 0;
Paul Turnera9cf55b2011-07-21 09:43:32 -07002751}
2752
2753/*
2754 * Note: This depends on the synchronization provided by sched_clock and the
2755 * fact that rq->clock snapshots this value.
2756 */
2757static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2758{
2759 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002760
2761 /* if the deadline is ahead of our clock, nothing to do */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002762 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
Paul Turnera9cf55b2011-07-21 09:43:32 -07002763 return;
2764
2765 if (cfs_rq->runtime_remaining < 0)
2766 return;
2767
2768 /*
2769 * If the local deadline has passed we have to consider the
2770 * possibility that our sched_clock is 'fast' and the global deadline
2771 * has not truly expired.
2772 *
2773 * Fortunately we can check determine whether this the case by checking
2774 * whether the global deadline has advanced.
2775 */
2776
2777 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2778 /* extend local deadline, drift is bounded above by 2 ticks */
2779 cfs_rq->runtime_expires += TICK_NSEC;
2780 } else {
2781 /* global deadline is ahead, expiration has passed */
2782 cfs_rq->runtime_remaining = 0;
2783 }
Paul Turnerec12cb72011-07-21 09:43:30 -07002784}
2785
2786static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2787 unsigned long delta_exec)
2788{
Paul Turnera9cf55b2011-07-21 09:43:32 -07002789 /* dock delta_exec before expiring quota (as it could span periods) */
Paul Turnerec12cb72011-07-21 09:43:30 -07002790 cfs_rq->runtime_remaining -= delta_exec;
Paul Turnera9cf55b2011-07-21 09:43:32 -07002791 expire_cfs_rq_runtime(cfs_rq);
2792
2793 if (likely(cfs_rq->runtime_remaining > 0))
Paul Turnerec12cb72011-07-21 09:43:30 -07002794 return;
2795
Paul Turner85dac902011-07-21 09:43:33 -07002796 /*
2797 * if we're unable to extend our runtime we resched so that the active
2798 * hierarchy can be throttled
2799 */
2800 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2801 resched_task(rq_of(cfs_rq)->curr);
Paul Turnerec12cb72011-07-21 09:43:30 -07002802}
2803
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07002804static __always_inline
2805void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
Paul Turnerec12cb72011-07-21 09:43:30 -07002806{
Paul Turner56f570e2011-11-07 20:26:33 -08002807 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
Paul Turnerec12cb72011-07-21 09:43:30 -07002808 return;
2809
2810 __account_cfs_rq_runtime(cfs_rq, delta_exec);
2811}
2812
Paul Turner85dac902011-07-21 09:43:33 -07002813static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2814{
Paul Turner56f570e2011-11-07 20:26:33 -08002815 return cfs_bandwidth_used() && cfs_rq->throttled;
Paul Turner85dac902011-07-21 09:43:33 -07002816}
2817
Paul Turner64660c82011-07-21 09:43:36 -07002818/* check whether cfs_rq, or any parent, is throttled */
2819static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2820{
Paul Turner56f570e2011-11-07 20:26:33 -08002821 return cfs_bandwidth_used() && cfs_rq->throttle_count;
Paul Turner64660c82011-07-21 09:43:36 -07002822}
2823
2824/*
2825 * Ensure that neither of the group entities corresponding to src_cpu or
2826 * dest_cpu are members of a throttled hierarchy when performing group
2827 * load-balance operations.
2828 */
2829static inline int throttled_lb_pair(struct task_group *tg,
2830 int src_cpu, int dest_cpu)
2831{
2832 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2833
2834 src_cfs_rq = tg->cfs_rq[src_cpu];
2835 dest_cfs_rq = tg->cfs_rq[dest_cpu];
2836
2837 return throttled_hierarchy(src_cfs_rq) ||
2838 throttled_hierarchy(dest_cfs_rq);
2839}
2840
2841/* updated child weight may affect parent so we have to do this bottom up */
2842static int tg_unthrottle_up(struct task_group *tg, void *data)
2843{
2844 struct rq *rq = data;
2845 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2846
2847 cfs_rq->throttle_count--;
2848#ifdef CONFIG_SMP
2849 if (!cfs_rq->throttle_count) {
Paul Turnerf1b17282012-10-04 13:18:31 +02002850 /* adjust cfs_rq_clock_task() */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002851 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
Paul Turnerf1b17282012-10-04 13:18:31 +02002852 cfs_rq->throttled_clock_task;
Paul Turner64660c82011-07-21 09:43:36 -07002853 }
2854#endif
2855
2856 return 0;
2857}
2858
2859static int tg_throttle_down(struct task_group *tg, void *data)
2860{
2861 struct rq *rq = data;
2862 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2863
Paul Turner82958362012-10-04 13:18:31 +02002864 /* group is entering throttled state, stop time */
2865 if (!cfs_rq->throttle_count)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002866 cfs_rq->throttled_clock_task = rq_clock_task(rq);
Paul Turner64660c82011-07-21 09:43:36 -07002867 cfs_rq->throttle_count++;
2868
2869 return 0;
2870}
2871
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002872static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
Paul Turner85dac902011-07-21 09:43:33 -07002873{
2874 struct rq *rq = rq_of(cfs_rq);
2875 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2876 struct sched_entity *se;
2877 long task_delta, dequeue = 1;
2878
2879 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2880
Paul Turnerf1b17282012-10-04 13:18:31 +02002881 /* freeze hierarchy runnable averages while throttled */
Paul Turner64660c82011-07-21 09:43:36 -07002882 rcu_read_lock();
2883 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2884 rcu_read_unlock();
Paul Turner85dac902011-07-21 09:43:33 -07002885
2886 task_delta = cfs_rq->h_nr_running;
2887 for_each_sched_entity(se) {
2888 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2889 /* throttled entity or throttle-on-deactivate */
2890 if (!se->on_rq)
2891 break;
2892
2893 if (dequeue)
2894 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2895 qcfs_rq->h_nr_running -= task_delta;
2896
2897 if (qcfs_rq->load.weight)
2898 dequeue = 0;
2899 }
2900
2901 if (!se)
2902 rq->nr_running -= task_delta;
2903
2904 cfs_rq->throttled = 1;
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002905 cfs_rq->throttled_clock = rq_clock(rq);
Paul Turner85dac902011-07-21 09:43:33 -07002906 raw_spin_lock(&cfs_b->lock);
2907 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
2908 raw_spin_unlock(&cfs_b->lock);
2909}
2910
Peter Zijlstra029632f2011-10-25 10:00:11 +02002911void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
Paul Turner671fd9d2011-07-21 09:43:34 -07002912{
2913 struct rq *rq = rq_of(cfs_rq);
2914 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2915 struct sched_entity *se;
2916 int enqueue = 1;
2917 long task_delta;
2918
Michael Wang22b958d2013-06-04 14:23:39 +08002919 se = cfs_rq->tg->se[cpu_of(rq)];
Paul Turner671fd9d2011-07-21 09:43:34 -07002920
2921 cfs_rq->throttled = 0;
Frederic Weisbecker1a55af22013-04-12 01:51:01 +02002922
2923 update_rq_clock(rq);
2924
Paul Turner671fd9d2011-07-21 09:43:34 -07002925 raw_spin_lock(&cfs_b->lock);
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002926 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
Paul Turner671fd9d2011-07-21 09:43:34 -07002927 list_del_rcu(&cfs_rq->throttled_list);
2928 raw_spin_unlock(&cfs_b->lock);
2929
Paul Turner64660c82011-07-21 09:43:36 -07002930 /* update hierarchical throttle state */
2931 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
2932
Paul Turner671fd9d2011-07-21 09:43:34 -07002933 if (!cfs_rq->load.weight)
2934 return;
2935
2936 task_delta = cfs_rq->h_nr_running;
2937 for_each_sched_entity(se) {
2938 if (se->on_rq)
2939 enqueue = 0;
2940
2941 cfs_rq = cfs_rq_of(se);
2942 if (enqueue)
2943 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
2944 cfs_rq->h_nr_running += task_delta;
2945
2946 if (cfs_rq_throttled(cfs_rq))
2947 break;
2948 }
2949
2950 if (!se)
2951 rq->nr_running += task_delta;
2952
2953 /* determine whether we need to wake up potentially idle cpu */
2954 if (rq->curr == rq->idle && rq->cfs.nr_running)
2955 resched_task(rq->curr);
2956}
2957
2958static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
2959 u64 remaining, u64 expires)
2960{
2961 struct cfs_rq *cfs_rq;
2962 u64 runtime = remaining;
2963
2964 rcu_read_lock();
2965 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
2966 throttled_list) {
2967 struct rq *rq = rq_of(cfs_rq);
2968
2969 raw_spin_lock(&rq->lock);
2970 if (!cfs_rq_throttled(cfs_rq))
2971 goto next;
2972
2973 runtime = -cfs_rq->runtime_remaining + 1;
2974 if (runtime > remaining)
2975 runtime = remaining;
2976 remaining -= runtime;
2977
2978 cfs_rq->runtime_remaining += runtime;
2979 cfs_rq->runtime_expires = expires;
2980
2981 /* we check whether we're throttled above */
2982 if (cfs_rq->runtime_remaining > 0)
2983 unthrottle_cfs_rq(cfs_rq);
2984
2985next:
2986 raw_spin_unlock(&rq->lock);
2987
2988 if (!remaining)
2989 break;
2990 }
2991 rcu_read_unlock();
2992
2993 return remaining;
2994}
2995
Paul Turner58088ad2011-07-21 09:43:31 -07002996/*
2997 * Responsible for refilling a task_group's bandwidth and unthrottling its
2998 * cfs_rqs as appropriate. If there has been no activity within the last
2999 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3000 * used to track this state.
3001 */
3002static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3003{
Paul Turner671fd9d2011-07-21 09:43:34 -07003004 u64 runtime, runtime_expires;
3005 int idle = 1, throttled;
Paul Turner58088ad2011-07-21 09:43:31 -07003006
3007 raw_spin_lock(&cfs_b->lock);
3008 /* no need to continue the timer with no bandwidth constraint */
3009 if (cfs_b->quota == RUNTIME_INF)
3010 goto out_unlock;
3011
Paul Turner671fd9d2011-07-21 09:43:34 -07003012 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3013 /* idle depends on !throttled (for the case of a large deficit) */
3014 idle = cfs_b->idle && !throttled;
Nikhil Raoe8da1b12011-07-21 09:43:40 -07003015 cfs_b->nr_periods += overrun;
Paul Turner671fd9d2011-07-21 09:43:34 -07003016
Paul Turnera9cf55b2011-07-21 09:43:32 -07003017 /* if we're going inactive then everything else can be deferred */
3018 if (idle)
3019 goto out_unlock;
3020
3021 __refill_cfs_bandwidth_runtime(cfs_b);
3022
Paul Turner671fd9d2011-07-21 09:43:34 -07003023 if (!throttled) {
3024 /* mark as potentially idle for the upcoming period */
3025 cfs_b->idle = 1;
3026 goto out_unlock;
3027 }
Paul Turner58088ad2011-07-21 09:43:31 -07003028
Nikhil Raoe8da1b12011-07-21 09:43:40 -07003029 /* account preceding periods in which throttling occurred */
3030 cfs_b->nr_throttled += overrun;
3031
Paul Turner671fd9d2011-07-21 09:43:34 -07003032 /*
3033 * There are throttled entities so we must first use the new bandwidth
3034 * to unthrottle them before making it generally available. This
3035 * ensures that all existing debts will be paid before a new cfs_rq is
3036 * allowed to run.
3037 */
3038 runtime = cfs_b->runtime;
3039 runtime_expires = cfs_b->runtime_expires;
3040 cfs_b->runtime = 0;
3041
3042 /*
3043 * This check is repeated as we are holding onto the new bandwidth
3044 * while we unthrottle. This can potentially race with an unthrottled
3045 * group trying to acquire new bandwidth from the global pool.
3046 */
3047 while (throttled && runtime > 0) {
3048 raw_spin_unlock(&cfs_b->lock);
3049 /* we can't nest cfs_b->lock while distributing bandwidth */
3050 runtime = distribute_cfs_runtime(cfs_b, runtime,
3051 runtime_expires);
3052 raw_spin_lock(&cfs_b->lock);
3053
3054 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3055 }
3056
3057 /* return (any) remaining runtime */
3058 cfs_b->runtime = runtime;
3059 /*
3060 * While we are ensured activity in the period following an
3061 * unthrottle, this also covers the case in which the new bandwidth is
3062 * insufficient to cover the existing bandwidth deficit. (Forcing the
3063 * timer to remain active while there are any throttled entities.)
3064 */
3065 cfs_b->idle = 0;
Paul Turner58088ad2011-07-21 09:43:31 -07003066out_unlock:
3067 if (idle)
3068 cfs_b->timer_active = 0;
3069 raw_spin_unlock(&cfs_b->lock);
3070
3071 return idle;
3072}
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003073
Paul Turnerd8b49862011-07-21 09:43:41 -07003074/* a cfs_rq won't donate quota below this amount */
3075static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3076/* minimum remaining period time to redistribute slack quota */
3077static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3078/* how long we wait to gather additional slack before distributing */
3079static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3080
3081/* are we near the end of the current quota period? */
3082static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3083{
3084 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3085 u64 remaining;
3086
3087 /* if the call-back is running a quota refresh is already occurring */
3088 if (hrtimer_callback_running(refresh_timer))
3089 return 1;
3090
3091 /* is a quota refresh about to occur? */
3092 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3093 if (remaining < min_expire)
3094 return 1;
3095
3096 return 0;
3097}
3098
3099static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3100{
3101 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3102
3103 /* if there's a quota refresh soon don't bother with slack */
3104 if (runtime_refresh_within(cfs_b, min_left))
3105 return;
3106
3107 start_bandwidth_timer(&cfs_b->slack_timer,
3108 ns_to_ktime(cfs_bandwidth_slack_period));
3109}
3110
3111/* we know any runtime found here is valid as update_curr() precedes return */
3112static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3113{
3114 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3115 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3116
3117 if (slack_runtime <= 0)
3118 return;
3119
3120 raw_spin_lock(&cfs_b->lock);
3121 if (cfs_b->quota != RUNTIME_INF &&
3122 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3123 cfs_b->runtime += slack_runtime;
3124
3125 /* we are under rq->lock, defer unthrottling using a timer */
3126 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3127 !list_empty(&cfs_b->throttled_cfs_rq))
3128 start_cfs_slack_bandwidth(cfs_b);
3129 }
3130 raw_spin_unlock(&cfs_b->lock);
3131
3132 /* even if it's not valid for return we don't want to try again */
3133 cfs_rq->runtime_remaining -= slack_runtime;
3134}
3135
3136static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3137{
Paul Turner56f570e2011-11-07 20:26:33 -08003138 if (!cfs_bandwidth_used())
3139 return;
3140
Paul Turnerfccfdc62011-11-07 20:26:34 -08003141 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
Paul Turnerd8b49862011-07-21 09:43:41 -07003142 return;
3143
3144 __return_cfs_rq_runtime(cfs_rq);
3145}
3146
3147/*
3148 * This is done with a timer (instead of inline with bandwidth return) since
3149 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3150 */
3151static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3152{
3153 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3154 u64 expires;
3155
3156 /* confirm we're still not at a refresh boundary */
3157 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
3158 return;
3159
3160 raw_spin_lock(&cfs_b->lock);
3161 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3162 runtime = cfs_b->runtime;
3163 cfs_b->runtime = 0;
3164 }
3165 expires = cfs_b->runtime_expires;
3166 raw_spin_unlock(&cfs_b->lock);
3167
3168 if (!runtime)
3169 return;
3170
3171 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3172
3173 raw_spin_lock(&cfs_b->lock);
3174 if (expires == cfs_b->runtime_expires)
3175 cfs_b->runtime = runtime;
3176 raw_spin_unlock(&cfs_b->lock);
3177}
3178
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003179/*
3180 * When a group wakes up we want to make sure that its quota is not already
3181 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3182 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3183 */
3184static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3185{
Paul Turner56f570e2011-11-07 20:26:33 -08003186 if (!cfs_bandwidth_used())
3187 return;
3188
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003189 /* an active group must be handled by the update_curr()->put() path */
3190 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3191 return;
3192
3193 /* ensure the group is not already throttled */
3194 if (cfs_rq_throttled(cfs_rq))
3195 return;
3196
3197 /* update runtime allocation */
3198 account_cfs_rq_runtime(cfs_rq, 0);
3199 if (cfs_rq->runtime_remaining <= 0)
3200 throttle_cfs_rq(cfs_rq);
3201}
3202
3203/* conditionally throttle active cfs_rq's from put_prev_entity() */
3204static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3205{
Paul Turner56f570e2011-11-07 20:26:33 -08003206 if (!cfs_bandwidth_used())
3207 return;
3208
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003209 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3210 return;
3211
3212 /*
3213 * it's possible for a throttled entity to be forced into a running
3214 * state (e.g. set_curr_task), in this case we're finished.
3215 */
3216 if (cfs_rq_throttled(cfs_rq))
3217 return;
3218
3219 throttle_cfs_rq(cfs_rq);
3220}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003221
Peter Zijlstra029632f2011-10-25 10:00:11 +02003222static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3223{
3224 struct cfs_bandwidth *cfs_b =
3225 container_of(timer, struct cfs_bandwidth, slack_timer);
3226 do_sched_cfs_slack_timer(cfs_b);
3227
3228 return HRTIMER_NORESTART;
3229}
3230
3231static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3232{
3233 struct cfs_bandwidth *cfs_b =
3234 container_of(timer, struct cfs_bandwidth, period_timer);
3235 ktime_t now;
3236 int overrun;
3237 int idle = 0;
3238
3239 for (;;) {
3240 now = hrtimer_cb_get_time(timer);
3241 overrun = hrtimer_forward(timer, now, cfs_b->period);
3242
3243 if (!overrun)
3244 break;
3245
3246 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3247 }
3248
3249 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3250}
3251
3252void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3253{
3254 raw_spin_lock_init(&cfs_b->lock);
3255 cfs_b->runtime = 0;
3256 cfs_b->quota = RUNTIME_INF;
3257 cfs_b->period = ns_to_ktime(default_cfs_period());
3258
3259 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3260 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3261 cfs_b->period_timer.function = sched_cfs_period_timer;
3262 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3263 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3264}
3265
3266static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3267{
3268 cfs_rq->runtime_enabled = 0;
3269 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3270}
3271
3272/* requires cfs_b->lock, may release to reprogram timer */
3273void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3274{
3275 /*
3276 * The timer may be active because we're trying to set a new bandwidth
3277 * period or because we're racing with the tear-down path
3278 * (timer_active==0 becomes visible before the hrtimer call-back
3279 * terminates). In either case we ensure that it's re-programmed
3280 */
3281 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
3282 raw_spin_unlock(&cfs_b->lock);
3283 /* ensure cfs_b->lock is available while we wait */
3284 hrtimer_cancel(&cfs_b->period_timer);
3285
3286 raw_spin_lock(&cfs_b->lock);
3287 /* if someone else restarted the timer then we're done */
3288 if (cfs_b->timer_active)
3289 return;
3290 }
3291
3292 cfs_b->timer_active = 1;
3293 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3294}
3295
3296static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3297{
3298 hrtimer_cancel(&cfs_b->period_timer);
3299 hrtimer_cancel(&cfs_b->slack_timer);
3300}
3301
Arnd Bergmann38dc3342013-01-25 14:14:22 +00003302static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
Peter Zijlstra029632f2011-10-25 10:00:11 +02003303{
3304 struct cfs_rq *cfs_rq;
3305
3306 for_each_leaf_cfs_rq(rq, cfs_rq) {
3307 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3308
3309 if (!cfs_rq->runtime_enabled)
3310 continue;
3311
3312 /*
3313 * clock_task is not advancing so we just need to make sure
3314 * there's some valid quota amount
3315 */
3316 cfs_rq->runtime_remaining = cfs_b->quota;
3317 if (cfs_rq_throttled(cfs_rq))
3318 unthrottle_cfs_rq(cfs_rq);
3319 }
3320}
3321
3322#else /* CONFIG_CFS_BANDWIDTH */
Paul Turnerf1b17282012-10-04 13:18:31 +02003323static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3324{
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003325 return rq_clock_task(rq_of(cfs_rq));
Paul Turnerf1b17282012-10-04 13:18:31 +02003326}
3327
3328static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3329 unsigned long delta_exec) {}
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003330static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3331static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07003332static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
Paul Turner85dac902011-07-21 09:43:33 -07003333
3334static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3335{
3336 return 0;
3337}
Paul Turner64660c82011-07-21 09:43:36 -07003338
3339static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3340{
3341 return 0;
3342}
3343
3344static inline int throttled_lb_pair(struct task_group *tg,
3345 int src_cpu, int dest_cpu)
3346{
3347 return 0;
3348}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003349
3350void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3351
3352#ifdef CONFIG_FAIR_GROUP_SCHED
3353static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
Paul Turnerab84d312011-07-21 09:43:28 -07003354#endif
3355
Peter Zijlstra029632f2011-10-25 10:00:11 +02003356static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3357{
3358 return NULL;
3359}
3360static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
Peter Boonstoppela4c96ae2012-08-09 15:34:47 -07003361static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003362
3363#endif /* CONFIG_CFS_BANDWIDTH */
3364
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003365/**************************************************
3366 * CFS operations on tasks:
3367 */
3368
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003369#ifdef CONFIG_SCHED_HRTICK
3370static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3371{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003372 struct sched_entity *se = &p->se;
3373 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3374
3375 WARN_ON(task_rq(p) != rq);
3376
Mike Galbraithb39e66e2011-11-22 15:20:07 +01003377 if (cfs_rq->nr_running > 1) {
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003378 u64 slice = sched_slice(cfs_rq, se);
3379 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3380 s64 delta = slice - ran;
3381
3382 if (delta < 0) {
3383 if (rq->curr == p)
3384 resched_task(p);
3385 return;
3386 }
3387
3388 /*
3389 * Don't schedule slices shorter than 10000ns, that just
3390 * doesn't make sense. Rely on vruntime for fairness.
3391 */
Peter Zijlstra31656512008-07-18 18:01:23 +02003392 if (rq->curr != p)
Peter Zijlstra157124c2008-07-28 11:53:11 +02003393 delta = max_t(s64, 10000LL, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003394
Peter Zijlstra31656512008-07-18 18:01:23 +02003395 hrtick_start(rq, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003396 }
3397}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003398
3399/*
3400 * called from enqueue/dequeue and updates the hrtick when the
3401 * current task is from our class and nr_running is low enough
3402 * to matter.
3403 */
3404static void hrtick_update(struct rq *rq)
3405{
3406 struct task_struct *curr = rq->curr;
3407
Mike Galbraithb39e66e2011-11-22 15:20:07 +01003408 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003409 return;
3410
3411 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3412 hrtick_start_fair(rq, curr);
3413}
Dhaval Giani55e12e52008-06-24 23:39:43 +05303414#else /* !CONFIG_SCHED_HRTICK */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003415static inline void
3416hrtick_start_fair(struct rq *rq, struct task_struct *p)
3417{
3418}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003419
3420static inline void hrtick_update(struct rq *rq)
3421{
3422}
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003423#endif
3424
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003425/*
3426 * The enqueue_task method is called before nr_running is
3427 * increased. Here we update the fair scheduling stats and
3428 * then put the task into the rbtree:
3429 */
Thomas Gleixnerea87bb72010-01-20 20:58:57 +00003430static void
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003431enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003432{
3433 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003434 struct sched_entity *se = &p->se;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003435
3436 for_each_sched_entity(se) {
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003437 if (se->on_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003438 break;
3439 cfs_rq = cfs_rq_of(se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003440 enqueue_entity(cfs_rq, se, flags);
Paul Turner85dac902011-07-21 09:43:33 -07003441
3442 /*
3443 * end evaluation on encountering a throttled cfs_rq
3444 *
3445 * note: in the case of encountering a throttled cfs_rq we will
3446 * post the final h_nr_running increment below.
3447 */
3448 if (cfs_rq_throttled(cfs_rq))
3449 break;
Paul Turner953bfcd2011-07-21 09:43:27 -07003450 cfs_rq->h_nr_running++;
Paul Turner85dac902011-07-21 09:43:33 -07003451
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003452 flags = ENQUEUE_WAKEUP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003453 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003454
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003455 for_each_sched_entity(se) {
Lin Ming0f317142011-07-22 09:14:31 +08003456 cfs_rq = cfs_rq_of(se);
Paul Turner953bfcd2011-07-21 09:43:27 -07003457 cfs_rq->h_nr_running++;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003458
Paul Turner85dac902011-07-21 09:43:33 -07003459 if (cfs_rq_throttled(cfs_rq))
3460 break;
3461
Linus Torvalds17bc14b2012-12-14 07:20:43 -08003462 update_cfs_shares(cfs_rq);
Paul Turner9ee474f2012-10-04 13:18:30 +02003463 update_entity_load_avg(se, 1);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003464 }
3465
Ben Segall18bf2802012-10-04 12:51:20 +02003466 if (!se) {
3467 update_rq_runnable_avg(rq, rq->nr_running);
Paul Turner85dac902011-07-21 09:43:33 -07003468 inc_nr_running(rq);
Ben Segall18bf2802012-10-04 12:51:20 +02003469 }
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003470 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003471}
3472
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003473static void set_next_buddy(struct sched_entity *se);
3474
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003475/*
3476 * The dequeue_task method is called before nr_running is
3477 * decreased. We remove the task from the rbtree and
3478 * update the fair scheduling stats:
3479 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003480static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003481{
3482 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003483 struct sched_entity *se = &p->se;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003484 int task_sleep = flags & DEQUEUE_SLEEP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003485
3486 for_each_sched_entity(se) {
3487 cfs_rq = cfs_rq_of(se);
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003488 dequeue_entity(cfs_rq, se, flags);
Paul Turner85dac902011-07-21 09:43:33 -07003489
3490 /*
3491 * end evaluation on encountering a throttled cfs_rq
3492 *
3493 * note: in the case of encountering a throttled cfs_rq we will
3494 * post the final h_nr_running decrement below.
3495 */
3496 if (cfs_rq_throttled(cfs_rq))
3497 break;
Paul Turner953bfcd2011-07-21 09:43:27 -07003498 cfs_rq->h_nr_running--;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003499
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003500 /* Don't dequeue parent if it has other entities besides us */
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003501 if (cfs_rq->load.weight) {
3502 /*
3503 * Bias pick_next to pick a task from this cfs_rq, as
3504 * p is sleeping when it is within its sched_slice.
3505 */
3506 if (task_sleep && parent_entity(se))
3507 set_next_buddy(parent_entity(se));
Paul Turner9598c822011-07-06 22:30:37 -07003508
3509 /* avoid re-evaluating load for this entity */
3510 se = parent_entity(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003511 break;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003512 }
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003513 flags |= DEQUEUE_SLEEP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003514 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003515
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003516 for_each_sched_entity(se) {
Lin Ming0f317142011-07-22 09:14:31 +08003517 cfs_rq = cfs_rq_of(se);
Paul Turner953bfcd2011-07-21 09:43:27 -07003518 cfs_rq->h_nr_running--;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003519
Paul Turner85dac902011-07-21 09:43:33 -07003520 if (cfs_rq_throttled(cfs_rq))
3521 break;
3522
Linus Torvalds17bc14b2012-12-14 07:20:43 -08003523 update_cfs_shares(cfs_rq);
Paul Turner9ee474f2012-10-04 13:18:30 +02003524 update_entity_load_avg(se, 1);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003525 }
3526
Ben Segall18bf2802012-10-04 12:51:20 +02003527 if (!se) {
Paul Turner85dac902011-07-21 09:43:33 -07003528 dec_nr_running(rq);
Ben Segall18bf2802012-10-04 12:51:20 +02003529 update_rq_runnable_avg(rq, 1);
3530 }
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003531 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003532}
3533
Gregory Haskinse7693a32008-01-25 21:08:09 +01003534#ifdef CONFIG_SMP
Peter Zijlstra029632f2011-10-25 10:00:11 +02003535/* Used instead of source_load when we know the type == 0 */
3536static unsigned long weighted_cpuload(const int cpu)
3537{
Alex Shib92486c2013-06-20 10:18:50 +08003538 return cpu_rq(cpu)->cfs.runnable_load_avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003539}
3540
3541/*
3542 * Return a low guess at the load of a migration-source cpu weighted
3543 * according to the scheduling class and "nice" value.
3544 *
3545 * We want to under-estimate the load of migration sources, to
3546 * balance conservatively.
3547 */
3548static unsigned long source_load(int cpu, int type)
3549{
3550 struct rq *rq = cpu_rq(cpu);
3551 unsigned long total = weighted_cpuload(cpu);
3552
3553 if (type == 0 || !sched_feat(LB_BIAS))
3554 return total;
3555
3556 return min(rq->cpu_load[type-1], total);
3557}
3558
3559/*
3560 * Return a high guess at the load of a migration-target cpu weighted
3561 * according to the scheduling class and "nice" value.
3562 */
3563static unsigned long target_load(int cpu, int type)
3564{
3565 struct rq *rq = cpu_rq(cpu);
3566 unsigned long total = weighted_cpuload(cpu);
3567
3568 if (type == 0 || !sched_feat(LB_BIAS))
3569 return total;
3570
3571 return max(rq->cpu_load[type-1], total);
3572}
3573
3574static unsigned long power_of(int cpu)
3575{
3576 return cpu_rq(cpu)->cpu_power;
3577}
3578
3579static unsigned long cpu_avg_load_per_task(int cpu)
3580{
3581 struct rq *rq = cpu_rq(cpu);
3582 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
Alex Shib92486c2013-06-20 10:18:50 +08003583 unsigned long load_avg = rq->cfs.runnable_load_avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003584
3585 if (nr_running)
Alex Shib92486c2013-06-20 10:18:50 +08003586 return load_avg / nr_running;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003587
3588 return 0;
3589}
3590
Michael Wang62470412013-07-04 12:55:51 +08003591static void record_wakee(struct task_struct *p)
3592{
3593 /*
3594 * Rough decay (wiping) for cost saving, don't worry
3595 * about the boundary, really active task won't care
3596 * about the loss.
3597 */
3598 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3599 current->wakee_flips = 0;
3600 current->wakee_flip_decay_ts = jiffies;
3601 }
3602
3603 if (current->last_wakee != p) {
3604 current->last_wakee = p;
3605 current->wakee_flips++;
3606 }
3607}
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003608
Peter Zijlstra74f8e4b2011-04-05 17:23:47 +02003609static void task_waking_fair(struct task_struct *p)
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003610{
3611 struct sched_entity *se = &p->se;
3612 struct cfs_rq *cfs_rq = cfs_rq_of(se);
Peter Zijlstra3fe16982011-04-05 17:23:48 +02003613 u64 min_vruntime;
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003614
Peter Zijlstra3fe16982011-04-05 17:23:48 +02003615#ifndef CONFIG_64BIT
3616 u64 min_vruntime_copy;
Peter Zijlstra74f8e4b2011-04-05 17:23:47 +02003617
Peter Zijlstra3fe16982011-04-05 17:23:48 +02003618 do {
3619 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3620 smp_rmb();
3621 min_vruntime = cfs_rq->min_vruntime;
3622 } while (min_vruntime != min_vruntime_copy);
3623#else
3624 min_vruntime = cfs_rq->min_vruntime;
3625#endif
3626
3627 se->vruntime -= min_vruntime;
Michael Wang62470412013-07-04 12:55:51 +08003628 record_wakee(p);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003629}
3630
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003631#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02003632/*
3633 * effective_load() calculates the load change as seen from the root_task_group
3634 *
3635 * Adding load to a group doesn't make a group heavier, but can cause movement
3636 * of group shares between cpus. Assuming the shares were perfectly aligned one
3637 * can calculate the shift in shares.
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003638 *
3639 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3640 * on this @cpu and results in a total addition (subtraction) of @wg to the
3641 * total group weight.
3642 *
3643 * Given a runqueue weight distribution (rw_i) we can compute a shares
3644 * distribution (s_i) using:
3645 *
3646 * s_i = rw_i / \Sum rw_j (1)
3647 *
3648 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3649 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3650 * shares distribution (s_i):
3651 *
3652 * rw_i = { 2, 4, 1, 0 }
3653 * s_i = { 2/7, 4/7, 1/7, 0 }
3654 *
3655 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3656 * task used to run on and the CPU the waker is running on), we need to
3657 * compute the effect of waking a task on either CPU and, in case of a sync
3658 * wakeup, compute the effect of the current task going to sleep.
3659 *
3660 * So for a change of @wl to the local @cpu with an overall group weight change
3661 * of @wl we can compute the new shares distribution (s'_i) using:
3662 *
3663 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3664 *
3665 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3666 * differences in waking a task to CPU 0. The additional task changes the
3667 * weight and shares distributions like:
3668 *
3669 * rw'_i = { 3, 4, 1, 0 }
3670 * s'_i = { 3/8, 4/8, 1/8, 0 }
3671 *
3672 * We can then compute the difference in effective weight by using:
3673 *
3674 * dw_i = S * (s'_i - s_i) (3)
3675 *
3676 * Where 'S' is the group weight as seen by its parent.
3677 *
3678 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3679 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3680 * 4/7) times the weight of the group.
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02003681 */
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003682static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003683{
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003684 struct sched_entity *se = tg->se[cpu];
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02003685
Mel Gorman58d081b2013-10-07 11:29:10 +01003686 if (!tg->parent || !wl) /* the trivial, non-cgroup case */
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02003687 return wl;
3688
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003689 for_each_sched_entity(se) {
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003690 long w, W;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003691
Paul Turner977dda72011-01-14 17:57:50 -08003692 tg = se->my_q->tg;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003693
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003694 /*
3695 * W = @wg + \Sum rw_j
3696 */
3697 W = wg + calc_tg_weight(tg, se->my_q);
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003698
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003699 /*
3700 * w = rw_i + @wl
3701 */
3702 w = se->my_q->load.weight + wl;
Peter Zijlstra940959e2008-09-23 15:33:42 +02003703
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003704 /*
3705 * wl = S * s'_i; see (2)
3706 */
3707 if (W > 0 && w < W)
3708 wl = (w * tg->shares) / W;
Paul Turner977dda72011-01-14 17:57:50 -08003709 else
3710 wl = tg->shares;
Peter Zijlstra940959e2008-09-23 15:33:42 +02003711
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003712 /*
3713 * Per the above, wl is the new se->load.weight value; since
3714 * those are clipped to [MIN_SHARES, ...) do so now. See
3715 * calc_cfs_shares().
3716 */
Paul Turner977dda72011-01-14 17:57:50 -08003717 if (wl < MIN_SHARES)
3718 wl = MIN_SHARES;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003719
3720 /*
3721 * wl = dw_i = S * (s'_i - s_i); see (3)
3722 */
Paul Turner977dda72011-01-14 17:57:50 -08003723 wl -= se->load.weight;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003724
3725 /*
3726 * Recursively apply this logic to all parent groups to compute
3727 * the final effective load change on the root group. Since
3728 * only the @tg group gets extra weight, all parent groups can
3729 * only redistribute existing shares. @wl is the shift in shares
3730 * resulting from this level per the above.
3731 */
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003732 wg = 0;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003733 }
3734
3735 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003736}
3737#else
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003738
Mel Gorman58d081b2013-10-07 11:29:10 +01003739static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003740{
Peter Zijlstra83378262008-06-27 13:41:37 +02003741 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003742}
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003743
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003744#endif
3745
Michael Wang62470412013-07-04 12:55:51 +08003746static int wake_wide(struct task_struct *p)
3747{
Peter Zijlstra7d9ffa82013-07-04 12:56:46 +08003748 int factor = this_cpu_read(sd_llc_size);
Michael Wang62470412013-07-04 12:55:51 +08003749
3750 /*
3751 * Yeah, it's the switching-frequency, could means many wakee or
3752 * rapidly switch, use factor here will just help to automatically
3753 * adjust the loose-degree, so bigger node will lead to more pull.
3754 */
3755 if (p->wakee_flips > factor) {
3756 /*
3757 * wakee is somewhat hot, it needs certain amount of cpu
3758 * resource, so if waker is far more hot, prefer to leave
3759 * it alone.
3760 */
3761 if (current->wakee_flips > (factor * p->wakee_flips))
3762 return 1;
3763 }
3764
3765 return 0;
3766}
3767
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003768static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003769{
Paul Turnere37b6a72011-01-21 20:44:59 -08003770 s64 this_load, load;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003771 int idx, this_cpu, prev_cpu;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003772 unsigned long tl_per_task;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003773 struct task_group *tg;
Peter Zijlstra83378262008-06-27 13:41:37 +02003774 unsigned long weight;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02003775 int balanced;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003776
Michael Wang62470412013-07-04 12:55:51 +08003777 /*
3778 * If we wake multiple tasks be careful to not bounce
3779 * ourselves around too much.
3780 */
3781 if (wake_wide(p))
3782 return 0;
3783
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003784 idx = sd->wake_idx;
3785 this_cpu = smp_processor_id();
3786 prev_cpu = task_cpu(p);
3787 load = source_load(prev_cpu, idx);
3788 this_load = target_load(this_cpu, idx);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003789
3790 /*
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003791 * If sync wakeup then subtract the (maximum possible)
3792 * effect of the currently running task from the load
3793 * of the current CPU:
3794 */
Peter Zijlstra83378262008-06-27 13:41:37 +02003795 if (sync) {
3796 tg = task_group(current);
3797 weight = current->se.load.weight;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003798
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003799 this_load += effective_load(tg, this_cpu, -weight, -weight);
Peter Zijlstra83378262008-06-27 13:41:37 +02003800 load += effective_load(tg, prev_cpu, 0, -weight);
3801 }
3802
3803 tg = task_group(p);
3804 weight = p->se.load.weight;
3805
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02003806 /*
3807 * In low-load situations, where prev_cpu is idle and this_cpu is idle
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003808 * due to the sync cause above having dropped this_load to 0, we'll
3809 * always have an imbalance, but there's really nothing you can do
3810 * about that, so that's good too.
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02003811 *
3812 * Otherwise check if either cpus are near enough in load to allow this
3813 * task to be woken on this_cpu.
3814 */
Paul Turnere37b6a72011-01-21 20:44:59 -08003815 if (this_load > 0) {
3816 s64 this_eff_load, prev_eff_load;
Peter Zijlstrae51fd5e2010-05-31 12:37:30 +02003817
3818 this_eff_load = 100;
3819 this_eff_load *= power_of(prev_cpu);
3820 this_eff_load *= this_load +
3821 effective_load(tg, this_cpu, weight, weight);
3822
3823 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3824 prev_eff_load *= power_of(this_cpu);
3825 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3826
3827 balanced = this_eff_load <= prev_eff_load;
3828 } else
3829 balanced = true;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02003830
3831 /*
3832 * If the currently running task will sleep within
3833 * a reasonable amount of time then attract this newly
3834 * woken task:
3835 */
Peter Zijlstra2fb76352008-10-08 09:16:04 +02003836 if (sync && balanced)
3837 return 1;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02003838
Lucas De Marchi41acab82010-03-10 23:37:45 -03003839 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
Mike Galbraithb3137bc2008-05-29 11:11:41 +02003840 tl_per_task = cpu_avg_load_per_task(this_cpu);
3841
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003842 if (balanced ||
3843 (this_load <= load &&
3844 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003845 /*
3846 * This domain has SD_WAKE_AFFINE and
3847 * p is cache cold in this domain, and
3848 * there is no bad imbalance.
3849 */
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003850 schedstat_inc(sd, ttwu_move_affine);
Lucas De Marchi41acab82010-03-10 23:37:45 -03003851 schedstat_inc(p, se.statistics.nr_wakeups_affine);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003852
3853 return 1;
3854 }
3855 return 0;
3856}
3857
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003858/*
3859 * find_idlest_group finds and returns the least busy CPU group within the
3860 * domain.
3861 */
3862static struct sched_group *
Peter Zijlstra78e7ed52009-09-03 13:16:51 +02003863find_idlest_group(struct sched_domain *sd, struct task_struct *p,
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02003864 int this_cpu, int load_idx)
Gregory Haskinse7693a32008-01-25 21:08:09 +01003865{
Andi Kleenb3bd3de2010-08-10 14:17:51 -07003866 struct sched_group *idlest = NULL, *group = sd->groups;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003867 unsigned long min_load = ULONG_MAX, this_load = 0;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003868 int imbalance = 100 + (sd->imbalance_pct-100)/2;
Gregory Haskinse7693a32008-01-25 21:08:09 +01003869
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003870 do {
3871 unsigned long load, avg_load;
3872 int local_group;
3873 int i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01003874
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003875 /* Skip over this group if it has no CPUs allowed */
3876 if (!cpumask_intersects(sched_group_cpus(group),
Peter Zijlstrafa17b502011-06-16 12:23:22 +02003877 tsk_cpus_allowed(p)))
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003878 continue;
3879
3880 local_group = cpumask_test_cpu(this_cpu,
3881 sched_group_cpus(group));
3882
3883 /* Tally up the load of all CPUs in the group */
3884 avg_load = 0;
3885
3886 for_each_cpu(i, sched_group_cpus(group)) {
3887 /* Bias balancing toward cpus of our domain */
3888 if (local_group)
3889 load = source_load(i, load_idx);
3890 else
3891 load = target_load(i, load_idx);
3892
3893 avg_load += load;
3894 }
3895
3896 /* Adjust by relative CPU power of the group */
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02003897 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003898
3899 if (local_group) {
3900 this_load = avg_load;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003901 } else if (avg_load < min_load) {
3902 min_load = avg_load;
3903 idlest = group;
3904 }
3905 } while (group = group->next, group != sd->groups);
3906
3907 if (!idlest || 100*this_load < imbalance*min_load)
3908 return NULL;
3909 return idlest;
3910}
3911
3912/*
3913 * find_idlest_cpu - find the idlest cpu among the cpus in group.
3914 */
3915static int
3916find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
3917{
3918 unsigned long load, min_load = ULONG_MAX;
3919 int idlest = -1;
3920 int i;
3921
3922 /* Traverse only the allowed CPUs */
Peter Zijlstrafa17b502011-06-16 12:23:22 +02003923 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003924 load = weighted_cpuload(i);
3925
3926 if (load < min_load || (load == min_load && i == this_cpu)) {
3927 min_load = load;
3928 idlest = i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01003929 }
3930 }
3931
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003932 return idlest;
3933}
Gregory Haskinse7693a32008-01-25 21:08:09 +01003934
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003935/*
Peter Zijlstraa50bde52009-11-12 15:55:28 +01003936 * Try and locate an idle CPU in the sched_domain.
3937 */
Suresh Siddha99bd5e22010-03-31 16:47:45 -07003938static int select_idle_sibling(struct task_struct *p, int target)
Peter Zijlstraa50bde52009-11-12 15:55:28 +01003939{
Suresh Siddha99bd5e22010-03-31 16:47:45 -07003940 struct sched_domain *sd;
Linus Torvalds37407ea2012-09-16 12:29:43 -07003941 struct sched_group *sg;
Mike Galbraithe0a79f52013-01-28 12:19:25 +01003942 int i = task_cpu(p);
3943
3944 if (idle_cpu(target))
3945 return target;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01003946
3947 /*
Mike Galbraithe0a79f52013-01-28 12:19:25 +01003948 * If the prevous cpu is cache affine and idle, don't be stupid.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01003949 */
Mike Galbraithe0a79f52013-01-28 12:19:25 +01003950 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
3951 return i;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01003952
3953 /*
Linus Torvalds37407ea2012-09-16 12:29:43 -07003954 * Otherwise, iterate the domains and find an elegible idle cpu.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01003955 */
Peter Zijlstra518cd622011-12-07 15:07:31 +01003956 sd = rcu_dereference(per_cpu(sd_llc, target));
Suresh Siddha77e81362011-11-17 11:08:23 -08003957 for_each_lower_domain(sd) {
Linus Torvalds37407ea2012-09-16 12:29:43 -07003958 sg = sd->groups;
3959 do {
3960 if (!cpumask_intersects(sched_group_cpus(sg),
3961 tsk_cpus_allowed(p)))
3962 goto next;
Mike Galbraith970e1782012-06-12 05:18:32 +02003963
Linus Torvalds37407ea2012-09-16 12:29:43 -07003964 for_each_cpu(i, sched_group_cpus(sg)) {
Mike Galbraithe0a79f52013-01-28 12:19:25 +01003965 if (i == target || !idle_cpu(i))
Linus Torvalds37407ea2012-09-16 12:29:43 -07003966 goto next;
3967 }
3968
3969 target = cpumask_first_and(sched_group_cpus(sg),
3970 tsk_cpus_allowed(p));
3971 goto done;
3972next:
3973 sg = sg->next;
3974 } while (sg != sd->groups);
3975 }
3976done:
Peter Zijlstraa50bde52009-11-12 15:55:28 +01003977 return target;
3978}
3979
3980/*
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003981 * sched_balance_self: balance the current task (running on cpu) in domains
3982 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
3983 * SD_BALANCE_EXEC.
3984 *
3985 * Balance, ie. select the least loaded group.
3986 *
3987 * Returns the target CPU number, or the same CPU if no balancing is needed.
3988 *
3989 * preempt must be disabled.
3990 */
Peter Zijlstra0017d732010-03-24 18:34:10 +01003991static int
Peter Zijlstraac66f542013-10-07 11:29:16 +01003992select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003993{
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02003994 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003995 int cpu = smp_processor_id();
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003996 int new_cpu = cpu;
Suresh Siddha99bd5e22010-03-31 16:47:45 -07003997 int want_affine = 0;
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02003998 int sync = wake_flags & WF_SYNC;
Gregory Haskinse7693a32008-01-25 21:08:09 +01003999
Peter Zijlstra29baa742012-04-23 12:11:21 +02004000 if (p->nr_cpus_allowed == 1)
Mike Galbraith76854c72011-11-22 15:18:24 +01004001 return prev_cpu;
4002
Peter Zijlstra0763a662009-09-14 19:37:39 +02004003 if (sd_flag & SD_BALANCE_WAKE) {
Peter Zijlstrafa17b502011-06-16 12:23:22 +02004004 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004005 want_affine = 1;
4006 new_cpu = prev_cpu;
4007 }
Gregory Haskinse7693a32008-01-25 21:08:09 +01004008
Peter Zijlstradce840a2011-04-07 14:09:50 +02004009 rcu_read_lock();
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004010 for_each_domain(cpu, tmp) {
Peter Zijlstrae4f42882009-12-16 18:04:34 +01004011 if (!(tmp->flags & SD_LOAD_BALANCE))
4012 continue;
4013
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004014 /*
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004015 * If both cpu and prev_cpu are part of this domain,
4016 * cpu is a valid SD_WAKE_AFFINE target.
Peter Zijlstrafe3bcfe2009-11-12 15:55:29 +01004017 */
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004018 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4019 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4020 affine_sd = tmp;
Alex Shif03542a2012-07-26 08:55:34 +08004021 break;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004022 }
4023
Alex Shif03542a2012-07-26 08:55:34 +08004024 if (tmp->flags & sd_flag)
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02004025 sd = tmp;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004026 }
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004027
Mike Galbraith8b911ac2010-03-11 17:17:16 +01004028 if (affine_sd) {
Alex Shif03542a2012-07-26 08:55:34 +08004029 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
Peter Zijlstradce840a2011-04-07 14:09:50 +02004030 prev_cpu = cpu;
4031
4032 new_cpu = select_idle_sibling(p, prev_cpu);
4033 goto unlock;
Mike Galbraith8b911ac2010-03-11 17:17:16 +01004034 }
Peter Zijlstra3b640892009-09-16 13:44:33 +02004035
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004036 while (sd) {
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004037 int load_idx = sd->forkexec_idx;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004038 struct sched_group *group;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004039 int weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004040
Peter Zijlstra0763a662009-09-14 19:37:39 +02004041 if (!(sd->flags & sd_flag)) {
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004042 sd = sd->child;
4043 continue;
4044 }
4045
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004046 if (sd_flag & SD_BALANCE_WAKE)
4047 load_idx = sd->wake_idx;
4048
4049 group = find_idlest_group(sd, p, cpu, load_idx);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004050 if (!group) {
4051 sd = sd->child;
4052 continue;
4053 }
4054
Peter Zijlstrad7c33c42009-09-11 12:45:38 +02004055 new_cpu = find_idlest_cpu(group, p, cpu);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004056 if (new_cpu == -1 || new_cpu == cpu) {
4057 /* Now try balancing at a lower domain level of cpu */
4058 sd = sd->child;
4059 continue;
4060 }
4061
4062 /* Now try balancing at a lower domain level of new_cpu */
4063 cpu = new_cpu;
Peter Zijlstra669c55e2010-04-16 14:59:29 +02004064 weight = sd->span_weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004065 sd = NULL;
4066 for_each_domain(cpu, tmp) {
Peter Zijlstra669c55e2010-04-16 14:59:29 +02004067 if (weight <= tmp->span_weight)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004068 break;
Peter Zijlstra0763a662009-09-14 19:37:39 +02004069 if (tmp->flags & sd_flag)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004070 sd = tmp;
4071 }
4072 /* while loop will break here if sd == NULL */
Gregory Haskinse7693a32008-01-25 21:08:09 +01004073 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02004074unlock:
4075 rcu_read_unlock();
Gregory Haskinse7693a32008-01-25 21:08:09 +01004076
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004077 return new_cpu;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004078}
Paul Turner0a74bef2012-10-04 13:18:30 +02004079
4080/*
4081 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4082 * cfs_rq_of(p) references at time of call are still valid and identify the
4083 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4084 * other assumptions, including the state of rq->lock, should be made.
4085 */
4086static void
4087migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4088{
Paul Turneraff3e492012-10-04 13:18:30 +02004089 struct sched_entity *se = &p->se;
4090 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4091
4092 /*
4093 * Load tracking: accumulate removed load so that it can be processed
4094 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4095 * to blocked load iff they have a positive decay-count. It can never
4096 * be negative here since on-rq tasks have decay-count == 0.
4097 */
4098 if (se->avg.decay_count) {
4099 se->avg.decay_count = -__synchronize_entity_decay(se);
Alex Shi25099402013-06-20 10:18:55 +08004100 atomic_long_add(se->avg.load_avg_contrib,
4101 &cfs_rq->removed_load);
Paul Turneraff3e492012-10-04 13:18:30 +02004102 }
Paul Turner0a74bef2012-10-04 13:18:30 +02004103}
Gregory Haskinse7693a32008-01-25 21:08:09 +01004104#endif /* CONFIG_SMP */
4105
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004106static unsigned long
4107wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004108{
4109 unsigned long gran = sysctl_sched_wakeup_granularity;
4110
4111 /*
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004112 * Since its curr running now, convert the gran from real-time
4113 * to virtual-time in his units.
Mike Galbraith13814d42010-03-11 17:17:04 +01004114 *
4115 * By using 'se' instead of 'curr' we penalize light tasks, so
4116 * they get preempted easier. That is, if 'se' < 'curr' then
4117 * the resulting gran will be larger, therefore penalizing the
4118 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4119 * be smaller, again penalizing the lighter task.
4120 *
4121 * This is especially important for buddies when the leftmost
4122 * task is higher priority than the buddy.
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004123 */
Shaohua Lif4ad9bd2011-04-08 12:53:09 +08004124 return calc_delta_fair(gran, se);
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004125}
4126
4127/*
Peter Zijlstra464b7522008-10-24 11:06:15 +02004128 * Should 'se' preempt 'curr'.
4129 *
4130 * |s1
4131 * |s2
4132 * |s3
4133 * g
4134 * |<--->|c
4135 *
4136 * w(c, s1) = -1
4137 * w(c, s2) = 0
4138 * w(c, s3) = 1
4139 *
4140 */
4141static int
4142wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4143{
4144 s64 gran, vdiff = curr->vruntime - se->vruntime;
4145
4146 if (vdiff <= 0)
4147 return -1;
4148
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004149 gran = wakeup_gran(curr, se);
Peter Zijlstra464b7522008-10-24 11:06:15 +02004150 if (vdiff > gran)
4151 return 1;
4152
4153 return 0;
4154}
4155
Peter Zijlstra02479092008-11-04 21:25:10 +01004156static void set_last_buddy(struct sched_entity *se)
4157{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004158 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4159 return;
4160
4161 for_each_sched_entity(se)
4162 cfs_rq_of(se)->last = se;
Peter Zijlstra02479092008-11-04 21:25:10 +01004163}
4164
4165static void set_next_buddy(struct sched_entity *se)
4166{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004167 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4168 return;
4169
4170 for_each_sched_entity(se)
4171 cfs_rq_of(se)->next = se;
Peter Zijlstra02479092008-11-04 21:25:10 +01004172}
4173
Rik van Rielac53db52011-02-01 09:51:03 -05004174static void set_skip_buddy(struct sched_entity *se)
4175{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004176 for_each_sched_entity(se)
4177 cfs_rq_of(se)->skip = se;
Rik van Rielac53db52011-02-01 09:51:03 -05004178}
4179
Peter Zijlstra464b7522008-10-24 11:06:15 +02004180/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004181 * Preempt the current task with a newly woken task if needed:
4182 */
Peter Zijlstra5a9b86f2009-09-16 13:47:58 +02004183static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004184{
4185 struct task_struct *curr = rq->curr;
Srivatsa Vaddagiri8651a862007-10-15 17:00:12 +02004186 struct sched_entity *se = &curr->se, *pse = &p->se;
Mike Galbraith03e89e42008-12-16 08:45:30 +01004187 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +02004188 int scale = cfs_rq->nr_running >= sched_nr_latency;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004189 int next_buddy_marked = 0;
Mike Galbraith03e89e42008-12-16 08:45:30 +01004190
Ingo Molnar4ae7d5c2008-03-19 01:42:00 +01004191 if (unlikely(se == pse))
4192 return;
4193
Paul Turner5238cdd2011-07-21 09:43:37 -07004194 /*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004195 * This is possible from callers such as move_task(), in which we
Paul Turner5238cdd2011-07-21 09:43:37 -07004196 * unconditionally check_prempt_curr() after an enqueue (which may have
4197 * lead to a throttle). This both saves work and prevents false
4198 * next-buddy nomination below.
4199 */
4200 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4201 return;
4202
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004203 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
Mike Galbraith3cb63d52009-09-11 12:01:17 +02004204 set_next_buddy(pse);
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004205 next_buddy_marked = 1;
4206 }
Peter Zijlstra57fdc262008-09-23 15:33:45 +02004207
Bharata B Raoaec0a512008-08-28 14:42:49 +05304208 /*
4209 * We can come here with TIF_NEED_RESCHED already set from new task
4210 * wake up path.
Paul Turner5238cdd2011-07-21 09:43:37 -07004211 *
4212 * Note: this also catches the edge-case of curr being in a throttled
4213 * group (e.g. via set_curr_task), since update_curr() (in the
4214 * enqueue of curr) will have resulted in resched being set. This
4215 * prevents us from potentially nominating it as a false LAST_BUDDY
4216 * below.
Bharata B Raoaec0a512008-08-28 14:42:49 +05304217 */
4218 if (test_tsk_need_resched(curr))
4219 return;
4220
Darren Harta2f5c9a2011-02-22 13:04:33 -08004221 /* Idle tasks are by definition preempted by non-idle tasks. */
4222 if (unlikely(curr->policy == SCHED_IDLE) &&
4223 likely(p->policy != SCHED_IDLE))
4224 goto preempt;
4225
Ingo Molnar91c234b2007-10-15 17:00:18 +02004226 /*
Darren Harta2f5c9a2011-02-22 13:04:33 -08004227 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4228 * is driven by the tick):
Ingo Molnar91c234b2007-10-15 17:00:18 +02004229 */
Ingo Molnar8ed92e52012-10-14 14:28:50 +02004230 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
Ingo Molnar91c234b2007-10-15 17:00:18 +02004231 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004232
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004233 find_matching_se(&se, &pse);
Paul Turner9bbd7372011-07-05 19:07:21 -07004234 update_curr(cfs_rq_of(se));
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004235 BUG_ON(!pse);
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004236 if (wakeup_preempt_entity(se, pse) == 1) {
4237 /*
4238 * Bias pick_next to pick the sched entity that is
4239 * triggering this preemption.
4240 */
4241 if (!next_buddy_marked)
4242 set_next_buddy(pse);
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004243 goto preempt;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004244 }
Jupyung Leea65ac742009-11-17 18:51:40 +09004245
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004246 return;
4247
4248preempt:
4249 resched_task(curr);
4250 /*
4251 * Only set the backward buddy when the current task is still
4252 * on the rq. This can happen when a wakeup gets interleaved
4253 * with schedule on the ->pre_schedule() or idle_balance()
4254 * point, either of which can * drop the rq lock.
4255 *
4256 * Also, during early boot the idle thread is in the fair class,
4257 * for obvious reasons its a bad idea to schedule back to it.
4258 */
4259 if (unlikely(!se->on_rq || curr == rq->idle))
4260 return;
4261
4262 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4263 set_last_buddy(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004264}
4265
Ingo Molnarfb8d4722007-08-09 11:16:48 +02004266static struct task_struct *pick_next_task_fair(struct rq *rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004267{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004268 struct task_struct *p;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004269 struct cfs_rq *cfs_rq = &rq->cfs;
4270 struct sched_entity *se;
4271
Tim Blechmann36ace272009-11-24 11:55:45 +01004272 if (!cfs_rq->nr_running)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004273 return NULL;
4274
4275 do {
Ingo Molnar9948f4b2007-08-09 11:16:48 +02004276 se = pick_next_entity(cfs_rq);
Peter Zijlstraf4b67552008-11-04 21:25:07 +01004277 set_next_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004278 cfs_rq = group_cfs_rq(se);
4279 } while (cfs_rq);
4280
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004281 p = task_of(se);
Mike Galbraithb39e66e2011-11-22 15:20:07 +01004282 if (hrtick_enabled(rq))
4283 hrtick_start_fair(rq, p);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004284
4285 return p;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004286}
4287
4288/*
4289 * Account for a descheduled task:
4290 */
Ingo Molnar31ee5292007-08-09 11:16:49 +02004291static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004292{
4293 struct sched_entity *se = &prev->se;
4294 struct cfs_rq *cfs_rq;
4295
4296 for_each_sched_entity(se) {
4297 cfs_rq = cfs_rq_of(se);
Ingo Molnarab6cde22007-08-09 11:16:48 +02004298 put_prev_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004299 }
4300}
4301
Rik van Rielac53db52011-02-01 09:51:03 -05004302/*
4303 * sched_yield() is very simple
4304 *
4305 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4306 */
4307static void yield_task_fair(struct rq *rq)
4308{
4309 struct task_struct *curr = rq->curr;
4310 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4311 struct sched_entity *se = &curr->se;
4312
4313 /*
4314 * Are we the only task in the tree?
4315 */
4316 if (unlikely(rq->nr_running == 1))
4317 return;
4318
4319 clear_buddies(cfs_rq, se);
4320
4321 if (curr->policy != SCHED_BATCH) {
4322 update_rq_clock(rq);
4323 /*
4324 * Update run-time statistics of the 'current'.
4325 */
4326 update_curr(cfs_rq);
Mike Galbraith916671c2011-11-22 15:21:26 +01004327 /*
4328 * Tell update_rq_clock() that we've just updated,
4329 * so we don't do microscopic update in schedule()
4330 * and double the fastpath cost.
4331 */
4332 rq->skip_clock_update = 1;
Rik van Rielac53db52011-02-01 09:51:03 -05004333 }
4334
4335 set_skip_buddy(se);
4336}
4337
Mike Galbraithd95f4122011-02-01 09:50:51 -05004338static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4339{
4340 struct sched_entity *se = &p->se;
4341
Paul Turner5238cdd2011-07-21 09:43:37 -07004342 /* throttled hierarchies are not runnable */
4343 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
Mike Galbraithd95f4122011-02-01 09:50:51 -05004344 return false;
4345
4346 /* Tell the scheduler that we'd really like pse to run next. */
4347 set_next_buddy(se);
4348
Mike Galbraithd95f4122011-02-01 09:50:51 -05004349 yield_task_fair(rq);
4350
4351 return true;
4352}
4353
Peter Williams681f3e62007-10-24 18:23:51 +02004354#ifdef CONFIG_SMP
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004355/**************************************************
Peter Zijlstrae9c84cb2012-07-03 13:53:26 +02004356 * Fair scheduling class load-balancing methods.
4357 *
4358 * BASICS
4359 *
4360 * The purpose of load-balancing is to achieve the same basic fairness the
4361 * per-cpu scheduler provides, namely provide a proportional amount of compute
4362 * time to each task. This is expressed in the following equation:
4363 *
4364 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4365 *
4366 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4367 * W_i,0 is defined as:
4368 *
4369 * W_i,0 = \Sum_j w_i,j (2)
4370 *
4371 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4372 * is derived from the nice value as per prio_to_weight[].
4373 *
4374 * The weight average is an exponential decay average of the instantaneous
4375 * weight:
4376 *
4377 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4378 *
4379 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4380 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4381 * can also include other factors [XXX].
4382 *
4383 * To achieve this balance we define a measure of imbalance which follows
4384 * directly from (1):
4385 *
4386 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4387 *
4388 * We them move tasks around to minimize the imbalance. In the continuous
4389 * function space it is obvious this converges, in the discrete case we get
4390 * a few fun cases generally called infeasible weight scenarios.
4391 *
4392 * [XXX expand on:
4393 * - infeasible weights;
4394 * - local vs global optima in the discrete case. ]
4395 *
4396 *
4397 * SCHED DOMAINS
4398 *
4399 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4400 * for all i,j solution, we create a tree of cpus that follows the hardware
4401 * topology where each level pairs two lower groups (or better). This results
4402 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4403 * tree to only the first of the previous level and we decrease the frequency
4404 * of load-balance at each level inv. proportional to the number of cpus in
4405 * the groups.
4406 *
4407 * This yields:
4408 *
4409 * log_2 n 1 n
4410 * \Sum { --- * --- * 2^i } = O(n) (5)
4411 * i = 0 2^i 2^i
4412 * `- size of each group
4413 * | | `- number of cpus doing load-balance
4414 * | `- freq
4415 * `- sum over all levels
4416 *
4417 * Coupled with a limit on how many tasks we can migrate every balance pass,
4418 * this makes (5) the runtime complexity of the balancer.
4419 *
4420 * An important property here is that each CPU is still (indirectly) connected
4421 * to every other cpu in at most O(log n) steps:
4422 *
4423 * The adjacency matrix of the resulting graph is given by:
4424 *
4425 * log_2 n
4426 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4427 * k = 0
4428 *
4429 * And you'll find that:
4430 *
4431 * A^(log_2 n)_i,j != 0 for all i,j (7)
4432 *
4433 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4434 * The task movement gives a factor of O(m), giving a convergence complexity
4435 * of:
4436 *
4437 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4438 *
4439 *
4440 * WORK CONSERVING
4441 *
4442 * In order to avoid CPUs going idle while there's still work to do, new idle
4443 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4444 * tree itself instead of relying on other CPUs to bring it work.
4445 *
4446 * This adds some complexity to both (5) and (8) but it reduces the total idle
4447 * time.
4448 *
4449 * [XXX more?]
4450 *
4451 *
4452 * CGROUPS
4453 *
4454 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4455 *
4456 * s_k,i
4457 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4458 * S_k
4459 *
4460 * Where
4461 *
4462 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4463 *
4464 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4465 *
4466 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4467 * property.
4468 *
4469 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4470 * rewrite all of this once again.]
4471 */
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004472
Hiroshi Shimamotoed387b72012-01-31 11:40:32 +09004473static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4474
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004475#define LBF_ALL_PINNED 0x01
Peter Zijlstra367456c2012-02-20 21:49:09 +01004476#define LBF_NEED_BREAK 0x02
Peter Zijlstra62633222013-08-19 12:41:09 +02004477#define LBF_DST_PINNED 0x04
4478#define LBF_SOME_PINNED 0x08
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004479
4480struct lb_env {
4481 struct sched_domain *sd;
4482
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004483 struct rq *src_rq;
Prashanth Nageshappa85c1e7d2012-06-19 17:47:34 +05304484 int src_cpu;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004485
4486 int dst_cpu;
4487 struct rq *dst_rq;
4488
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304489 struct cpumask *dst_grpmask;
4490 int new_dst_cpu;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004491 enum cpu_idle_type idle;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004492 long imbalance;
Michael Wangb9403132012-07-12 16:10:13 +08004493 /* The set of CPUs under consideration for load-balancing */
4494 struct cpumask *cpus;
4495
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004496 unsigned int flags;
Peter Zijlstra367456c2012-02-20 21:49:09 +01004497
4498 unsigned int loop;
4499 unsigned int loop_break;
4500 unsigned int loop_max;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004501};
4502
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004503/*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004504 * move_task - move a task from one runqueue to another runqueue.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004505 * Both runqueues must be locked.
4506 */
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004507static void move_task(struct task_struct *p, struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004508{
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004509 deactivate_task(env->src_rq, p, 0);
4510 set_task_cpu(p, env->dst_cpu);
4511 activate_task(env->dst_rq, p, 0);
4512 check_preempt_curr(env->dst_rq, p, 0);
Rik van Riel6fe6b2d2013-10-07 11:29:08 +01004513#ifdef CONFIG_NUMA_BALANCING
4514 if (p->numa_preferred_nid != -1) {
4515 int src_nid = cpu_to_node(env->src_cpu);
4516 int dst_nid = cpu_to_node(env->dst_cpu);
4517
4518 /*
4519 * If the load balancer has moved the task then limit
4520 * migrations from taking place in the short term in
4521 * case this is a short-lived migration.
4522 */
4523 if (src_nid != dst_nid && dst_nid != p->numa_preferred_nid)
4524 p->numa_migrate_seq = 0;
4525 }
4526#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004527}
4528
4529/*
Peter Zijlstra029632f2011-10-25 10:00:11 +02004530 * Is this task likely cache-hot:
4531 */
4532static int
4533task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4534{
4535 s64 delta;
4536
4537 if (p->sched_class != &fair_sched_class)
4538 return 0;
4539
4540 if (unlikely(p->policy == SCHED_IDLE))
4541 return 0;
4542
4543 /*
4544 * Buddy candidates are cache hot:
4545 */
4546 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4547 (&p->se == cfs_rq_of(&p->se)->next ||
4548 &p->se == cfs_rq_of(&p->se)->last))
4549 return 1;
4550
4551 if (sysctl_sched_migration_cost == -1)
4552 return 1;
4553 if (sysctl_sched_migration_cost == 0)
4554 return 0;
4555
4556 delta = now - p->se.exec_start;
4557
4558 return delta < (s64)sysctl_sched_migration_cost;
4559}
4560
Mel Gorman3a7053b2013-10-07 11:29:00 +01004561#ifdef CONFIG_NUMA_BALANCING
4562/* Returns true if the destination node has incurred more faults */
4563static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4564{
4565 int src_nid, dst_nid;
4566
4567 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4568 !(env->sd->flags & SD_NUMA)) {
4569 return false;
4570 }
4571
4572 src_nid = cpu_to_node(env->src_cpu);
4573 dst_nid = cpu_to_node(env->dst_cpu);
4574
4575 if (src_nid == dst_nid ||
4576 p->numa_migrate_seq >= sysctl_numa_balancing_settle_count)
4577 return false;
4578
4579 if (dst_nid == p->numa_preferred_nid ||
Mel Gormanac8e8952013-10-07 11:29:03 +01004580 task_faults(p, dst_nid) > task_faults(p, src_nid))
Mel Gorman3a7053b2013-10-07 11:29:00 +01004581 return true;
4582
4583 return false;
4584}
Mel Gorman7a0f3082013-10-07 11:29:01 +01004585
4586
4587static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4588{
4589 int src_nid, dst_nid;
4590
4591 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4592 return false;
4593
4594 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4595 return false;
4596
4597 src_nid = cpu_to_node(env->src_cpu);
4598 dst_nid = cpu_to_node(env->dst_cpu);
4599
4600 if (src_nid == dst_nid ||
4601 p->numa_migrate_seq >= sysctl_numa_balancing_settle_count)
4602 return false;
4603
Mel Gormanac8e8952013-10-07 11:29:03 +01004604 if (task_faults(p, dst_nid) < task_faults(p, src_nid))
Mel Gorman7a0f3082013-10-07 11:29:01 +01004605 return true;
4606
4607 return false;
4608}
4609
Mel Gorman3a7053b2013-10-07 11:29:00 +01004610#else
4611static inline bool migrate_improves_locality(struct task_struct *p,
4612 struct lb_env *env)
4613{
4614 return false;
4615}
Mel Gorman7a0f3082013-10-07 11:29:01 +01004616
4617static inline bool migrate_degrades_locality(struct task_struct *p,
4618 struct lb_env *env)
4619{
4620 return false;
4621}
Mel Gorman3a7053b2013-10-07 11:29:00 +01004622#endif
4623
Peter Zijlstra029632f2011-10-25 10:00:11 +02004624/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004625 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4626 */
4627static
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004628int can_migrate_task(struct task_struct *p, struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004629{
4630 int tsk_cache_hot = 0;
4631 /*
4632 * We do not migrate tasks that are:
Joonsoo Kimd3198082013-04-23 17:27:40 +09004633 * 1) throttled_lb_pair, or
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004634 * 2) cannot be migrated to this CPU due to cpus_allowed, or
Joonsoo Kimd3198082013-04-23 17:27:40 +09004635 * 3) running (obviously), or
4636 * 4) are cache-hot on their current CPU.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004637 */
Joonsoo Kimd3198082013-04-23 17:27:40 +09004638 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4639 return 0;
4640
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004641 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004642 int cpu;
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304643
Lucas De Marchi41acab82010-03-10 23:37:45 -03004644 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304645
Peter Zijlstra62633222013-08-19 12:41:09 +02004646 env->flags |= LBF_SOME_PINNED;
4647
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304648 /*
4649 * Remember if this task can be migrated to any other cpu in
4650 * our sched_group. We may want to revisit it if we couldn't
4651 * meet load balance goals by pulling other tasks on src_cpu.
4652 *
4653 * Also avoid computing new_dst_cpu if we have already computed
4654 * one in current iteration.
4655 */
Peter Zijlstra62633222013-08-19 12:41:09 +02004656 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304657 return 0;
4658
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004659 /* Prevent to re-select dst_cpu via env's cpus */
4660 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4661 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
Peter Zijlstra62633222013-08-19 12:41:09 +02004662 env->flags |= LBF_DST_PINNED;
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004663 env->new_dst_cpu = cpu;
4664 break;
4665 }
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304666 }
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004667
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004668 return 0;
4669 }
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304670
4671 /* Record that we found atleast one task that could run on dst_cpu */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004672 env->flags &= ~LBF_ALL_PINNED;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004673
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004674 if (task_running(env->src_rq, p)) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03004675 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004676 return 0;
4677 }
4678
4679 /*
4680 * Aggressive migration if:
Mel Gorman3a7053b2013-10-07 11:29:00 +01004681 * 1) destination numa is preferred
4682 * 2) task is cache cold, or
4683 * 3) too many balance attempts have failed.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004684 */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02004685 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
Mel Gorman7a0f3082013-10-07 11:29:01 +01004686 if (!tsk_cache_hot)
4687 tsk_cache_hot = migrate_degrades_locality(p, env);
Mel Gorman3a7053b2013-10-07 11:29:00 +01004688
4689 if (migrate_improves_locality(p, env)) {
4690#ifdef CONFIG_SCHEDSTATS
4691 if (tsk_cache_hot) {
4692 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4693 schedstat_inc(p, se.statistics.nr_forced_migrations);
4694 }
4695#endif
4696 return 1;
4697 }
4698
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004699 if (!tsk_cache_hot ||
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004700 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
Zhang Hang4e2dcb72013-04-10 14:04:55 +08004701
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004702 if (tsk_cache_hot) {
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004703 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
Lucas De Marchi41acab82010-03-10 23:37:45 -03004704 schedstat_inc(p, se.statistics.nr_forced_migrations);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004705 }
Zhang Hang4e2dcb72013-04-10 14:04:55 +08004706
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004707 return 1;
4708 }
4709
Zhang Hang4e2dcb72013-04-10 14:04:55 +08004710 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4711 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004712}
4713
Peter Zijlstra897c3952009-12-17 17:45:42 +01004714/*
4715 * move_one_task tries to move exactly one task from busiest to this_rq, as
4716 * part of active balancing operations within "domain".
4717 * Returns 1 if successful and 0 otherwise.
4718 *
4719 * Called with both runqueues locked.
4720 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004721static int move_one_task(struct lb_env *env)
Peter Zijlstra897c3952009-12-17 17:45:42 +01004722{
4723 struct task_struct *p, *n;
Peter Zijlstra897c3952009-12-17 17:45:42 +01004724
Peter Zijlstra367456c2012-02-20 21:49:09 +01004725 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
Peter Zijlstra367456c2012-02-20 21:49:09 +01004726 if (!can_migrate_task(p, env))
4727 continue;
Peter Zijlstra897c3952009-12-17 17:45:42 +01004728
Peter Zijlstra367456c2012-02-20 21:49:09 +01004729 move_task(p, env);
4730 /*
4731 * Right now, this is only the second place move_task()
4732 * is called, so we can safely collect move_task()
4733 * stats here rather than inside move_task().
4734 */
4735 schedstat_inc(env->sd, lb_gained[env->idle]);
4736 return 1;
Peter Zijlstra897c3952009-12-17 17:45:42 +01004737 }
Peter Zijlstra897c3952009-12-17 17:45:42 +01004738 return 0;
4739}
4740
Peter Zijlstraeb953082012-04-17 13:38:40 +02004741static const unsigned int sched_nr_migrate_break = 32;
4742
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004743/*
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004744 * move_tasks tries to move up to imbalance weighted load from busiest to
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004745 * this_rq, as part of a balancing operation within domain "sd".
4746 * Returns 1 if successful and 0 otherwise.
4747 *
4748 * Called with both runqueues locked.
4749 */
4750static int move_tasks(struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004751{
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004752 struct list_head *tasks = &env->src_rq->cfs_tasks;
4753 struct task_struct *p;
Peter Zijlstra367456c2012-02-20 21:49:09 +01004754 unsigned long load;
4755 int pulled = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004756
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004757 if (env->imbalance <= 0)
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004758 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004759
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004760 while (!list_empty(tasks)) {
4761 p = list_first_entry(tasks, struct task_struct, se.group_node);
4762
Peter Zijlstra367456c2012-02-20 21:49:09 +01004763 env->loop++;
4764 /* We've more or less seen every task there is, call it quits */
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004765 if (env->loop > env->loop_max)
Peter Zijlstra367456c2012-02-20 21:49:09 +01004766 break;
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004767
4768 /* take a breather every nr_migrate tasks */
Peter Zijlstra367456c2012-02-20 21:49:09 +01004769 if (env->loop > env->loop_break) {
Peter Zijlstraeb953082012-04-17 13:38:40 +02004770 env->loop_break += sched_nr_migrate_break;
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004771 env->flags |= LBF_NEED_BREAK;
Peter Zijlstraee00e662009-12-17 17:25:20 +01004772 break;
Peter Zijlstraa195f002011-09-22 15:30:18 +02004773 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004774
Joonsoo Kimd3198082013-04-23 17:27:40 +09004775 if (!can_migrate_task(p, env))
Peter Zijlstra367456c2012-02-20 21:49:09 +01004776 goto next;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004777
Peter Zijlstra367456c2012-02-20 21:49:09 +01004778 load = task_h_load(p);
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004779
Peter Zijlstraeb953082012-04-17 13:38:40 +02004780 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
Peter Zijlstra367456c2012-02-20 21:49:09 +01004781 goto next;
4782
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004783 if ((load / 2) > env->imbalance)
Peter Zijlstra367456c2012-02-20 21:49:09 +01004784 goto next;
4785
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004786 move_task(p, env);
Peter Zijlstraee00e662009-12-17 17:25:20 +01004787 pulled++;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004788 env->imbalance -= load;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004789
4790#ifdef CONFIG_PREEMPT
Peter Zijlstraee00e662009-12-17 17:25:20 +01004791 /*
4792 * NEWIDLE balancing is a source of latency, so preemptible
4793 * kernels will stop after the first task is pulled to minimize
4794 * the critical section.
4795 */
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004796 if (env->idle == CPU_NEWLY_IDLE)
Peter Zijlstraee00e662009-12-17 17:25:20 +01004797 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004798#endif
4799
Peter Zijlstraee00e662009-12-17 17:25:20 +01004800 /*
4801 * We only want to steal up to the prescribed amount of
4802 * weighted load.
4803 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004804 if (env->imbalance <= 0)
Peter Zijlstraee00e662009-12-17 17:25:20 +01004805 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004806
Peter Zijlstra367456c2012-02-20 21:49:09 +01004807 continue;
4808next:
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004809 list_move_tail(&p->se.group_node, tasks);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004810 }
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004811
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004812 /*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004813 * Right now, this is one of only two places move_task() is called,
4814 * so we can safely collect move_task() stats here rather than
4815 * inside move_task().
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004816 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004817 schedstat_add(env->sd, lb_gained[env->idle], pulled);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004818
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004819 return pulled;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004820}
4821
Peter Zijlstra230059de2009-12-17 17:47:12 +01004822#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004823/*
4824 * update tg->load_weight by folding this cpu's load_avg
4825 */
Paul Turner48a16752012-10-04 13:18:31 +02004826static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004827{
Paul Turner48a16752012-10-04 13:18:31 +02004828 struct sched_entity *se = tg->se[cpu];
4829 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004830
Paul Turner48a16752012-10-04 13:18:31 +02004831 /* throttled entities do not contribute to load */
4832 if (throttled_hierarchy(cfs_rq))
4833 return;
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004834
Paul Turneraff3e492012-10-04 13:18:30 +02004835 update_cfs_rq_blocked_load(cfs_rq, 1);
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004836
Paul Turner82958362012-10-04 13:18:31 +02004837 if (se) {
4838 update_entity_load_avg(se, 1);
4839 /*
4840 * We pivot on our runnable average having decayed to zero for
4841 * list removal. This generally implies that all our children
4842 * have also been removed (modulo rounding error or bandwidth
4843 * control); however, such cases are rare and we can fix these
4844 * at enqueue.
4845 *
4846 * TODO: fix up out-of-order children on enqueue.
4847 */
4848 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
4849 list_del_leaf_cfs_rq(cfs_rq);
4850 } else {
Paul Turner48a16752012-10-04 13:18:31 +02004851 struct rq *rq = rq_of(cfs_rq);
Paul Turner82958362012-10-04 13:18:31 +02004852 update_rq_runnable_avg(rq, rq->nr_running);
4853 }
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004854}
4855
Paul Turner48a16752012-10-04 13:18:31 +02004856static void update_blocked_averages(int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004857{
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004858 struct rq *rq = cpu_rq(cpu);
Paul Turner48a16752012-10-04 13:18:31 +02004859 struct cfs_rq *cfs_rq;
4860 unsigned long flags;
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004861
Paul Turner48a16752012-10-04 13:18:31 +02004862 raw_spin_lock_irqsave(&rq->lock, flags);
4863 update_rq_clock(rq);
Peter Zijlstra9763b672011-07-13 13:09:25 +02004864 /*
4865 * Iterates the task_group tree in a bottom up fashion, see
4866 * list_add_leaf_cfs_rq() for details.
4867 */
Paul Turner64660c82011-07-21 09:43:36 -07004868 for_each_leaf_cfs_rq(rq, cfs_rq) {
Paul Turner48a16752012-10-04 13:18:31 +02004869 /*
4870 * Note: We may want to consider periodically releasing
4871 * rq->lock about these updates so that creating many task
4872 * groups does not result in continually extending hold time.
4873 */
4874 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
Paul Turner64660c82011-07-21 09:43:36 -07004875 }
Paul Turner48a16752012-10-04 13:18:31 +02004876
4877 raw_spin_unlock_irqrestore(&rq->lock, flags);
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004878}
4879
Peter Zijlstra9763b672011-07-13 13:09:25 +02004880/*
Vladimir Davydov68520792013-07-15 17:49:19 +04004881 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
Peter Zijlstra9763b672011-07-13 13:09:25 +02004882 * This needs to be done in a top-down fashion because the load of a child
4883 * group is a fraction of its parents load.
4884 */
Vladimir Davydov68520792013-07-15 17:49:19 +04004885static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
Peter Zijlstra9763b672011-07-13 13:09:25 +02004886{
Vladimir Davydov68520792013-07-15 17:49:19 +04004887 struct rq *rq = rq_of(cfs_rq);
4888 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
Peter Zijlstraa35b6462012-08-08 21:46:40 +02004889 unsigned long now = jiffies;
Vladimir Davydov68520792013-07-15 17:49:19 +04004890 unsigned long load;
Peter Zijlstraa35b6462012-08-08 21:46:40 +02004891
Vladimir Davydov68520792013-07-15 17:49:19 +04004892 if (cfs_rq->last_h_load_update == now)
Peter Zijlstraa35b6462012-08-08 21:46:40 +02004893 return;
4894
Vladimir Davydov68520792013-07-15 17:49:19 +04004895 cfs_rq->h_load_next = NULL;
4896 for_each_sched_entity(se) {
4897 cfs_rq = cfs_rq_of(se);
4898 cfs_rq->h_load_next = se;
4899 if (cfs_rq->last_h_load_update == now)
4900 break;
4901 }
Peter Zijlstraa35b6462012-08-08 21:46:40 +02004902
Vladimir Davydov68520792013-07-15 17:49:19 +04004903 if (!se) {
Vladimir Davydov7e3115e2013-09-14 19:39:46 +04004904 cfs_rq->h_load = cfs_rq->runnable_load_avg;
Vladimir Davydov68520792013-07-15 17:49:19 +04004905 cfs_rq->last_h_load_update = now;
4906 }
4907
4908 while ((se = cfs_rq->h_load_next) != NULL) {
4909 load = cfs_rq->h_load;
4910 load = div64_ul(load * se->avg.load_avg_contrib,
4911 cfs_rq->runnable_load_avg + 1);
4912 cfs_rq = group_cfs_rq(se);
4913 cfs_rq->h_load = load;
4914 cfs_rq->last_h_load_update = now;
4915 }
Peter Zijlstra9763b672011-07-13 13:09:25 +02004916}
4917
Peter Zijlstra367456c2012-02-20 21:49:09 +01004918static unsigned long task_h_load(struct task_struct *p)
Peter Zijlstra230059de2009-12-17 17:47:12 +01004919{
Peter Zijlstra367456c2012-02-20 21:49:09 +01004920 struct cfs_rq *cfs_rq = task_cfs_rq(p);
Peter Zijlstra230059de2009-12-17 17:47:12 +01004921
Vladimir Davydov68520792013-07-15 17:49:19 +04004922 update_cfs_rq_h_load(cfs_rq);
Alex Shia003a252013-06-20 10:18:51 +08004923 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
4924 cfs_rq->runnable_load_avg + 1);
Peter Zijlstra230059de2009-12-17 17:47:12 +01004925}
4926#else
Paul Turner48a16752012-10-04 13:18:31 +02004927static inline void update_blocked_averages(int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004928{
4929}
4930
Peter Zijlstra367456c2012-02-20 21:49:09 +01004931static unsigned long task_h_load(struct task_struct *p)
4932{
Alex Shia003a252013-06-20 10:18:51 +08004933 return p->se.avg.load_avg_contrib;
Peter Zijlstra230059de2009-12-17 17:47:12 +01004934}
4935#endif
4936
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004937/********** Helpers for find_busiest_group ************************/
4938/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004939 * sg_lb_stats - stats of a sched_group required for load_balancing
4940 */
4941struct sg_lb_stats {
4942 unsigned long avg_load; /*Avg load across the CPUs of the group */
4943 unsigned long group_load; /* Total load over the CPUs of the group */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004944 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09004945 unsigned long load_per_task;
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02004946 unsigned long group_power;
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02004947 unsigned int sum_nr_running; /* Nr tasks running in the group */
4948 unsigned int group_capacity;
4949 unsigned int idle_cpus;
4950 unsigned int group_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004951 int group_imb; /* Is there an imbalance in the group ? */
Nikhil Raofab47622010-10-15 13:12:29 -07004952 int group_has_capacity; /* Is there extra capacity in the group? */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004953};
4954
Joonsoo Kim56cf5152013-08-06 17:36:43 +09004955/*
4956 * sd_lb_stats - Structure to store the statistics of a sched_domain
4957 * during load balancing.
4958 */
4959struct sd_lb_stats {
4960 struct sched_group *busiest; /* Busiest group in this sd */
4961 struct sched_group *local; /* Local group in this sd */
4962 unsigned long total_load; /* Total load of all groups in sd */
4963 unsigned long total_pwr; /* Total power of all groups in sd */
4964 unsigned long avg_load; /* Average load across all groups in sd */
4965
Joonsoo Kim56cf5152013-08-06 17:36:43 +09004966 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02004967 struct sg_lb_stats local_stat; /* Statistics of the local group */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09004968};
4969
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02004970static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
4971{
4972 /*
4973 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
4974 * local_stat because update_sg_lb_stats() does a full clear/assignment.
4975 * We must however clear busiest_stat::avg_load because
4976 * update_sd_pick_busiest() reads this before assignment.
4977 */
4978 *sds = (struct sd_lb_stats){
4979 .busiest = NULL,
4980 .local = NULL,
4981 .total_load = 0UL,
4982 .total_pwr = 0UL,
4983 .busiest_stat = {
4984 .avg_load = 0UL,
4985 },
4986 };
4987}
4988
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004989/**
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004990 * get_sd_load_idx - Obtain the load index for a given sched domain.
4991 * @sd: The sched_domain whose load_idx is to be obtained.
4992 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
Yacine Belkadie69f6182013-07-12 20:45:47 +02004993 *
4994 * Return: The load index.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004995 */
4996static inline int get_sd_load_idx(struct sched_domain *sd,
4997 enum cpu_idle_type idle)
4998{
4999 int load_idx;
5000
5001 switch (idle) {
5002 case CPU_NOT_IDLE:
5003 load_idx = sd->busy_idx;
5004 break;
5005
5006 case CPU_NEWLY_IDLE:
5007 load_idx = sd->newidle_idx;
5008 break;
5009 default:
5010 load_idx = sd->idle_idx;
5011 break;
5012 }
5013
5014 return load_idx;
5015}
5016
Li Zefan15f803c2013-03-05 16:07:11 +08005017static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005018{
Nikhil Rao1399fa72011-05-18 10:09:39 -07005019 return SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005020}
5021
5022unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5023{
5024 return default_scale_freq_power(sd, cpu);
5025}
5026
Li Zefan15f803c2013-03-05 16:07:11 +08005027static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005028{
Peter Zijlstra669c55e2010-04-16 14:59:29 +02005029 unsigned long weight = sd->span_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005030 unsigned long smt_gain = sd->smt_gain;
5031
5032 smt_gain /= weight;
5033
5034 return smt_gain;
5035}
5036
5037unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5038{
5039 return default_scale_smt_power(sd, cpu);
5040}
5041
Li Zefan15f803c2013-03-05 16:07:11 +08005042static unsigned long scale_rt_power(int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005043{
5044 struct rq *rq = cpu_rq(cpu);
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005045 u64 total, available, age_stamp, avg;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005046
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005047 /*
5048 * Since we're reading these variables without serialization make sure
5049 * we read them once before doing sanity checks on them.
5050 */
5051 age_stamp = ACCESS_ONCE(rq->age_stamp);
5052 avg = ACCESS_ONCE(rq->rt_avg);
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005053
Frederic Weisbecker78becc22013-04-12 01:51:02 +02005054 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005055
5056 if (unlikely(total < avg)) {
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005057 /* Ensures that power won't end up being negative */
5058 available = 0;
5059 } else {
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005060 available = total - avg;
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005061 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005062
Nikhil Rao1399fa72011-05-18 10:09:39 -07005063 if (unlikely((s64)total < SCHED_POWER_SCALE))
5064 total = SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005065
Nikhil Rao1399fa72011-05-18 10:09:39 -07005066 total >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005067
5068 return div_u64(available, total);
5069}
5070
5071static void update_cpu_power(struct sched_domain *sd, int cpu)
5072{
Peter Zijlstra669c55e2010-04-16 14:59:29 +02005073 unsigned long weight = sd->span_weight;
Nikhil Rao1399fa72011-05-18 10:09:39 -07005074 unsigned long power = SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005075 struct sched_group *sdg = sd->groups;
5076
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005077 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5078 if (sched_feat(ARCH_POWER))
5079 power *= arch_scale_smt_power(sd, cpu);
5080 else
5081 power *= default_scale_smt_power(sd, cpu);
5082
Nikhil Rao1399fa72011-05-18 10:09:39 -07005083 power >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005084 }
5085
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005086 sdg->sgp->power_orig = power;
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005087
5088 if (sched_feat(ARCH_POWER))
5089 power *= arch_scale_freq_power(sd, cpu);
5090 else
5091 power *= default_scale_freq_power(sd, cpu);
5092
Nikhil Rao1399fa72011-05-18 10:09:39 -07005093 power >>= SCHED_POWER_SHIFT;
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005094
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005095 power *= scale_rt_power(cpu);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005096 power >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005097
5098 if (!power)
5099 power = 1;
5100
Peter Zijlstrae51fd5e2010-05-31 12:37:30 +02005101 cpu_rq(cpu)->cpu_power = power;
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005102 sdg->sgp->power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005103}
5104
Peter Zijlstra029632f2011-10-25 10:00:11 +02005105void update_group_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005106{
5107 struct sched_domain *child = sd->child;
5108 struct sched_group *group, *sdg = sd->groups;
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005109 unsigned long power, power_orig;
Vincent Guittot4ec44122011-12-12 20:21:08 +01005110 unsigned long interval;
5111
5112 interval = msecs_to_jiffies(sd->balance_interval);
5113 interval = clamp(interval, 1UL, max_load_balance_interval);
5114 sdg->sgp->next_update = jiffies + interval;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005115
5116 if (!child) {
5117 update_cpu_power(sd, cpu);
5118 return;
5119 }
5120
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005121 power_orig = power = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005122
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005123 if (child->flags & SD_OVERLAP) {
5124 /*
5125 * SD_OVERLAP domains cannot assume that child groups
5126 * span the current group.
5127 */
5128
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005129 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5130 struct sched_group *sg = cpu_rq(cpu)->sd->groups;
5131
5132 power_orig += sg->sgp->power_orig;
5133 power += sg->sgp->power;
5134 }
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005135 } else {
5136 /*
5137 * !SD_OVERLAP domains can assume that child groups
5138 * span the current group.
5139 */
5140
5141 group = child->groups;
5142 do {
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005143 power_orig += group->sgp->power_orig;
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005144 power += group->sgp->power;
5145 group = group->next;
5146 } while (group != child->groups);
5147 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005148
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005149 sdg->sgp->power_orig = power_orig;
5150 sdg->sgp->power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005151}
5152
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005153/*
5154 * Try and fix up capacity for tiny siblings, this is needed when
5155 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5156 * which on its own isn't powerful enough.
5157 *
5158 * See update_sd_pick_busiest() and check_asym_packing().
5159 */
5160static inline int
5161fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5162{
5163 /*
Nikhil Rao1399fa72011-05-18 10:09:39 -07005164 * Only siblings can have significantly less than SCHED_POWER_SCALE
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005165 */
Peter Zijlstraa6c75f22011-04-07 14:09:52 +02005166 if (!(sd->flags & SD_SHARE_CPUPOWER))
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005167 return 0;
5168
5169 /*
5170 * If ~90% of the cpu_power is still there, we're good.
5171 */
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005172 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005173 return 1;
5174
5175 return 0;
5176}
5177
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005178/*
5179 * Group imbalance indicates (and tries to solve) the problem where balancing
5180 * groups is inadequate due to tsk_cpus_allowed() constraints.
5181 *
5182 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5183 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5184 * Something like:
5185 *
5186 * { 0 1 2 3 } { 4 5 6 7 }
5187 * * * * *
5188 *
5189 * If we were to balance group-wise we'd place two tasks in the first group and
5190 * two tasks in the second group. Clearly this is undesired as it will overload
5191 * cpu 3 and leave one of the cpus in the second group unused.
5192 *
5193 * The current solution to this issue is detecting the skew in the first group
Peter Zijlstra62633222013-08-19 12:41:09 +02005194 * by noticing the lower domain failed to reach balance and had difficulty
5195 * moving tasks due to affinity constraints.
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005196 *
5197 * When this is so detected; this group becomes a candidate for busiest; see
5198 * update_sd_pick_busiest(). And calculcate_imbalance() and
Peter Zijlstra62633222013-08-19 12:41:09 +02005199 * find_busiest_group() avoid some of the usual balance conditions to allow it
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005200 * to create an effective group imbalance.
5201 *
5202 * This is a somewhat tricky proposition since the next run might not find the
5203 * group imbalance and decide the groups need to be balanced again. A most
5204 * subtle and fragile situation.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005205 */
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005206
Peter Zijlstra62633222013-08-19 12:41:09 +02005207static inline int sg_imbalanced(struct sched_group *group)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005208{
Peter Zijlstra62633222013-08-19 12:41:09 +02005209 return group->sgp->imbalance;
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005210}
5211
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005212/*
5213 * Compute the group capacity.
5214 *
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005215 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5216 * first dividing out the smt factor and computing the actual number of cores
5217 * and limit power unit capacity with that.
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005218 */
5219static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5220{
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005221 unsigned int capacity, smt, cpus;
5222 unsigned int power, power_orig;
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005223
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005224 power = group->sgp->power;
5225 power_orig = group->sgp->power_orig;
5226 cpus = group->group_weight;
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005227
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005228 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5229 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5230 capacity = cpus / smt; /* cores */
5231
5232 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005233 if (!capacity)
5234 capacity = fix_small_capacity(env->sd, group);
5235
5236 return capacity;
5237}
5238
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005239/**
5240 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5241 * @env: The load balancing environment.
5242 * @group: sched_group whose statistics are to be updated.
5243 * @load_idx: Load index of sched_domain of this_cpu for load calc.
5244 * @local_group: Does group contain this_cpu.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005245 * @sgs: variable to hold the statistics for this group.
5246 */
5247static inline void update_sg_lb_stats(struct lb_env *env,
5248 struct sched_group *group, int load_idx,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005249 int local_group, struct sg_lb_stats *sgs)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005250{
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005251 unsigned long nr_running;
5252 unsigned long load;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005253 int i;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005254
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005255 memset(sgs, 0, sizeof(*sgs));
5256
Michael Wangb9403132012-07-12 16:10:13 +08005257 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005258 struct rq *rq = cpu_rq(i);
5259
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02005260 nr_running = rq->nr_running;
5261
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005262 /* Bias balancing toward cpus of our domain */
Peter Zijlstra62633222013-08-19 12:41:09 +02005263 if (local_group)
Peter Zijlstra04f733b2012-05-11 00:12:02 +02005264 load = target_load(i, load_idx);
Peter Zijlstra62633222013-08-19 12:41:09 +02005265 else
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005266 load = source_load(i, load_idx);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005267
5268 sgs->group_load += load;
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02005269 sgs->sum_nr_running += nr_running;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005270 sgs->sum_weighted_load += weighted_cpuload(i);
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005271 if (idle_cpu(i))
5272 sgs->idle_cpus++;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005273 }
5274
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005275 /* Adjust by relative CPU power of the group */
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005276 sgs->group_power = group->sgp->power;
5277 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005278
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005279 if (sgs->sum_nr_running)
Peter Zijlstra38d0f772013-08-15 19:47:56 +02005280 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005281
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005282 sgs->group_weight = group->group_weight;
Nikhil Raofab47622010-10-15 13:12:29 -07005283
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005284 sgs->group_imb = sg_imbalanced(group);
5285 sgs->group_capacity = sg_capacity(env, group);
5286
Nikhil Raofab47622010-10-15 13:12:29 -07005287 if (sgs->group_capacity > sgs->sum_nr_running)
5288 sgs->group_has_capacity = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005289}
5290
5291/**
Michael Neuling532cb4c2010-06-08 14:57:02 +10005292 * update_sd_pick_busiest - return 1 on busiest group
Randy Dunlapcd968912012-06-08 13:18:33 -07005293 * @env: The load balancing environment.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005294 * @sds: sched_domain statistics
5295 * @sg: sched_group candidate to be checked for being the busiest
Michael Neulingb6b12292010-06-10 12:06:21 +10005296 * @sgs: sched_group statistics
Michael Neuling532cb4c2010-06-08 14:57:02 +10005297 *
5298 * Determine if @sg is a busier group than the previously selected
5299 * busiest group.
Yacine Belkadie69f6182013-07-12 20:45:47 +02005300 *
5301 * Return: %true if @sg is a busier group than the previously selected
5302 * busiest group. %false otherwise.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005303 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005304static bool update_sd_pick_busiest(struct lb_env *env,
Michael Neuling532cb4c2010-06-08 14:57:02 +10005305 struct sd_lb_stats *sds,
5306 struct sched_group *sg,
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005307 struct sg_lb_stats *sgs)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005308{
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005309 if (sgs->avg_load <= sds->busiest_stat.avg_load)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005310 return false;
5311
5312 if (sgs->sum_nr_running > sgs->group_capacity)
5313 return true;
5314
5315 if (sgs->group_imb)
5316 return true;
5317
5318 /*
5319 * ASYM_PACKING needs to move all the work to the lowest
5320 * numbered CPUs in the group, therefore mark all groups
5321 * higher than ourself as busy.
5322 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005323 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5324 env->dst_cpu < group_first_cpu(sg)) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10005325 if (!sds->busiest)
5326 return true;
5327
5328 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5329 return true;
5330 }
5331
5332 return false;
5333}
5334
5335/**
Hui Kang461819a2011-10-11 23:00:59 -04005336 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
Randy Dunlapcd968912012-06-08 13:18:33 -07005337 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005338 * @balance: Should we balance.
5339 * @sds: variable to hold the statistics for this sched_domain.
5340 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005341static inline void update_sd_lb_stats(struct lb_env *env,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005342 struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005343{
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005344 struct sched_domain *child = env->sd->child;
5345 struct sched_group *sg = env->sd->groups;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005346 struct sg_lb_stats tmp_sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005347 int load_idx, prefer_sibling = 0;
5348
5349 if (child && child->flags & SD_PREFER_SIBLING)
5350 prefer_sibling = 1;
5351
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005352 load_idx = get_sd_load_idx(env->sd, env->idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005353
5354 do {
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005355 struct sg_lb_stats *sgs = &tmp_sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005356 int local_group;
5357
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005358 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005359 if (local_group) {
5360 sds->local = sg;
5361 sgs = &sds->local_stat;
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005362
5363 if (env->idle != CPU_NEWLY_IDLE ||
5364 time_after_eq(jiffies, sg->sgp->next_update))
5365 update_group_power(env->sd, env->dst_cpu);
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005366 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005367
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005368 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005369
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005370 if (local_group)
5371 goto next_group;
5372
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005373 /*
5374 * In case the child domain prefers tasks go to siblings
Michael Neuling532cb4c2010-06-08 14:57:02 +10005375 * first, lower the sg capacity to one so that we'll try
Nikhil Rao75dd3212010-10-15 13:12:30 -07005376 * and move all the excess tasks away. We lower the capacity
5377 * of a group only if the local group has the capacity to fit
5378 * these excess tasks, i.e. nr_running < group_capacity. The
5379 * extra check prevents the case where you always pull from the
5380 * heaviest group when it is already under-utilized (possible
5381 * with a large weight task outweighs the tasks on the system).
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005382 */
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005383 if (prefer_sibling && sds->local &&
5384 sds->local_stat.group_has_capacity)
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005385 sgs->group_capacity = min(sgs->group_capacity, 1U);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005386
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005387 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10005388 sds->busiest = sg;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005389 sds->busiest_stat = *sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005390 }
5391
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005392next_group:
5393 /* Now, start updating sd_lb_stats */
5394 sds->total_load += sgs->group_load;
5395 sds->total_pwr += sgs->group_power;
5396
Michael Neuling532cb4c2010-06-08 14:57:02 +10005397 sg = sg->next;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005398 } while (sg != env->sd->groups);
Michael Neuling532cb4c2010-06-08 14:57:02 +10005399}
5400
Michael Neuling532cb4c2010-06-08 14:57:02 +10005401/**
5402 * check_asym_packing - Check to see if the group is packed into the
5403 * sched doman.
5404 *
5405 * This is primarily intended to used at the sibling level. Some
5406 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5407 * case of POWER7, it can move to lower SMT modes only when higher
5408 * threads are idle. When in lower SMT modes, the threads will
5409 * perform better since they share less core resources. Hence when we
5410 * have idle threads, we want them to be the higher ones.
5411 *
5412 * This packing function is run on idle threads. It checks to see if
5413 * the busiest CPU in this domain (core in the P7 case) has a higher
5414 * CPU number than the packing function is being run on. Here we are
5415 * assuming lower CPU number will be equivalent to lower a SMT thread
5416 * number.
5417 *
Yacine Belkadie69f6182013-07-12 20:45:47 +02005418 * Return: 1 when packing is required and a task should be moved to
Michael Neulingb6b12292010-06-10 12:06:21 +10005419 * this CPU. The amount of the imbalance is returned in *imbalance.
5420 *
Randy Dunlapcd968912012-06-08 13:18:33 -07005421 * @env: The load balancing environment.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005422 * @sds: Statistics of the sched_domain which is to be packed
Michael Neuling532cb4c2010-06-08 14:57:02 +10005423 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005424static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005425{
5426 int busiest_cpu;
5427
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005428 if (!(env->sd->flags & SD_ASYM_PACKING))
Michael Neuling532cb4c2010-06-08 14:57:02 +10005429 return 0;
5430
5431 if (!sds->busiest)
5432 return 0;
5433
5434 busiest_cpu = group_first_cpu(sds->busiest);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005435 if (env->dst_cpu > busiest_cpu)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005436 return 0;
5437
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005438 env->imbalance = DIV_ROUND_CLOSEST(
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005439 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5440 SCHED_POWER_SCALE);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005441
Michael Neuling532cb4c2010-06-08 14:57:02 +10005442 return 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005443}
5444
5445/**
5446 * fix_small_imbalance - Calculate the minor imbalance that exists
5447 * amongst the groups of a sched_domain, during
5448 * load balancing.
Randy Dunlapcd968912012-06-08 13:18:33 -07005449 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005450 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005451 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005452static inline
5453void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005454{
5455 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5456 unsigned int imbn = 2;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005457 unsigned long scaled_busy_load_per_task;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005458 struct sg_lb_stats *local, *busiest;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005459
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005460 local = &sds->local_stat;
5461 busiest = &sds->busiest_stat;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005462
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005463 if (!local->sum_nr_running)
5464 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5465 else if (busiest->load_per_task > local->load_per_task)
5466 imbn = 1;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005467
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005468 scaled_busy_load_per_task =
5469 (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005470 busiest->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005471
Vladimir Davydov3029ede2013-09-15 17:49:14 +04005472 if (busiest->avg_load + scaled_busy_load_per_task >=
5473 local->avg_load + (scaled_busy_load_per_task * imbn)) {
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005474 env->imbalance = busiest->load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005475 return;
5476 }
5477
5478 /*
5479 * OK, we don't have enough imbalance to justify moving tasks,
5480 * however we may be able to increase total CPU power used by
5481 * moving them.
5482 */
5483
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005484 pwr_now += busiest->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005485 min(busiest->load_per_task, busiest->avg_load);
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005486 pwr_now += local->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005487 min(local->load_per_task, local->avg_load);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005488 pwr_now /= SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005489
5490 /* Amount of load we'd subtract */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005491 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005492 busiest->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005493 if (busiest->avg_load > tmp) {
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005494 pwr_move += busiest->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005495 min(busiest->load_per_task,
5496 busiest->avg_load - tmp);
5497 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005498
5499 /* Amount of load we'd add */
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005500 if (busiest->avg_load * busiest->group_power <
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005501 busiest->load_per_task * SCHED_POWER_SCALE) {
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005502 tmp = (busiest->avg_load * busiest->group_power) /
5503 local->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005504 } else {
5505 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005506 local->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005507 }
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005508 pwr_move += local->group_power *
5509 min(local->load_per_task, local->avg_load + tmp);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005510 pwr_move /= SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005511
5512 /* Move if we gain throughput */
5513 if (pwr_move > pwr_now)
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005514 env->imbalance = busiest->load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005515}
5516
5517/**
5518 * calculate_imbalance - Calculate the amount of imbalance present within the
5519 * groups of a given sched_domain during load balance.
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005520 * @env: load balance environment
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005521 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005522 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005523static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005524{
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005525 unsigned long max_pull, load_above_capacity = ~0UL;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005526 struct sg_lb_stats *local, *busiest;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005527
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005528 local = &sds->local_stat;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005529 busiest = &sds->busiest_stat;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005530
5531 if (busiest->group_imb) {
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005532 /*
5533 * In the group_imb case we cannot rely on group-wide averages
5534 * to ensure cpu-load equilibrium, look at wider averages. XXX
5535 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005536 busiest->load_per_task =
5537 min(busiest->load_per_task, sds->avg_load);
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005538 }
5539
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005540 /*
5541 * In the presence of smp nice balancing, certain scenarios can have
5542 * max load less than avg load(as we skip the groups at or below
5543 * its cpu_power, while calculating max_load..)
5544 */
Vladimir Davydovb1885552013-09-15 17:49:13 +04005545 if (busiest->avg_load <= sds->avg_load ||
5546 local->avg_load >= sds->avg_load) {
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005547 env->imbalance = 0;
5548 return fix_small_imbalance(env, sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005549 }
5550
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005551 if (!busiest->group_imb) {
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005552 /*
5553 * Don't want to pull so many tasks that a group would go idle.
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005554 * Except of course for the group_imb case, since then we might
5555 * have to drop below capacity to reach cpu-load equilibrium.
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005556 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005557 load_above_capacity =
5558 (busiest->sum_nr_running - busiest->group_capacity);
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005559
Nikhil Rao1399fa72011-05-18 10:09:39 -07005560 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005561 load_above_capacity /= busiest->group_power;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005562 }
5563
5564 /*
5565 * We're trying to get all the cpus to the average_load, so we don't
5566 * want to push ourselves above the average load, nor do we wish to
5567 * reduce the max loaded cpu below the average load. At the same time,
5568 * we also don't want to reduce the group load below the group capacity
5569 * (so that we can implement power-savings policies etc). Thus we look
5570 * for the minimum possible imbalance.
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005571 */
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005572 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005573
5574 /* How much load to actually move to equalise the imbalance */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005575 env->imbalance = min(
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005576 max_pull * busiest->group_power,
5577 (sds->avg_load - local->avg_load) * local->group_power
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005578 ) / SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005579
5580 /*
5581 * if *imbalance is less than the average load per runnable task
Lucas De Marchi25985ed2011-03-30 22:57:33 -03005582 * there is no guarantee that any tasks will be moved so we'll have
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005583 * a think about bumping its value to force at least one task to be
5584 * moved
5585 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005586 if (env->imbalance < busiest->load_per_task)
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005587 return fix_small_imbalance(env, sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005588}
Nikhil Raofab47622010-10-15 13:12:29 -07005589
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005590/******* find_busiest_group() helpers end here *********************/
5591
5592/**
5593 * find_busiest_group - Returns the busiest group within the sched_domain
5594 * if there is an imbalance. If there isn't an imbalance, and
5595 * the user has opted for power-savings, it returns a group whose
5596 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5597 * such a group exists.
5598 *
5599 * Also calculates the amount of weighted load which should be moved
5600 * to restore balance.
5601 *
Randy Dunlapcd968912012-06-08 13:18:33 -07005602 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005603 *
Yacine Belkadie69f6182013-07-12 20:45:47 +02005604 * Return: - The busiest group if imbalance exists.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005605 * - If no imbalance and user has opted for power-savings balance,
5606 * return the least loaded group whose CPUs can be
5607 * put to idle by rebalancing its tasks onto our group.
5608 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005609static struct sched_group *find_busiest_group(struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005610{
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005611 struct sg_lb_stats *local, *busiest;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005612 struct sd_lb_stats sds;
5613
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005614 init_sd_lb_stats(&sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005615
5616 /*
5617 * Compute the various statistics relavent for load balancing at
5618 * this level.
5619 */
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005620 update_sd_lb_stats(env, &sds);
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005621 local = &sds.local_stat;
5622 busiest = &sds.busiest_stat;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005623
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005624 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5625 check_asym_packing(env, &sds))
Michael Neuling532cb4c2010-06-08 14:57:02 +10005626 return sds.busiest;
5627
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005628 /* There is no busy sibling group to pull tasks from */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005629 if (!sds.busiest || busiest->sum_nr_running == 0)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005630 goto out_balanced;
5631
Nikhil Rao1399fa72011-05-18 10:09:39 -07005632 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
Ken Chenb0432d82011-04-07 17:23:22 -07005633
Peter Zijlstra866ab432011-02-21 18:56:47 +01005634 /*
5635 * If the busiest group is imbalanced the below checks don't
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005636 * work because they assume all things are equal, which typically
Peter Zijlstra866ab432011-02-21 18:56:47 +01005637 * isn't true due to cpus_allowed constraints and the like.
5638 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005639 if (busiest->group_imb)
Peter Zijlstra866ab432011-02-21 18:56:47 +01005640 goto force_balance;
5641
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005642 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005643 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5644 !busiest->group_has_capacity)
Nikhil Raofab47622010-10-15 13:12:29 -07005645 goto force_balance;
5646
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005647 /*
5648 * If the local group is more busy than the selected busiest group
5649 * don't try and pull any tasks.
5650 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005651 if (local->avg_load >= busiest->avg_load)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005652 goto out_balanced;
5653
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005654 /*
5655 * Don't pull any tasks if this group is already above the domain
5656 * average load.
5657 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005658 if (local->avg_load >= sds.avg_load)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005659 goto out_balanced;
5660
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005661 if (env->idle == CPU_IDLE) {
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005662 /*
5663 * This cpu is idle. If the busiest group load doesn't
5664 * have more tasks than the number of available cpu's and
5665 * there is no imbalance between this and busiest group
5666 * wrt to idle cpu's, it is balanced.
5667 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005668 if ((local->idle_cpus < busiest->idle_cpus) &&
5669 busiest->sum_nr_running <= busiest->group_weight)
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005670 goto out_balanced;
Peter Zijlstrac186faf2011-02-21 18:52:53 +01005671 } else {
5672 /*
5673 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5674 * imbalance_pct to be conservative.
5675 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005676 if (100 * busiest->avg_load <=
5677 env->sd->imbalance_pct * local->avg_load)
Peter Zijlstrac186faf2011-02-21 18:52:53 +01005678 goto out_balanced;
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005679 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005680
Nikhil Raofab47622010-10-15 13:12:29 -07005681force_balance:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005682 /* Looks like there is an imbalance. Compute it */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005683 calculate_imbalance(env, &sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005684 return sds.busiest;
5685
5686out_balanced:
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005687 env->imbalance = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005688 return NULL;
5689}
5690
5691/*
5692 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5693 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005694static struct rq *find_busiest_queue(struct lb_env *env,
Michael Wangb9403132012-07-12 16:10:13 +08005695 struct sched_group *group)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005696{
5697 struct rq *busiest = NULL, *rq;
Joonsoo Kim95a79b82013-08-06 17:36:41 +09005698 unsigned long busiest_load = 0, busiest_power = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005699 int i;
5700
Peter Zijlstra6906a402013-08-19 15:20:21 +02005701 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005702 unsigned long power = power_of(i);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005703 unsigned long capacity = DIV_ROUND_CLOSEST(power,
5704 SCHED_POWER_SCALE);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005705 unsigned long wl;
5706
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005707 if (!capacity)
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005708 capacity = fix_small_capacity(env->sd, group);
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005709
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005710 rq = cpu_rq(i);
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01005711 wl = weighted_cpuload(i);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005712
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01005713 /*
5714 * When comparing with imbalance, use weighted_cpuload()
5715 * which is not scaled with the cpu power.
5716 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005717 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005718 continue;
5719
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01005720 /*
5721 * For the load comparisons with the other cpu's, consider
5722 * the weighted_cpuload() scaled with the cpu power, so that
5723 * the load can be moved away from the cpu that is potentially
5724 * running at a lower capacity.
Joonsoo Kim95a79b82013-08-06 17:36:41 +09005725 *
5726 * Thus we're looking for max(wl_i / power_i), crosswise
5727 * multiplication to rid ourselves of the division works out
5728 * to: wl_i * power_j > wl_j * power_i; where j is our
5729 * previous maximum.
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01005730 */
Joonsoo Kim95a79b82013-08-06 17:36:41 +09005731 if (wl * busiest_power > busiest_load * power) {
5732 busiest_load = wl;
5733 busiest_power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005734 busiest = rq;
5735 }
5736 }
5737
5738 return busiest;
5739}
5740
5741/*
5742 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
5743 * so long as it is large enough.
5744 */
5745#define MAX_PINNED_INTERVAL 512
5746
5747/* Working cpumask for load_balance and load_balance_newidle. */
Joonsoo Kime6252c32013-04-23 17:27:41 +09005748DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005749
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005750static int need_active_balance(struct lb_env *env)
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01005751{
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005752 struct sched_domain *sd = env->sd;
5753
5754 if (env->idle == CPU_NEWLY_IDLE) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10005755
5756 /*
5757 * ASYM_PACKING needs to force migrate tasks from busy but
5758 * higher numbered CPUs in order to pack all tasks in the
5759 * lowest numbered CPUs.
5760 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005761 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005762 return 1;
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01005763 }
5764
5765 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
5766}
5767
Tejun Heo969c7922010-05-06 18:49:21 +02005768static int active_load_balance_cpu_stop(void *data);
5769
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005770static int should_we_balance(struct lb_env *env)
5771{
5772 struct sched_group *sg = env->sd->groups;
5773 struct cpumask *sg_cpus, *sg_mask;
5774 int cpu, balance_cpu = -1;
5775
5776 /*
5777 * In the newly idle case, we will allow all the cpu's
5778 * to do the newly idle load balance.
5779 */
5780 if (env->idle == CPU_NEWLY_IDLE)
5781 return 1;
5782
5783 sg_cpus = sched_group_cpus(sg);
5784 sg_mask = sched_group_mask(sg);
5785 /* Try to find first idle cpu */
5786 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
5787 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
5788 continue;
5789
5790 balance_cpu = cpu;
5791 break;
5792 }
5793
5794 if (balance_cpu == -1)
5795 balance_cpu = group_balance_cpu(sg);
5796
5797 /*
5798 * First idle cpu or the first cpu(busiest) in this sched group
5799 * is eligible for doing load balancing at this and above domains.
5800 */
Joonsoo Kimb0cff9d2013-09-10 15:54:49 +09005801 return balance_cpu == env->dst_cpu;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005802}
5803
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005804/*
5805 * Check this_cpu to ensure it is balanced within domain. Attempt to move
5806 * tasks if there is an imbalance.
5807 */
5808static int load_balance(int this_cpu, struct rq *this_rq,
5809 struct sched_domain *sd, enum cpu_idle_type idle,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005810 int *continue_balancing)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005811{
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305812 int ld_moved, cur_ld_moved, active_balance = 0;
Peter Zijlstra62633222013-08-19 12:41:09 +02005813 struct sched_domain *sd_parent = sd->parent;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005814 struct sched_group *group;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005815 struct rq *busiest;
5816 unsigned long flags;
Joonsoo Kime6252c32013-04-23 17:27:41 +09005817 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005818
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005819 struct lb_env env = {
5820 .sd = sd,
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005821 .dst_cpu = this_cpu,
5822 .dst_rq = this_rq,
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305823 .dst_grpmask = sched_group_cpus(sd->groups),
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005824 .idle = idle,
Peter Zijlstraeb953082012-04-17 13:38:40 +02005825 .loop_break = sched_nr_migrate_break,
Michael Wangb9403132012-07-12 16:10:13 +08005826 .cpus = cpus,
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005827 };
5828
Joonsoo Kimcfc03112013-04-23 17:27:39 +09005829 /*
5830 * For NEWLY_IDLE load_balancing, we don't need to consider
5831 * other cpus in our group
5832 */
Joonsoo Kime02e60c2013-04-23 17:27:42 +09005833 if (idle == CPU_NEWLY_IDLE)
Joonsoo Kimcfc03112013-04-23 17:27:39 +09005834 env.dst_grpmask = NULL;
Joonsoo Kimcfc03112013-04-23 17:27:39 +09005835
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005836 cpumask_copy(cpus, cpu_active_mask);
5837
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005838 schedstat_inc(sd, lb_count[idle]);
5839
5840redo:
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005841 if (!should_we_balance(&env)) {
5842 *continue_balancing = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005843 goto out_balanced;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005844 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005845
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005846 group = find_busiest_group(&env);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005847 if (!group) {
5848 schedstat_inc(sd, lb_nobusyg[idle]);
5849 goto out_balanced;
5850 }
5851
Michael Wangb9403132012-07-12 16:10:13 +08005852 busiest = find_busiest_queue(&env, group);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005853 if (!busiest) {
5854 schedstat_inc(sd, lb_nobusyq[idle]);
5855 goto out_balanced;
5856 }
5857
Michael Wang78feefc2012-08-06 16:41:59 +08005858 BUG_ON(busiest == env.dst_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005859
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005860 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005861
5862 ld_moved = 0;
5863 if (busiest->nr_running > 1) {
5864 /*
5865 * Attempt to move tasks. If find_busiest_group has found
5866 * an imbalance but busiest->nr_running <= 1, the group is
5867 * still unbalanced. ld_moved simply stays zero, so it is
5868 * correctly treated as an imbalance.
5869 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005870 env.flags |= LBF_ALL_PINNED;
Peter Zijlstrac82513e2012-04-26 13:12:27 +02005871 env.src_cpu = busiest->cpu;
5872 env.src_rq = busiest;
5873 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005874
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005875more_balance:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005876 local_irq_save(flags);
Michael Wang78feefc2012-08-06 16:41:59 +08005877 double_rq_lock(env.dst_rq, busiest);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305878
5879 /*
5880 * cur_ld_moved - load moved in current iteration
5881 * ld_moved - cumulative load moved across iterations
5882 */
5883 cur_ld_moved = move_tasks(&env);
5884 ld_moved += cur_ld_moved;
Michael Wang78feefc2012-08-06 16:41:59 +08005885 double_rq_unlock(env.dst_rq, busiest);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005886 local_irq_restore(flags);
5887
5888 /*
5889 * some other cpu did the load balance for us.
5890 */
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305891 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
5892 resched_cpu(env.dst_cpu);
5893
Joonsoo Kimf1cd0852013-04-23 17:27:37 +09005894 if (env.flags & LBF_NEED_BREAK) {
5895 env.flags &= ~LBF_NEED_BREAK;
5896 goto more_balance;
5897 }
5898
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305899 /*
5900 * Revisit (affine) tasks on src_cpu that couldn't be moved to
5901 * us and move them to an alternate dst_cpu in our sched_group
5902 * where they can run. The upper limit on how many times we
5903 * iterate on same src_cpu is dependent on number of cpus in our
5904 * sched_group.
5905 *
5906 * This changes load balance semantics a bit on who can move
5907 * load to a given_cpu. In addition to the given_cpu itself
5908 * (or a ilb_cpu acting on its behalf where given_cpu is
5909 * nohz-idle), we now have balance_cpu in a position to move
5910 * load to given_cpu. In rare situations, this may cause
5911 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
5912 * _independently_ and at _same_ time to move some load to
5913 * given_cpu) causing exceess load to be moved to given_cpu.
5914 * This however should not happen so much in practice and
5915 * moreover subsequent load balance cycles should correct the
5916 * excess load moved.
5917 */
Peter Zijlstra62633222013-08-19 12:41:09 +02005918 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305919
Vladimir Davydov7aff2e32013-09-15 21:30:13 +04005920 /* Prevent to re-select dst_cpu via env's cpus */
5921 cpumask_clear_cpu(env.dst_cpu, env.cpus);
5922
Michael Wang78feefc2012-08-06 16:41:59 +08005923 env.dst_rq = cpu_rq(env.new_dst_cpu);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305924 env.dst_cpu = env.new_dst_cpu;
Peter Zijlstra62633222013-08-19 12:41:09 +02005925 env.flags &= ~LBF_DST_PINNED;
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305926 env.loop = 0;
5927 env.loop_break = sched_nr_migrate_break;
Joonsoo Kime02e60c2013-04-23 17:27:42 +09005928
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305929 /*
5930 * Go back to "more_balance" rather than "redo" since we
5931 * need to continue with same src_cpu.
5932 */
5933 goto more_balance;
5934 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005935
Peter Zijlstra62633222013-08-19 12:41:09 +02005936 /*
5937 * We failed to reach balance because of affinity.
5938 */
5939 if (sd_parent) {
5940 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
5941
5942 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
5943 *group_imbalance = 1;
5944 } else if (*group_imbalance)
5945 *group_imbalance = 0;
5946 }
5947
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005948 /* All tasks on this runqueue were pinned by CPU affinity */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005949 if (unlikely(env.flags & LBF_ALL_PINNED)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005950 cpumask_clear_cpu(cpu_of(busiest), cpus);
Prashanth Nageshappabbf18b12012-06-19 17:52:07 +05305951 if (!cpumask_empty(cpus)) {
5952 env.loop = 0;
5953 env.loop_break = sched_nr_migrate_break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005954 goto redo;
Prashanth Nageshappabbf18b12012-06-19 17:52:07 +05305955 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005956 goto out_balanced;
5957 }
5958 }
5959
5960 if (!ld_moved) {
5961 schedstat_inc(sd, lb_failed[idle]);
Venkatesh Pallipadi58b26c42010-09-10 18:19:17 -07005962 /*
5963 * Increment the failure counter only on periodic balance.
5964 * We do not want newidle balance, which can be very
5965 * frequent, pollute the failure counter causing
5966 * excessive cache_hot migrations and active balances.
5967 */
5968 if (idle != CPU_NEWLY_IDLE)
5969 sd->nr_balance_failed++;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005970
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005971 if (need_active_balance(&env)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005972 raw_spin_lock_irqsave(&busiest->lock, flags);
5973
Tejun Heo969c7922010-05-06 18:49:21 +02005974 /* don't kick the active_load_balance_cpu_stop,
5975 * if the curr task on busiest cpu can't be
5976 * moved to this_cpu
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005977 */
5978 if (!cpumask_test_cpu(this_cpu,
Peter Zijlstrafa17b502011-06-16 12:23:22 +02005979 tsk_cpus_allowed(busiest->curr))) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005980 raw_spin_unlock_irqrestore(&busiest->lock,
5981 flags);
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005982 env.flags |= LBF_ALL_PINNED;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005983 goto out_one_pinned;
5984 }
5985
Tejun Heo969c7922010-05-06 18:49:21 +02005986 /*
5987 * ->active_balance synchronizes accesses to
5988 * ->active_balance_work. Once set, it's cleared
5989 * only after active load balance is finished.
5990 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005991 if (!busiest->active_balance) {
5992 busiest->active_balance = 1;
5993 busiest->push_cpu = this_cpu;
5994 active_balance = 1;
5995 }
5996 raw_spin_unlock_irqrestore(&busiest->lock, flags);
Tejun Heo969c7922010-05-06 18:49:21 +02005997
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005998 if (active_balance) {
Tejun Heo969c7922010-05-06 18:49:21 +02005999 stop_one_cpu_nowait(cpu_of(busiest),
6000 active_load_balance_cpu_stop, busiest,
6001 &busiest->active_balance_work);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006002 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006003
6004 /*
6005 * We've kicked active balancing, reset the failure
6006 * counter.
6007 */
6008 sd->nr_balance_failed = sd->cache_nice_tries+1;
6009 }
6010 } else
6011 sd->nr_balance_failed = 0;
6012
6013 if (likely(!active_balance)) {
6014 /* We were unbalanced, so reset the balancing interval */
6015 sd->balance_interval = sd->min_interval;
6016 } else {
6017 /*
6018 * If we've begun active balancing, start to back off. This
6019 * case may not be covered by the all_pinned logic if there
6020 * is only 1 task on the busy runqueue (because we don't call
6021 * move_tasks).
6022 */
6023 if (sd->balance_interval < sd->max_interval)
6024 sd->balance_interval *= 2;
6025 }
6026
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006027 goto out;
6028
6029out_balanced:
6030 schedstat_inc(sd, lb_balanced[idle]);
6031
6032 sd->nr_balance_failed = 0;
6033
6034out_one_pinned:
6035 /* tune up the balancing interval */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006036 if (((env.flags & LBF_ALL_PINNED) &&
Peter Zijlstra5b54b562011-09-22 15:23:13 +02006037 sd->balance_interval < MAX_PINNED_INTERVAL) ||
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006038 (sd->balance_interval < sd->max_interval))
6039 sd->balance_interval *= 2;
6040
Venkatesh Pallipadi46e49b32011-02-14 14:38:50 -08006041 ld_moved = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006042out:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006043 return ld_moved;
6044}
6045
6046/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006047 * idle_balance is called by schedule() if this_cpu is about to become
6048 * idle. Attempts to pull tasks from other CPUs.
6049 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006050void idle_balance(int this_cpu, struct rq *this_rq)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006051{
6052 struct sched_domain *sd;
6053 int pulled_task = 0;
6054 unsigned long next_balance = jiffies + HZ;
Jason Low9bd721c2013-09-13 11:26:52 -07006055 u64 curr_cost = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006056
Frederic Weisbecker78becc22013-04-12 01:51:02 +02006057 this_rq->idle_stamp = rq_clock(this_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006058
6059 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6060 return;
6061
Peter Zijlstraf492e122009-12-23 15:29:42 +01006062 /*
6063 * Drop the rq->lock, but keep IRQ/preempt disabled.
6064 */
6065 raw_spin_unlock(&this_rq->lock);
6066
Paul Turner48a16752012-10-04 13:18:31 +02006067 update_blocked_averages(this_cpu);
Peter Zijlstradce840a2011-04-07 14:09:50 +02006068 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006069 for_each_domain(this_cpu, sd) {
6070 unsigned long interval;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006071 int continue_balancing = 1;
Jason Low9bd721c2013-09-13 11:26:52 -07006072 u64 t0, domain_cost;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006073
6074 if (!(sd->flags & SD_LOAD_BALANCE))
6075 continue;
6076
Jason Low9bd721c2013-09-13 11:26:52 -07006077 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6078 break;
6079
Peter Zijlstraf492e122009-12-23 15:29:42 +01006080 if (sd->flags & SD_BALANCE_NEWIDLE) {
Jason Low9bd721c2013-09-13 11:26:52 -07006081 t0 = sched_clock_cpu(this_cpu);
6082
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006083 /* If we've pulled tasks over stop searching: */
Peter Zijlstraf492e122009-12-23 15:29:42 +01006084 pulled_task = load_balance(this_cpu, this_rq,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006085 sd, CPU_NEWLY_IDLE,
6086 &continue_balancing);
Jason Low9bd721c2013-09-13 11:26:52 -07006087
6088 domain_cost = sched_clock_cpu(this_cpu) - t0;
6089 if (domain_cost > sd->max_newidle_lb_cost)
6090 sd->max_newidle_lb_cost = domain_cost;
6091
6092 curr_cost += domain_cost;
Peter Zijlstraf492e122009-12-23 15:29:42 +01006093 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006094
6095 interval = msecs_to_jiffies(sd->balance_interval);
6096 if (time_after(next_balance, sd->last_balance + interval))
6097 next_balance = sd->last_balance + interval;
Nikhil Raod5ad1402010-11-17 11:42:04 -08006098 if (pulled_task) {
6099 this_rq->idle_stamp = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006100 break;
Nikhil Raod5ad1402010-11-17 11:42:04 -08006101 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006102 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006103 rcu_read_unlock();
Peter Zijlstraf492e122009-12-23 15:29:42 +01006104
6105 raw_spin_lock(&this_rq->lock);
6106
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006107 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6108 /*
6109 * We are going idle. next_balance may be set based on
6110 * a busy processor. So reset next_balance.
6111 */
6112 this_rq->next_balance = next_balance;
6113 }
Jason Low9bd721c2013-09-13 11:26:52 -07006114
6115 if (curr_cost > this_rq->max_idle_balance_cost)
6116 this_rq->max_idle_balance_cost = curr_cost;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006117}
6118
6119/*
Tejun Heo969c7922010-05-06 18:49:21 +02006120 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6121 * running tasks off the busiest CPU onto idle CPUs. It requires at
6122 * least 1 task to be running on each physical CPU where possible, and
6123 * avoids physical / logical imbalances.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006124 */
Tejun Heo969c7922010-05-06 18:49:21 +02006125static int active_load_balance_cpu_stop(void *data)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006126{
Tejun Heo969c7922010-05-06 18:49:21 +02006127 struct rq *busiest_rq = data;
6128 int busiest_cpu = cpu_of(busiest_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006129 int target_cpu = busiest_rq->push_cpu;
Tejun Heo969c7922010-05-06 18:49:21 +02006130 struct rq *target_rq = cpu_rq(target_cpu);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006131 struct sched_domain *sd;
Tejun Heo969c7922010-05-06 18:49:21 +02006132
6133 raw_spin_lock_irq(&busiest_rq->lock);
6134
6135 /* make sure the requested cpu hasn't gone down in the meantime */
6136 if (unlikely(busiest_cpu != smp_processor_id() ||
6137 !busiest_rq->active_balance))
6138 goto out_unlock;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006139
6140 /* Is there any task to move? */
6141 if (busiest_rq->nr_running <= 1)
Tejun Heo969c7922010-05-06 18:49:21 +02006142 goto out_unlock;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006143
6144 /*
6145 * This condition is "impossible", if it occurs
6146 * we need to fix it. Originally reported by
6147 * Bjorn Helgaas on a 128-cpu setup.
6148 */
6149 BUG_ON(busiest_rq == target_rq);
6150
6151 /* move a task from busiest_rq to target_rq */
6152 double_lock_balance(busiest_rq, target_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006153
6154 /* Search for an sd spanning us and the target CPU. */
Peter Zijlstradce840a2011-04-07 14:09:50 +02006155 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006156 for_each_domain(target_cpu, sd) {
6157 if ((sd->flags & SD_LOAD_BALANCE) &&
6158 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6159 break;
6160 }
6161
6162 if (likely(sd)) {
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006163 struct lb_env env = {
6164 .sd = sd,
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01006165 .dst_cpu = target_cpu,
6166 .dst_rq = target_rq,
6167 .src_cpu = busiest_rq->cpu,
6168 .src_rq = busiest_rq,
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006169 .idle = CPU_IDLE,
6170 };
6171
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006172 schedstat_inc(sd, alb_count);
6173
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006174 if (move_one_task(&env))
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006175 schedstat_inc(sd, alb_pushed);
6176 else
6177 schedstat_inc(sd, alb_failed);
6178 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006179 rcu_read_unlock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006180 double_unlock_balance(busiest_rq, target_rq);
Tejun Heo969c7922010-05-06 18:49:21 +02006181out_unlock:
6182 busiest_rq->active_balance = 0;
6183 raw_spin_unlock_irq(&busiest_rq->lock);
6184 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006185}
6186
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006187#ifdef CONFIG_NO_HZ_COMMON
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006188/*
6189 * idle load balancing details
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006190 * - When one of the busy CPUs notice that there may be an idle rebalancing
6191 * needed, they will kick the idle load balancer, which then does idle
6192 * load balancing for all the idle CPUs.
6193 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006194static struct {
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006195 cpumask_var_t idle_cpus_mask;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006196 atomic_t nr_cpus;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006197 unsigned long next_balance; /* in jiffy units */
6198} nohz ____cacheline_aligned;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006199
Peter Zijlstra8e7fbcb2012-01-09 11:28:35 +01006200static inline int find_new_ilb(int call_cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006201{
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006202 int ilb = cpumask_first(nohz.idle_cpus_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006203
Suresh Siddha786d6dc2011-12-01 17:07:35 -08006204 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6205 return ilb;
6206
6207 return nr_cpu_ids;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006208}
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006209
6210/*
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006211 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6212 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6213 * CPU (if there is one).
6214 */
6215static void nohz_balancer_kick(int cpu)
6216{
6217 int ilb_cpu;
6218
6219 nohz.next_balance++;
6220
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006221 ilb_cpu = find_new_ilb(cpu);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006222
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006223 if (ilb_cpu >= nr_cpu_ids)
6224 return;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006225
Suresh Siddhacd490c52011-12-06 11:26:34 -08006226 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
Suresh Siddha1c792db2011-12-01 17:07:32 -08006227 return;
6228 /*
6229 * Use smp_send_reschedule() instead of resched_cpu().
6230 * This way we generate a sched IPI on the target cpu which
6231 * is idle. And the softirq performing nohz idle load balance
6232 * will be run before returning from the IPI.
6233 */
6234 smp_send_reschedule(ilb_cpu);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006235 return;
6236}
6237
Alex Shic1cc0172012-09-10 15:10:58 +08006238static inline void nohz_balance_exit_idle(int cpu)
Suresh Siddha71325962012-01-19 18:28:57 -08006239{
6240 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6241 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6242 atomic_dec(&nohz.nr_cpus);
6243 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6244 }
6245}
6246
Suresh Siddha69e1e812011-12-01 17:07:33 -08006247static inline void set_cpu_sd_state_busy(void)
6248{
6249 struct sched_domain *sd;
Suresh Siddha69e1e812011-12-01 17:07:33 -08006250
Suresh Siddha69e1e812011-12-01 17:07:33 -08006251 rcu_read_lock();
Nathan Zimmer424c93f2013-05-09 11:24:03 -05006252 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006253
6254 if (!sd || !sd->nohz_idle)
6255 goto unlock;
6256 sd->nohz_idle = 0;
6257
6258 for (; sd; sd = sd->parent)
Suresh Siddha69e1e812011-12-01 17:07:33 -08006259 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006260unlock:
Suresh Siddha69e1e812011-12-01 17:07:33 -08006261 rcu_read_unlock();
6262}
6263
6264void set_cpu_sd_state_idle(void)
6265{
6266 struct sched_domain *sd;
Suresh Siddha69e1e812011-12-01 17:07:33 -08006267
Suresh Siddha69e1e812011-12-01 17:07:33 -08006268 rcu_read_lock();
Nathan Zimmer424c93f2013-05-09 11:24:03 -05006269 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006270
6271 if (!sd || sd->nohz_idle)
6272 goto unlock;
6273 sd->nohz_idle = 1;
6274
6275 for (; sd; sd = sd->parent)
Suresh Siddha69e1e812011-12-01 17:07:33 -08006276 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006277unlock:
Suresh Siddha69e1e812011-12-01 17:07:33 -08006278 rcu_read_unlock();
6279}
6280
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006281/*
Alex Shic1cc0172012-09-10 15:10:58 +08006282 * This routine will record that the cpu is going idle with tick stopped.
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006283 * This info will be used in performing idle load balancing in the future.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006284 */
Alex Shic1cc0172012-09-10 15:10:58 +08006285void nohz_balance_enter_idle(int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006286{
Suresh Siddha71325962012-01-19 18:28:57 -08006287 /*
6288 * If this cpu is going down, then nothing needs to be done.
6289 */
6290 if (!cpu_active(cpu))
6291 return;
6292
Alex Shic1cc0172012-09-10 15:10:58 +08006293 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6294 return;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006295
Alex Shic1cc0172012-09-10 15:10:58 +08006296 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6297 atomic_inc(&nohz.nr_cpus);
6298 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006299}
Suresh Siddha71325962012-01-19 18:28:57 -08006300
Paul Gortmaker0db06282013-06-19 14:53:51 -04006301static int sched_ilb_notifier(struct notifier_block *nfb,
Suresh Siddha71325962012-01-19 18:28:57 -08006302 unsigned long action, void *hcpu)
6303{
6304 switch (action & ~CPU_TASKS_FROZEN) {
6305 case CPU_DYING:
Alex Shic1cc0172012-09-10 15:10:58 +08006306 nohz_balance_exit_idle(smp_processor_id());
Suresh Siddha71325962012-01-19 18:28:57 -08006307 return NOTIFY_OK;
6308 default:
6309 return NOTIFY_DONE;
6310 }
6311}
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006312#endif
6313
6314static DEFINE_SPINLOCK(balancing);
6315
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006316/*
6317 * Scale the max load_balance interval with the number of CPUs in the system.
6318 * This trades load-balance latency on larger machines for less cross talk.
6319 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006320void update_max_interval(void)
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006321{
6322 max_load_balance_interval = HZ*num_online_cpus()/10;
6323}
6324
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006325/*
6326 * It checks each scheduling domain to see if it is due to be balanced,
6327 * and initiates a balancing operation if so.
6328 *
Libinb9b08532013-04-01 19:14:01 +08006329 * Balancing parameters are set up in init_sched_domains.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006330 */
6331static void rebalance_domains(int cpu, enum cpu_idle_type idle)
6332{
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006333 int continue_balancing = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006334 struct rq *rq = cpu_rq(cpu);
6335 unsigned long interval;
Peter Zijlstra04f733b2012-05-11 00:12:02 +02006336 struct sched_domain *sd;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006337 /* Earliest time when we have to do rebalance again */
6338 unsigned long next_balance = jiffies + 60*HZ;
6339 int update_next_balance = 0;
Jason Lowf48627e2013-09-13 11:26:53 -07006340 int need_serialize, need_decay = 0;
6341 u64 max_cost = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006342
Paul Turner48a16752012-10-04 13:18:31 +02006343 update_blocked_averages(cpu);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08006344
Peter Zijlstradce840a2011-04-07 14:09:50 +02006345 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006346 for_each_domain(cpu, sd) {
Jason Lowf48627e2013-09-13 11:26:53 -07006347 /*
6348 * Decay the newidle max times here because this is a regular
6349 * visit to all the domains. Decay ~1% per second.
6350 */
6351 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6352 sd->max_newidle_lb_cost =
6353 (sd->max_newidle_lb_cost * 253) / 256;
6354 sd->next_decay_max_lb_cost = jiffies + HZ;
6355 need_decay = 1;
6356 }
6357 max_cost += sd->max_newidle_lb_cost;
6358
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006359 if (!(sd->flags & SD_LOAD_BALANCE))
6360 continue;
6361
Jason Lowf48627e2013-09-13 11:26:53 -07006362 /*
6363 * Stop the load balance at this level. There is another
6364 * CPU in our sched group which is doing load balancing more
6365 * actively.
6366 */
6367 if (!continue_balancing) {
6368 if (need_decay)
6369 continue;
6370 break;
6371 }
6372
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006373 interval = sd->balance_interval;
6374 if (idle != CPU_IDLE)
6375 interval *= sd->busy_factor;
6376
6377 /* scale ms to jiffies */
6378 interval = msecs_to_jiffies(interval);
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006379 interval = clamp(interval, 1UL, max_load_balance_interval);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006380
6381 need_serialize = sd->flags & SD_SERIALIZE;
6382
6383 if (need_serialize) {
6384 if (!spin_trylock(&balancing))
6385 goto out;
6386 }
6387
6388 if (time_after_eq(jiffies, sd->last_balance + interval)) {
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006389 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006390 /*
Peter Zijlstra62633222013-08-19 12:41:09 +02006391 * The LBF_DST_PINNED logic could have changed
Joonsoo Kimde5eb2d2013-04-23 17:27:38 +09006392 * env->dst_cpu, so we can't know our idle
6393 * state even if we migrated tasks. Update it.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006394 */
Joonsoo Kimde5eb2d2013-04-23 17:27:38 +09006395 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006396 }
6397 sd->last_balance = jiffies;
6398 }
6399 if (need_serialize)
6400 spin_unlock(&balancing);
6401out:
6402 if (time_after(next_balance, sd->last_balance + interval)) {
6403 next_balance = sd->last_balance + interval;
6404 update_next_balance = 1;
6405 }
Jason Lowf48627e2013-09-13 11:26:53 -07006406 }
6407 if (need_decay) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006408 /*
Jason Lowf48627e2013-09-13 11:26:53 -07006409 * Ensure the rq-wide value also decays but keep it at a
6410 * reasonable floor to avoid funnies with rq->avg_idle.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006411 */
Jason Lowf48627e2013-09-13 11:26:53 -07006412 rq->max_idle_balance_cost =
6413 max((u64)sysctl_sched_migration_cost, max_cost);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006414 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006415 rcu_read_unlock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006416
6417 /*
6418 * next_balance will be updated only when there is a need.
6419 * When the cpu is attached to null domain for ex, it will not be
6420 * updated.
6421 */
6422 if (likely(update_next_balance))
6423 rq->next_balance = next_balance;
6424}
6425
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006426#ifdef CONFIG_NO_HZ_COMMON
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006427/*
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006428 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006429 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6430 */
6431static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
6432{
6433 struct rq *this_rq = cpu_rq(this_cpu);
6434 struct rq *rq;
6435 int balance_cpu;
6436
Suresh Siddha1c792db2011-12-01 17:07:32 -08006437 if (idle != CPU_IDLE ||
6438 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6439 goto end;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006440
6441 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
Suresh Siddha8a6d42d2011-12-06 11:19:37 -08006442 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006443 continue;
6444
6445 /*
6446 * If this cpu gets work to do, stop the load balancing
6447 * work being done for other cpus. Next load
6448 * balancing owner will pick it up.
6449 */
Suresh Siddha1c792db2011-12-01 17:07:32 -08006450 if (need_resched())
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006451 break;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006452
Vincent Guittot5ed4f1d2012-09-13 06:11:26 +02006453 rq = cpu_rq(balance_cpu);
6454
6455 raw_spin_lock_irq(&rq->lock);
6456 update_rq_clock(rq);
6457 update_idle_cpu_load(rq);
6458 raw_spin_unlock_irq(&rq->lock);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006459
6460 rebalance_domains(balance_cpu, CPU_IDLE);
6461
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006462 if (time_after(this_rq->next_balance, rq->next_balance))
6463 this_rq->next_balance = rq->next_balance;
6464 }
6465 nohz.next_balance = this_rq->next_balance;
Suresh Siddha1c792db2011-12-01 17:07:32 -08006466end:
6467 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006468}
6469
6470/*
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006471 * Current heuristic for kicking the idle load balancer in the presence
6472 * of an idle cpu is the system.
6473 * - This rq has more than one task.
6474 * - At any scheduler domain level, this cpu's scheduler group has multiple
6475 * busy cpu's exceeding the group's power.
6476 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6477 * domain span are idle.
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006478 */
6479static inline int nohz_kick_needed(struct rq *rq, int cpu)
6480{
6481 unsigned long now = jiffies;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006482 struct sched_domain *sd;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006483
Suresh Siddha1c792db2011-12-01 17:07:32 -08006484 if (unlikely(idle_cpu(cpu)))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006485 return 0;
6486
Suresh Siddha1c792db2011-12-01 17:07:32 -08006487 /*
6488 * We may be recently in ticked or tickless idle mode. At the first
6489 * busy tick after returning from idle, we will update the busy stats.
6490 */
Suresh Siddha69e1e812011-12-01 17:07:33 -08006491 set_cpu_sd_state_busy();
Alex Shic1cc0172012-09-10 15:10:58 +08006492 nohz_balance_exit_idle(cpu);
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006493
6494 /*
6495 * None are in tickless mode and hence no need for NOHZ idle load
6496 * balancing.
6497 */
6498 if (likely(!atomic_read(&nohz.nr_cpus)))
6499 return 0;
Suresh Siddha1c792db2011-12-01 17:07:32 -08006500
6501 if (time_before(now, nohz.next_balance))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006502 return 0;
6503
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006504 if (rq->nr_running >= 2)
6505 goto need_kick;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006506
Peter Zijlstra067491b2011-12-07 14:32:08 +01006507 rcu_read_lock();
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006508 for_each_domain(cpu, sd) {
6509 struct sched_group *sg = sd->groups;
6510 struct sched_group_power *sgp = sg->sgp;
6511 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006512
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006513 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
Peter Zijlstra067491b2011-12-07 14:32:08 +01006514 goto need_kick_unlock;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006515
6516 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
6517 && (cpumask_first_and(nohz.idle_cpus_mask,
6518 sched_domain_span(sd)) < cpu))
Peter Zijlstra067491b2011-12-07 14:32:08 +01006519 goto need_kick_unlock;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006520
6521 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
6522 break;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006523 }
Peter Zijlstra067491b2011-12-07 14:32:08 +01006524 rcu_read_unlock();
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006525 return 0;
Peter Zijlstra067491b2011-12-07 14:32:08 +01006526
6527need_kick_unlock:
6528 rcu_read_unlock();
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006529need_kick:
6530 return 1;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006531}
6532#else
6533static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
6534#endif
6535
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006536/*
6537 * run_rebalance_domains is triggered when needed from the scheduler tick.
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006538 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006539 */
6540static void run_rebalance_domains(struct softirq_action *h)
6541{
6542 int this_cpu = smp_processor_id();
6543 struct rq *this_rq = cpu_rq(this_cpu);
Suresh Siddha6eb57e02011-10-03 15:09:01 -07006544 enum cpu_idle_type idle = this_rq->idle_balance ?
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006545 CPU_IDLE : CPU_NOT_IDLE;
6546
6547 rebalance_domains(this_cpu, idle);
6548
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006549 /*
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006550 * If this cpu has a pending nohz_balance_kick, then do the
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006551 * balancing on behalf of the other idle cpus whose ticks are
6552 * stopped.
6553 */
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006554 nohz_idle_balance(this_cpu, idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006555}
6556
6557static inline int on_null_domain(int cpu)
6558{
Paul E. McKenney90a65012010-02-28 08:32:18 -08006559 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006560}
6561
6562/*
6563 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006564 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006565void trigger_load_balance(struct rq *rq, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006566{
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006567 /* Don't need to rebalance while attached to NULL domain */
6568 if (time_after_eq(jiffies, rq->next_balance) &&
6569 likely(!on_null_domain(cpu)))
6570 raise_softirq(SCHED_SOFTIRQ);
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006571#ifdef CONFIG_NO_HZ_COMMON
Suresh Siddha1c792db2011-12-01 17:07:32 -08006572 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006573 nohz_balancer_kick(cpu);
6574#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006575}
6576
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01006577static void rq_online_fair(struct rq *rq)
6578{
6579 update_sysctl();
6580}
6581
6582static void rq_offline_fair(struct rq *rq)
6583{
6584 update_sysctl();
Peter Boonstoppela4c96ae2012-08-09 15:34:47 -07006585
6586 /* Ensure any throttled groups are reachable by pick_next_task */
6587 unthrottle_offline_cfs_rqs(rq);
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01006588}
6589
Dhaval Giani55e12e52008-06-24 23:39:43 +05306590#endif /* CONFIG_SMP */
Peter Williamse1d14842007-10-24 18:23:51 +02006591
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006592/*
6593 * scheduler tick hitting a task of our scheduling class:
6594 */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01006595static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006596{
6597 struct cfs_rq *cfs_rq;
6598 struct sched_entity *se = &curr->se;
6599
6600 for_each_sched_entity(se) {
6601 cfs_rq = cfs_rq_of(se);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01006602 entity_tick(cfs_rq, se, queued);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006603 }
Ben Segall18bf2802012-10-04 12:51:20 +02006604
Dave Kleikamp10e84b92013-07-31 13:53:35 -07006605 if (numabalancing_enabled)
Peter Zijlstracbee9f82012-10-25 14:16:43 +02006606 task_tick_numa(rq, curr);
Linus Torvalds3d59eeb2012-12-16 14:33:25 -08006607
Ben Segall18bf2802012-10-04 12:51:20 +02006608 update_rq_runnable_avg(rq, 1);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006609}
6610
6611/*
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006612 * called on fork with the child task as argument from the parent's context
6613 * - child not yet on the tasklist
6614 * - preemption disabled
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006615 */
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006616static void task_fork_fair(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006617{
Daisuke Nishimura4fc420c2011-12-15 14:36:55 +09006618 struct cfs_rq *cfs_rq;
6619 struct sched_entity *se = &p->se, *curr;
Ingo Molnar00bf7bf2007-10-15 17:00:14 +02006620 int this_cpu = smp_processor_id();
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006621 struct rq *rq = this_rq();
6622 unsigned long flags;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006623
Thomas Gleixner05fa7852009-11-17 14:28:38 +01006624 raw_spin_lock_irqsave(&rq->lock, flags);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006625
Peter Zijlstra861d0342010-08-19 13:31:43 +02006626 update_rq_clock(rq);
6627
Daisuke Nishimura4fc420c2011-12-15 14:36:55 +09006628 cfs_rq = task_cfs_rq(current);
6629 curr = cfs_rq->curr;
6630
Daisuke Nishimura6c9a27f2013-09-10 18:16:36 +09006631 /*
6632 * Not only the cpu but also the task_group of the parent might have
6633 * been changed after parent->se.parent,cfs_rq were copied to
6634 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6635 * of child point to valid ones.
6636 */
6637 rcu_read_lock();
6638 __set_task_cpu(p, this_cpu);
6639 rcu_read_unlock();
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006640
Ting Yang7109c442007-08-28 12:53:24 +02006641 update_curr(cfs_rq);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006642
Mike Galbraithb5d9d732009-09-08 11:12:28 +02006643 if (curr)
6644 se->vruntime = curr->vruntime;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02006645 place_entity(cfs_rq, se, 1);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02006646
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006647 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
Dmitry Adamushko87fefa32007-10-15 17:00:08 +02006648 /*
Ingo Molnaredcb60a2007-10-15 17:00:08 +02006649 * Upon rescheduling, sched_class::put_prev_task() will place
6650 * 'current' within the tree based on its new key value.
6651 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02006652 swap(curr->vruntime, se->vruntime);
Bharata B Raoaec0a512008-08-28 14:42:49 +05306653 resched_task(rq->curr);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02006654 }
6655
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01006656 se->vruntime -= cfs_rq->min_vruntime;
6657
Thomas Gleixner05fa7852009-11-17 14:28:38 +01006658 raw_spin_unlock_irqrestore(&rq->lock, flags);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006659}
6660
Steven Rostedtcb469842008-01-25 21:08:22 +01006661/*
6662 * Priority of the task has changed. Check to see if we preempt
6663 * the current task.
6664 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006665static void
6666prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
Steven Rostedtcb469842008-01-25 21:08:22 +01006667{
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006668 if (!p->se.on_rq)
6669 return;
6670
Steven Rostedtcb469842008-01-25 21:08:22 +01006671 /*
6672 * Reschedule if we are currently running on this runqueue and
6673 * our priority decreased, or if we are not currently running on
6674 * this runqueue and our priority is higher than the current's
6675 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006676 if (rq->curr == p) {
Steven Rostedtcb469842008-01-25 21:08:22 +01006677 if (p->prio > oldprio)
6678 resched_task(rq->curr);
6679 } else
Peter Zijlstra15afe092008-09-20 23:38:02 +02006680 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01006681}
6682
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006683static void switched_from_fair(struct rq *rq, struct task_struct *p)
6684{
6685 struct sched_entity *se = &p->se;
6686 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6687
6688 /*
6689 * Ensure the task's vruntime is normalized, so that when its
6690 * switched back to the fair class the enqueue_entity(.flags=0) will
6691 * do the right thing.
6692 *
6693 * If it was on_rq, then the dequeue_entity(.flags=0) will already
6694 * have normalized the vruntime, if it was !on_rq, then only when
6695 * the task is sleeping will it still have non-normalized vruntime.
6696 */
6697 if (!se->on_rq && p->state != TASK_RUNNING) {
6698 /*
6699 * Fix up our vruntime so that the current sleep doesn't
6700 * cause 'unlimited' sleep bonus.
6701 */
6702 place_entity(cfs_rq, se, 0);
6703 se->vruntime -= cfs_rq->min_vruntime;
6704 }
Paul Turner9ee474f2012-10-04 13:18:30 +02006705
Alex Shi141965c2013-06-26 13:05:39 +08006706#ifdef CONFIG_SMP
Paul Turner9ee474f2012-10-04 13:18:30 +02006707 /*
6708 * Remove our load from contribution when we leave sched_fair
6709 * and ensure we don't carry in an old decay_count if we
6710 * switch back.
6711 */
Kirill Tkhai87e3c8a2013-07-21 04:32:07 +04006712 if (se->avg.decay_count) {
6713 __synchronize_entity_decay(se);
6714 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
Paul Turner9ee474f2012-10-04 13:18:30 +02006715 }
6716#endif
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006717}
6718
Steven Rostedtcb469842008-01-25 21:08:22 +01006719/*
6720 * We switched to the sched_fair class.
6721 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006722static void switched_to_fair(struct rq *rq, struct task_struct *p)
Steven Rostedtcb469842008-01-25 21:08:22 +01006723{
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006724 if (!p->se.on_rq)
6725 return;
6726
Steven Rostedtcb469842008-01-25 21:08:22 +01006727 /*
6728 * We were most likely switched from sched_rt, so
6729 * kick off the schedule if running, otherwise just see
6730 * if we can still preempt the current task.
6731 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006732 if (rq->curr == p)
Steven Rostedtcb469842008-01-25 21:08:22 +01006733 resched_task(rq->curr);
6734 else
Peter Zijlstra15afe092008-09-20 23:38:02 +02006735 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01006736}
6737
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02006738/* Account for a task changing its policy or group.
6739 *
6740 * This routine is mostly called to set cfs_rq->curr field when a task
6741 * migrates between groups/classes.
6742 */
6743static void set_curr_task_fair(struct rq *rq)
6744{
6745 struct sched_entity *se = &rq->curr->se;
6746
Paul Turnerec12cb72011-07-21 09:43:30 -07006747 for_each_sched_entity(se) {
6748 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6749
6750 set_next_entity(cfs_rq, se);
6751 /* ensure bandwidth has been allocated on our new cfs_rq */
6752 account_cfs_rq_runtime(cfs_rq, 0);
6753 }
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02006754}
6755
Peter Zijlstra029632f2011-10-25 10:00:11 +02006756void init_cfs_rq(struct cfs_rq *cfs_rq)
6757{
6758 cfs_rq->tasks_timeline = RB_ROOT;
Peter Zijlstra029632f2011-10-25 10:00:11 +02006759 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6760#ifndef CONFIG_64BIT
6761 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
6762#endif
Alex Shi141965c2013-06-26 13:05:39 +08006763#ifdef CONFIG_SMP
Paul Turner9ee474f2012-10-04 13:18:30 +02006764 atomic64_set(&cfs_rq->decay_counter, 1);
Alex Shi25099402013-06-20 10:18:55 +08006765 atomic_long_set(&cfs_rq->removed_load, 0);
Paul Turner9ee474f2012-10-04 13:18:30 +02006766#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02006767}
6768
Peter Zijlstra810b3812008-02-29 15:21:01 -05006769#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02006770static void task_move_group_fair(struct task_struct *p, int on_rq)
Peter Zijlstra810b3812008-02-29 15:21:01 -05006771{
Paul Turneraff3e492012-10-04 13:18:30 +02006772 struct cfs_rq *cfs_rq;
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02006773 /*
6774 * If the task was not on the rq at the time of this cgroup movement
6775 * it must have been asleep, sleeping tasks keep their ->vruntime
6776 * absolute on their old rq until wakeup (needed for the fair sleeper
6777 * bonus in place_entity()).
6778 *
6779 * If it was on the rq, we've just 'preempted' it, which does convert
6780 * ->vruntime to a relative base.
6781 *
6782 * Make sure both cases convert their relative position when migrating
6783 * to another cgroup's rq. This does somewhat interfere with the
6784 * fair sleeper stuff for the first placement, but who cares.
6785 */
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09006786 /*
6787 * When !on_rq, vruntime of the task has usually NOT been normalized.
6788 * But there are some cases where it has already been normalized:
6789 *
6790 * - Moving a forked child which is waiting for being woken up by
6791 * wake_up_new_task().
Daisuke Nishimura62af3782011-12-15 14:37:41 +09006792 * - Moving a task which has been woken up by try_to_wake_up() and
6793 * waiting for actually being woken up by sched_ttwu_pending().
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09006794 *
6795 * To prevent boost or penalty in the new cfs_rq caused by delta
6796 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
6797 */
Daisuke Nishimura62af3782011-12-15 14:37:41 +09006798 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09006799 on_rq = 1;
6800
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01006801 if (!on_rq)
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02006802 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
6803 set_task_rq(p, task_cpu(p));
Paul Turneraff3e492012-10-04 13:18:30 +02006804 if (!on_rq) {
6805 cfs_rq = cfs_rq_of(&p->se);
6806 p->se.vruntime += cfs_rq->min_vruntime;
6807#ifdef CONFIG_SMP
6808 /*
6809 * migrate_task_rq_fair() will have removed our previous
6810 * contribution, but we must synchronize for ongoing future
6811 * decay.
6812 */
6813 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
6814 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
6815#endif
6816 }
Peter Zijlstra810b3812008-02-29 15:21:01 -05006817}
Peter Zijlstra029632f2011-10-25 10:00:11 +02006818
6819void free_fair_sched_group(struct task_group *tg)
6820{
6821 int i;
6822
6823 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
6824
6825 for_each_possible_cpu(i) {
6826 if (tg->cfs_rq)
6827 kfree(tg->cfs_rq[i]);
6828 if (tg->se)
6829 kfree(tg->se[i]);
6830 }
6831
6832 kfree(tg->cfs_rq);
6833 kfree(tg->se);
6834}
6835
6836int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6837{
6838 struct cfs_rq *cfs_rq;
6839 struct sched_entity *se;
6840 int i;
6841
6842 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
6843 if (!tg->cfs_rq)
6844 goto err;
6845 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
6846 if (!tg->se)
6847 goto err;
6848
6849 tg->shares = NICE_0_LOAD;
6850
6851 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
6852
6853 for_each_possible_cpu(i) {
6854 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
6855 GFP_KERNEL, cpu_to_node(i));
6856 if (!cfs_rq)
6857 goto err;
6858
6859 se = kzalloc_node(sizeof(struct sched_entity),
6860 GFP_KERNEL, cpu_to_node(i));
6861 if (!se)
6862 goto err_free_rq;
6863
6864 init_cfs_rq(cfs_rq);
6865 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
6866 }
6867
6868 return 1;
6869
6870err_free_rq:
6871 kfree(cfs_rq);
6872err:
6873 return 0;
6874}
6875
6876void unregister_fair_sched_group(struct task_group *tg, int cpu)
6877{
6878 struct rq *rq = cpu_rq(cpu);
6879 unsigned long flags;
6880
6881 /*
6882 * Only empty task groups can be destroyed; so we can speculatively
6883 * check on_list without danger of it being re-added.
6884 */
6885 if (!tg->cfs_rq[cpu]->on_list)
6886 return;
6887
6888 raw_spin_lock_irqsave(&rq->lock, flags);
6889 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
6890 raw_spin_unlock_irqrestore(&rq->lock, flags);
6891}
6892
6893void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
6894 struct sched_entity *se, int cpu,
6895 struct sched_entity *parent)
6896{
6897 struct rq *rq = cpu_rq(cpu);
6898
6899 cfs_rq->tg = tg;
6900 cfs_rq->rq = rq;
Peter Zijlstra029632f2011-10-25 10:00:11 +02006901 init_cfs_rq_runtime(cfs_rq);
6902
6903 tg->cfs_rq[cpu] = cfs_rq;
6904 tg->se[cpu] = se;
6905
6906 /* se could be NULL for root_task_group */
6907 if (!se)
6908 return;
6909
6910 if (!parent)
6911 se->cfs_rq = &rq->cfs;
6912 else
6913 se->cfs_rq = parent->my_q;
6914
6915 se->my_q = cfs_rq;
6916 update_load_set(&se->load, 0);
6917 se->parent = parent;
6918}
6919
6920static DEFINE_MUTEX(shares_mutex);
6921
6922int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6923{
6924 int i;
6925 unsigned long flags;
6926
6927 /*
6928 * We can't change the weight of the root cgroup.
6929 */
6930 if (!tg->se[0])
6931 return -EINVAL;
6932
6933 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
6934
6935 mutex_lock(&shares_mutex);
6936 if (tg->shares == shares)
6937 goto done;
6938
6939 tg->shares = shares;
6940 for_each_possible_cpu(i) {
6941 struct rq *rq = cpu_rq(i);
6942 struct sched_entity *se;
6943
6944 se = tg->se[i];
6945 /* Propagate contribution to hierarchy */
6946 raw_spin_lock_irqsave(&rq->lock, flags);
Frederic Weisbecker71b1da42013-04-12 01:50:59 +02006947
6948 /* Possible calls to update_curr() need rq clock */
6949 update_rq_clock(rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08006950 for_each_sched_entity(se)
Peter Zijlstra029632f2011-10-25 10:00:11 +02006951 update_cfs_shares(group_cfs_rq(se));
6952 raw_spin_unlock_irqrestore(&rq->lock, flags);
6953 }
6954
6955done:
6956 mutex_unlock(&shares_mutex);
6957 return 0;
6958}
6959#else /* CONFIG_FAIR_GROUP_SCHED */
6960
6961void free_fair_sched_group(struct task_group *tg) { }
6962
6963int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6964{
6965 return 1;
6966}
6967
6968void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
6969
6970#endif /* CONFIG_FAIR_GROUP_SCHED */
6971
Peter Zijlstra810b3812008-02-29 15:21:01 -05006972
H Hartley Sweeten6d686f42010-01-13 20:21:52 -07006973static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
Peter Williams0d721ce2009-09-21 01:31:53 +00006974{
6975 struct sched_entity *se = &task->se;
Peter Williams0d721ce2009-09-21 01:31:53 +00006976 unsigned int rr_interval = 0;
6977
6978 /*
6979 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
6980 * idle runqueue:
6981 */
Peter Williams0d721ce2009-09-21 01:31:53 +00006982 if (rq->cfs.load.weight)
Zhu Yanhaia59f4e02013-01-08 12:56:52 +08006983 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
Peter Williams0d721ce2009-09-21 01:31:53 +00006984
6985 return rr_interval;
6986}
6987
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006988/*
6989 * All the scheduling class methods:
6990 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006991const struct sched_class fair_sched_class = {
Ingo Molnar5522d5d2007-10-15 17:00:12 +02006992 .next = &idle_sched_class,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006993 .enqueue_task = enqueue_task_fair,
6994 .dequeue_task = dequeue_task_fair,
6995 .yield_task = yield_task_fair,
Mike Galbraithd95f4122011-02-01 09:50:51 -05006996 .yield_to_task = yield_to_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006997
Ingo Molnar2e09bf52007-10-15 17:00:05 +02006998 .check_preempt_curr = check_preempt_wakeup,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006999
7000 .pick_next_task = pick_next_task_fair,
7001 .put_prev_task = put_prev_task_fair,
7002
Peter Williams681f3e62007-10-24 18:23:51 +02007003#ifdef CONFIG_SMP
Li Zefan4ce72a22008-10-22 15:25:26 +08007004 .select_task_rq = select_task_rq_fair,
Paul Turner0a74bef2012-10-04 13:18:30 +02007005 .migrate_task_rq = migrate_task_rq_fair,
Alex Shi141965c2013-06-26 13:05:39 +08007006
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01007007 .rq_online = rq_online_fair,
7008 .rq_offline = rq_offline_fair,
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01007009
7010 .task_waking = task_waking_fair,
Peter Williams681f3e62007-10-24 18:23:51 +02007011#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007012
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02007013 .set_curr_task = set_curr_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007014 .task_tick = task_tick_fair,
Peter Zijlstracd29fe62009-11-27 17:32:46 +01007015 .task_fork = task_fork_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01007016
7017 .prio_changed = prio_changed_fair,
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007018 .switched_from = switched_from_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01007019 .switched_to = switched_to_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05007020
Peter Williams0d721ce2009-09-21 01:31:53 +00007021 .get_rr_interval = get_rr_interval_fair,
7022
Peter Zijlstra810b3812008-02-29 15:21:01 -05007023#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007024 .task_move_group = task_move_group_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05007025#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007026};
7027
7028#ifdef CONFIG_SCHED_DEBUG
Peter Zijlstra029632f2011-10-25 10:00:11 +02007029void print_cfs_stats(struct seq_file *m, int cpu)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007030{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007031 struct cfs_rq *cfs_rq;
7032
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01007033 rcu_read_lock();
Ingo Molnarc3b64f12007-08-09 11:16:51 +02007034 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
Ingo Molnar5cef9ec2007-08-09 11:16:47 +02007035 print_cfs_rq(m, cpu, cfs_rq);
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01007036 rcu_read_unlock();
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007037}
7038#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02007039
7040__init void init_sched_fair_class(void)
7041{
7042#ifdef CONFIG_SMP
7043 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7044
Frederic Weisbecker3451d022011-08-10 23:21:01 +02007045#ifdef CONFIG_NO_HZ_COMMON
Diwakar Tundlam554ceca2012-03-07 14:44:26 -08007046 nohz.next_balance = jiffies;
Peter Zijlstra029632f2011-10-25 10:00:11 +02007047 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
Suresh Siddha71325962012-01-19 18:28:57 -08007048 cpu_notifier(sched_ilb_notifier, 0);
Peter Zijlstra029632f2011-10-25 10:00:11 +02007049#endif
7050#endif /* SMP */
7051
7052}