blob: bb11569d2b4be10b351957ded3224f9731825f69 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * eeh.c
3 * Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation
Linas Vepstas69376502005-11-03 18:47:50 -06004 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07005 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
Linas Vepstas69376502005-11-03 18:47:50 -06009 *
Linus Torvalds1da177e2005-04-16 15:20:36 -070010 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
Linas Vepstas69376502005-11-03 18:47:50 -060014 *
Linus Torvalds1da177e2005-04-16 15:20:36 -070015 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
Linus Torvalds1da177e2005-04-16 15:20:36 -070020#include <linux/init.h>
21#include <linux/list.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070022#include <linux/notifier.h>
23#include <linux/pci.h>
24#include <linux/proc_fs.h>
25#include <linux/rbtree.h>
26#include <linux/seq_file.h>
27#include <linux/spinlock.h>
Linas Vepstas69376502005-11-03 18:47:50 -060028#include <asm/atomic.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070029#include <asm/eeh.h>
30#include <asm/io.h>
31#include <asm/machdep.h>
32#include <asm/rtas.h>
33#include <asm/atomic.h>
34#include <asm/systemcfg.h>
Stephen Rothwelld3878992005-09-28 02:50:25 +100035#include <asm/ppc-pci.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070036
37#undef DEBUG
38
39/** Overview:
40 * EEH, or "Extended Error Handling" is a PCI bridge technology for
41 * dealing with PCI bus errors that can't be dealt with within the
42 * usual PCI framework, except by check-stopping the CPU. Systems
43 * that are designed for high-availability/reliability cannot afford
44 * to crash due to a "mere" PCI error, thus the need for EEH.
45 * An EEH-capable bridge operates by converting a detected error
46 * into a "slot freeze", taking the PCI adapter off-line, making
47 * the slot behave, from the OS'es point of view, as if the slot
48 * were "empty": all reads return 0xff's and all writes are silently
49 * ignored. EEH slot isolation events can be triggered by parity
50 * errors on the address or data busses (e.g. during posted writes),
Linas Vepstas69376502005-11-03 18:47:50 -060051 * which in turn might be caused by low voltage on the bus, dust,
52 * vibration, humidity, radioactivity or plain-old failed hardware.
Linus Torvalds1da177e2005-04-16 15:20:36 -070053 *
54 * Note, however, that one of the leading causes of EEH slot
55 * freeze events are buggy device drivers, buggy device microcode,
56 * or buggy device hardware. This is because any attempt by the
57 * device to bus-master data to a memory address that is not
58 * assigned to the device will trigger a slot freeze. (The idea
59 * is to prevent devices-gone-wild from corrupting system memory).
60 * Buggy hardware/drivers will have a miserable time co-existing
61 * with EEH.
62 *
63 * Ideally, a PCI device driver, when suspecting that an isolation
64 * event has occured (e.g. by reading 0xff's), will then ask EEH
65 * whether this is the case, and then take appropriate steps to
66 * reset the PCI slot, the PCI device, and then resume operations.
67 * However, until that day, the checking is done here, with the
68 * eeh_check_failure() routine embedded in the MMIO macros. If
69 * the slot is found to be isolated, an "EEH Event" is synthesized
70 * and sent out for processing.
71 */
72
Linus Torvalds1da177e2005-04-16 15:20:36 -070073/* EEH event workqueue setup. */
74static DEFINE_SPINLOCK(eeh_eventlist_lock);
75LIST_HEAD(eeh_eventlist);
76static void eeh_event_handler(void *);
77DECLARE_WORK(eeh_event_wq, eeh_event_handler, NULL);
78
79static struct notifier_block *eeh_notifier_chain;
80
81/*
82 * If a device driver keeps reading an MMIO register in an interrupt
83 * handler after a slot isolation event has occurred, we assume it
84 * is broken and panic. This sets the threshold for how many read
85 * attempts we allow before panicking.
86 */
87#define EEH_MAX_FAILS 1000
88static atomic_t eeh_fail_count;
89
90/* RTAS tokens */
91static int ibm_set_eeh_option;
92static int ibm_set_slot_reset;
93static int ibm_read_slot_reset_state;
94static int ibm_read_slot_reset_state2;
95static int ibm_slot_error_detail;
96
97static int eeh_subsystem_enabled;
98
99/* Buffer for reporting slot-error-detail rtas calls */
100static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
101static DEFINE_SPINLOCK(slot_errbuf_lock);
102static int eeh_error_buf_size;
103
104/* System monitoring statistics */
105static DEFINE_PER_CPU(unsigned long, total_mmio_ffs);
106static DEFINE_PER_CPU(unsigned long, false_positives);
107static DEFINE_PER_CPU(unsigned long, ignored_failures);
108static DEFINE_PER_CPU(unsigned long, slot_resets);
109
110/**
111 * The pci address cache subsystem. This subsystem places
112 * PCI device address resources into a red-black tree, sorted
113 * according to the address range, so that given only an i/o
114 * address, the corresponding PCI device can be **quickly**
115 * found. It is safe to perform an address lookup in an interrupt
116 * context; this ability is an important feature.
117 *
118 * Currently, the only customer of this code is the EEH subsystem;
119 * thus, this code has been somewhat tailored to suit EEH better.
120 * In particular, the cache does *not* hold the addresses of devices
121 * for which EEH is not enabled.
122 *
123 * (Implementation Note: The RB tree seems to be better/faster
124 * than any hash algo I could think of for this problem, even
125 * with the penalty of slow pointer chases for d-cache misses).
126 */
127struct pci_io_addr_range
128{
129 struct rb_node rb_node;
130 unsigned long addr_lo;
131 unsigned long addr_hi;
132 struct pci_dev *pcidev;
133 unsigned int flags;
134};
135
136static struct pci_io_addr_cache
137{
138 struct rb_root rb_root;
139 spinlock_t piar_lock;
140} pci_io_addr_cache_root;
141
142static inline struct pci_dev *__pci_get_device_by_addr(unsigned long addr)
143{
144 struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node;
145
146 while (n) {
147 struct pci_io_addr_range *piar;
148 piar = rb_entry(n, struct pci_io_addr_range, rb_node);
149
150 if (addr < piar->addr_lo) {
151 n = n->rb_left;
152 } else {
153 if (addr > piar->addr_hi) {
154 n = n->rb_right;
155 } else {
156 pci_dev_get(piar->pcidev);
157 return piar->pcidev;
158 }
159 }
160 }
161
162 return NULL;
163}
164
165/**
166 * pci_get_device_by_addr - Get device, given only address
167 * @addr: mmio (PIO) phys address or i/o port number
168 *
169 * Given an mmio phys address, or a port number, find a pci device
170 * that implements this address. Be sure to pci_dev_put the device
171 * when finished. I/O port numbers are assumed to be offset
172 * from zero (that is, they do *not* have pci_io_addr added in).
173 * It is safe to call this function within an interrupt.
174 */
175static struct pci_dev *pci_get_device_by_addr(unsigned long addr)
176{
177 struct pci_dev *dev;
178 unsigned long flags;
179
180 spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
181 dev = __pci_get_device_by_addr(addr);
182 spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
183 return dev;
184}
185
186#ifdef DEBUG
187/*
188 * Handy-dandy debug print routine, does nothing more
189 * than print out the contents of our addr cache.
190 */
191static void pci_addr_cache_print(struct pci_io_addr_cache *cache)
192{
193 struct rb_node *n;
194 int cnt = 0;
195
196 n = rb_first(&cache->rb_root);
197 while (n) {
198 struct pci_io_addr_range *piar;
199 piar = rb_entry(n, struct pci_io_addr_range, rb_node);
Adrian Bunk982245f2005-07-17 04:22:20 +0200200 printk(KERN_DEBUG "PCI: %s addr range %d [%lx-%lx]: %s\n",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700201 (piar->flags & IORESOURCE_IO) ? "i/o" : "mem", cnt,
Adrian Bunk982245f2005-07-17 04:22:20 +0200202 piar->addr_lo, piar->addr_hi, pci_name(piar->pcidev));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700203 cnt++;
204 n = rb_next(n);
205 }
206}
207#endif
208
209/* Insert address range into the rb tree. */
210static struct pci_io_addr_range *
211pci_addr_cache_insert(struct pci_dev *dev, unsigned long alo,
212 unsigned long ahi, unsigned int flags)
213{
214 struct rb_node **p = &pci_io_addr_cache_root.rb_root.rb_node;
215 struct rb_node *parent = NULL;
216 struct pci_io_addr_range *piar;
217
218 /* Walk tree, find a place to insert into tree */
219 while (*p) {
220 parent = *p;
221 piar = rb_entry(parent, struct pci_io_addr_range, rb_node);
222 if (alo < piar->addr_lo) {
223 p = &parent->rb_left;
224 } else if (ahi > piar->addr_hi) {
225 p = &parent->rb_right;
226 } else {
227 if (dev != piar->pcidev ||
228 alo != piar->addr_lo || ahi != piar->addr_hi) {
229 printk(KERN_WARNING "PIAR: overlapping address range\n");
230 }
231 return piar;
232 }
233 }
234 piar = (struct pci_io_addr_range *)kmalloc(sizeof(struct pci_io_addr_range), GFP_ATOMIC);
235 if (!piar)
236 return NULL;
237
238 piar->addr_lo = alo;
239 piar->addr_hi = ahi;
240 piar->pcidev = dev;
241 piar->flags = flags;
242
243 rb_link_node(&piar->rb_node, parent, p);
244 rb_insert_color(&piar->rb_node, &pci_io_addr_cache_root.rb_root);
245
246 return piar;
247}
248
249static void __pci_addr_cache_insert_device(struct pci_dev *dev)
250{
251 struct device_node *dn;
Paul Mackerras16353172005-09-06 13:17:54 +1000252 struct pci_dn *pdn;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700253 int i;
254 int inserted = 0;
255
256 dn = pci_device_to_OF_node(dev);
257 if (!dn) {
Linas Vepstas69376502005-11-03 18:47:50 -0600258 printk(KERN_WARNING "PCI: no pci dn found for dev=%s\n", pci_name(dev));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700259 return;
260 }
261
262 /* Skip any devices for which EEH is not enabled. */
Linas Vepstas69376502005-11-03 18:47:50 -0600263 pdn = PCI_DN(dn);
Paul Mackerras16353172005-09-06 13:17:54 +1000264 if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
265 pdn->eeh_mode & EEH_MODE_NOCHECK) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700266#ifdef DEBUG
Linas Vepstas69376502005-11-03 18:47:50 -0600267 printk(KERN_INFO "PCI: skip building address cache for=%s - %s\n",
268 pci_name(dev), pdn->node->full_name);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700269#endif
270 return;
271 }
272
273 /* The cache holds a reference to the device... */
274 pci_dev_get(dev);
275
276 /* Walk resources on this device, poke them into the tree */
277 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
278 unsigned long start = pci_resource_start(dev,i);
279 unsigned long end = pci_resource_end(dev,i);
280 unsigned int flags = pci_resource_flags(dev,i);
281
282 /* We are interested only bus addresses, not dma or other stuff */
283 if (0 == (flags & (IORESOURCE_IO | IORESOURCE_MEM)))
284 continue;
285 if (start == 0 || ~start == 0 || end == 0 || ~end == 0)
286 continue;
287 pci_addr_cache_insert(dev, start, end, flags);
288 inserted = 1;
289 }
290
291 /* If there was nothing to add, the cache has no reference... */
292 if (!inserted)
293 pci_dev_put(dev);
294}
295
296/**
297 * pci_addr_cache_insert_device - Add a device to the address cache
298 * @dev: PCI device whose I/O addresses we are interested in.
299 *
300 * In order to support the fast lookup of devices based on addresses,
301 * we maintain a cache of devices that can be quickly searched.
302 * This routine adds a device to that cache.
303 */
304void pci_addr_cache_insert_device(struct pci_dev *dev)
305{
306 unsigned long flags;
307
308 spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
309 __pci_addr_cache_insert_device(dev);
310 spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
311}
312
313static inline void __pci_addr_cache_remove_device(struct pci_dev *dev)
314{
315 struct rb_node *n;
316 int removed = 0;
317
318restart:
319 n = rb_first(&pci_io_addr_cache_root.rb_root);
320 while (n) {
321 struct pci_io_addr_range *piar;
322 piar = rb_entry(n, struct pci_io_addr_range, rb_node);
323
324 if (piar->pcidev == dev) {
325 rb_erase(n, &pci_io_addr_cache_root.rb_root);
326 removed = 1;
327 kfree(piar);
328 goto restart;
329 }
330 n = rb_next(n);
331 }
332
333 /* The cache no longer holds its reference to this device... */
334 if (removed)
335 pci_dev_put(dev);
336}
337
338/**
339 * pci_addr_cache_remove_device - remove pci device from addr cache
340 * @dev: device to remove
341 *
342 * Remove a device from the addr-cache tree.
343 * This is potentially expensive, since it will walk
344 * the tree multiple times (once per resource).
345 * But so what; device removal doesn't need to be that fast.
346 */
347void pci_addr_cache_remove_device(struct pci_dev *dev)
348{
349 unsigned long flags;
350
351 spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
352 __pci_addr_cache_remove_device(dev);
353 spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
354}
355
356/**
357 * pci_addr_cache_build - Build a cache of I/O addresses
358 *
359 * Build a cache of pci i/o addresses. This cache will be used to
360 * find the pci device that corresponds to a given address.
361 * This routine scans all pci busses to build the cache.
362 * Must be run late in boot process, after the pci controllers
363 * have been scaned for devices (after all device resources are known).
364 */
365void __init pci_addr_cache_build(void)
366{
367 struct pci_dev *dev = NULL;
368
369 spin_lock_init(&pci_io_addr_cache_root.piar_lock);
370
371 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
372 /* Ignore PCI bridges ( XXX why ??) */
373 if ((dev->class >> 16) == PCI_BASE_CLASS_BRIDGE) {
374 continue;
375 }
376 pci_addr_cache_insert_device(dev);
377 }
378
379#ifdef DEBUG
380 /* Verify tree built up above, echo back the list of addrs. */
381 pci_addr_cache_print(&pci_io_addr_cache_root);
382#endif
383}
384
385/* --------------------------------------------------------------- */
386/* Above lies the PCI Address Cache. Below lies the EEH event infrastructure */
387
388/**
389 * eeh_register_notifier - Register to find out about EEH events.
390 * @nb: notifier block to callback on events
391 */
392int eeh_register_notifier(struct notifier_block *nb)
393{
394 return notifier_chain_register(&eeh_notifier_chain, nb);
395}
396
397/**
398 * eeh_unregister_notifier - Unregister to an EEH event notifier.
399 * @nb: notifier block to callback on events
400 */
401int eeh_unregister_notifier(struct notifier_block *nb)
402{
403 return notifier_chain_unregister(&eeh_notifier_chain, nb);
404}
405
406/**
407 * read_slot_reset_state - Read the reset state of a device node's slot
408 * @dn: device node to read
409 * @rets: array to return results in
410 */
Linas Vepstas69376502005-11-03 18:47:50 -0600411static int read_slot_reset_state(struct pci_dn *pdn, int rets[])
Linus Torvalds1da177e2005-04-16 15:20:36 -0700412{
413 int token, outputs;
414
415 if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
416 token = ibm_read_slot_reset_state2;
417 outputs = 4;
418 } else {
419 token = ibm_read_slot_reset_state;
Linas Vepstas69376502005-11-03 18:47:50 -0600420 rets[2] = 0; /* fake PE Unavailable info */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700421 outputs = 3;
422 }
423
Paul Mackerras16353172005-09-06 13:17:54 +1000424 return rtas_call(token, 3, outputs, rets, pdn->eeh_config_addr,
425 BUID_HI(pdn->phb->buid), BUID_LO(pdn->phb->buid));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700426}
427
428/**
429 * eeh_panic - call panic() for an eeh event that cannot be handled.
430 * The philosophy of this routine is that it is better to panic and
431 * halt the OS than it is to risk possible data corruption by
432 * oblivious device drivers that don't know better.
433 *
434 * @dev pci device that had an eeh event
435 * @reset_state current reset state of the device slot
436 */
437static void eeh_panic(struct pci_dev *dev, int reset_state)
438{
439 /*
440 * XXX We should create a separate sysctl for this.
441 *
442 * Since the panic_on_oops sysctl is used to halt the system
443 * in light of potential corruption, we can use it here.
444 */
445 if (panic_on_oops)
Adrian Bunk982245f2005-07-17 04:22:20 +0200446 panic("EEH: MMIO failure (%d) on device:%s\n", reset_state,
447 pci_name(dev));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700448 else {
449 __get_cpu_var(ignored_failures)++;
Adrian Bunk982245f2005-07-17 04:22:20 +0200450 printk(KERN_INFO "EEH: Ignored MMIO failure (%d) on device:%s\n",
451 reset_state, pci_name(dev));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700452 }
453}
454
455/**
456 * eeh_event_handler - dispatch EEH events. The detection of a frozen
457 * slot can occur inside an interrupt, where it can be hard to do
458 * anything about it. The goal of this routine is to pull these
459 * detection events out of the context of the interrupt handler, and
460 * re-dispatch them for processing at a later time in a normal context.
461 *
462 * @dummy - unused
463 */
464static void eeh_event_handler(void *dummy)
465{
466 unsigned long flags;
467 struct eeh_event *event;
468
469 while (1) {
470 spin_lock_irqsave(&eeh_eventlist_lock, flags);
471 event = NULL;
472 if (!list_empty(&eeh_eventlist)) {
473 event = list_entry(eeh_eventlist.next, struct eeh_event, list);
474 list_del(&event->list);
475 }
476 spin_unlock_irqrestore(&eeh_eventlist_lock, flags);
477 if (event == NULL)
478 break;
479
480 printk(KERN_INFO "EEH: MMIO failure (%d), notifiying device "
Adrian Bunk982245f2005-07-17 04:22:20 +0200481 "%s\n", event->reset_state,
482 pci_name(event->dev));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700483
484 atomic_set(&eeh_fail_count, 0);
485 notifier_call_chain (&eeh_notifier_chain,
486 EEH_NOTIFY_FREEZE, event);
487
488 __get_cpu_var(slot_resets)++;
489
490 pci_dev_put(event->dev);
491 kfree(event);
492 }
493}
494
495/**
496 * eeh_token_to_phys - convert EEH address token to phys address
Linas Vepstas69376502005-11-03 18:47:50 -0600497 * @token i/o token, should be address in the form 0xA....
Linus Torvalds1da177e2005-04-16 15:20:36 -0700498 */
499static inline unsigned long eeh_token_to_phys(unsigned long token)
500{
501 pte_t *ptep;
502 unsigned long pa;
503
David Gibson20cee162005-06-21 17:15:31 -0700504 ptep = find_linux_pte(init_mm.pgd, token);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700505 if (!ptep)
506 return token;
507 pa = pte_pfn(*ptep) << PAGE_SHIFT;
508
509 return pa | (token & (PAGE_SIZE-1));
510}
511
512/**
513 * eeh_dn_check_failure - check if all 1's data is due to EEH slot freeze
514 * @dn device node
515 * @dev pci device, if known
516 *
517 * Check for an EEH failure for the given device node. Call this
518 * routine if the result of a read was all 0xff's and you want to
519 * find out if this is due to an EEH slot freeze. This routine
520 * will query firmware for the EEH status.
521 *
522 * Returns 0 if there has not been an EEH error; otherwise returns
Linas Vepstas69376502005-11-03 18:47:50 -0600523 * a non-zero value and queues up a slot isolation event notification.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700524 *
525 * It is safe to call this routine in an interrupt context.
526 */
527int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev)
528{
529 int ret;
530 int rets[3];
531 unsigned long flags;
532 int rc, reset_state;
533 struct eeh_event *event;
Paul Mackerras16353172005-09-06 13:17:54 +1000534 struct pci_dn *pdn;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700535
536 __get_cpu_var(total_mmio_ffs)++;
537
538 if (!eeh_subsystem_enabled)
539 return 0;
540
541 if (!dn)
542 return 0;
Linas Vepstas69376502005-11-03 18:47:50 -0600543 pdn = PCI_DN(dn);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700544
545 /* Access to IO BARs might get this far and still not want checking. */
Paul Mackerras16353172005-09-06 13:17:54 +1000546 if (!pdn->eeh_capable || !(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
547 pdn->eeh_mode & EEH_MODE_NOCHECK) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700548 return 0;
549 }
550
Paul Mackerras16353172005-09-06 13:17:54 +1000551 if (!pdn->eeh_config_addr) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700552 return 0;
553 }
554
555 /*
556 * If we already have a pending isolation event for this
557 * slot, we know it's bad already, we don't need to check...
558 */
Paul Mackerras16353172005-09-06 13:17:54 +1000559 if (pdn->eeh_mode & EEH_MODE_ISOLATED) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700560 atomic_inc(&eeh_fail_count);
561 if (atomic_read(&eeh_fail_count) >= EEH_MAX_FAILS) {
562 /* re-read the slot reset state */
Linas Vepstas69376502005-11-03 18:47:50 -0600563 if (read_slot_reset_state(pdn, rets) != 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700564 rets[0] = -1; /* reset state unknown */
565 eeh_panic(dev, rets[0]);
566 }
567 return 0;
568 }
569
570 /*
571 * Now test for an EEH failure. This is VERY expensive.
572 * Note that the eeh_config_addr may be a parent device
573 * in the case of a device behind a bridge, or it may be
574 * function zero of a multi-function device.
575 * In any case they must share a common PHB.
576 */
Linas Vepstas69376502005-11-03 18:47:50 -0600577 ret = read_slot_reset_state(pdn, rets);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700578 if (!(ret == 0 && rets[1] == 1 && (rets[0] == 2 || rets[0] == 4))) {
579 __get_cpu_var(false_positives)++;
580 return 0;
581 }
582
583 /* prevent repeated reports of this failure */
Paul Mackerras16353172005-09-06 13:17:54 +1000584 pdn->eeh_mode |= EEH_MODE_ISOLATED;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700585
586 reset_state = rets[0];
587
588 spin_lock_irqsave(&slot_errbuf_lock, flags);
589 memset(slot_errbuf, 0, eeh_error_buf_size);
590
591 rc = rtas_call(ibm_slot_error_detail,
Paul Mackerras16353172005-09-06 13:17:54 +1000592 8, 1, NULL, pdn->eeh_config_addr,
593 BUID_HI(pdn->phb->buid),
594 BUID_LO(pdn->phb->buid), NULL, 0,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700595 virt_to_phys(slot_errbuf),
596 eeh_error_buf_size,
597 1 /* Temporary Error */);
598
599 if (rc == 0)
600 log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
601 spin_unlock_irqrestore(&slot_errbuf_lock, flags);
602
603 printk(KERN_INFO "EEH: MMIO failure (%d) on device: %s %s\n",
604 rets[0], dn->name, dn->full_name);
605 event = kmalloc(sizeof(*event), GFP_ATOMIC);
606 if (event == NULL) {
607 eeh_panic(dev, reset_state);
608 return 1;
609 }
610
611 event->dev = dev;
612 event->dn = dn;
613 event->reset_state = reset_state;
614
615 /* We may or may not be called in an interrupt context */
616 spin_lock_irqsave(&eeh_eventlist_lock, flags);
617 list_add(&event->list, &eeh_eventlist);
618 spin_unlock_irqrestore(&eeh_eventlist_lock, flags);
619
620 /* Most EEH events are due to device driver bugs. Having
621 * a stack trace will help the device-driver authors figure
622 * out what happened. So print that out. */
623 dump_stack();
624 schedule_work(&eeh_event_wq);
625
626 return 0;
627}
628
629EXPORT_SYMBOL(eeh_dn_check_failure);
630
631/**
632 * eeh_check_failure - check if all 1's data is due to EEH slot freeze
633 * @token i/o token, should be address in the form 0xA....
634 * @val value, should be all 1's (XXX why do we need this arg??)
635 *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700636 * Check for an EEH failure at the given token address. Call this
637 * routine if the result of a read was all 0xff's and you want to
638 * find out if this is due to an EEH slot freeze event. This routine
639 * will query firmware for the EEH status.
640 *
641 * Note this routine is safe to call in an interrupt context.
642 */
643unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
644{
645 unsigned long addr;
646 struct pci_dev *dev;
647 struct device_node *dn;
648
649 /* Finding the phys addr + pci device; this is pretty quick. */
650 addr = eeh_token_to_phys((unsigned long __force) token);
651 dev = pci_get_device_by_addr(addr);
652 if (!dev)
653 return val;
654
655 dn = pci_device_to_OF_node(dev);
656 eeh_dn_check_failure (dn, dev);
657
658 pci_dev_put(dev);
659 return val;
660}
661
662EXPORT_SYMBOL(eeh_check_failure);
663
664struct eeh_early_enable_info {
665 unsigned int buid_hi;
666 unsigned int buid_lo;
667};
668
669/* Enable eeh for the given device node. */
670static void *early_enable_eeh(struct device_node *dn, void *data)
671{
672 struct eeh_early_enable_info *info = data;
673 int ret;
674 char *status = get_property(dn, "status", NULL);
675 u32 *class_code = (u32 *)get_property(dn, "class-code", NULL);
676 u32 *vendor_id = (u32 *)get_property(dn, "vendor-id", NULL);
677 u32 *device_id = (u32 *)get_property(dn, "device-id", NULL);
678 u32 *regs;
679 int enable;
Linas Vepstas69376502005-11-03 18:47:50 -0600680 struct pci_dn *pdn = PCI_DN(dn);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700681
Paul Mackerras16353172005-09-06 13:17:54 +1000682 pdn->eeh_mode = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700683
684 if (status && strcmp(status, "ok") != 0)
685 return NULL; /* ignore devices with bad status */
686
687 /* Ignore bad nodes. */
688 if (!class_code || !vendor_id || !device_id)
689 return NULL;
690
691 /* There is nothing to check on PCI to ISA bridges */
692 if (dn->type && !strcmp(dn->type, "isa")) {
Paul Mackerras16353172005-09-06 13:17:54 +1000693 pdn->eeh_mode |= EEH_MODE_NOCHECK;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700694 return NULL;
695 }
696
697 /*
698 * Now decide if we are going to "Disable" EEH checking
699 * for this device. We still run with the EEH hardware active,
700 * but we won't be checking for ff's. This means a driver
701 * could return bad data (very bad!), an interrupt handler could
702 * hang waiting on status bits that won't change, etc.
703 * But there are a few cases like display devices that make sense.
704 */
705 enable = 1; /* i.e. we will do checking */
706 if ((*class_code >> 16) == PCI_BASE_CLASS_DISPLAY)
707 enable = 0;
708
709 if (!enable)
Paul Mackerras16353172005-09-06 13:17:54 +1000710 pdn->eeh_mode |= EEH_MODE_NOCHECK;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700711
712 /* Ok... see if this device supports EEH. Some do, some don't,
713 * and the only way to find out is to check each and every one. */
714 regs = (u32 *)get_property(dn, "reg", NULL);
715 if (regs) {
716 /* First register entry is addr (00BBSS00) */
717 /* Try to enable eeh */
718 ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
719 regs[0], info->buid_hi, info->buid_lo,
720 EEH_ENABLE);
721 if (ret == 0) {
722 eeh_subsystem_enabled = 1;
Paul Mackerras16353172005-09-06 13:17:54 +1000723 pdn->eeh_mode |= EEH_MODE_SUPPORTED;
724 pdn->eeh_config_addr = regs[0];
Linus Torvalds1da177e2005-04-16 15:20:36 -0700725#ifdef DEBUG
726 printk(KERN_DEBUG "EEH: %s: eeh enabled\n", dn->full_name);
727#endif
728 } else {
729
730 /* This device doesn't support EEH, but it may have an
731 * EEH parent, in which case we mark it as supported. */
Linas Vepstas69376502005-11-03 18:47:50 -0600732 if (dn->parent && PCI_DN(dn->parent)
Paul Mackerras16353172005-09-06 13:17:54 +1000733 && (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700734 /* Parent supports EEH. */
Paul Mackerras16353172005-09-06 13:17:54 +1000735 pdn->eeh_mode |= EEH_MODE_SUPPORTED;
736 pdn->eeh_config_addr = PCI_DN(dn->parent)->eeh_config_addr;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700737 return NULL;
738 }
739 }
740 } else {
741 printk(KERN_WARNING "EEH: %s: unable to get reg property.\n",
742 dn->full_name);
743 }
744
Linas Vepstas69376502005-11-03 18:47:50 -0600745 return NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700746}
747
748/*
749 * Initialize EEH by trying to enable it for all of the adapters in the system.
750 * As a side effect we can determine here if eeh is supported at all.
751 * Note that we leave EEH on so failed config cycles won't cause a machine
752 * check. If a user turns off EEH for a particular adapter they are really
753 * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
754 * grant access to a slot if EEH isn't enabled, and so we always enable
755 * EEH for all slots/all devices.
756 *
757 * The eeh-force-off option disables EEH checking globally, for all slots.
758 * Even if force-off is set, the EEH hardware is still enabled, so that
759 * newer systems can boot.
760 */
761void __init eeh_init(void)
762{
763 struct device_node *phb, *np;
764 struct eeh_early_enable_info info;
765
766 np = of_find_node_by_path("/rtas");
767 if (np == NULL)
768 return;
769
770 ibm_set_eeh_option = rtas_token("ibm,set-eeh-option");
771 ibm_set_slot_reset = rtas_token("ibm,set-slot-reset");
772 ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2");
773 ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state");
774 ibm_slot_error_detail = rtas_token("ibm,slot-error-detail");
775
776 if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE)
777 return;
778
779 eeh_error_buf_size = rtas_token("rtas-error-log-max");
780 if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) {
781 eeh_error_buf_size = 1024;
782 }
783 if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) {
784 printk(KERN_WARNING "EEH: rtas-error-log-max is bigger than allocated "
785 "buffer ! (%d vs %d)", eeh_error_buf_size, RTAS_ERROR_LOG_MAX);
786 eeh_error_buf_size = RTAS_ERROR_LOG_MAX;
787 }
788
789 /* Enable EEH for all adapters. Note that eeh requires buid's */
790 for (phb = of_find_node_by_name(NULL, "pci"); phb;
791 phb = of_find_node_by_name(phb, "pci")) {
792 unsigned long buid;
793
794 buid = get_phb_buid(phb);
Linas Vepstas69376502005-11-03 18:47:50 -0600795 if (buid == 0 || PCI_DN(phb) == NULL)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700796 continue;
797
798 info.buid_lo = BUID_LO(buid);
799 info.buid_hi = BUID_HI(buid);
800 traverse_pci_devices(phb, early_enable_eeh, &info);
801 }
802
803 if (eeh_subsystem_enabled)
804 printk(KERN_INFO "EEH: PCI Enhanced I/O Error Handling Enabled\n");
805 else
806 printk(KERN_WARNING "EEH: No capable adapters found\n");
807}
808
809/**
810 * eeh_add_device_early - enable EEH for the indicated device_node
811 * @dn: device node for which to set up EEH
812 *
813 * This routine must be used to perform EEH initialization for PCI
814 * devices that were added after system boot (e.g. hotplug, dlpar).
815 * This routine must be called before any i/o is performed to the
816 * adapter (inluding any config-space i/o).
817 * Whether this actually enables EEH or not for this device depends
818 * on the CEC architecture, type of the device, on earlier boot
819 * command-line arguments & etc.
820 */
821void eeh_add_device_early(struct device_node *dn)
822{
823 struct pci_controller *phb;
824 struct eeh_early_enable_info info;
825
Linas Vepstas69376502005-11-03 18:47:50 -0600826 if (!dn || !PCI_DN(dn))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700827 return;
Paul Mackerras16353172005-09-06 13:17:54 +1000828 phb = PCI_DN(dn)->phb;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700829 if (NULL == phb || 0 == phb->buid) {
Linas Vepstas69376502005-11-03 18:47:50 -0600830 printk(KERN_WARNING "EEH: Expected buid but found none for %s\n",
831 dn->full_name);
832 dump_stack();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700833 return;
834 }
835
836 info.buid_hi = BUID_HI(phb->buid);
837 info.buid_lo = BUID_LO(phb->buid);
838 early_enable_eeh(dn, &info);
839}
840EXPORT_SYMBOL(eeh_add_device_early);
841
842/**
843 * eeh_add_device_late - perform EEH initialization for the indicated pci device
844 * @dev: pci device for which to set up EEH
845 *
846 * This routine must be used to complete EEH initialization for PCI
847 * devices that were added after system boot (e.g. hotplug, dlpar).
848 */
849void eeh_add_device_late(struct pci_dev *dev)
850{
851 if (!dev || !eeh_subsystem_enabled)
852 return;
853
854#ifdef DEBUG
Adrian Bunk982245f2005-07-17 04:22:20 +0200855 printk(KERN_DEBUG "EEH: adding device %s\n", pci_name(dev));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700856#endif
857
858 pci_addr_cache_insert_device (dev);
859}
860EXPORT_SYMBOL(eeh_add_device_late);
861
862/**
863 * eeh_remove_device - undo EEH setup for the indicated pci device
864 * @dev: pci device to be removed
865 *
866 * This routine should be when a device is removed from a running
867 * system (e.g. by hotplug or dlpar).
868 */
869void eeh_remove_device(struct pci_dev *dev)
870{
871 if (!dev || !eeh_subsystem_enabled)
872 return;
873
874 /* Unregister the device with the EEH/PCI address search system */
875#ifdef DEBUG
Adrian Bunk982245f2005-07-17 04:22:20 +0200876 printk(KERN_DEBUG "EEH: remove device %s\n", pci_name(dev));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700877#endif
878 pci_addr_cache_remove_device(dev);
879}
880EXPORT_SYMBOL(eeh_remove_device);
881
882static int proc_eeh_show(struct seq_file *m, void *v)
883{
884 unsigned int cpu;
885 unsigned long ffs = 0, positives = 0, failures = 0;
886 unsigned long resets = 0;
887
888 for_each_cpu(cpu) {
889 ffs += per_cpu(total_mmio_ffs, cpu);
890 positives += per_cpu(false_positives, cpu);
891 failures += per_cpu(ignored_failures, cpu);
892 resets += per_cpu(slot_resets, cpu);
893 }
894
895 if (0 == eeh_subsystem_enabled) {
896 seq_printf(m, "EEH Subsystem is globally disabled\n");
897 seq_printf(m, "eeh_total_mmio_ffs=%ld\n", ffs);
898 } else {
899 seq_printf(m, "EEH Subsystem is enabled\n");
900 seq_printf(m, "eeh_total_mmio_ffs=%ld\n"
901 "eeh_false_positives=%ld\n"
902 "eeh_ignored_failures=%ld\n"
903 "eeh_slot_resets=%ld\n"
904 "eeh_fail_count=%d\n",
905 ffs, positives, failures, resets,
906 eeh_fail_count.counter);
907 }
908
909 return 0;
910}
911
912static int proc_eeh_open(struct inode *inode, struct file *file)
913{
914 return single_open(file, proc_eeh_show, NULL);
915}
916
917static struct file_operations proc_eeh_operations = {
918 .open = proc_eeh_open,
919 .read = seq_read,
920 .llseek = seq_lseek,
921 .release = single_release,
922};
923
924static int __init eeh_init_proc(void)
925{
926 struct proc_dir_entry *e;
927
928 if (systemcfg->platform & PLATFORM_PSERIES) {
929 e = create_proc_entry("ppc64/eeh", 0, NULL);
930 if (e)
931 e->proc_fops = &proc_eeh_operations;
932 }
933
934 return 0;
935}
936__initcall(eeh_init_proc);