blob: 2f7c212065749a900e1cf5eb3d557fbcb0a86007 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/arch/x86-64/kernel/time.c
3 *
4 * "High Precision Event Timer" based timekeeping.
5 *
6 * Copyright (c) 1991,1992,1995 Linus Torvalds
7 * Copyright (c) 1994 Alan Modra
8 * Copyright (c) 1995 Markus Kuhn
9 * Copyright (c) 1996 Ingo Molnar
10 * Copyright (c) 1998 Andrea Arcangeli
11 * Copyright (c) 2002 Vojtech Pavlik
12 * Copyright (c) 2003 Andi Kleen
13 * RTC support code taken from arch/i386/kernel/timers/time_hpet.c
14 */
15
16#include <linux/kernel.h>
17#include <linux/sched.h>
18#include <linux/interrupt.h>
19#include <linux/init.h>
20#include <linux/mc146818rtc.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070021#include <linux/time.h>
22#include <linux/ioport.h>
23#include <linux/module.h>
24#include <linux/device.h>
25#include <linux/sysdev.h>
26#include <linux/bcd.h>
27#include <linux/kallsyms.h>
Andi Kleen312df5f2005-05-16 21:53:28 -070028#include <linux/acpi.h>
Andi Kleen8d916402005-05-31 14:39:26 -070029#ifdef CONFIG_ACPI
Andi Kleen312df5f2005-05-16 21:53:28 -070030#include <acpi/achware.h> /* for PM timer frequency */
Andi Kleen8d916402005-05-31 14:39:26 -070031#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -070032#include <asm/8253pit.h>
33#include <asm/pgtable.h>
34#include <asm/vsyscall.h>
35#include <asm/timex.h>
36#include <asm/proto.h>
37#include <asm/hpet.h>
38#include <asm/sections.h>
39#include <linux/cpufreq.h>
40#include <linux/hpet.h>
41#ifdef CONFIG_X86_LOCAL_APIC
42#include <asm/apic.h>
43#endif
44
Linus Torvalds1da177e2005-04-16 15:20:36 -070045#ifdef CONFIG_CPU_FREQ
46static void cpufreq_delayed_get(void);
47#endif
48extern void i8254_timer_resume(void);
49extern int using_apic_timer;
50
Andi Kleene8b91772006-02-26 04:18:49 +010051static char *time_init_gtod(void);
52
Linus Torvalds1da177e2005-04-16 15:20:36 -070053DEFINE_SPINLOCK(rtc_lock);
54DEFINE_SPINLOCK(i8253_lock);
55
Andi Kleen73dea472006-02-03 21:50:50 +010056int nohpet __initdata = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -070057static int notsc __initdata = 0;
58
59#undef HPET_HACK_ENABLE_DANGEROUS
60
61unsigned int cpu_khz; /* TSC clocks / usec, not used here */
62static unsigned long hpet_period; /* fsecs / HPET clock */
63unsigned long hpet_tick; /* HPET clocks / interrupt */
Chris McDermott33042a92006-02-11 17:55:50 -080064int hpet_use_timer; /* Use counter of hpet for time keeping, otherwise PIT */
Linus Torvalds1da177e2005-04-16 15:20:36 -070065unsigned long vxtime_hz = PIT_TICK_RATE;
66int report_lost_ticks; /* command line option */
67unsigned long long monotonic_base;
68
69struct vxtime_data __vxtime __section_vxtime; /* for vsyscalls */
70
71volatile unsigned long __jiffies __section_jiffies = INITIAL_JIFFIES;
72unsigned long __wall_jiffies __section_wall_jiffies = INITIAL_JIFFIES;
73struct timespec __xtime __section_xtime;
74struct timezone __sys_tz __section_sys_tz;
75
Linus Torvalds1da177e2005-04-16 15:20:36 -070076/*
77 * do_gettimeoffset() returns microseconds since last timer interrupt was
78 * triggered by hardware. A memory read of HPET is slower than a register read
79 * of TSC, but much more reliable. It's also synchronized to the timer
80 * interrupt. Note that do_gettimeoffset() may return more than hpet_tick, if a
81 * timer interrupt has happened already, but vxtime.trigger wasn't updated yet.
82 * This is not a problem, because jiffies hasn't updated either. They are bound
83 * together by xtime_lock.
84 */
85
86static inline unsigned int do_gettimeoffset_tsc(void)
87{
88 unsigned long t;
89 unsigned long x;
Andi Kleenc818a182006-01-11 22:45:24 +010090 t = get_cycles_sync();
Linus Torvalds1da177e2005-04-16 15:20:36 -070091 if (t < vxtime.last_tsc) t = vxtime.last_tsc; /* hack */
92 x = ((t - vxtime.last_tsc) * vxtime.tsc_quot) >> 32;
93 return x;
94}
95
96static inline unsigned int do_gettimeoffset_hpet(void)
97{
john stultza3a00752005-06-23 00:08:36 -070098 /* cap counter read to one tick to avoid inconsistencies */
99 unsigned long counter = hpet_readl(HPET_COUNTER) - vxtime.last;
100 return (min(counter,hpet_tick) * vxtime.quot) >> 32;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700101}
102
103unsigned int (*do_gettimeoffset)(void) = do_gettimeoffset_tsc;
104
105/*
106 * This version of gettimeofday() has microsecond resolution and better than
107 * microsecond precision, as we're using at least a 10 MHz (usually 14.31818
108 * MHz) HPET timer.
109 */
110
111void do_gettimeofday(struct timeval *tv)
112{
113 unsigned long seq, t;
114 unsigned int sec, usec;
115
116 do {
117 seq = read_seqbegin(&xtime_lock);
118
119 sec = xtime.tv_sec;
120 usec = xtime.tv_nsec / 1000;
121
122 /* i386 does some correction here to keep the clock
123 monotonous even when ntpd is fixing drift.
124 But they didn't work for me, there is a non monotonic
125 clock anyways with ntp.
126 I dropped all corrections now until a real solution can
127 be found. Note when you fix it here you need to do the same
128 in arch/x86_64/kernel/vsyscall.c and export all needed
129 variables in vmlinux.lds. -AK */
130
131 t = (jiffies - wall_jiffies) * (1000000L / HZ) +
132 do_gettimeoffset();
133 usec += t;
134
135 } while (read_seqretry(&xtime_lock, seq));
136
137 tv->tv_sec = sec + usec / 1000000;
138 tv->tv_usec = usec % 1000000;
139}
140
141EXPORT_SYMBOL(do_gettimeofday);
142
143/*
144 * settimeofday() first undoes the correction that gettimeofday would do
145 * on the time, and then saves it. This is ugly, but has been like this for
146 * ages already.
147 */
148
149int do_settimeofday(struct timespec *tv)
150{
151 time_t wtm_sec, sec = tv->tv_sec;
152 long wtm_nsec, nsec = tv->tv_nsec;
153
154 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
155 return -EINVAL;
156
157 write_seqlock_irq(&xtime_lock);
158
159 nsec -= do_gettimeoffset() * 1000 +
160 (jiffies - wall_jiffies) * (NSEC_PER_SEC/HZ);
161
162 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
163 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
164
165 set_normalized_timespec(&xtime, sec, nsec);
166 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
167
john stultzb149ee22005-09-06 15:17:46 -0700168 ntp_clear();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700169
170 write_sequnlock_irq(&xtime_lock);
171 clock_was_set();
172 return 0;
173}
174
175EXPORT_SYMBOL(do_settimeofday);
176
177unsigned long profile_pc(struct pt_regs *regs)
178{
179 unsigned long pc = instruction_pointer(regs);
180
181 /* Assume the lock function has either no stack frame or only a single word.
182 This checks if the address on the stack looks like a kernel text address.
183 There is a small window for false hits, but in that case the tick
184 is just accounted to the spinlock function.
185 Better would be to write these functions in assembler again
186 and check exactly. */
187 if (in_lock_functions(pc)) {
188 char *v = *(char **)regs->rsp;
189 if ((v >= _stext && v <= _etext) ||
190 (v >= _sinittext && v <= _einittext) ||
191 (v >= (char *)MODULES_VADDR && v <= (char *)MODULES_END))
192 return (unsigned long)v;
193 return ((unsigned long *)regs->rsp)[1];
194 }
195 return pc;
196}
197EXPORT_SYMBOL(profile_pc);
198
199/*
200 * In order to set the CMOS clock precisely, set_rtc_mmss has to be called 500
201 * ms after the second nowtime has started, because when nowtime is written
202 * into the registers of the CMOS clock, it will jump to the next second
203 * precisely 500 ms later. Check the Motorola MC146818A or Dallas DS12887 data
204 * sheet for details.
205 */
206
207static void set_rtc_mmss(unsigned long nowtime)
208{
209 int real_seconds, real_minutes, cmos_minutes;
210 unsigned char control, freq_select;
211
212/*
213 * IRQs are disabled when we're called from the timer interrupt,
214 * no need for spin_lock_irqsave()
215 */
216
217 spin_lock(&rtc_lock);
218
219/*
220 * Tell the clock it's being set and stop it.
221 */
222
223 control = CMOS_READ(RTC_CONTROL);
224 CMOS_WRITE(control | RTC_SET, RTC_CONTROL);
225
226 freq_select = CMOS_READ(RTC_FREQ_SELECT);
227 CMOS_WRITE(freq_select | RTC_DIV_RESET2, RTC_FREQ_SELECT);
228
229 cmos_minutes = CMOS_READ(RTC_MINUTES);
230 BCD_TO_BIN(cmos_minutes);
231
232/*
233 * since we're only adjusting minutes and seconds, don't interfere with hour
234 * overflow. This avoids messing with unknown time zones but requires your RTC
235 * not to be off by more than 15 minutes. Since we're calling it only when
236 * our clock is externally synchronized using NTP, this shouldn't be a problem.
237 */
238
239 real_seconds = nowtime % 60;
240 real_minutes = nowtime / 60;
241 if (((abs(real_minutes - cmos_minutes) + 15) / 30) & 1)
242 real_minutes += 30; /* correct for half hour time zone */
243 real_minutes %= 60;
244
245#if 0
246 /* AMD 8111 is a really bad time keeper and hits this regularly.
247 It probably was an attempt to avoid screwing up DST, but ignore
248 that for now. */
249 if (abs(real_minutes - cmos_minutes) >= 30) {
250 printk(KERN_WARNING "time.c: can't update CMOS clock "
251 "from %d to %d\n", cmos_minutes, real_minutes);
252 } else
253#endif
254
255 {
Andi Kleen0b913172006-01-11 22:45:33 +0100256 BIN_TO_BCD(real_seconds);
257 BIN_TO_BCD(real_minutes);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700258 CMOS_WRITE(real_seconds, RTC_SECONDS);
259 CMOS_WRITE(real_minutes, RTC_MINUTES);
260 }
261
262/*
263 * The following flags have to be released exactly in this order, otherwise the
264 * DS12887 (popular MC146818A clone with integrated battery and quartz) will
265 * not reset the oscillator and will not update precisely 500 ms later. You
266 * won't find this mentioned in the Dallas Semiconductor data sheets, but who
267 * believes data sheets anyway ... -- Markus Kuhn
268 */
269
270 CMOS_WRITE(control, RTC_CONTROL);
271 CMOS_WRITE(freq_select, RTC_FREQ_SELECT);
272
273 spin_unlock(&rtc_lock);
274}
275
276
277/* monotonic_clock(): returns # of nanoseconds passed since time_init()
278 * Note: This function is required to return accurate
279 * time even in the absence of multiple timer ticks.
280 */
281unsigned long long monotonic_clock(void)
282{
283 unsigned long seq;
284 u32 last_offset, this_offset, offset;
285 unsigned long long base;
286
287 if (vxtime.mode == VXTIME_HPET) {
288 do {
289 seq = read_seqbegin(&xtime_lock);
290
291 last_offset = vxtime.last;
292 base = monotonic_base;
john stultza3a00752005-06-23 00:08:36 -0700293 this_offset = hpet_readl(HPET_COUNTER);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700294 } while (read_seqretry(&xtime_lock, seq));
295 offset = (this_offset - last_offset);
296 offset *=(NSEC_PER_SEC/HZ)/hpet_tick;
297 return base + offset;
Andi Kleen0b913172006-01-11 22:45:33 +0100298 } else {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700299 do {
300 seq = read_seqbegin(&xtime_lock);
301
302 last_offset = vxtime.last_tsc;
303 base = monotonic_base;
304 } while (read_seqretry(&xtime_lock, seq));
Andi Kleenc818a182006-01-11 22:45:24 +0100305 this_offset = get_cycles_sync();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700306 offset = (this_offset - last_offset)*1000/cpu_khz;
307 return base + offset;
308 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700309}
310EXPORT_SYMBOL(monotonic_clock);
311
312static noinline void handle_lost_ticks(int lost, struct pt_regs *regs)
313{
314 static long lost_count;
315 static int warned;
316
317 if (report_lost_ticks) {
318 printk(KERN_WARNING "time.c: Lost %d timer "
319 "tick(s)! ", lost);
320 print_symbol("rip %s)\n", regs->rip);
321 }
322
323 if (lost_count == 1000 && !warned) {
324 printk(KERN_WARNING
325 "warning: many lost ticks.\n"
326 KERN_WARNING "Your time source seems to be instable or "
327 "some driver is hogging interupts\n");
328 print_symbol("rip %s\n", regs->rip);
329 if (vxtime.mode == VXTIME_TSC && vxtime.hpet_address) {
330 printk(KERN_WARNING "Falling back to HPET\n");
Chris McDermott33042a92006-02-11 17:55:50 -0800331 if (hpet_use_timer)
332 vxtime.last = hpet_readl(HPET_T0_CMP) - hpet_tick;
333 else
334 vxtime.last = hpet_readl(HPET_COUNTER);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700335 vxtime.mode = VXTIME_HPET;
336 do_gettimeoffset = do_gettimeoffset_hpet;
337 }
338 /* else should fall back to PIT, but code missing. */
339 warned = 1;
340 } else
341 lost_count++;
342
343#ifdef CONFIG_CPU_FREQ
344 /* In some cases the CPU can change frequency without us noticing
345 (like going into thermal throttle)
346 Give cpufreq a change to catch up. */
347 if ((lost_count+1) % 25 == 0) {
348 cpufreq_delayed_get();
349 }
350#endif
351}
352
Andi Kleen73dea472006-02-03 21:50:50 +0100353void main_timer_handler(struct pt_regs *regs)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700354{
355 static unsigned long rtc_update = 0;
356 unsigned long tsc;
Andi Kleen9ede6b02006-03-25 16:29:31 +0100357 int delay = 0, offset = 0, lost = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700358
359/*
360 * Here we are in the timer irq handler. We have irqs locally disabled (so we
361 * don't need spin_lock_irqsave()) but we don't know if the timer_bh is running
362 * on the other CPU, so we need a lock. We also need to lock the vsyscall
363 * variables, because both do_timer() and us change them -arca+vojtech
364 */
365
366 write_seqlock(&xtime_lock);
367
john stultza3a00752005-06-23 00:08:36 -0700368 if (vxtime.hpet_address)
369 offset = hpet_readl(HPET_COUNTER);
370
371 if (hpet_use_timer) {
372 /* if we're using the hpet timer functionality,
373 * we can more accurately know the counter value
374 * when the timer interrupt occured.
375 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700376 offset = hpet_readl(HPET_T0_CMP) - hpet_tick;
377 delay = hpet_readl(HPET_COUNTER) - offset;
Andi Kleen9ede6b02006-03-25 16:29:31 +0100378 } else if (!pmtmr_ioport) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700379 spin_lock(&i8253_lock);
380 outb_p(0x00, 0x43);
381 delay = inb_p(0x40);
382 delay |= inb(0x40) << 8;
383 spin_unlock(&i8253_lock);
384 delay = LATCH - 1 - delay;
385 }
386
Andi Kleenc818a182006-01-11 22:45:24 +0100387 tsc = get_cycles_sync();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700388
389 if (vxtime.mode == VXTIME_HPET) {
390 if (offset - vxtime.last > hpet_tick) {
391 lost = (offset - vxtime.last) / hpet_tick - 1;
392 }
393
394 monotonic_base +=
395 (offset - vxtime.last)*(NSEC_PER_SEC/HZ) / hpet_tick;
396
397 vxtime.last = offset;
Andi Kleen312df5f2005-05-16 21:53:28 -0700398#ifdef CONFIG_X86_PM_TIMER
399 } else if (vxtime.mode == VXTIME_PMTMR) {
400 lost = pmtimer_mark_offset();
401#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700402 } else {
403 offset = (((tsc - vxtime.last_tsc) *
404 vxtime.tsc_quot) >> 32) - (USEC_PER_SEC / HZ);
405
406 if (offset < 0)
407 offset = 0;
408
409 if (offset > (USEC_PER_SEC / HZ)) {
410 lost = offset / (USEC_PER_SEC / HZ);
411 offset %= (USEC_PER_SEC / HZ);
412 }
413
414 monotonic_base += (tsc - vxtime.last_tsc)*1000000/cpu_khz ;
415
416 vxtime.last_tsc = tsc - vxtime.quot * delay / vxtime.tsc_quot;
417
418 if ((((tsc - vxtime.last_tsc) *
419 vxtime.tsc_quot) >> 32) < offset)
420 vxtime.last_tsc = tsc -
421 (((long) offset << 32) / vxtime.tsc_quot) - 1;
422 }
423
424 if (lost > 0) {
425 handle_lost_ticks(lost, regs);
426 jiffies += lost;
427 }
428
429/*
430 * Do the timer stuff.
431 */
432
433 do_timer(regs);
434#ifndef CONFIG_SMP
435 update_process_times(user_mode(regs));
436#endif
437
438/*
439 * In the SMP case we use the local APIC timer interrupt to do the profiling,
440 * except when we simulate SMP mode on a uniprocessor system, in that case we
441 * have to call the local interrupt handler.
442 */
443
444#ifndef CONFIG_X86_LOCAL_APIC
445 profile_tick(CPU_PROFILING, regs);
446#else
447 if (!using_apic_timer)
448 smp_local_timer_interrupt(regs);
449#endif
450
451/*
452 * If we have an externally synchronized Linux clock, then update CMOS clock
453 * accordingly every ~11 minutes. set_rtc_mmss() will be called in the jiffy
454 * closest to exactly 500 ms before the next second. If the update fails, we
455 * don't care, as it'll be updated on the next turn, and the problem (time way
456 * off) isn't likely to go away much sooner anyway.
457 */
458
john stultzb149ee22005-09-06 15:17:46 -0700459 if (ntp_synced() && xtime.tv_sec > rtc_update &&
Linus Torvalds1da177e2005-04-16 15:20:36 -0700460 abs(xtime.tv_nsec - 500000000) <= tick_nsec / 2) {
461 set_rtc_mmss(xtime.tv_sec);
462 rtc_update = xtime.tv_sec + 660;
463 }
464
465 write_sequnlock(&xtime_lock);
Andi Kleen73dea472006-02-03 21:50:50 +0100466}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700467
Andi Kleen73dea472006-02-03 21:50:50 +0100468static irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
469{
470 if (apic_runs_main_timer > 1)
471 return IRQ_HANDLED;
472 main_timer_handler(regs);
Venkatesh Pallipadid25bf7e2006-01-11 22:44:24 +0100473#ifdef CONFIG_X86_LOCAL_APIC
474 if (using_apic_timer)
475 smp_send_timer_broadcast_ipi();
476#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700477 return IRQ_HANDLED;
478}
479
Ravikiran G Thirumalai68ed0042006-03-22 00:07:38 -0800480static unsigned int cyc2ns_scale __read_mostly;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700481#define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
482
Mathieu Desnoyersdacb16b2005-10-30 14:59:25 -0800483static inline void set_cyc2ns_scale(unsigned long cpu_khz)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700484{
Mathieu Desnoyersdacb16b2005-10-30 14:59:25 -0800485 cyc2ns_scale = (1000000 << CYC2NS_SCALE_FACTOR)/cpu_khz;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700486}
487
488static inline unsigned long long cycles_2_ns(unsigned long long cyc)
489{
490 return (cyc * cyc2ns_scale) >> CYC2NS_SCALE_FACTOR;
491}
492
493unsigned long long sched_clock(void)
494{
495 unsigned long a = 0;
496
497#if 0
498 /* Don't do a HPET read here. Using TSC always is much faster
499 and HPET may not be mapped yet when the scheduler first runs.
500 Disadvantage is a small drift between CPUs in some configurations,
501 but that should be tolerable. */
502 if (__vxtime.mode == VXTIME_HPET)
503 return (hpet_readl(HPET_COUNTER) * vxtime.quot) >> 32;
504#endif
505
506 /* Could do CPU core sync here. Opteron can execute rdtsc speculatively,
507 which means it is not completely exact and may not be monotonous between
508 CPUs. But the errors should be too small to matter for scheduling
509 purposes. */
510
511 rdtscll(a);
512 return cycles_2_ns(a);
513}
514
Andi Kleenbdf2b1c2006-01-11 22:46:39 +0100515static unsigned long get_cmos_time(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700516{
Jan Beulich5329e13d2006-01-11 22:46:42 +0100517 unsigned int timeout = 1000000, year, mon, day, hour, min, sec;
518 unsigned char uip = 0, this = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700519 unsigned long flags;
Andi Kleen6954bee2006-03-25 16:30:31 +0100520 unsigned extyear = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700521
522/*
523 * The Linux interpretation of the CMOS clock register contents: When the
524 * Update-In-Progress (UIP) flag goes from 1 to 0, the RTC registers show the
525 * second which has precisely just started. Waiting for this can take up to 1
526 * second, we timeout approximately after 2.4 seconds on a machine with
527 * standard 8.3 MHz ISA bus.
528 */
529
530 spin_lock_irqsave(&rtc_lock, flags);
531
Jan Beulich5329e13d2006-01-11 22:46:42 +0100532 while (timeout && (!uip || this)) {
533 uip |= this;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700534 this = CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP;
535 timeout--;
536 }
537
Andi Kleen0b913172006-01-11 22:45:33 +0100538 /*
539 * Here we are safe to assume the registers won't change for a whole
540 * second, so we just go ahead and read them.
541 */
542 sec = CMOS_READ(RTC_SECONDS);
543 min = CMOS_READ(RTC_MINUTES);
544 hour = CMOS_READ(RTC_HOURS);
545 day = CMOS_READ(RTC_DAY_OF_MONTH);
546 mon = CMOS_READ(RTC_MONTH);
547 year = CMOS_READ(RTC_YEAR);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700548
Andi Kleen6954bee2006-03-25 16:30:31 +0100549#ifdef CONFIG_ACPI
550 if (acpi_fadt.revision >= FADT2_REVISION_ID && acpi_fadt.century)
551 extyear = CMOS_READ(acpi_fadt.century);
552#endif
553
Linus Torvalds1da177e2005-04-16 15:20:36 -0700554 spin_unlock_irqrestore(&rtc_lock, flags);
555
Andi Kleen0b913172006-01-11 22:45:33 +0100556 /*
557 * We know that x86-64 always uses BCD format, no need to check the
558 * config register.
559 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700560
Andi Kleen0b913172006-01-11 22:45:33 +0100561 BCD_TO_BIN(sec);
562 BCD_TO_BIN(min);
563 BCD_TO_BIN(hour);
564 BCD_TO_BIN(day);
565 BCD_TO_BIN(mon);
566 BCD_TO_BIN(year);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700567
Andi Kleen6954bee2006-03-25 16:30:31 +0100568 if (extyear) {
569 BCD_TO_BIN(extyear);
570 year += extyear;
571 printk(KERN_INFO "Extended CMOS year: %d\n", extyear);
572 } else {
573 /*
574 * x86-64 systems only exists since 2002.
575 * This will work up to Dec 31, 2100
576 */
577 year += 2000;
578 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700579
580 return mktime(year, mon, day, hour, min, sec);
581}
582
583#ifdef CONFIG_CPU_FREQ
584
585/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
586 changes.
587
588 RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
589 not that important because current Opteron setups do not support
590 scaling on SMP anyroads.
591
592 Should fix up last_tsc too. Currently gettimeofday in the
593 first tick after the change will be slightly wrong. */
594
595#include <linux/workqueue.h>
596
597static unsigned int cpufreq_delayed_issched = 0;
598static unsigned int cpufreq_init = 0;
599static struct work_struct cpufreq_delayed_get_work;
600
601static void handle_cpufreq_delayed_get(void *v)
602{
603 unsigned int cpu;
604 for_each_online_cpu(cpu) {
605 cpufreq_get(cpu);
606 }
607 cpufreq_delayed_issched = 0;
608}
609
610/* if we notice lost ticks, schedule a call to cpufreq_get() as it tries
611 * to verify the CPU frequency the timing core thinks the CPU is running
612 * at is still correct.
613 */
614static void cpufreq_delayed_get(void)
615{
616 static int warned;
617 if (cpufreq_init && !cpufreq_delayed_issched) {
618 cpufreq_delayed_issched = 1;
619 if (!warned) {
620 warned = 1;
621 printk(KERN_DEBUG "Losing some ticks... checking if CPU frequency changed.\n");
622 }
623 schedule_work(&cpufreq_delayed_get_work);
624 }
625}
626
627static unsigned int ref_freq = 0;
628static unsigned long loops_per_jiffy_ref = 0;
629
630static unsigned long cpu_khz_ref = 0;
631
632static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
633 void *data)
634{
635 struct cpufreq_freqs *freq = data;
636 unsigned long *lpj, dummy;
637
Andi Kleenc29601e2005-04-16 15:25:05 -0700638 if (cpu_has(&cpu_data[freq->cpu], X86_FEATURE_CONSTANT_TSC))
639 return 0;
640
Linus Torvalds1da177e2005-04-16 15:20:36 -0700641 lpj = &dummy;
642 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
643#ifdef CONFIG_SMP
644 lpj = &cpu_data[freq->cpu].loops_per_jiffy;
645#else
646 lpj = &boot_cpu_data.loops_per_jiffy;
647#endif
648
Linus Torvalds1da177e2005-04-16 15:20:36 -0700649 if (!ref_freq) {
650 ref_freq = freq->old;
651 loops_per_jiffy_ref = *lpj;
652 cpu_khz_ref = cpu_khz;
653 }
654 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
655 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
656 (val == CPUFREQ_RESUMECHANGE)) {
657 *lpj =
658 cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
659
660 cpu_khz = cpufreq_scale(cpu_khz_ref, ref_freq, freq->new);
661 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
662 vxtime.tsc_quot = (1000L << 32) / cpu_khz;
663 }
664
Mathieu Desnoyersdacb16b2005-10-30 14:59:25 -0800665 set_cyc2ns_scale(cpu_khz_ref);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700666
667 return 0;
668}
669
670static struct notifier_block time_cpufreq_notifier_block = {
671 .notifier_call = time_cpufreq_notifier
672};
673
674static int __init cpufreq_tsc(void)
675{
676 INIT_WORK(&cpufreq_delayed_get_work, handle_cpufreq_delayed_get, NULL);
677 if (!cpufreq_register_notifier(&time_cpufreq_notifier_block,
678 CPUFREQ_TRANSITION_NOTIFIER))
679 cpufreq_init = 1;
680 return 0;
681}
682
683core_initcall(cpufreq_tsc);
684
685#endif
686
687/*
688 * calibrate_tsc() calibrates the processor TSC in a very simple way, comparing
689 * it to the HPET timer of known frequency.
690 */
691
692#define TICK_COUNT 100000000
693
694static unsigned int __init hpet_calibrate_tsc(void)
695{
696 int tsc_start, hpet_start;
697 int tsc_now, hpet_now;
698 unsigned long flags;
699
700 local_irq_save(flags);
701 local_irq_disable();
702
703 hpet_start = hpet_readl(HPET_COUNTER);
704 rdtscl(tsc_start);
705
706 do {
707 local_irq_disable();
708 hpet_now = hpet_readl(HPET_COUNTER);
Andi Kleenc818a182006-01-11 22:45:24 +0100709 tsc_now = get_cycles_sync();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700710 local_irq_restore(flags);
711 } while ((tsc_now - tsc_start) < TICK_COUNT &&
712 (hpet_now - hpet_start) < TICK_COUNT);
713
714 return (tsc_now - tsc_start) * 1000000000L
715 / ((hpet_now - hpet_start) * hpet_period / 1000);
716}
717
718
719/*
720 * pit_calibrate_tsc() uses the speaker output (channel 2) of
721 * the PIT. This is better than using the timer interrupt output,
722 * because we can read the value of the speaker with just one inb(),
723 * where we need three i/o operations for the interrupt channel.
724 * We count how many ticks the TSC does in 50 ms.
725 */
726
727static unsigned int __init pit_calibrate_tsc(void)
728{
729 unsigned long start, end;
730 unsigned long flags;
731
732 spin_lock_irqsave(&i8253_lock, flags);
733
734 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
735
736 outb(0xb0, 0x43);
737 outb((PIT_TICK_RATE / (1000 / 50)) & 0xff, 0x42);
738 outb((PIT_TICK_RATE / (1000 / 50)) >> 8, 0x42);
Andi Kleenc818a182006-01-11 22:45:24 +0100739 start = get_cycles_sync();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700740 while ((inb(0x61) & 0x20) == 0);
Andi Kleenc818a182006-01-11 22:45:24 +0100741 end = get_cycles_sync();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700742
743 spin_unlock_irqrestore(&i8253_lock, flags);
744
745 return (end - start) / 50;
746}
747
748#ifdef CONFIG_HPET
749static __init int late_hpet_init(void)
750{
751 struct hpet_data hd;
752 unsigned int ntimer;
753
754 if (!vxtime.hpet_address)
Andi Kleen0b913172006-01-11 22:45:33 +0100755 return -1;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700756
757 memset(&hd, 0, sizeof (hd));
758
759 ntimer = hpet_readl(HPET_ID);
760 ntimer = (ntimer & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
761 ntimer++;
762
763 /*
764 * Register with driver.
765 * Timer0 and Timer1 is used by platform.
766 */
767 hd.hd_phys_address = vxtime.hpet_address;
Al Virodd42b152006-02-01 07:30:33 -0500768 hd.hd_address = (void __iomem *)fix_to_virt(FIX_HPET_BASE);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700769 hd.hd_nirqs = ntimer;
770 hd.hd_flags = HPET_DATA_PLATFORM;
771 hpet_reserve_timer(&hd, 0);
772#ifdef CONFIG_HPET_EMULATE_RTC
773 hpet_reserve_timer(&hd, 1);
774#endif
775 hd.hd_irq[0] = HPET_LEGACY_8254;
776 hd.hd_irq[1] = HPET_LEGACY_RTC;
777 if (ntimer > 2) {
778 struct hpet *hpet;
779 struct hpet_timer *timer;
780 int i;
781
782 hpet = (struct hpet *) fix_to_virt(FIX_HPET_BASE);
783
784 for (i = 2, timer = &hpet->hpet_timers[2]; i < ntimer;
785 timer++, i++)
786 hd.hd_irq[i] = (timer->hpet_config &
787 Tn_INT_ROUTE_CNF_MASK) >>
788 Tn_INT_ROUTE_CNF_SHIFT;
789
790 }
791
792 hpet_alloc(&hd);
793 return 0;
794}
795fs_initcall(late_hpet_init);
796#endif
797
798static int hpet_timer_stop_set_go(unsigned long tick)
799{
800 unsigned int cfg;
801
802/*
803 * Stop the timers and reset the main counter.
804 */
805
806 cfg = hpet_readl(HPET_CFG);
807 cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
808 hpet_writel(cfg, HPET_CFG);
809 hpet_writel(0, HPET_COUNTER);
810 hpet_writel(0, HPET_COUNTER + 4);
811
812/*
813 * Set up timer 0, as periodic with first interrupt to happen at hpet_tick,
814 * and period also hpet_tick.
815 */
john stultza3a00752005-06-23 00:08:36 -0700816 if (hpet_use_timer) {
817 hpet_writel(HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
Linus Torvalds1da177e2005-04-16 15:20:36 -0700818 HPET_TN_32BIT, HPET_T0_CFG);
john stultza3a00752005-06-23 00:08:36 -0700819 hpet_writel(hpet_tick, HPET_T0_CMP);
820 hpet_writel(hpet_tick, HPET_T0_CMP); /* AK: why twice? */
821 cfg |= HPET_CFG_LEGACY;
822 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700823/*
824 * Go!
825 */
826
john stultza3a00752005-06-23 00:08:36 -0700827 cfg |= HPET_CFG_ENABLE;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700828 hpet_writel(cfg, HPET_CFG);
829
830 return 0;
831}
832
833static int hpet_init(void)
834{
835 unsigned int id;
836
837 if (!vxtime.hpet_address)
838 return -1;
839 set_fixmap_nocache(FIX_HPET_BASE, vxtime.hpet_address);
840 __set_fixmap(VSYSCALL_HPET, vxtime.hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
841
842/*
843 * Read the period, compute tick and quotient.
844 */
845
846 id = hpet_readl(HPET_ID);
847
john stultza3a00752005-06-23 00:08:36 -0700848 if (!(id & HPET_ID_VENDOR) || !(id & HPET_ID_NUMBER))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700849 return -1;
850
851 hpet_period = hpet_readl(HPET_PERIOD);
852 if (hpet_period < 100000 || hpet_period > 100000000)
853 return -1;
854
855 hpet_tick = (1000000000L * (USEC_PER_SEC / HZ) + hpet_period / 2) /
856 hpet_period;
857
john stultza3a00752005-06-23 00:08:36 -0700858 hpet_use_timer = (id & HPET_ID_LEGSUP);
859
Linus Torvalds1da177e2005-04-16 15:20:36 -0700860 return hpet_timer_stop_set_go(hpet_tick);
861}
862
863static int hpet_reenable(void)
864{
865 return hpet_timer_stop_set_go(hpet_tick);
866}
867
Andi Kleen73dea472006-02-03 21:50:50 +0100868#define PIT_MODE 0x43
869#define PIT_CH0 0x40
870
871static void __init __pit_init(int val, u8 mode)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700872{
873 unsigned long flags;
874
875 spin_lock_irqsave(&i8253_lock, flags);
Andi Kleen73dea472006-02-03 21:50:50 +0100876 outb_p(mode, PIT_MODE);
877 outb_p(val & 0xff, PIT_CH0); /* LSB */
878 outb_p(val >> 8, PIT_CH0); /* MSB */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700879 spin_unlock_irqrestore(&i8253_lock, flags);
880}
881
Andi Kleen73dea472006-02-03 21:50:50 +0100882void __init pit_init(void)
883{
884 __pit_init(LATCH, 0x34); /* binary, mode 2, LSB/MSB, ch 0 */
885}
886
887void __init pit_stop_interrupt(void)
888{
889 __pit_init(0, 0x30); /* mode 0 */
890}
891
892void __init stop_timer_interrupt(void)
893{
894 char *name;
895 if (vxtime.hpet_address) {
896 name = "HPET";
897 hpet_timer_stop_set_go(0);
898 } else {
899 name = "PIT";
900 pit_stop_interrupt();
901 }
902 printk(KERN_INFO "timer: %s interrupt stopped.\n", name);
903}
904
Linus Torvalds1da177e2005-04-16 15:20:36 -0700905int __init time_setup(char *str)
906{
907 report_lost_ticks = 1;
908 return 1;
909}
910
911static struct irqaction irq0 = {
912 timer_interrupt, SA_INTERRUPT, CPU_MASK_NONE, "timer", NULL, NULL
913};
914
Linus Torvalds1da177e2005-04-16 15:20:36 -0700915void __init time_init(void)
916{
917 char *timename;
Andi Kleene8b91772006-02-26 04:18:49 +0100918 char *gtod;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700919
920#ifdef HPET_HACK_ENABLE_DANGEROUS
921 if (!vxtime.hpet_address) {
922 printk(KERN_WARNING "time.c: WARNING: Enabling HPET base "
923 "manually!\n");
924 outl(0x800038a0, 0xcf8);
925 outl(0xff000001, 0xcfc);
926 outl(0x800038a0, 0xcf8);
927 vxtime.hpet_address = inl(0xcfc) & 0xfffffffe;
928 printk(KERN_WARNING "time.c: WARNING: Enabled HPET "
929 "at %#lx.\n", vxtime.hpet_address);
930 }
931#endif
932 if (nohpet)
933 vxtime.hpet_address = 0;
934
935 xtime.tv_sec = get_cmos_time();
936 xtime.tv_nsec = 0;
937
938 set_normalized_timespec(&wall_to_monotonic,
939 -xtime.tv_sec, -xtime.tv_nsec);
940
john stultza3a00752005-06-23 00:08:36 -0700941 if (!hpet_init())
Linus Torvalds1da177e2005-04-16 15:20:36 -0700942 vxtime_hz = (1000000000000000L + hpet_period / 2) /
943 hpet_period;
Andi Kleen68e18892005-12-12 22:17:07 -0800944 else
945 vxtime.hpet_address = 0;
john stultza3a00752005-06-23 00:08:36 -0700946
947 if (hpet_use_timer) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700948 cpu_khz = hpet_calibrate_tsc();
949 timename = "HPET";
Andi Kleen312df5f2005-05-16 21:53:28 -0700950#ifdef CONFIG_X86_PM_TIMER
john stultzfd495472005-12-12 22:17:13 -0800951 } else if (pmtmr_ioport && !vxtime.hpet_address) {
Andi Kleen312df5f2005-05-16 21:53:28 -0700952 vxtime_hz = PM_TIMER_FREQUENCY;
953 timename = "PM";
954 pit_init();
955 cpu_khz = pit_calibrate_tsc();
956#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700957 } else {
958 pit_init();
959 cpu_khz = pit_calibrate_tsc();
960 timename = "PIT";
961 }
962
Andi Kleene8b91772006-02-26 04:18:49 +0100963 vxtime.mode = VXTIME_TSC;
964 gtod = time_init_gtod();
965
966 printk(KERN_INFO "time.c: Using %ld.%06ld MHz WALL %s GTOD %s timer.\n",
967 vxtime_hz / 1000000, vxtime_hz % 1000000, timename, gtod);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700968 printk(KERN_INFO "time.c: Detected %d.%03d MHz processor.\n",
969 cpu_khz / 1000, cpu_khz % 1000);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700970 vxtime.quot = (1000000L << 32) / vxtime_hz;
971 vxtime.tsc_quot = (1000L << 32) / cpu_khz;
Andi Kleenc818a182006-01-11 22:45:24 +0100972 vxtime.last_tsc = get_cycles_sync();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700973 setup_irq(0, &irq0);
974
Mathieu Desnoyersdacb16b2005-10-30 14:59:25 -0800975 set_cyc2ns_scale(cpu_khz);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700976}
977
Andi Kleena8ab26f2005-04-16 15:25:19 -0700978/*
Andi Kleen312df5f2005-05-16 21:53:28 -0700979 * Make an educated guess if the TSC is trustworthy and synchronized
980 * over all CPUs.
981 */
Shaohua Li396bd502006-02-03 21:51:20 +0100982__cpuinit int unsynchronized_tsc(void)
Andi Kleen312df5f2005-05-16 21:53:28 -0700983{
984#ifdef CONFIG_SMP
985 if (oem_force_hpet_timer())
986 return 1;
987 /* Intel systems are normally all synchronized. Exceptions
988 are handled in the OEM check above. */
989 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
990 return 0;
Andi Kleen312df5f2005-05-16 21:53:28 -0700991#endif
992 /* Assume multi socket systems are not synchronized */
Andi Kleen737c5c32006-01-11 22:45:15 +0100993 return num_present_cpus() > 1;
Andi Kleen312df5f2005-05-16 21:53:28 -0700994}
995
996/*
Andi Kleene8b91772006-02-26 04:18:49 +0100997 * Decide what mode gettimeofday should use.
Andi Kleena8ab26f2005-04-16 15:25:19 -0700998 */
Andi Kleene8b91772006-02-26 04:18:49 +0100999__init static char *time_init_gtod(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001000{
1001 char *timetype;
1002
Andi Kleen312df5f2005-05-16 21:53:28 -07001003 if (unsynchronized_tsc())
Linus Torvalds1da177e2005-04-16 15:20:36 -07001004 notsc = 1;
1005 if (vxtime.hpet_address && notsc) {
john stultza3a00752005-06-23 00:08:36 -07001006 timetype = hpet_use_timer ? "HPET" : "PIT/HPET";
Chris McDermott33042a92006-02-11 17:55:50 -08001007 if (hpet_use_timer)
1008 vxtime.last = hpet_readl(HPET_T0_CMP) - hpet_tick;
1009 else
1010 vxtime.last = hpet_readl(HPET_COUNTER);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001011 vxtime.mode = VXTIME_HPET;
1012 do_gettimeoffset = do_gettimeoffset_hpet;
Andi Kleen312df5f2005-05-16 21:53:28 -07001013#ifdef CONFIG_X86_PM_TIMER
1014 /* Using PM for gettimeofday is quite slow, but we have no other
1015 choice because the TSC is too unreliable on some systems. */
1016 } else if (pmtmr_ioport && !vxtime.hpet_address && notsc) {
1017 timetype = "PM";
1018 do_gettimeoffset = do_gettimeoffset_pm;
1019 vxtime.mode = VXTIME_PMTMR;
1020 sysctl_vsyscall = 0;
1021 printk(KERN_INFO "Disabling vsyscall due to use of PM timer\n");
1022#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001023 } else {
john stultza3a00752005-06-23 00:08:36 -07001024 timetype = hpet_use_timer ? "HPET/TSC" : "PIT/TSC";
Linus Torvalds1da177e2005-04-16 15:20:36 -07001025 vxtime.mode = VXTIME_TSC;
1026 }
Andi Kleene8b91772006-02-26 04:18:49 +01001027 return timetype;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001028}
1029
1030__setup("report_lost_ticks", time_setup);
1031
1032static long clock_cmos_diff;
1033static unsigned long sleep_start;
1034
Andi Kleen0b913172006-01-11 22:45:33 +01001035/*
1036 * sysfs support for the timer.
1037 */
1038
Pavel Machek0b9c33a2005-04-16 15:25:31 -07001039static int timer_suspend(struct sys_device *dev, pm_message_t state)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001040{
1041 /*
1042 * Estimate time zone so that set_time can update the clock
1043 */
1044 long cmos_time = get_cmos_time();
1045
1046 clock_cmos_diff = -cmos_time;
1047 clock_cmos_diff += get_seconds();
1048 sleep_start = cmos_time;
1049 return 0;
1050}
1051
1052static int timer_resume(struct sys_device *dev)
1053{
1054 unsigned long flags;
1055 unsigned long sec;
1056 unsigned long ctime = get_cmos_time();
1057 unsigned long sleep_length = (ctime - sleep_start) * HZ;
1058
1059 if (vxtime.hpet_address)
1060 hpet_reenable();
1061 else
1062 i8254_timer_resume();
1063
1064 sec = ctime + clock_cmos_diff;
1065 write_seqlock_irqsave(&xtime_lock,flags);
1066 xtime.tv_sec = sec;
1067 xtime.tv_nsec = 0;
Shaohua Li0dd2ea92006-02-03 21:50:56 +01001068 if (vxtime.mode == VXTIME_HPET) {
1069 if (hpet_use_timer)
1070 vxtime.last = hpet_readl(HPET_T0_CMP) - hpet_tick;
1071 else
1072 vxtime.last = hpet_readl(HPET_COUNTER);
1073#ifdef CONFIG_X86_PM_TIMER
1074 } else if (vxtime.mode == VXTIME_PMTMR) {
1075 pmtimer_resume();
1076#endif
1077 } else
1078 vxtime.last_tsc = get_cycles_sync();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001079 write_sequnlock_irqrestore(&xtime_lock,flags);
1080 jiffies += sleep_length;
1081 wall_jiffies += sleep_length;
Shaohua Li0dd2ea92006-02-03 21:50:56 +01001082 monotonic_base += sleep_length * (NSEC_PER_SEC/HZ);
Ingo Molnar8446f1d2005-09-06 15:16:27 -07001083 touch_softlockup_watchdog();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001084 return 0;
1085}
1086
1087static struct sysdev_class timer_sysclass = {
1088 .resume = timer_resume,
1089 .suspend = timer_suspend,
1090 set_kset_name("timer"),
1091};
1092
Linus Torvalds1da177e2005-04-16 15:20:36 -07001093/* XXX this driverfs stuff should probably go elsewhere later -john */
1094static struct sys_device device_timer = {
1095 .id = 0,
1096 .cls = &timer_sysclass,
1097};
1098
1099static int time_init_device(void)
1100{
1101 int error = sysdev_class_register(&timer_sysclass);
1102 if (!error)
1103 error = sysdev_register(&device_timer);
1104 return error;
1105}
1106
1107device_initcall(time_init_device);
1108
1109#ifdef CONFIG_HPET_EMULATE_RTC
1110/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
1111 * is enabled, we support RTC interrupt functionality in software.
1112 * RTC has 3 kinds of interrupts:
1113 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
1114 * is updated
1115 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
1116 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
1117 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
1118 * (1) and (2) above are implemented using polling at a frequency of
1119 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
1120 * overhead. (DEFAULT_RTC_INT_FREQ)
1121 * For (3), we use interrupts at 64Hz or user specified periodic
1122 * frequency, whichever is higher.
1123 */
1124#include <linux/rtc.h>
1125
Linus Torvalds1da177e2005-04-16 15:20:36 -07001126#define DEFAULT_RTC_INT_FREQ 64
1127#define RTC_NUM_INTS 1
1128
1129static unsigned long UIE_on;
1130static unsigned long prev_update_sec;
1131
1132static unsigned long AIE_on;
1133static struct rtc_time alarm_time;
1134
1135static unsigned long PIE_on;
1136static unsigned long PIE_freq = DEFAULT_RTC_INT_FREQ;
1137static unsigned long PIE_count;
1138
1139static unsigned long hpet_rtc_int_freq; /* RTC interrupt frequency */
Clemens Ladisch7811fb82005-10-30 15:03:36 -08001140static unsigned int hpet_t1_cmp; /* cached comparator register */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001141
1142int is_hpet_enabled(void)
1143{
1144 return vxtime.hpet_address != 0;
1145}
1146
1147/*
1148 * Timer 1 for RTC, we do not use periodic interrupt feature,
1149 * even if HPET supports periodic interrupts on Timer 1.
1150 * The reason being, to set up a periodic interrupt in HPET, we need to
1151 * stop the main counter. And if we do that everytime someone diables/enables
1152 * RTC, we will have adverse effect on main kernel timer running on Timer 0.
1153 * So, for the time being, simulate the periodic interrupt in software.
1154 *
1155 * hpet_rtc_timer_init() is called for the first time and during subsequent
1156 * interuppts reinit happens through hpet_rtc_timer_reinit().
1157 */
1158int hpet_rtc_timer_init(void)
1159{
1160 unsigned int cfg, cnt;
1161 unsigned long flags;
1162
1163 if (!is_hpet_enabled())
1164 return 0;
1165 /*
1166 * Set the counter 1 and enable the interrupts.
1167 */
1168 if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ))
1169 hpet_rtc_int_freq = PIE_freq;
1170 else
1171 hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ;
1172
1173 local_irq_save(flags);
1174 cnt = hpet_readl(HPET_COUNTER);
1175 cnt += ((hpet_tick*HZ)/hpet_rtc_int_freq);
1176 hpet_writel(cnt, HPET_T1_CMP);
Clemens Ladisch7811fb82005-10-30 15:03:36 -08001177 hpet_t1_cmp = cnt;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001178 local_irq_restore(flags);
1179
1180 cfg = hpet_readl(HPET_T1_CFG);
Clemens Ladisch5f819942005-10-30 15:03:36 -08001181 cfg &= ~HPET_TN_PERIODIC;
1182 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001183 hpet_writel(cfg, HPET_T1_CFG);
1184
1185 return 1;
1186}
1187
1188static void hpet_rtc_timer_reinit(void)
1189{
1190 unsigned int cfg, cnt;
1191
Clemens Ladischf00c96f2005-10-30 15:03:35 -08001192 if (unlikely(!(PIE_on | AIE_on | UIE_on))) {
1193 cfg = hpet_readl(HPET_T1_CFG);
1194 cfg &= ~HPET_TN_ENABLE;
1195 hpet_writel(cfg, HPET_T1_CFG);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001196 return;
Clemens Ladischf00c96f2005-10-30 15:03:35 -08001197 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001198
1199 if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ))
1200 hpet_rtc_int_freq = PIE_freq;
1201 else
1202 hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ;
1203
1204 /* It is more accurate to use the comparator value than current count.*/
Clemens Ladisch7811fb82005-10-30 15:03:36 -08001205 cnt = hpet_t1_cmp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001206 cnt += hpet_tick*HZ/hpet_rtc_int_freq;
1207 hpet_writel(cnt, HPET_T1_CMP);
Clemens Ladisch7811fb82005-10-30 15:03:36 -08001208 hpet_t1_cmp = cnt;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001209}
1210
1211/*
1212 * The functions below are called from rtc driver.
1213 * Return 0 if HPET is not being used.
1214 * Otherwise do the necessary changes and return 1.
1215 */
1216int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1217{
1218 if (!is_hpet_enabled())
1219 return 0;
1220
1221 if (bit_mask & RTC_UIE)
1222 UIE_on = 0;
1223 if (bit_mask & RTC_PIE)
1224 PIE_on = 0;
1225 if (bit_mask & RTC_AIE)
1226 AIE_on = 0;
1227
1228 return 1;
1229}
1230
1231int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1232{
1233 int timer_init_reqd = 0;
1234
1235 if (!is_hpet_enabled())
1236 return 0;
1237
1238 if (!(PIE_on | AIE_on | UIE_on))
1239 timer_init_reqd = 1;
1240
1241 if (bit_mask & RTC_UIE) {
1242 UIE_on = 1;
1243 }
1244 if (bit_mask & RTC_PIE) {
1245 PIE_on = 1;
1246 PIE_count = 0;
1247 }
1248 if (bit_mask & RTC_AIE) {
1249 AIE_on = 1;
1250 }
1251
1252 if (timer_init_reqd)
1253 hpet_rtc_timer_init();
1254
1255 return 1;
1256}
1257
1258int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
1259{
1260 if (!is_hpet_enabled())
1261 return 0;
1262
1263 alarm_time.tm_hour = hrs;
1264 alarm_time.tm_min = min;
1265 alarm_time.tm_sec = sec;
1266
1267 return 1;
1268}
1269
1270int hpet_set_periodic_freq(unsigned long freq)
1271{
1272 if (!is_hpet_enabled())
1273 return 0;
1274
1275 PIE_freq = freq;
1276 PIE_count = 0;
1277
1278 return 1;
1279}
1280
1281int hpet_rtc_dropped_irq(void)
1282{
1283 if (!is_hpet_enabled())
1284 return 0;
1285
1286 return 1;
1287}
1288
1289irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1290{
1291 struct rtc_time curr_time;
1292 unsigned long rtc_int_flag = 0;
1293 int call_rtc_interrupt = 0;
1294
1295 hpet_rtc_timer_reinit();
1296
1297 if (UIE_on | AIE_on) {
1298 rtc_get_rtc_time(&curr_time);
1299 }
1300 if (UIE_on) {
1301 if (curr_time.tm_sec != prev_update_sec) {
1302 /* Set update int info, call real rtc int routine */
1303 call_rtc_interrupt = 1;
1304 rtc_int_flag = RTC_UF;
1305 prev_update_sec = curr_time.tm_sec;
1306 }
1307 }
1308 if (PIE_on) {
1309 PIE_count++;
1310 if (PIE_count >= hpet_rtc_int_freq/PIE_freq) {
1311 /* Set periodic int info, call real rtc int routine */
1312 call_rtc_interrupt = 1;
1313 rtc_int_flag |= RTC_PF;
1314 PIE_count = 0;
1315 }
1316 }
1317 if (AIE_on) {
1318 if ((curr_time.tm_sec == alarm_time.tm_sec) &&
1319 (curr_time.tm_min == alarm_time.tm_min) &&
1320 (curr_time.tm_hour == alarm_time.tm_hour)) {
1321 /* Set alarm int info, call real rtc int routine */
1322 call_rtc_interrupt = 1;
1323 rtc_int_flag |= RTC_AF;
1324 }
1325 }
1326 if (call_rtc_interrupt) {
1327 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1328 rtc_interrupt(rtc_int_flag, dev_id, regs);
1329 }
1330 return IRQ_HANDLED;
1331}
1332#endif
1333
Linus Torvalds1da177e2005-04-16 15:20:36 -07001334static int __init nohpet_setup(char *s)
1335{
1336 nohpet = 1;
1337 return 0;
1338}
1339
1340__setup("nohpet", nohpet_setup);
1341
Andi Kleen7fd67842006-02-16 23:42:07 +01001342int __init notsc_setup(char *s)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001343{
1344 notsc = 1;
1345 return 0;
1346}
1347
1348__setup("notsc", notsc_setup);