blob: 91a448a86ebd7deb0fbfdbf9aeaf4503bba655dd [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/arch/x86-64/kernel/time.c
3 *
4 * "High Precision Event Timer" based timekeeping.
5 *
6 * Copyright (c) 1991,1992,1995 Linus Torvalds
7 * Copyright (c) 1994 Alan Modra
8 * Copyright (c) 1995 Markus Kuhn
9 * Copyright (c) 1996 Ingo Molnar
10 * Copyright (c) 1998 Andrea Arcangeli
11 * Copyright (c) 2002 Vojtech Pavlik
12 * Copyright (c) 2003 Andi Kleen
13 * RTC support code taken from arch/i386/kernel/timers/time_hpet.c
14 */
15
16#include <linux/kernel.h>
17#include <linux/sched.h>
18#include <linux/interrupt.h>
19#include <linux/init.h>
20#include <linux/mc146818rtc.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070021#include <linux/time.h>
22#include <linux/ioport.h>
23#include <linux/module.h>
24#include <linux/device.h>
25#include <linux/sysdev.h>
26#include <linux/bcd.h>
27#include <linux/kallsyms.h>
Andi Kleen312df5f2005-05-16 21:53:28 -070028#include <linux/acpi.h>
Andi Kleen8d916402005-05-31 14:39:26 -070029#ifdef CONFIG_ACPI
Andi Kleen312df5f2005-05-16 21:53:28 -070030#include <acpi/achware.h> /* for PM timer frequency */
Andi Kleen8d916402005-05-31 14:39:26 -070031#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -070032#include <asm/8253pit.h>
33#include <asm/pgtable.h>
34#include <asm/vsyscall.h>
35#include <asm/timex.h>
36#include <asm/proto.h>
37#include <asm/hpet.h>
38#include <asm/sections.h>
39#include <linux/cpufreq.h>
40#include <linux/hpet.h>
41#ifdef CONFIG_X86_LOCAL_APIC
42#include <asm/apic.h>
43#endif
44
Linus Torvalds1da177e2005-04-16 15:20:36 -070045#ifdef CONFIG_CPU_FREQ
46static void cpufreq_delayed_get(void);
47#endif
48extern void i8254_timer_resume(void);
49extern int using_apic_timer;
50
51DEFINE_SPINLOCK(rtc_lock);
52DEFINE_SPINLOCK(i8253_lock);
53
Andi Kleen73dea472006-02-03 21:50:50 +010054int nohpet __initdata = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -070055static int notsc __initdata = 0;
56
57#undef HPET_HACK_ENABLE_DANGEROUS
58
59unsigned int cpu_khz; /* TSC clocks / usec, not used here */
60static unsigned long hpet_period; /* fsecs / HPET clock */
61unsigned long hpet_tick; /* HPET clocks / interrupt */
Andi Kleen68e18892005-12-12 22:17:07 -080062static int hpet_use_timer; /* Use counter of hpet for time keeping, otherwise PIT */
Linus Torvalds1da177e2005-04-16 15:20:36 -070063unsigned long vxtime_hz = PIT_TICK_RATE;
64int report_lost_ticks; /* command line option */
65unsigned long long monotonic_base;
66
67struct vxtime_data __vxtime __section_vxtime; /* for vsyscalls */
68
69volatile unsigned long __jiffies __section_jiffies = INITIAL_JIFFIES;
70unsigned long __wall_jiffies __section_wall_jiffies = INITIAL_JIFFIES;
71struct timespec __xtime __section_xtime;
72struct timezone __sys_tz __section_sys_tz;
73
Linus Torvalds1da177e2005-04-16 15:20:36 -070074/*
75 * do_gettimeoffset() returns microseconds since last timer interrupt was
76 * triggered by hardware. A memory read of HPET is slower than a register read
77 * of TSC, but much more reliable. It's also synchronized to the timer
78 * interrupt. Note that do_gettimeoffset() may return more than hpet_tick, if a
79 * timer interrupt has happened already, but vxtime.trigger wasn't updated yet.
80 * This is not a problem, because jiffies hasn't updated either. They are bound
81 * together by xtime_lock.
82 */
83
84static inline unsigned int do_gettimeoffset_tsc(void)
85{
86 unsigned long t;
87 unsigned long x;
Andi Kleenc818a182006-01-11 22:45:24 +010088 t = get_cycles_sync();
Linus Torvalds1da177e2005-04-16 15:20:36 -070089 if (t < vxtime.last_tsc) t = vxtime.last_tsc; /* hack */
90 x = ((t - vxtime.last_tsc) * vxtime.tsc_quot) >> 32;
91 return x;
92}
93
94static inline unsigned int do_gettimeoffset_hpet(void)
95{
john stultza3a00752005-06-23 00:08:36 -070096 /* cap counter read to one tick to avoid inconsistencies */
97 unsigned long counter = hpet_readl(HPET_COUNTER) - vxtime.last;
98 return (min(counter,hpet_tick) * vxtime.quot) >> 32;
Linus Torvalds1da177e2005-04-16 15:20:36 -070099}
100
101unsigned int (*do_gettimeoffset)(void) = do_gettimeoffset_tsc;
102
103/*
104 * This version of gettimeofday() has microsecond resolution and better than
105 * microsecond precision, as we're using at least a 10 MHz (usually 14.31818
106 * MHz) HPET timer.
107 */
108
109void do_gettimeofday(struct timeval *tv)
110{
111 unsigned long seq, t;
112 unsigned int sec, usec;
113
114 do {
115 seq = read_seqbegin(&xtime_lock);
116
117 sec = xtime.tv_sec;
118 usec = xtime.tv_nsec / 1000;
119
120 /* i386 does some correction here to keep the clock
121 monotonous even when ntpd is fixing drift.
122 But they didn't work for me, there is a non monotonic
123 clock anyways with ntp.
124 I dropped all corrections now until a real solution can
125 be found. Note when you fix it here you need to do the same
126 in arch/x86_64/kernel/vsyscall.c and export all needed
127 variables in vmlinux.lds. -AK */
128
129 t = (jiffies - wall_jiffies) * (1000000L / HZ) +
130 do_gettimeoffset();
131 usec += t;
132
133 } while (read_seqretry(&xtime_lock, seq));
134
135 tv->tv_sec = sec + usec / 1000000;
136 tv->tv_usec = usec % 1000000;
137}
138
139EXPORT_SYMBOL(do_gettimeofday);
140
141/*
142 * settimeofday() first undoes the correction that gettimeofday would do
143 * on the time, and then saves it. This is ugly, but has been like this for
144 * ages already.
145 */
146
147int do_settimeofday(struct timespec *tv)
148{
149 time_t wtm_sec, sec = tv->tv_sec;
150 long wtm_nsec, nsec = tv->tv_nsec;
151
152 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
153 return -EINVAL;
154
155 write_seqlock_irq(&xtime_lock);
156
157 nsec -= do_gettimeoffset() * 1000 +
158 (jiffies - wall_jiffies) * (NSEC_PER_SEC/HZ);
159
160 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
161 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
162
163 set_normalized_timespec(&xtime, sec, nsec);
164 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
165
john stultzb149ee22005-09-06 15:17:46 -0700166 ntp_clear();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700167
168 write_sequnlock_irq(&xtime_lock);
169 clock_was_set();
170 return 0;
171}
172
173EXPORT_SYMBOL(do_settimeofday);
174
175unsigned long profile_pc(struct pt_regs *regs)
176{
177 unsigned long pc = instruction_pointer(regs);
178
179 /* Assume the lock function has either no stack frame or only a single word.
180 This checks if the address on the stack looks like a kernel text address.
181 There is a small window for false hits, but in that case the tick
182 is just accounted to the spinlock function.
183 Better would be to write these functions in assembler again
184 and check exactly. */
185 if (in_lock_functions(pc)) {
186 char *v = *(char **)regs->rsp;
187 if ((v >= _stext && v <= _etext) ||
188 (v >= _sinittext && v <= _einittext) ||
189 (v >= (char *)MODULES_VADDR && v <= (char *)MODULES_END))
190 return (unsigned long)v;
191 return ((unsigned long *)regs->rsp)[1];
192 }
193 return pc;
194}
195EXPORT_SYMBOL(profile_pc);
196
197/*
198 * In order to set the CMOS clock precisely, set_rtc_mmss has to be called 500
199 * ms after the second nowtime has started, because when nowtime is written
200 * into the registers of the CMOS clock, it will jump to the next second
201 * precisely 500 ms later. Check the Motorola MC146818A or Dallas DS12887 data
202 * sheet for details.
203 */
204
205static void set_rtc_mmss(unsigned long nowtime)
206{
207 int real_seconds, real_minutes, cmos_minutes;
208 unsigned char control, freq_select;
209
210/*
211 * IRQs are disabled when we're called from the timer interrupt,
212 * no need for spin_lock_irqsave()
213 */
214
215 spin_lock(&rtc_lock);
216
217/*
218 * Tell the clock it's being set and stop it.
219 */
220
221 control = CMOS_READ(RTC_CONTROL);
222 CMOS_WRITE(control | RTC_SET, RTC_CONTROL);
223
224 freq_select = CMOS_READ(RTC_FREQ_SELECT);
225 CMOS_WRITE(freq_select | RTC_DIV_RESET2, RTC_FREQ_SELECT);
226
227 cmos_minutes = CMOS_READ(RTC_MINUTES);
228 BCD_TO_BIN(cmos_minutes);
229
230/*
231 * since we're only adjusting minutes and seconds, don't interfere with hour
232 * overflow. This avoids messing with unknown time zones but requires your RTC
233 * not to be off by more than 15 minutes. Since we're calling it only when
234 * our clock is externally synchronized using NTP, this shouldn't be a problem.
235 */
236
237 real_seconds = nowtime % 60;
238 real_minutes = nowtime / 60;
239 if (((abs(real_minutes - cmos_minutes) + 15) / 30) & 1)
240 real_minutes += 30; /* correct for half hour time zone */
241 real_minutes %= 60;
242
243#if 0
244 /* AMD 8111 is a really bad time keeper and hits this regularly.
245 It probably was an attempt to avoid screwing up DST, but ignore
246 that for now. */
247 if (abs(real_minutes - cmos_minutes) >= 30) {
248 printk(KERN_WARNING "time.c: can't update CMOS clock "
249 "from %d to %d\n", cmos_minutes, real_minutes);
250 } else
251#endif
252
253 {
Andi Kleen0b913172006-01-11 22:45:33 +0100254 BIN_TO_BCD(real_seconds);
255 BIN_TO_BCD(real_minutes);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700256 CMOS_WRITE(real_seconds, RTC_SECONDS);
257 CMOS_WRITE(real_minutes, RTC_MINUTES);
258 }
259
260/*
261 * The following flags have to be released exactly in this order, otherwise the
262 * DS12887 (popular MC146818A clone with integrated battery and quartz) will
263 * not reset the oscillator and will not update precisely 500 ms later. You
264 * won't find this mentioned in the Dallas Semiconductor data sheets, but who
265 * believes data sheets anyway ... -- Markus Kuhn
266 */
267
268 CMOS_WRITE(control, RTC_CONTROL);
269 CMOS_WRITE(freq_select, RTC_FREQ_SELECT);
270
271 spin_unlock(&rtc_lock);
272}
273
274
275/* monotonic_clock(): returns # of nanoseconds passed since time_init()
276 * Note: This function is required to return accurate
277 * time even in the absence of multiple timer ticks.
278 */
279unsigned long long monotonic_clock(void)
280{
281 unsigned long seq;
282 u32 last_offset, this_offset, offset;
283 unsigned long long base;
284
285 if (vxtime.mode == VXTIME_HPET) {
286 do {
287 seq = read_seqbegin(&xtime_lock);
288
289 last_offset = vxtime.last;
290 base = monotonic_base;
john stultza3a00752005-06-23 00:08:36 -0700291 this_offset = hpet_readl(HPET_COUNTER);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700292 } while (read_seqretry(&xtime_lock, seq));
293 offset = (this_offset - last_offset);
294 offset *=(NSEC_PER_SEC/HZ)/hpet_tick;
295 return base + offset;
Andi Kleen0b913172006-01-11 22:45:33 +0100296 } else {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700297 do {
298 seq = read_seqbegin(&xtime_lock);
299
300 last_offset = vxtime.last_tsc;
301 base = monotonic_base;
302 } while (read_seqretry(&xtime_lock, seq));
Andi Kleenc818a182006-01-11 22:45:24 +0100303 this_offset = get_cycles_sync();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700304 offset = (this_offset - last_offset)*1000/cpu_khz;
305 return base + offset;
306 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700307}
308EXPORT_SYMBOL(monotonic_clock);
309
310static noinline void handle_lost_ticks(int lost, struct pt_regs *regs)
311{
312 static long lost_count;
313 static int warned;
314
315 if (report_lost_ticks) {
316 printk(KERN_WARNING "time.c: Lost %d timer "
317 "tick(s)! ", lost);
318 print_symbol("rip %s)\n", regs->rip);
319 }
320
321 if (lost_count == 1000 && !warned) {
322 printk(KERN_WARNING
323 "warning: many lost ticks.\n"
324 KERN_WARNING "Your time source seems to be instable or "
325 "some driver is hogging interupts\n");
326 print_symbol("rip %s\n", regs->rip);
327 if (vxtime.mode == VXTIME_TSC && vxtime.hpet_address) {
328 printk(KERN_WARNING "Falling back to HPET\n");
329 vxtime.last = hpet_readl(HPET_T0_CMP) - hpet_tick;
330 vxtime.mode = VXTIME_HPET;
331 do_gettimeoffset = do_gettimeoffset_hpet;
332 }
333 /* else should fall back to PIT, but code missing. */
334 warned = 1;
335 } else
336 lost_count++;
337
338#ifdef CONFIG_CPU_FREQ
339 /* In some cases the CPU can change frequency without us noticing
340 (like going into thermal throttle)
341 Give cpufreq a change to catch up. */
342 if ((lost_count+1) % 25 == 0) {
343 cpufreq_delayed_get();
344 }
345#endif
346}
347
Andi Kleen73dea472006-02-03 21:50:50 +0100348void main_timer_handler(struct pt_regs *regs)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700349{
350 static unsigned long rtc_update = 0;
351 unsigned long tsc;
352 int delay, offset = 0, lost = 0;
353
354/*
355 * Here we are in the timer irq handler. We have irqs locally disabled (so we
356 * don't need spin_lock_irqsave()) but we don't know if the timer_bh is running
357 * on the other CPU, so we need a lock. We also need to lock the vsyscall
358 * variables, because both do_timer() and us change them -arca+vojtech
359 */
360
361 write_seqlock(&xtime_lock);
362
john stultza3a00752005-06-23 00:08:36 -0700363 if (vxtime.hpet_address)
364 offset = hpet_readl(HPET_COUNTER);
365
366 if (hpet_use_timer) {
367 /* if we're using the hpet timer functionality,
368 * we can more accurately know the counter value
369 * when the timer interrupt occured.
370 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700371 offset = hpet_readl(HPET_T0_CMP) - hpet_tick;
372 delay = hpet_readl(HPET_COUNTER) - offset;
373 } else {
374 spin_lock(&i8253_lock);
375 outb_p(0x00, 0x43);
376 delay = inb_p(0x40);
377 delay |= inb(0x40) << 8;
378 spin_unlock(&i8253_lock);
379 delay = LATCH - 1 - delay;
380 }
381
Andi Kleenc818a182006-01-11 22:45:24 +0100382 tsc = get_cycles_sync();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700383
384 if (vxtime.mode == VXTIME_HPET) {
385 if (offset - vxtime.last > hpet_tick) {
386 lost = (offset - vxtime.last) / hpet_tick - 1;
387 }
388
389 monotonic_base +=
390 (offset - vxtime.last)*(NSEC_PER_SEC/HZ) / hpet_tick;
391
392 vxtime.last = offset;
Andi Kleen312df5f2005-05-16 21:53:28 -0700393#ifdef CONFIG_X86_PM_TIMER
394 } else if (vxtime.mode == VXTIME_PMTMR) {
395 lost = pmtimer_mark_offset();
396#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700397 } else {
398 offset = (((tsc - vxtime.last_tsc) *
399 vxtime.tsc_quot) >> 32) - (USEC_PER_SEC / HZ);
400
401 if (offset < 0)
402 offset = 0;
403
404 if (offset > (USEC_PER_SEC / HZ)) {
405 lost = offset / (USEC_PER_SEC / HZ);
406 offset %= (USEC_PER_SEC / HZ);
407 }
408
409 monotonic_base += (tsc - vxtime.last_tsc)*1000000/cpu_khz ;
410
411 vxtime.last_tsc = tsc - vxtime.quot * delay / vxtime.tsc_quot;
412
413 if ((((tsc - vxtime.last_tsc) *
414 vxtime.tsc_quot) >> 32) < offset)
415 vxtime.last_tsc = tsc -
416 (((long) offset << 32) / vxtime.tsc_quot) - 1;
417 }
418
419 if (lost > 0) {
420 handle_lost_ticks(lost, regs);
421 jiffies += lost;
422 }
423
424/*
425 * Do the timer stuff.
426 */
427
428 do_timer(regs);
429#ifndef CONFIG_SMP
430 update_process_times(user_mode(regs));
431#endif
432
433/*
434 * In the SMP case we use the local APIC timer interrupt to do the profiling,
435 * except when we simulate SMP mode on a uniprocessor system, in that case we
436 * have to call the local interrupt handler.
437 */
438
439#ifndef CONFIG_X86_LOCAL_APIC
440 profile_tick(CPU_PROFILING, regs);
441#else
442 if (!using_apic_timer)
443 smp_local_timer_interrupt(regs);
444#endif
445
446/*
447 * If we have an externally synchronized Linux clock, then update CMOS clock
448 * accordingly every ~11 minutes. set_rtc_mmss() will be called in the jiffy
449 * closest to exactly 500 ms before the next second. If the update fails, we
450 * don't care, as it'll be updated on the next turn, and the problem (time way
451 * off) isn't likely to go away much sooner anyway.
452 */
453
john stultzb149ee22005-09-06 15:17:46 -0700454 if (ntp_synced() && xtime.tv_sec > rtc_update &&
Linus Torvalds1da177e2005-04-16 15:20:36 -0700455 abs(xtime.tv_nsec - 500000000) <= tick_nsec / 2) {
456 set_rtc_mmss(xtime.tv_sec);
457 rtc_update = xtime.tv_sec + 660;
458 }
459
460 write_sequnlock(&xtime_lock);
Andi Kleen73dea472006-02-03 21:50:50 +0100461}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700462
Andi Kleen73dea472006-02-03 21:50:50 +0100463static irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
464{
465 if (apic_runs_main_timer > 1)
466 return IRQ_HANDLED;
467 main_timer_handler(regs);
Venkatesh Pallipadid25bf7e2006-01-11 22:44:24 +0100468#ifdef CONFIG_X86_LOCAL_APIC
469 if (using_apic_timer)
470 smp_send_timer_broadcast_ipi();
471#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700472 return IRQ_HANDLED;
473}
474
475static unsigned int cyc2ns_scale;
476#define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
477
Mathieu Desnoyersdacb16b2005-10-30 14:59:25 -0800478static inline void set_cyc2ns_scale(unsigned long cpu_khz)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700479{
Mathieu Desnoyersdacb16b2005-10-30 14:59:25 -0800480 cyc2ns_scale = (1000000 << CYC2NS_SCALE_FACTOR)/cpu_khz;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700481}
482
483static inline unsigned long long cycles_2_ns(unsigned long long cyc)
484{
485 return (cyc * cyc2ns_scale) >> CYC2NS_SCALE_FACTOR;
486}
487
488unsigned long long sched_clock(void)
489{
490 unsigned long a = 0;
491
492#if 0
493 /* Don't do a HPET read here. Using TSC always is much faster
494 and HPET may not be mapped yet when the scheduler first runs.
495 Disadvantage is a small drift between CPUs in some configurations,
496 but that should be tolerable. */
497 if (__vxtime.mode == VXTIME_HPET)
498 return (hpet_readl(HPET_COUNTER) * vxtime.quot) >> 32;
499#endif
500
501 /* Could do CPU core sync here. Opteron can execute rdtsc speculatively,
502 which means it is not completely exact and may not be monotonous between
503 CPUs. But the errors should be too small to matter for scheduling
504 purposes. */
505
506 rdtscll(a);
507 return cycles_2_ns(a);
508}
509
Andi Kleenbdf2b1c2006-01-11 22:46:39 +0100510static unsigned long get_cmos_time(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700511{
Jan Beulich5329e13d2006-01-11 22:46:42 +0100512 unsigned int timeout = 1000000, year, mon, day, hour, min, sec;
513 unsigned char uip = 0, this = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700514 unsigned long flags;
515
516/*
517 * The Linux interpretation of the CMOS clock register contents: When the
518 * Update-In-Progress (UIP) flag goes from 1 to 0, the RTC registers show the
519 * second which has precisely just started. Waiting for this can take up to 1
520 * second, we timeout approximately after 2.4 seconds on a machine with
521 * standard 8.3 MHz ISA bus.
522 */
523
524 spin_lock_irqsave(&rtc_lock, flags);
525
Jan Beulich5329e13d2006-01-11 22:46:42 +0100526 while (timeout && (!uip || this)) {
527 uip |= this;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700528 this = CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP;
529 timeout--;
530 }
531
Andi Kleen0b913172006-01-11 22:45:33 +0100532 /*
533 * Here we are safe to assume the registers won't change for a whole
534 * second, so we just go ahead and read them.
535 */
536 sec = CMOS_READ(RTC_SECONDS);
537 min = CMOS_READ(RTC_MINUTES);
538 hour = CMOS_READ(RTC_HOURS);
539 day = CMOS_READ(RTC_DAY_OF_MONTH);
540 mon = CMOS_READ(RTC_MONTH);
541 year = CMOS_READ(RTC_YEAR);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700542
543 spin_unlock_irqrestore(&rtc_lock, flags);
544
Andi Kleen0b913172006-01-11 22:45:33 +0100545 /*
546 * We know that x86-64 always uses BCD format, no need to check the
547 * config register.
548 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700549
Andi Kleen0b913172006-01-11 22:45:33 +0100550 BCD_TO_BIN(sec);
551 BCD_TO_BIN(min);
552 BCD_TO_BIN(hour);
553 BCD_TO_BIN(day);
554 BCD_TO_BIN(mon);
555 BCD_TO_BIN(year);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700556
Andi Kleen0b913172006-01-11 22:45:33 +0100557 /*
558 * x86-64 systems only exists since 2002.
559 * This will work up to Dec 31, 2100
560 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700561 year += 2000;
562
563 return mktime(year, mon, day, hour, min, sec);
564}
565
566#ifdef CONFIG_CPU_FREQ
567
568/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
569 changes.
570
571 RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
572 not that important because current Opteron setups do not support
573 scaling on SMP anyroads.
574
575 Should fix up last_tsc too. Currently gettimeofday in the
576 first tick after the change will be slightly wrong. */
577
578#include <linux/workqueue.h>
579
580static unsigned int cpufreq_delayed_issched = 0;
581static unsigned int cpufreq_init = 0;
582static struct work_struct cpufreq_delayed_get_work;
583
584static void handle_cpufreq_delayed_get(void *v)
585{
586 unsigned int cpu;
587 for_each_online_cpu(cpu) {
588 cpufreq_get(cpu);
589 }
590 cpufreq_delayed_issched = 0;
591}
592
593/* if we notice lost ticks, schedule a call to cpufreq_get() as it tries
594 * to verify the CPU frequency the timing core thinks the CPU is running
595 * at is still correct.
596 */
597static void cpufreq_delayed_get(void)
598{
599 static int warned;
600 if (cpufreq_init && !cpufreq_delayed_issched) {
601 cpufreq_delayed_issched = 1;
602 if (!warned) {
603 warned = 1;
604 printk(KERN_DEBUG "Losing some ticks... checking if CPU frequency changed.\n");
605 }
606 schedule_work(&cpufreq_delayed_get_work);
607 }
608}
609
610static unsigned int ref_freq = 0;
611static unsigned long loops_per_jiffy_ref = 0;
612
613static unsigned long cpu_khz_ref = 0;
614
615static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
616 void *data)
617{
618 struct cpufreq_freqs *freq = data;
619 unsigned long *lpj, dummy;
620
Andi Kleenc29601e2005-04-16 15:25:05 -0700621 if (cpu_has(&cpu_data[freq->cpu], X86_FEATURE_CONSTANT_TSC))
622 return 0;
623
Linus Torvalds1da177e2005-04-16 15:20:36 -0700624 lpj = &dummy;
625 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
626#ifdef CONFIG_SMP
627 lpj = &cpu_data[freq->cpu].loops_per_jiffy;
628#else
629 lpj = &boot_cpu_data.loops_per_jiffy;
630#endif
631
Linus Torvalds1da177e2005-04-16 15:20:36 -0700632 if (!ref_freq) {
633 ref_freq = freq->old;
634 loops_per_jiffy_ref = *lpj;
635 cpu_khz_ref = cpu_khz;
636 }
637 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
638 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
639 (val == CPUFREQ_RESUMECHANGE)) {
640 *lpj =
641 cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
642
643 cpu_khz = cpufreq_scale(cpu_khz_ref, ref_freq, freq->new);
644 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
645 vxtime.tsc_quot = (1000L << 32) / cpu_khz;
646 }
647
Mathieu Desnoyersdacb16b2005-10-30 14:59:25 -0800648 set_cyc2ns_scale(cpu_khz_ref);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700649
650 return 0;
651}
652
653static struct notifier_block time_cpufreq_notifier_block = {
654 .notifier_call = time_cpufreq_notifier
655};
656
657static int __init cpufreq_tsc(void)
658{
659 INIT_WORK(&cpufreq_delayed_get_work, handle_cpufreq_delayed_get, NULL);
660 if (!cpufreq_register_notifier(&time_cpufreq_notifier_block,
661 CPUFREQ_TRANSITION_NOTIFIER))
662 cpufreq_init = 1;
663 return 0;
664}
665
666core_initcall(cpufreq_tsc);
667
668#endif
669
670/*
671 * calibrate_tsc() calibrates the processor TSC in a very simple way, comparing
672 * it to the HPET timer of known frequency.
673 */
674
675#define TICK_COUNT 100000000
676
677static unsigned int __init hpet_calibrate_tsc(void)
678{
679 int tsc_start, hpet_start;
680 int tsc_now, hpet_now;
681 unsigned long flags;
682
683 local_irq_save(flags);
684 local_irq_disable();
685
686 hpet_start = hpet_readl(HPET_COUNTER);
687 rdtscl(tsc_start);
688
689 do {
690 local_irq_disable();
691 hpet_now = hpet_readl(HPET_COUNTER);
Andi Kleenc818a182006-01-11 22:45:24 +0100692 tsc_now = get_cycles_sync();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700693 local_irq_restore(flags);
694 } while ((tsc_now - tsc_start) < TICK_COUNT &&
695 (hpet_now - hpet_start) < TICK_COUNT);
696
697 return (tsc_now - tsc_start) * 1000000000L
698 / ((hpet_now - hpet_start) * hpet_period / 1000);
699}
700
701
702/*
703 * pit_calibrate_tsc() uses the speaker output (channel 2) of
704 * the PIT. This is better than using the timer interrupt output,
705 * because we can read the value of the speaker with just one inb(),
706 * where we need three i/o operations for the interrupt channel.
707 * We count how many ticks the TSC does in 50 ms.
708 */
709
710static unsigned int __init pit_calibrate_tsc(void)
711{
712 unsigned long start, end;
713 unsigned long flags;
714
715 spin_lock_irqsave(&i8253_lock, flags);
716
717 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
718
719 outb(0xb0, 0x43);
720 outb((PIT_TICK_RATE / (1000 / 50)) & 0xff, 0x42);
721 outb((PIT_TICK_RATE / (1000 / 50)) >> 8, 0x42);
Andi Kleenc818a182006-01-11 22:45:24 +0100722 start = get_cycles_sync();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700723 while ((inb(0x61) & 0x20) == 0);
Andi Kleenc818a182006-01-11 22:45:24 +0100724 end = get_cycles_sync();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700725
726 spin_unlock_irqrestore(&i8253_lock, flags);
727
728 return (end - start) / 50;
729}
730
731#ifdef CONFIG_HPET
732static __init int late_hpet_init(void)
733{
734 struct hpet_data hd;
735 unsigned int ntimer;
736
737 if (!vxtime.hpet_address)
Andi Kleen0b913172006-01-11 22:45:33 +0100738 return -1;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700739
740 memset(&hd, 0, sizeof (hd));
741
742 ntimer = hpet_readl(HPET_ID);
743 ntimer = (ntimer & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
744 ntimer++;
745
746 /*
747 * Register with driver.
748 * Timer0 and Timer1 is used by platform.
749 */
750 hd.hd_phys_address = vxtime.hpet_address;
751 hd.hd_address = (void *)fix_to_virt(FIX_HPET_BASE);
752 hd.hd_nirqs = ntimer;
753 hd.hd_flags = HPET_DATA_PLATFORM;
754 hpet_reserve_timer(&hd, 0);
755#ifdef CONFIG_HPET_EMULATE_RTC
756 hpet_reserve_timer(&hd, 1);
757#endif
758 hd.hd_irq[0] = HPET_LEGACY_8254;
759 hd.hd_irq[1] = HPET_LEGACY_RTC;
760 if (ntimer > 2) {
761 struct hpet *hpet;
762 struct hpet_timer *timer;
763 int i;
764
765 hpet = (struct hpet *) fix_to_virt(FIX_HPET_BASE);
766
767 for (i = 2, timer = &hpet->hpet_timers[2]; i < ntimer;
768 timer++, i++)
769 hd.hd_irq[i] = (timer->hpet_config &
770 Tn_INT_ROUTE_CNF_MASK) >>
771 Tn_INT_ROUTE_CNF_SHIFT;
772
773 }
774
775 hpet_alloc(&hd);
776 return 0;
777}
778fs_initcall(late_hpet_init);
779#endif
780
781static int hpet_timer_stop_set_go(unsigned long tick)
782{
783 unsigned int cfg;
784
785/*
786 * Stop the timers and reset the main counter.
787 */
788
789 cfg = hpet_readl(HPET_CFG);
790 cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
791 hpet_writel(cfg, HPET_CFG);
792 hpet_writel(0, HPET_COUNTER);
793 hpet_writel(0, HPET_COUNTER + 4);
794
795/*
796 * Set up timer 0, as periodic with first interrupt to happen at hpet_tick,
797 * and period also hpet_tick.
798 */
john stultza3a00752005-06-23 00:08:36 -0700799 if (hpet_use_timer) {
800 hpet_writel(HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
Linus Torvalds1da177e2005-04-16 15:20:36 -0700801 HPET_TN_32BIT, HPET_T0_CFG);
john stultza3a00752005-06-23 00:08:36 -0700802 hpet_writel(hpet_tick, HPET_T0_CMP);
803 hpet_writel(hpet_tick, HPET_T0_CMP); /* AK: why twice? */
804 cfg |= HPET_CFG_LEGACY;
805 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700806/*
807 * Go!
808 */
809
john stultza3a00752005-06-23 00:08:36 -0700810 cfg |= HPET_CFG_ENABLE;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700811 hpet_writel(cfg, HPET_CFG);
812
813 return 0;
814}
815
816static int hpet_init(void)
817{
818 unsigned int id;
819
820 if (!vxtime.hpet_address)
821 return -1;
822 set_fixmap_nocache(FIX_HPET_BASE, vxtime.hpet_address);
823 __set_fixmap(VSYSCALL_HPET, vxtime.hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
824
825/*
826 * Read the period, compute tick and quotient.
827 */
828
829 id = hpet_readl(HPET_ID);
830
john stultza3a00752005-06-23 00:08:36 -0700831 if (!(id & HPET_ID_VENDOR) || !(id & HPET_ID_NUMBER))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700832 return -1;
833
834 hpet_period = hpet_readl(HPET_PERIOD);
835 if (hpet_period < 100000 || hpet_period > 100000000)
836 return -1;
837
838 hpet_tick = (1000000000L * (USEC_PER_SEC / HZ) + hpet_period / 2) /
839 hpet_period;
840
john stultza3a00752005-06-23 00:08:36 -0700841 hpet_use_timer = (id & HPET_ID_LEGSUP);
842
Linus Torvalds1da177e2005-04-16 15:20:36 -0700843 return hpet_timer_stop_set_go(hpet_tick);
844}
845
846static int hpet_reenable(void)
847{
848 return hpet_timer_stop_set_go(hpet_tick);
849}
850
Andi Kleen73dea472006-02-03 21:50:50 +0100851#define PIT_MODE 0x43
852#define PIT_CH0 0x40
853
854static void __init __pit_init(int val, u8 mode)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700855{
856 unsigned long flags;
857
858 spin_lock_irqsave(&i8253_lock, flags);
Andi Kleen73dea472006-02-03 21:50:50 +0100859 outb_p(mode, PIT_MODE);
860 outb_p(val & 0xff, PIT_CH0); /* LSB */
861 outb_p(val >> 8, PIT_CH0); /* MSB */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700862 spin_unlock_irqrestore(&i8253_lock, flags);
863}
864
Andi Kleen73dea472006-02-03 21:50:50 +0100865void __init pit_init(void)
866{
867 __pit_init(LATCH, 0x34); /* binary, mode 2, LSB/MSB, ch 0 */
868}
869
870void __init pit_stop_interrupt(void)
871{
872 __pit_init(0, 0x30); /* mode 0 */
873}
874
875void __init stop_timer_interrupt(void)
876{
877 char *name;
878 if (vxtime.hpet_address) {
879 name = "HPET";
880 hpet_timer_stop_set_go(0);
881 } else {
882 name = "PIT";
883 pit_stop_interrupt();
884 }
885 printk(KERN_INFO "timer: %s interrupt stopped.\n", name);
886}
887
Linus Torvalds1da177e2005-04-16 15:20:36 -0700888int __init time_setup(char *str)
889{
890 report_lost_ticks = 1;
891 return 1;
892}
893
894static struct irqaction irq0 = {
895 timer_interrupt, SA_INTERRUPT, CPU_MASK_NONE, "timer", NULL, NULL
896};
897
Linus Torvalds1da177e2005-04-16 15:20:36 -0700898void __init time_init(void)
899{
900 char *timename;
901
902#ifdef HPET_HACK_ENABLE_DANGEROUS
903 if (!vxtime.hpet_address) {
904 printk(KERN_WARNING "time.c: WARNING: Enabling HPET base "
905 "manually!\n");
906 outl(0x800038a0, 0xcf8);
907 outl(0xff000001, 0xcfc);
908 outl(0x800038a0, 0xcf8);
909 vxtime.hpet_address = inl(0xcfc) & 0xfffffffe;
910 printk(KERN_WARNING "time.c: WARNING: Enabled HPET "
911 "at %#lx.\n", vxtime.hpet_address);
912 }
913#endif
914 if (nohpet)
915 vxtime.hpet_address = 0;
916
917 xtime.tv_sec = get_cmos_time();
918 xtime.tv_nsec = 0;
919
920 set_normalized_timespec(&wall_to_monotonic,
921 -xtime.tv_sec, -xtime.tv_nsec);
922
john stultza3a00752005-06-23 00:08:36 -0700923 if (!hpet_init())
Linus Torvalds1da177e2005-04-16 15:20:36 -0700924 vxtime_hz = (1000000000000000L + hpet_period / 2) /
925 hpet_period;
Andi Kleen68e18892005-12-12 22:17:07 -0800926 else
927 vxtime.hpet_address = 0;
john stultza3a00752005-06-23 00:08:36 -0700928
929 if (hpet_use_timer) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700930 cpu_khz = hpet_calibrate_tsc();
931 timename = "HPET";
Andi Kleen312df5f2005-05-16 21:53:28 -0700932#ifdef CONFIG_X86_PM_TIMER
john stultzfd495472005-12-12 22:17:13 -0800933 } else if (pmtmr_ioport && !vxtime.hpet_address) {
Andi Kleen312df5f2005-05-16 21:53:28 -0700934 vxtime_hz = PM_TIMER_FREQUENCY;
935 timename = "PM";
936 pit_init();
937 cpu_khz = pit_calibrate_tsc();
938#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700939 } else {
940 pit_init();
941 cpu_khz = pit_calibrate_tsc();
942 timename = "PIT";
943 }
944
945 printk(KERN_INFO "time.c: Using %ld.%06ld MHz %s timer.\n",
946 vxtime_hz / 1000000, vxtime_hz % 1000000, timename);
947 printk(KERN_INFO "time.c: Detected %d.%03d MHz processor.\n",
948 cpu_khz / 1000, cpu_khz % 1000);
949 vxtime.mode = VXTIME_TSC;
950 vxtime.quot = (1000000L << 32) / vxtime_hz;
951 vxtime.tsc_quot = (1000L << 32) / cpu_khz;
Andi Kleenc818a182006-01-11 22:45:24 +0100952 vxtime.last_tsc = get_cycles_sync();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700953 setup_irq(0, &irq0);
954
Mathieu Desnoyersdacb16b2005-10-30 14:59:25 -0800955 set_cyc2ns_scale(cpu_khz);
Andi Kleena8ab26f2005-04-16 15:25:19 -0700956
957#ifndef CONFIG_SMP
958 time_init_gtod();
959#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700960}
961
Andi Kleena8ab26f2005-04-16 15:25:19 -0700962/*
Andi Kleen312df5f2005-05-16 21:53:28 -0700963 * Make an educated guess if the TSC is trustworthy and synchronized
964 * over all CPUs.
965 */
Andi Kleen737c5c32006-01-11 22:45:15 +0100966__init int unsynchronized_tsc(void)
Andi Kleen312df5f2005-05-16 21:53:28 -0700967{
968#ifdef CONFIG_SMP
969 if (oem_force_hpet_timer())
970 return 1;
971 /* Intel systems are normally all synchronized. Exceptions
972 are handled in the OEM check above. */
973 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
974 return 0;
Andi Kleen312df5f2005-05-16 21:53:28 -0700975#endif
976 /* Assume multi socket systems are not synchronized */
Andi Kleen737c5c32006-01-11 22:45:15 +0100977 return num_present_cpus() > 1;
Andi Kleen312df5f2005-05-16 21:53:28 -0700978}
979
980/*
Andi Kleena8ab26f2005-04-16 15:25:19 -0700981 * Decide after all CPUs are booted what mode gettimeofday should use.
982 */
983void __init time_init_gtod(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700984{
985 char *timetype;
986
Andi Kleen312df5f2005-05-16 21:53:28 -0700987 if (unsynchronized_tsc())
Linus Torvalds1da177e2005-04-16 15:20:36 -0700988 notsc = 1;
989 if (vxtime.hpet_address && notsc) {
john stultza3a00752005-06-23 00:08:36 -0700990 timetype = hpet_use_timer ? "HPET" : "PIT/HPET";
Linus Torvalds1da177e2005-04-16 15:20:36 -0700991 vxtime.last = hpet_readl(HPET_T0_CMP) - hpet_tick;
992 vxtime.mode = VXTIME_HPET;
993 do_gettimeoffset = do_gettimeoffset_hpet;
Andi Kleen312df5f2005-05-16 21:53:28 -0700994#ifdef CONFIG_X86_PM_TIMER
995 /* Using PM for gettimeofday is quite slow, but we have no other
996 choice because the TSC is too unreliable on some systems. */
997 } else if (pmtmr_ioport && !vxtime.hpet_address && notsc) {
998 timetype = "PM";
999 do_gettimeoffset = do_gettimeoffset_pm;
1000 vxtime.mode = VXTIME_PMTMR;
1001 sysctl_vsyscall = 0;
1002 printk(KERN_INFO "Disabling vsyscall due to use of PM timer\n");
1003#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001004 } else {
john stultza3a00752005-06-23 00:08:36 -07001005 timetype = hpet_use_timer ? "HPET/TSC" : "PIT/TSC";
Linus Torvalds1da177e2005-04-16 15:20:36 -07001006 vxtime.mode = VXTIME_TSC;
1007 }
1008
1009 printk(KERN_INFO "time.c: Using %s based timekeeping.\n", timetype);
1010}
1011
1012__setup("report_lost_ticks", time_setup);
1013
1014static long clock_cmos_diff;
1015static unsigned long sleep_start;
1016
Andi Kleen0b913172006-01-11 22:45:33 +01001017/*
1018 * sysfs support for the timer.
1019 */
1020
Pavel Machek0b9c33a2005-04-16 15:25:31 -07001021static int timer_suspend(struct sys_device *dev, pm_message_t state)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001022{
1023 /*
1024 * Estimate time zone so that set_time can update the clock
1025 */
1026 long cmos_time = get_cmos_time();
1027
1028 clock_cmos_diff = -cmos_time;
1029 clock_cmos_diff += get_seconds();
1030 sleep_start = cmos_time;
1031 return 0;
1032}
1033
1034static int timer_resume(struct sys_device *dev)
1035{
1036 unsigned long flags;
1037 unsigned long sec;
1038 unsigned long ctime = get_cmos_time();
1039 unsigned long sleep_length = (ctime - sleep_start) * HZ;
1040
1041 if (vxtime.hpet_address)
1042 hpet_reenable();
1043 else
1044 i8254_timer_resume();
1045
1046 sec = ctime + clock_cmos_diff;
1047 write_seqlock_irqsave(&xtime_lock,flags);
1048 xtime.tv_sec = sec;
1049 xtime.tv_nsec = 0;
1050 write_sequnlock_irqrestore(&xtime_lock,flags);
1051 jiffies += sleep_length;
1052 wall_jiffies += sleep_length;
Ingo Molnar8446f1d2005-09-06 15:16:27 -07001053 touch_softlockup_watchdog();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001054 return 0;
1055}
1056
1057static struct sysdev_class timer_sysclass = {
1058 .resume = timer_resume,
1059 .suspend = timer_suspend,
1060 set_kset_name("timer"),
1061};
1062
Linus Torvalds1da177e2005-04-16 15:20:36 -07001063/* XXX this driverfs stuff should probably go elsewhere later -john */
1064static struct sys_device device_timer = {
1065 .id = 0,
1066 .cls = &timer_sysclass,
1067};
1068
1069static int time_init_device(void)
1070{
1071 int error = sysdev_class_register(&timer_sysclass);
1072 if (!error)
1073 error = sysdev_register(&device_timer);
1074 return error;
1075}
1076
1077device_initcall(time_init_device);
1078
1079#ifdef CONFIG_HPET_EMULATE_RTC
1080/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
1081 * is enabled, we support RTC interrupt functionality in software.
1082 * RTC has 3 kinds of interrupts:
1083 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
1084 * is updated
1085 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
1086 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
1087 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
1088 * (1) and (2) above are implemented using polling at a frequency of
1089 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
1090 * overhead. (DEFAULT_RTC_INT_FREQ)
1091 * For (3), we use interrupts at 64Hz or user specified periodic
1092 * frequency, whichever is higher.
1093 */
1094#include <linux/rtc.h>
1095
Linus Torvalds1da177e2005-04-16 15:20:36 -07001096#define DEFAULT_RTC_INT_FREQ 64
1097#define RTC_NUM_INTS 1
1098
1099static unsigned long UIE_on;
1100static unsigned long prev_update_sec;
1101
1102static unsigned long AIE_on;
1103static struct rtc_time alarm_time;
1104
1105static unsigned long PIE_on;
1106static unsigned long PIE_freq = DEFAULT_RTC_INT_FREQ;
1107static unsigned long PIE_count;
1108
1109static unsigned long hpet_rtc_int_freq; /* RTC interrupt frequency */
Clemens Ladisch7811fb82005-10-30 15:03:36 -08001110static unsigned int hpet_t1_cmp; /* cached comparator register */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001111
1112int is_hpet_enabled(void)
1113{
1114 return vxtime.hpet_address != 0;
1115}
1116
1117/*
1118 * Timer 1 for RTC, we do not use periodic interrupt feature,
1119 * even if HPET supports periodic interrupts on Timer 1.
1120 * The reason being, to set up a periodic interrupt in HPET, we need to
1121 * stop the main counter. And if we do that everytime someone diables/enables
1122 * RTC, we will have adverse effect on main kernel timer running on Timer 0.
1123 * So, for the time being, simulate the periodic interrupt in software.
1124 *
1125 * hpet_rtc_timer_init() is called for the first time and during subsequent
1126 * interuppts reinit happens through hpet_rtc_timer_reinit().
1127 */
1128int hpet_rtc_timer_init(void)
1129{
1130 unsigned int cfg, cnt;
1131 unsigned long flags;
1132
1133 if (!is_hpet_enabled())
1134 return 0;
1135 /*
1136 * Set the counter 1 and enable the interrupts.
1137 */
1138 if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ))
1139 hpet_rtc_int_freq = PIE_freq;
1140 else
1141 hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ;
1142
1143 local_irq_save(flags);
1144 cnt = hpet_readl(HPET_COUNTER);
1145 cnt += ((hpet_tick*HZ)/hpet_rtc_int_freq);
1146 hpet_writel(cnt, HPET_T1_CMP);
Clemens Ladisch7811fb82005-10-30 15:03:36 -08001147 hpet_t1_cmp = cnt;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001148 local_irq_restore(flags);
1149
1150 cfg = hpet_readl(HPET_T1_CFG);
Clemens Ladisch5f819942005-10-30 15:03:36 -08001151 cfg &= ~HPET_TN_PERIODIC;
1152 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001153 hpet_writel(cfg, HPET_T1_CFG);
1154
1155 return 1;
1156}
1157
1158static void hpet_rtc_timer_reinit(void)
1159{
1160 unsigned int cfg, cnt;
1161
Clemens Ladischf00c96f2005-10-30 15:03:35 -08001162 if (unlikely(!(PIE_on | AIE_on | UIE_on))) {
1163 cfg = hpet_readl(HPET_T1_CFG);
1164 cfg &= ~HPET_TN_ENABLE;
1165 hpet_writel(cfg, HPET_T1_CFG);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001166 return;
Clemens Ladischf00c96f2005-10-30 15:03:35 -08001167 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001168
1169 if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ))
1170 hpet_rtc_int_freq = PIE_freq;
1171 else
1172 hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ;
1173
1174 /* It is more accurate to use the comparator value than current count.*/
Clemens Ladisch7811fb82005-10-30 15:03:36 -08001175 cnt = hpet_t1_cmp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001176 cnt += hpet_tick*HZ/hpet_rtc_int_freq;
1177 hpet_writel(cnt, HPET_T1_CMP);
Clemens Ladisch7811fb82005-10-30 15:03:36 -08001178 hpet_t1_cmp = cnt;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001179}
1180
1181/*
1182 * The functions below are called from rtc driver.
1183 * Return 0 if HPET is not being used.
1184 * Otherwise do the necessary changes and return 1.
1185 */
1186int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1187{
1188 if (!is_hpet_enabled())
1189 return 0;
1190
1191 if (bit_mask & RTC_UIE)
1192 UIE_on = 0;
1193 if (bit_mask & RTC_PIE)
1194 PIE_on = 0;
1195 if (bit_mask & RTC_AIE)
1196 AIE_on = 0;
1197
1198 return 1;
1199}
1200
1201int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1202{
1203 int timer_init_reqd = 0;
1204
1205 if (!is_hpet_enabled())
1206 return 0;
1207
1208 if (!(PIE_on | AIE_on | UIE_on))
1209 timer_init_reqd = 1;
1210
1211 if (bit_mask & RTC_UIE) {
1212 UIE_on = 1;
1213 }
1214 if (bit_mask & RTC_PIE) {
1215 PIE_on = 1;
1216 PIE_count = 0;
1217 }
1218 if (bit_mask & RTC_AIE) {
1219 AIE_on = 1;
1220 }
1221
1222 if (timer_init_reqd)
1223 hpet_rtc_timer_init();
1224
1225 return 1;
1226}
1227
1228int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
1229{
1230 if (!is_hpet_enabled())
1231 return 0;
1232
1233 alarm_time.tm_hour = hrs;
1234 alarm_time.tm_min = min;
1235 alarm_time.tm_sec = sec;
1236
1237 return 1;
1238}
1239
1240int hpet_set_periodic_freq(unsigned long freq)
1241{
1242 if (!is_hpet_enabled())
1243 return 0;
1244
1245 PIE_freq = freq;
1246 PIE_count = 0;
1247
1248 return 1;
1249}
1250
1251int hpet_rtc_dropped_irq(void)
1252{
1253 if (!is_hpet_enabled())
1254 return 0;
1255
1256 return 1;
1257}
1258
1259irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1260{
1261 struct rtc_time curr_time;
1262 unsigned long rtc_int_flag = 0;
1263 int call_rtc_interrupt = 0;
1264
1265 hpet_rtc_timer_reinit();
1266
1267 if (UIE_on | AIE_on) {
1268 rtc_get_rtc_time(&curr_time);
1269 }
1270 if (UIE_on) {
1271 if (curr_time.tm_sec != prev_update_sec) {
1272 /* Set update int info, call real rtc int routine */
1273 call_rtc_interrupt = 1;
1274 rtc_int_flag = RTC_UF;
1275 prev_update_sec = curr_time.tm_sec;
1276 }
1277 }
1278 if (PIE_on) {
1279 PIE_count++;
1280 if (PIE_count >= hpet_rtc_int_freq/PIE_freq) {
1281 /* Set periodic int info, call real rtc int routine */
1282 call_rtc_interrupt = 1;
1283 rtc_int_flag |= RTC_PF;
1284 PIE_count = 0;
1285 }
1286 }
1287 if (AIE_on) {
1288 if ((curr_time.tm_sec == alarm_time.tm_sec) &&
1289 (curr_time.tm_min == alarm_time.tm_min) &&
1290 (curr_time.tm_hour == alarm_time.tm_hour)) {
1291 /* Set alarm int info, call real rtc int routine */
1292 call_rtc_interrupt = 1;
1293 rtc_int_flag |= RTC_AF;
1294 }
1295 }
1296 if (call_rtc_interrupt) {
1297 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1298 rtc_interrupt(rtc_int_flag, dev_id, regs);
1299 }
1300 return IRQ_HANDLED;
1301}
1302#endif
1303
Linus Torvalds1da177e2005-04-16 15:20:36 -07001304static int __init nohpet_setup(char *s)
1305{
1306 nohpet = 1;
1307 return 0;
1308}
1309
1310__setup("nohpet", nohpet_setup);
1311
1312
1313static int __init notsc_setup(char *s)
1314{
1315 notsc = 1;
1316 return 0;
1317}
1318
1319__setup("notsc", notsc_setup);