| Anton Vorontsov | 83ff9dc | 2008-05-23 20:38:54 +0400 | [diff] [blame] | 1 | /* | 
|  | 2 | * Freescale General-purpose Timers Module | 
|  | 3 | * | 
|  | 4 | * Copyright (c) Freescale Semicondutor, Inc. 2006. | 
|  | 5 | *               Shlomi Gridish <gridish@freescale.com> | 
|  | 6 | *               Jerry Huang <Chang-Ming.Huang@freescale.com> | 
|  | 7 | * Copyright (c) MontaVista Software, Inc. 2008. | 
|  | 8 | *               Anton Vorontsov <avorontsov@ru.mvista.com> | 
|  | 9 | * | 
|  | 10 | * This program is free software; you can redistribute  it and/or modify it | 
|  | 11 | * under  the terms of  the GNU General  Public License as published by the | 
|  | 12 | * Free Software Foundation;  either version 2 of the  License, or (at your | 
|  | 13 | * option) any later version. | 
|  | 14 | */ | 
|  | 15 |  | 
|  | 16 | #include <linux/kernel.h> | 
|  | 17 | #include <linux/errno.h> | 
|  | 18 | #include <linux/list.h> | 
|  | 19 | #include <linux/io.h> | 
|  | 20 | #include <linux/of.h> | 
|  | 21 | #include <linux/spinlock.h> | 
|  | 22 | #include <linux/bitops.h> | 
|  | 23 | #include <asm/fsl_gtm.h> | 
|  | 24 |  | 
|  | 25 | #define GTCFR_STP(x)		((x) & 1 ? 1 << 5 : 1 << 1) | 
|  | 26 | #define GTCFR_RST(x)		((x) & 1 ? 1 << 4 : 1 << 0) | 
|  | 27 |  | 
|  | 28 | #define GTMDR_ICLK_MASK		(3 << 1) | 
|  | 29 | #define GTMDR_ICLK_ICAS		(0 << 1) | 
|  | 30 | #define GTMDR_ICLK_ICLK		(1 << 1) | 
|  | 31 | #define GTMDR_ICLK_SLGO		(2 << 1) | 
|  | 32 | #define GTMDR_FRR		(1 << 3) | 
|  | 33 | #define GTMDR_ORI		(1 << 4) | 
|  | 34 | #define GTMDR_SPS(x)		((x) << 8) | 
|  | 35 |  | 
|  | 36 | struct gtm_timers_regs { | 
|  | 37 | u8	gtcfr1;		/* Timer 1, Timer 2 global config register */ | 
|  | 38 | u8	res0[0x3]; | 
|  | 39 | u8	gtcfr2;		/* Timer 3, timer 4 global config register */ | 
|  | 40 | u8	res1[0xB]; | 
|  | 41 | __be16	gtmdr1;		/* Timer 1 mode register */ | 
|  | 42 | __be16	gtmdr2;		/* Timer 2 mode register */ | 
|  | 43 | __be16	gtrfr1;		/* Timer 1 reference register */ | 
|  | 44 | __be16	gtrfr2;		/* Timer 2 reference register */ | 
|  | 45 | __be16	gtcpr1;		/* Timer 1 capture register */ | 
|  | 46 | __be16	gtcpr2;		/* Timer 2 capture register */ | 
|  | 47 | __be16	gtcnr1;		/* Timer 1 counter */ | 
|  | 48 | __be16	gtcnr2;		/* Timer 2 counter */ | 
|  | 49 | __be16	gtmdr3;		/* Timer 3 mode register */ | 
|  | 50 | __be16	gtmdr4;		/* Timer 4 mode register */ | 
|  | 51 | __be16	gtrfr3;		/* Timer 3 reference register */ | 
|  | 52 | __be16	gtrfr4;		/* Timer 4 reference register */ | 
|  | 53 | __be16	gtcpr3;		/* Timer 3 capture register */ | 
|  | 54 | __be16	gtcpr4;		/* Timer 4 capture register */ | 
|  | 55 | __be16	gtcnr3;		/* Timer 3 counter */ | 
|  | 56 | __be16	gtcnr4;		/* Timer 4 counter */ | 
|  | 57 | __be16	gtevr1;		/* Timer 1 event register */ | 
|  | 58 | __be16	gtevr2;		/* Timer 2 event register */ | 
|  | 59 | __be16	gtevr3;		/* Timer 3 event register */ | 
|  | 60 | __be16	gtevr4;		/* Timer 4 event register */ | 
|  | 61 | __be16	gtpsr1;		/* Timer 1 prescale register */ | 
|  | 62 | __be16	gtpsr2;		/* Timer 2 prescale register */ | 
|  | 63 | __be16	gtpsr3;		/* Timer 3 prescale register */ | 
|  | 64 | __be16	gtpsr4;		/* Timer 4 prescale register */ | 
|  | 65 | u8 res2[0x40]; | 
|  | 66 | } __attribute__ ((packed)); | 
|  | 67 |  | 
|  | 68 | struct gtm { | 
|  | 69 | unsigned int clock; | 
|  | 70 | struct gtm_timers_regs __iomem *regs; | 
|  | 71 | struct gtm_timer timers[4]; | 
|  | 72 | spinlock_t lock; | 
|  | 73 | struct list_head list_node; | 
|  | 74 | }; | 
|  | 75 |  | 
|  | 76 | static LIST_HEAD(gtms); | 
|  | 77 |  | 
|  | 78 | /** | 
|  | 79 | * gtm_get_timer - request GTM timer to use it with the rest of GTM API | 
|  | 80 | * Context:	non-IRQ | 
|  | 81 | * | 
|  | 82 | * This function reserves GTM timer for later use. It returns gtm_timer | 
|  | 83 | * structure to use with the rest of GTM API, you should use timer->irq | 
|  | 84 | * to manage timer interrupt. | 
|  | 85 | */ | 
|  | 86 | struct gtm_timer *gtm_get_timer16(void) | 
|  | 87 | { | 
|  | 88 | struct gtm *gtm = NULL; | 
|  | 89 | int i; | 
|  | 90 |  | 
|  | 91 | list_for_each_entry(gtm, >ms, list_node) { | 
|  | 92 | spin_lock_irq(>m->lock); | 
|  | 93 |  | 
|  | 94 | for (i = 0; i < ARRAY_SIZE(gtm->timers); i++) { | 
|  | 95 | if (!gtm->timers[i].requested) { | 
|  | 96 | gtm->timers[i].requested = true; | 
|  | 97 | spin_unlock_irq(>m->lock); | 
|  | 98 | return >m->timers[i]; | 
|  | 99 | } | 
|  | 100 | } | 
|  | 101 |  | 
|  | 102 | spin_unlock_irq(>m->lock); | 
|  | 103 | } | 
|  | 104 |  | 
|  | 105 | if (gtm) | 
|  | 106 | return ERR_PTR(-EBUSY); | 
|  | 107 | return ERR_PTR(-ENODEV); | 
|  | 108 | } | 
|  | 109 | EXPORT_SYMBOL(gtm_get_timer16); | 
|  | 110 |  | 
|  | 111 | /** | 
|  | 112 | * gtm_get_specific_timer - request specific GTM timer | 
|  | 113 | * @gtm:	specific GTM, pass here GTM's device_node->data | 
|  | 114 | * @timer:	specific timer number, Timer1 is 0. | 
|  | 115 | * Context:	non-IRQ | 
|  | 116 | * | 
|  | 117 | * This function reserves GTM timer for later use. It returns gtm_timer | 
|  | 118 | * structure to use with the rest of GTM API, you should use timer->irq | 
|  | 119 | * to manage timer interrupt. | 
|  | 120 | */ | 
|  | 121 | struct gtm_timer *gtm_get_specific_timer16(struct gtm *gtm, | 
|  | 122 | unsigned int timer) | 
|  | 123 | { | 
|  | 124 | struct gtm_timer *ret = ERR_PTR(-EBUSY); | 
|  | 125 |  | 
|  | 126 | if (timer > 3) | 
|  | 127 | return ERR_PTR(-EINVAL); | 
|  | 128 |  | 
|  | 129 | spin_lock_irq(>m->lock); | 
|  | 130 |  | 
|  | 131 | if (gtm->timers[timer].requested) | 
|  | 132 | goto out; | 
|  | 133 |  | 
|  | 134 | ret = >m->timers[timer]; | 
|  | 135 | ret->requested = true; | 
|  | 136 |  | 
|  | 137 | out: | 
|  | 138 | spin_unlock_irq(>m->lock); | 
|  | 139 | return ret; | 
|  | 140 | } | 
|  | 141 | EXPORT_SYMBOL(gtm_get_specific_timer16); | 
|  | 142 |  | 
|  | 143 | /** | 
|  | 144 | * gtm_put_timer16 - release 16 bits GTM timer | 
|  | 145 | * @tmr:	pointer to the gtm_timer structure obtained from gtm_get_timer | 
|  | 146 | * Context:	any | 
|  | 147 | * | 
|  | 148 | * This function releases GTM timer so others may request it. | 
|  | 149 | */ | 
|  | 150 | void gtm_put_timer16(struct gtm_timer *tmr) | 
|  | 151 | { | 
|  | 152 | gtm_stop_timer16(tmr); | 
|  | 153 |  | 
|  | 154 | spin_lock_irq(&tmr->gtm->lock); | 
|  | 155 | tmr->requested = false; | 
|  | 156 | spin_unlock_irq(&tmr->gtm->lock); | 
|  | 157 | } | 
|  | 158 | EXPORT_SYMBOL(gtm_put_timer16); | 
|  | 159 |  | 
|  | 160 | /* | 
|  | 161 | * This is back-end for the exported functions, it's used to reset single | 
|  | 162 | * timer in reference mode. | 
|  | 163 | */ | 
|  | 164 | static int gtm_set_ref_timer16(struct gtm_timer *tmr, int frequency, | 
|  | 165 | int reference_value, bool free_run) | 
|  | 166 | { | 
|  | 167 | struct gtm *gtm = tmr->gtm; | 
|  | 168 | int num = tmr - >m->timers[0]; | 
|  | 169 | unsigned int prescaler; | 
|  | 170 | u8 iclk = GTMDR_ICLK_ICLK; | 
|  | 171 | u8 psr; | 
|  | 172 | u8 sps; | 
|  | 173 | unsigned long flags; | 
|  | 174 | int max_prescaler = 256 * 256 * 16; | 
|  | 175 |  | 
|  | 176 | /* CPM2 doesn't have primary prescaler */ | 
|  | 177 | if (!tmr->gtpsr) | 
|  | 178 | max_prescaler /= 256; | 
|  | 179 |  | 
|  | 180 | prescaler = gtm->clock / frequency; | 
|  | 181 | /* | 
|  | 182 | * We have two 8 bit prescalers -- primary and secondary (psr, sps), | 
|  | 183 | * plus "slow go" mode (clk / 16). So, total prescale value is | 
|  | 184 | * 16 * (psr + 1) * (sps + 1). Though, for CPM2 GTMs we losing psr. | 
|  | 185 | */ | 
|  | 186 | if (prescaler > max_prescaler) | 
|  | 187 | return -EINVAL; | 
|  | 188 |  | 
|  | 189 | if (prescaler > max_prescaler / 16) { | 
|  | 190 | iclk = GTMDR_ICLK_SLGO; | 
|  | 191 | prescaler /= 16; | 
|  | 192 | } | 
|  | 193 |  | 
|  | 194 | if (prescaler <= 256) { | 
|  | 195 | psr = 0; | 
|  | 196 | sps = prescaler - 1; | 
|  | 197 | } else { | 
|  | 198 | psr = 256 - 1; | 
|  | 199 | sps = prescaler / 256 - 1; | 
|  | 200 | } | 
|  | 201 |  | 
|  | 202 | spin_lock_irqsave(>m->lock, flags); | 
|  | 203 |  | 
|  | 204 | /* | 
|  | 205 | * Properly reset timers: stop, reset, set up prescalers, reference | 
|  | 206 | * value and clear event register. | 
|  | 207 | */ | 
|  | 208 | clrsetbits_8(tmr->gtcfr, ~(GTCFR_STP(num) | GTCFR_RST(num)), | 
|  | 209 | GTCFR_STP(num) | GTCFR_RST(num)); | 
|  | 210 |  | 
|  | 211 | setbits8(tmr->gtcfr, GTCFR_STP(num)); | 
|  | 212 |  | 
|  | 213 | if (tmr->gtpsr) | 
|  | 214 | out_be16(tmr->gtpsr, psr); | 
|  | 215 | clrsetbits_be16(tmr->gtmdr, 0xFFFF, iclk | GTMDR_SPS(sps) | | 
|  | 216 | GTMDR_ORI | (free_run ? GTMDR_FRR : 0)); | 
|  | 217 | out_be16(tmr->gtcnr, 0); | 
|  | 218 | out_be16(tmr->gtrfr, reference_value); | 
|  | 219 | out_be16(tmr->gtevr, 0xFFFF); | 
|  | 220 |  | 
|  | 221 | /* Let it be. */ | 
|  | 222 | clrbits8(tmr->gtcfr, GTCFR_STP(num)); | 
|  | 223 |  | 
|  | 224 | spin_unlock_irqrestore(>m->lock, flags); | 
|  | 225 |  | 
|  | 226 | return 0; | 
|  | 227 | } | 
|  | 228 |  | 
|  | 229 | /** | 
|  | 230 | * gtm_set_timer16 - (re)set 16 bit timer with arbitrary precision | 
|  | 231 | * @tmr:	pointer to the gtm_timer structure obtained from gtm_get_timer | 
|  | 232 | * @usec:	timer interval in microseconds | 
|  | 233 | * @reload:	if set, the timer will reset upon expiry rather than | 
|  | 234 | *         	continue running free. | 
|  | 235 | * Context:	any | 
|  | 236 | * | 
|  | 237 | * This function (re)sets the GTM timer so that it counts up to the requested | 
|  | 238 | * interval value, and fires the interrupt when the value is reached. This | 
|  | 239 | * function will reduce the precision of the timer as needed in order for the | 
|  | 240 | * requested timeout to fit in a 16-bit register. | 
|  | 241 | */ | 
|  | 242 | int gtm_set_timer16(struct gtm_timer *tmr, unsigned long usec, bool reload) | 
|  | 243 | { | 
|  | 244 | /* quite obvious, frequency which is enough for µSec precision */ | 
|  | 245 | int freq = 1000000; | 
|  | 246 | unsigned int bit; | 
|  | 247 |  | 
|  | 248 | bit = fls_long(usec); | 
|  | 249 | if (bit > 15) { | 
|  | 250 | freq >>= bit - 15; | 
|  | 251 | usec >>= bit - 15; | 
|  | 252 | } | 
|  | 253 |  | 
|  | 254 | if (!freq) | 
|  | 255 | return -EINVAL; | 
|  | 256 |  | 
|  | 257 | return gtm_set_ref_timer16(tmr, freq, usec, reload); | 
|  | 258 | } | 
|  | 259 | EXPORT_SYMBOL(gtm_set_timer16); | 
|  | 260 |  | 
|  | 261 | /** | 
|  | 262 | * gtm_set_exact_utimer16 - (re)set 16 bits timer | 
|  | 263 | * @tmr:	pointer to the gtm_timer structure obtained from gtm_get_timer | 
|  | 264 | * @usec:	timer interval in microseconds | 
|  | 265 | * @reload:	if set, the timer will reset upon expiry rather than | 
|  | 266 | *         	continue running free. | 
|  | 267 | * Context:	any | 
|  | 268 | * | 
|  | 269 | * This function (re)sets GTM timer so that it counts up to the requested | 
|  | 270 | * interval value, and fires the interrupt when the value is reached. If reload | 
|  | 271 | * flag was set, timer will also reset itself upon reference value, otherwise | 
|  | 272 | * it continues to increment. | 
|  | 273 | * | 
|  | 274 | * The _exact_ bit in the function name states that this function will not | 
|  | 275 | * crop precision of the "usec" argument, thus usec is limited to 16 bits | 
|  | 276 | * (single timer width). | 
|  | 277 | */ | 
|  | 278 | int gtm_set_exact_timer16(struct gtm_timer *tmr, u16 usec, bool reload) | 
|  | 279 | { | 
|  | 280 | /* quite obvious, frequency which is enough for µSec precision */ | 
|  | 281 | const int freq = 1000000; | 
|  | 282 |  | 
|  | 283 | /* | 
|  | 284 | * We can lower the frequency (and probably power consumption) by | 
|  | 285 | * dividing both frequency and usec by 2 until there is no remainder. | 
|  | 286 | * But we won't bother with this unless savings are measured, so just | 
|  | 287 | * run the timer as is. | 
|  | 288 | */ | 
|  | 289 |  | 
|  | 290 | return gtm_set_ref_timer16(tmr, freq, usec, reload); | 
|  | 291 | } | 
|  | 292 | EXPORT_SYMBOL(gtm_set_exact_timer16); | 
|  | 293 |  | 
|  | 294 | /** | 
|  | 295 | * gtm_stop_timer16 - stop single timer | 
|  | 296 | * @tmr:	pointer to the gtm_timer structure obtained from gtm_get_timer | 
|  | 297 | * Context:	any | 
|  | 298 | * | 
|  | 299 | * This function simply stops the GTM timer. | 
|  | 300 | */ | 
|  | 301 | void gtm_stop_timer16(struct gtm_timer *tmr) | 
|  | 302 | { | 
|  | 303 | struct gtm *gtm = tmr->gtm; | 
|  | 304 | int num = tmr - >m->timers[0]; | 
|  | 305 | unsigned long flags; | 
|  | 306 |  | 
|  | 307 | spin_lock_irqsave(>m->lock, flags); | 
|  | 308 |  | 
|  | 309 | setbits8(tmr->gtcfr, GTCFR_STP(num)); | 
|  | 310 | out_be16(tmr->gtevr, 0xFFFF); | 
|  | 311 |  | 
|  | 312 | spin_unlock_irqrestore(>m->lock, flags); | 
|  | 313 | } | 
|  | 314 | EXPORT_SYMBOL(gtm_stop_timer16); | 
|  | 315 |  | 
|  | 316 | /** | 
|  | 317 | * gtm_ack_timer16 - acknowledge timer event (free-run timers only) | 
|  | 318 | * @tmr:	pointer to the gtm_timer structure obtained from gtm_get_timer | 
|  | 319 | * @events:	events mask to ack | 
|  | 320 | * Context:	any | 
|  | 321 | * | 
|  | 322 | * Thus function used to acknowledge timer interrupt event, use it inside the | 
|  | 323 | * interrupt handler. | 
|  | 324 | */ | 
|  | 325 | void gtm_ack_timer16(struct gtm_timer *tmr, u16 events) | 
|  | 326 | { | 
|  | 327 | out_be16(tmr->gtevr, events); | 
|  | 328 | } | 
|  | 329 | EXPORT_SYMBOL(gtm_ack_timer16); | 
|  | 330 |  | 
|  | 331 | static void __init gtm_set_shortcuts(struct device_node *np, | 
|  | 332 | struct gtm_timer *timers, | 
|  | 333 | struct gtm_timers_regs __iomem *regs) | 
|  | 334 | { | 
|  | 335 | /* | 
|  | 336 | * Yeah, I don't like this either, but timers' registers a bit messed, | 
|  | 337 | * so we have to provide shortcuts to write timer independent code. | 
|  | 338 | * Alternative option is to create gt*() accessors, but that will be | 
|  | 339 | * even uglier and cryptic. | 
|  | 340 | */ | 
|  | 341 | timers[0].gtcfr = ®s->gtcfr1; | 
|  | 342 | timers[0].gtmdr = ®s->gtmdr1; | 
|  | 343 | timers[0].gtcnr = ®s->gtcnr1; | 
|  | 344 | timers[0].gtrfr = ®s->gtrfr1; | 
|  | 345 | timers[0].gtevr = ®s->gtevr1; | 
|  | 346 |  | 
|  | 347 | timers[1].gtcfr = ®s->gtcfr1; | 
|  | 348 | timers[1].gtmdr = ®s->gtmdr2; | 
|  | 349 | timers[1].gtcnr = ®s->gtcnr2; | 
|  | 350 | timers[1].gtrfr = ®s->gtrfr2; | 
|  | 351 | timers[1].gtevr = ®s->gtevr2; | 
|  | 352 |  | 
|  | 353 | timers[2].gtcfr = ®s->gtcfr2; | 
|  | 354 | timers[2].gtmdr = ®s->gtmdr3; | 
|  | 355 | timers[2].gtcnr = ®s->gtcnr3; | 
|  | 356 | timers[2].gtrfr = ®s->gtrfr3; | 
|  | 357 | timers[2].gtevr = ®s->gtevr3; | 
|  | 358 |  | 
|  | 359 | timers[3].gtcfr = ®s->gtcfr2; | 
|  | 360 | timers[3].gtmdr = ®s->gtmdr4; | 
|  | 361 | timers[3].gtcnr = ®s->gtcnr4; | 
|  | 362 | timers[3].gtrfr = ®s->gtrfr4; | 
|  | 363 | timers[3].gtevr = ®s->gtevr4; | 
|  | 364 |  | 
|  | 365 | /* CPM2 doesn't have primary prescaler */ | 
|  | 366 | if (!of_device_is_compatible(np, "fsl,cpm2-gtm")) { | 
|  | 367 | timers[0].gtpsr = ®s->gtpsr1; | 
|  | 368 | timers[1].gtpsr = ®s->gtpsr2; | 
|  | 369 | timers[2].gtpsr = ®s->gtpsr3; | 
|  | 370 | timers[3].gtpsr = ®s->gtpsr4; | 
|  | 371 | } | 
|  | 372 | } | 
|  | 373 |  | 
|  | 374 | static int __init fsl_gtm_init(void) | 
|  | 375 | { | 
|  | 376 | struct device_node *np; | 
|  | 377 |  | 
|  | 378 | for_each_compatible_node(np, NULL, "fsl,gtm") { | 
|  | 379 | int i; | 
|  | 380 | struct gtm *gtm; | 
|  | 381 | const u32 *clock; | 
|  | 382 | int size; | 
|  | 383 |  | 
|  | 384 | gtm = kzalloc(sizeof(*gtm), GFP_KERNEL); | 
|  | 385 | if (!gtm) { | 
|  | 386 | pr_err("%s: unable to allocate memory\n", | 
|  | 387 | np->full_name); | 
|  | 388 | continue; | 
|  | 389 | } | 
|  | 390 |  | 
|  | 391 | spin_lock_init(>m->lock); | 
|  | 392 |  | 
|  | 393 | clock = of_get_property(np, "clock-frequency", &size); | 
|  | 394 | if (!clock || size != sizeof(*clock)) { | 
|  | 395 | pr_err("%s: no clock-frequency\n", np->full_name); | 
|  | 396 | goto err; | 
|  | 397 | } | 
|  | 398 | gtm->clock = *clock; | 
|  | 399 |  | 
|  | 400 | for (i = 0; i < ARRAY_SIZE(gtm->timers); i++) { | 
|  | 401 | int ret; | 
|  | 402 | struct resource irq; | 
|  | 403 |  | 
|  | 404 | ret = of_irq_to_resource(np, i, &irq); | 
|  | 405 | if (ret == NO_IRQ) { | 
|  | 406 | pr_err("%s: not enough interrupts specified\n", | 
|  | 407 | np->full_name); | 
|  | 408 | goto err; | 
|  | 409 | } | 
|  | 410 | gtm->timers[i].irq = irq.start; | 
|  | 411 | gtm->timers[i].gtm = gtm; | 
|  | 412 | } | 
|  | 413 |  | 
|  | 414 | gtm->regs = of_iomap(np, 0); | 
|  | 415 | if (!gtm->regs) { | 
|  | 416 | pr_err("%s: unable to iomap registers\n", | 
|  | 417 | np->full_name); | 
|  | 418 | goto err; | 
|  | 419 | } | 
|  | 420 |  | 
|  | 421 | gtm_set_shortcuts(np, gtm->timers, gtm->regs); | 
|  | 422 | list_add(>m->list_node, >ms); | 
|  | 423 |  | 
|  | 424 | /* We don't want to lose the node and its ->data */ | 
|  | 425 | np->data = gtm; | 
|  | 426 | of_node_get(np); | 
|  | 427 |  | 
|  | 428 | continue; | 
|  | 429 | err: | 
|  | 430 | kfree(gtm); | 
|  | 431 | } | 
|  | 432 | return 0; | 
|  | 433 | } | 
|  | 434 | arch_initcall(fsl_gtm_init); |