Marc Zyngier | 7c8c5e6a | 2012-12-10 16:15:34 +0000 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (C) 2012,2013 - ARM Ltd |
| 3 | * Author: Marc Zyngier <marc.zyngier@arm.com> |
| 4 | * |
| 5 | * Derived from arch/arm/kvm/coproc.c: |
| 6 | * Copyright (C) 2012 - Virtual Open Systems and Columbia University |
| 7 | * Authors: Rusty Russell <rusty@rustcorp.com.au> |
| 8 | * Christoffer Dall <c.dall@virtualopensystems.com> |
| 9 | * |
| 10 | * This program is free software; you can redistribute it and/or modify |
| 11 | * it under the terms of the GNU General Public License, version 2, as |
| 12 | * published by the Free Software Foundation. |
| 13 | * |
| 14 | * This program is distributed in the hope that it will be useful, |
| 15 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 17 | * GNU General Public License for more details. |
| 18 | * |
| 19 | * You should have received a copy of the GNU General Public License |
| 20 | * along with this program. If not, see <http://www.gnu.org/licenses/>. |
| 21 | */ |
| 22 | |
| 23 | #include <linux/mm.h> |
| 24 | #include <linux/kvm_host.h> |
| 25 | #include <linux/uaccess.h> |
| 26 | #include <asm/kvm_arm.h> |
| 27 | #include <asm/kvm_host.h> |
| 28 | #include <asm/kvm_emulate.h> |
| 29 | #include <asm/kvm_coproc.h> |
| 30 | #include <asm/cacheflush.h> |
| 31 | #include <asm/cputype.h> |
| 32 | #include <trace/events/kvm.h> |
| 33 | |
| 34 | #include "sys_regs.h" |
| 35 | |
| 36 | /* |
| 37 | * All of this file is extremly similar to the ARM coproc.c, but the |
| 38 | * types are different. My gut feeling is that it should be pretty |
| 39 | * easy to merge, but that would be an ABI breakage -- again. VFP |
| 40 | * would also need to be abstracted. |
| 41 | */ |
| 42 | |
| 43 | /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */ |
| 44 | static u32 cache_levels; |
| 45 | |
| 46 | /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */ |
| 47 | #define CSSELR_MAX 12 |
| 48 | |
| 49 | /* Which cache CCSIDR represents depends on CSSELR value. */ |
| 50 | static u32 get_ccsidr(u32 csselr) |
| 51 | { |
| 52 | u32 ccsidr; |
| 53 | |
| 54 | /* Make sure noone else changes CSSELR during this! */ |
| 55 | local_irq_disable(); |
| 56 | /* Put value into CSSELR */ |
| 57 | asm volatile("msr csselr_el1, %x0" : : "r" (csselr)); |
| 58 | isb(); |
| 59 | /* Read result out of CCSIDR */ |
| 60 | asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr)); |
| 61 | local_irq_enable(); |
| 62 | |
| 63 | return ccsidr; |
| 64 | } |
| 65 | |
| 66 | static void do_dc_cisw(u32 val) |
| 67 | { |
| 68 | asm volatile("dc cisw, %x0" : : "r" (val)); |
| 69 | dsb(); |
| 70 | } |
| 71 | |
| 72 | static void do_dc_csw(u32 val) |
| 73 | { |
| 74 | asm volatile("dc csw, %x0" : : "r" (val)); |
| 75 | dsb(); |
| 76 | } |
| 77 | |
| 78 | /* See note at ARM ARM B1.14.4 */ |
| 79 | static bool access_dcsw(struct kvm_vcpu *vcpu, |
| 80 | const struct sys_reg_params *p, |
| 81 | const struct sys_reg_desc *r) |
| 82 | { |
| 83 | unsigned long val; |
| 84 | int cpu; |
| 85 | |
| 86 | if (!p->is_write) |
| 87 | return read_from_write_only(vcpu, p); |
| 88 | |
| 89 | cpu = get_cpu(); |
| 90 | |
| 91 | cpumask_setall(&vcpu->arch.require_dcache_flush); |
| 92 | cpumask_clear_cpu(cpu, &vcpu->arch.require_dcache_flush); |
| 93 | |
| 94 | /* If we were already preempted, take the long way around */ |
| 95 | if (cpu != vcpu->arch.last_pcpu) { |
| 96 | flush_cache_all(); |
| 97 | goto done; |
| 98 | } |
| 99 | |
| 100 | val = *vcpu_reg(vcpu, p->Rt); |
| 101 | |
| 102 | switch (p->CRm) { |
| 103 | case 6: /* Upgrade DCISW to DCCISW, as per HCR.SWIO */ |
| 104 | case 14: /* DCCISW */ |
| 105 | do_dc_cisw(val); |
| 106 | break; |
| 107 | |
| 108 | case 10: /* DCCSW */ |
| 109 | do_dc_csw(val); |
| 110 | break; |
| 111 | } |
| 112 | |
| 113 | done: |
| 114 | put_cpu(); |
| 115 | |
| 116 | return true; |
| 117 | } |
| 118 | |
| 119 | /* |
| 120 | * We could trap ID_DFR0 and tell the guest we don't support performance |
| 121 | * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was |
| 122 | * NAKed, so it will read the PMCR anyway. |
| 123 | * |
| 124 | * Therefore we tell the guest we have 0 counters. Unfortunately, we |
| 125 | * must always support PMCCNTR (the cycle counter): we just RAZ/WI for |
| 126 | * all PM registers, which doesn't crash the guest kernel at least. |
| 127 | */ |
| 128 | static bool pm_fake(struct kvm_vcpu *vcpu, |
| 129 | const struct sys_reg_params *p, |
| 130 | const struct sys_reg_desc *r) |
| 131 | { |
| 132 | if (p->is_write) |
| 133 | return ignore_write(vcpu, p); |
| 134 | else |
| 135 | return read_zero(vcpu, p); |
| 136 | } |
| 137 | |
| 138 | static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) |
| 139 | { |
| 140 | u64 amair; |
| 141 | |
| 142 | asm volatile("mrs %0, amair_el1\n" : "=r" (amair)); |
| 143 | vcpu_sys_reg(vcpu, AMAIR_EL1) = amair; |
| 144 | } |
| 145 | |
| 146 | static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) |
| 147 | { |
| 148 | /* |
| 149 | * Simply map the vcpu_id into the Aff0 field of the MPIDR. |
| 150 | */ |
| 151 | vcpu_sys_reg(vcpu, MPIDR_EL1) = (1UL << 31) | (vcpu->vcpu_id & 0xff); |
| 152 | } |
| 153 | |
| 154 | /* |
| 155 | * Architected system registers. |
| 156 | * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2 |
| 157 | */ |
| 158 | static const struct sys_reg_desc sys_reg_descs[] = { |
| 159 | /* DC ISW */ |
| 160 | { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010), |
| 161 | access_dcsw }, |
| 162 | /* DC CSW */ |
| 163 | { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010), |
| 164 | access_dcsw }, |
| 165 | /* DC CISW */ |
| 166 | { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010), |
| 167 | access_dcsw }, |
| 168 | |
| 169 | /* MPIDR_EL1 */ |
| 170 | { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101), |
| 171 | NULL, reset_mpidr, MPIDR_EL1 }, |
| 172 | /* SCTLR_EL1 */ |
| 173 | { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000), |
| 174 | NULL, reset_val, SCTLR_EL1, 0x00C50078 }, |
| 175 | /* CPACR_EL1 */ |
| 176 | { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010), |
| 177 | NULL, reset_val, CPACR_EL1, 0 }, |
| 178 | /* TTBR0_EL1 */ |
| 179 | { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000), |
| 180 | NULL, reset_unknown, TTBR0_EL1 }, |
| 181 | /* TTBR1_EL1 */ |
| 182 | { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001), |
| 183 | NULL, reset_unknown, TTBR1_EL1 }, |
| 184 | /* TCR_EL1 */ |
| 185 | { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010), |
| 186 | NULL, reset_val, TCR_EL1, 0 }, |
| 187 | |
| 188 | /* AFSR0_EL1 */ |
| 189 | { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000), |
| 190 | NULL, reset_unknown, AFSR0_EL1 }, |
| 191 | /* AFSR1_EL1 */ |
| 192 | { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001), |
| 193 | NULL, reset_unknown, AFSR1_EL1 }, |
| 194 | /* ESR_EL1 */ |
| 195 | { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000), |
| 196 | NULL, reset_unknown, ESR_EL1 }, |
| 197 | /* FAR_EL1 */ |
| 198 | { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000), |
| 199 | NULL, reset_unknown, FAR_EL1 }, |
| 200 | |
| 201 | /* PMINTENSET_EL1 */ |
| 202 | { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001), |
| 203 | pm_fake }, |
| 204 | /* PMINTENCLR_EL1 */ |
| 205 | { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010), |
| 206 | pm_fake }, |
| 207 | |
| 208 | /* MAIR_EL1 */ |
| 209 | { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000), |
| 210 | NULL, reset_unknown, MAIR_EL1 }, |
| 211 | /* AMAIR_EL1 */ |
| 212 | { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000), |
| 213 | NULL, reset_amair_el1, AMAIR_EL1 }, |
| 214 | |
| 215 | /* VBAR_EL1 */ |
| 216 | { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000), |
| 217 | NULL, reset_val, VBAR_EL1, 0 }, |
| 218 | /* CONTEXTIDR_EL1 */ |
| 219 | { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001), |
| 220 | NULL, reset_val, CONTEXTIDR_EL1, 0 }, |
| 221 | /* TPIDR_EL1 */ |
| 222 | { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100), |
| 223 | NULL, reset_unknown, TPIDR_EL1 }, |
| 224 | |
| 225 | /* CNTKCTL_EL1 */ |
| 226 | { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000), |
| 227 | NULL, reset_val, CNTKCTL_EL1, 0}, |
| 228 | |
| 229 | /* CSSELR_EL1 */ |
| 230 | { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000), |
| 231 | NULL, reset_unknown, CSSELR_EL1 }, |
| 232 | |
| 233 | /* PMCR_EL0 */ |
| 234 | { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000), |
| 235 | pm_fake }, |
| 236 | /* PMCNTENSET_EL0 */ |
| 237 | { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001), |
| 238 | pm_fake }, |
| 239 | /* PMCNTENCLR_EL0 */ |
| 240 | { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010), |
| 241 | pm_fake }, |
| 242 | /* PMOVSCLR_EL0 */ |
| 243 | { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011), |
| 244 | pm_fake }, |
| 245 | /* PMSWINC_EL0 */ |
| 246 | { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100), |
| 247 | pm_fake }, |
| 248 | /* PMSELR_EL0 */ |
| 249 | { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101), |
| 250 | pm_fake }, |
| 251 | /* PMCEID0_EL0 */ |
| 252 | { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110), |
| 253 | pm_fake }, |
| 254 | /* PMCEID1_EL0 */ |
| 255 | { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111), |
| 256 | pm_fake }, |
| 257 | /* PMCCNTR_EL0 */ |
| 258 | { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000), |
| 259 | pm_fake }, |
| 260 | /* PMXEVTYPER_EL0 */ |
| 261 | { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001), |
| 262 | pm_fake }, |
| 263 | /* PMXEVCNTR_EL0 */ |
| 264 | { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010), |
| 265 | pm_fake }, |
| 266 | /* PMUSERENR_EL0 */ |
| 267 | { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000), |
| 268 | pm_fake }, |
| 269 | /* PMOVSSET_EL0 */ |
| 270 | { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011), |
| 271 | pm_fake }, |
| 272 | |
| 273 | /* TPIDR_EL0 */ |
| 274 | { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010), |
| 275 | NULL, reset_unknown, TPIDR_EL0 }, |
| 276 | /* TPIDRRO_EL0 */ |
| 277 | { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011), |
| 278 | NULL, reset_unknown, TPIDRRO_EL0 }, |
| 279 | }; |
| 280 | |
| 281 | /* Target specific emulation tables */ |
| 282 | static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS]; |
| 283 | |
| 284 | void kvm_register_target_sys_reg_table(unsigned int target, |
| 285 | struct kvm_sys_reg_target_table *table) |
| 286 | { |
| 287 | target_tables[target] = table; |
| 288 | } |
| 289 | |
| 290 | /* Get specific register table for this target. */ |
| 291 | static const struct sys_reg_desc *get_target_table(unsigned target, size_t *num) |
| 292 | { |
| 293 | struct kvm_sys_reg_target_table *table; |
| 294 | |
| 295 | table = target_tables[target]; |
| 296 | *num = table->table64.num; |
| 297 | return table->table64.table; |
| 298 | } |
| 299 | |
| 300 | static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params, |
| 301 | const struct sys_reg_desc table[], |
| 302 | unsigned int num) |
| 303 | { |
| 304 | unsigned int i; |
| 305 | |
| 306 | for (i = 0; i < num; i++) { |
| 307 | const struct sys_reg_desc *r = &table[i]; |
| 308 | |
| 309 | if (params->Op0 != r->Op0) |
| 310 | continue; |
| 311 | if (params->Op1 != r->Op1) |
| 312 | continue; |
| 313 | if (params->CRn != r->CRn) |
| 314 | continue; |
| 315 | if (params->CRm != r->CRm) |
| 316 | continue; |
| 317 | if (params->Op2 != r->Op2) |
| 318 | continue; |
| 319 | |
| 320 | return r; |
| 321 | } |
| 322 | return NULL; |
| 323 | } |
| 324 | |
| 325 | static int emulate_sys_reg(struct kvm_vcpu *vcpu, |
| 326 | const struct sys_reg_params *params) |
| 327 | { |
| 328 | size_t num; |
| 329 | const struct sys_reg_desc *table, *r; |
| 330 | |
| 331 | table = get_target_table(vcpu->arch.target, &num); |
| 332 | |
| 333 | /* Search target-specific then generic table. */ |
| 334 | r = find_reg(params, table, num); |
| 335 | if (!r) |
| 336 | r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); |
| 337 | |
| 338 | if (likely(r)) { |
| 339 | /* |
| 340 | * Not having an accessor means that we have |
| 341 | * configured a trap that we don't know how to |
| 342 | * handle. This certainly qualifies as a gross bug |
| 343 | * that should be fixed right away. |
| 344 | */ |
| 345 | BUG_ON(!r->access); |
| 346 | |
| 347 | if (likely(r->access(vcpu, params, r))) { |
| 348 | /* Skip instruction, since it was emulated */ |
| 349 | kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu)); |
| 350 | return 1; |
| 351 | } |
| 352 | /* If access function fails, it should complain. */ |
| 353 | } else { |
| 354 | kvm_err("Unsupported guest sys_reg access at: %lx\n", |
| 355 | *vcpu_pc(vcpu)); |
| 356 | print_sys_reg_instr(params); |
| 357 | } |
| 358 | kvm_inject_undefined(vcpu); |
| 359 | return 1; |
| 360 | } |
| 361 | |
| 362 | static void reset_sys_reg_descs(struct kvm_vcpu *vcpu, |
| 363 | const struct sys_reg_desc *table, size_t num) |
| 364 | { |
| 365 | unsigned long i; |
| 366 | |
| 367 | for (i = 0; i < num; i++) |
| 368 | if (table[i].reset) |
| 369 | table[i].reset(vcpu, &table[i]); |
| 370 | } |
| 371 | |
| 372 | /** |
| 373 | * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access |
| 374 | * @vcpu: The VCPU pointer |
| 375 | * @run: The kvm_run struct |
| 376 | */ |
| 377 | int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run) |
| 378 | { |
| 379 | struct sys_reg_params params; |
| 380 | unsigned long esr = kvm_vcpu_get_hsr(vcpu); |
| 381 | |
| 382 | params.Op0 = (esr >> 20) & 3; |
| 383 | params.Op1 = (esr >> 14) & 0x7; |
| 384 | params.CRn = (esr >> 10) & 0xf; |
| 385 | params.CRm = (esr >> 1) & 0xf; |
| 386 | params.Op2 = (esr >> 17) & 0x7; |
| 387 | params.Rt = (esr >> 5) & 0x1f; |
| 388 | params.is_write = !(esr & 1); |
| 389 | |
| 390 | return emulate_sys_reg(vcpu, ¶ms); |
| 391 | } |
| 392 | |
| 393 | /****************************************************************************** |
| 394 | * Userspace API |
| 395 | *****************************************************************************/ |
| 396 | |
| 397 | static bool index_to_params(u64 id, struct sys_reg_params *params) |
| 398 | { |
| 399 | switch (id & KVM_REG_SIZE_MASK) { |
| 400 | case KVM_REG_SIZE_U64: |
| 401 | /* Any unused index bits means it's not valid. */ |
| 402 | if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK |
| 403 | | KVM_REG_ARM_COPROC_MASK |
| 404 | | KVM_REG_ARM64_SYSREG_OP0_MASK |
| 405 | | KVM_REG_ARM64_SYSREG_OP1_MASK |
| 406 | | KVM_REG_ARM64_SYSREG_CRN_MASK |
| 407 | | KVM_REG_ARM64_SYSREG_CRM_MASK |
| 408 | | KVM_REG_ARM64_SYSREG_OP2_MASK)) |
| 409 | return false; |
| 410 | params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK) |
| 411 | >> KVM_REG_ARM64_SYSREG_OP0_SHIFT); |
| 412 | params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK) |
| 413 | >> KVM_REG_ARM64_SYSREG_OP1_SHIFT); |
| 414 | params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK) |
| 415 | >> KVM_REG_ARM64_SYSREG_CRN_SHIFT); |
| 416 | params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK) |
| 417 | >> KVM_REG_ARM64_SYSREG_CRM_SHIFT); |
| 418 | params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK) |
| 419 | >> KVM_REG_ARM64_SYSREG_OP2_SHIFT); |
| 420 | return true; |
| 421 | default: |
| 422 | return false; |
| 423 | } |
| 424 | } |
| 425 | |
| 426 | /* Decode an index value, and find the sys_reg_desc entry. */ |
| 427 | static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu, |
| 428 | u64 id) |
| 429 | { |
| 430 | size_t num; |
| 431 | const struct sys_reg_desc *table, *r; |
| 432 | struct sys_reg_params params; |
| 433 | |
| 434 | /* We only do sys_reg for now. */ |
| 435 | if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG) |
| 436 | return NULL; |
| 437 | |
| 438 | if (!index_to_params(id, ¶ms)) |
| 439 | return NULL; |
| 440 | |
| 441 | table = get_target_table(vcpu->arch.target, &num); |
| 442 | r = find_reg(¶ms, table, num); |
| 443 | if (!r) |
| 444 | r = find_reg(¶ms, sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); |
| 445 | |
| 446 | /* Not saved in the sys_reg array? */ |
| 447 | if (r && !r->reg) |
| 448 | r = NULL; |
| 449 | |
| 450 | return r; |
| 451 | } |
| 452 | |
| 453 | /* |
| 454 | * These are the invariant sys_reg registers: we let the guest see the |
| 455 | * host versions of these, so they're part of the guest state. |
| 456 | * |
| 457 | * A future CPU may provide a mechanism to present different values to |
| 458 | * the guest, or a future kvm may trap them. |
| 459 | */ |
| 460 | |
| 461 | #define FUNCTION_INVARIANT(reg) \ |
| 462 | static void get_##reg(struct kvm_vcpu *v, \ |
| 463 | const struct sys_reg_desc *r) \ |
| 464 | { \ |
| 465 | u64 val; \ |
| 466 | \ |
| 467 | asm volatile("mrs %0, " __stringify(reg) "\n" \ |
| 468 | : "=r" (val)); \ |
| 469 | ((struct sys_reg_desc *)r)->val = val; \ |
| 470 | } |
| 471 | |
| 472 | FUNCTION_INVARIANT(midr_el1) |
| 473 | FUNCTION_INVARIANT(ctr_el0) |
| 474 | FUNCTION_INVARIANT(revidr_el1) |
| 475 | FUNCTION_INVARIANT(id_pfr0_el1) |
| 476 | FUNCTION_INVARIANT(id_pfr1_el1) |
| 477 | FUNCTION_INVARIANT(id_dfr0_el1) |
| 478 | FUNCTION_INVARIANT(id_afr0_el1) |
| 479 | FUNCTION_INVARIANT(id_mmfr0_el1) |
| 480 | FUNCTION_INVARIANT(id_mmfr1_el1) |
| 481 | FUNCTION_INVARIANT(id_mmfr2_el1) |
| 482 | FUNCTION_INVARIANT(id_mmfr3_el1) |
| 483 | FUNCTION_INVARIANT(id_isar0_el1) |
| 484 | FUNCTION_INVARIANT(id_isar1_el1) |
| 485 | FUNCTION_INVARIANT(id_isar2_el1) |
| 486 | FUNCTION_INVARIANT(id_isar3_el1) |
| 487 | FUNCTION_INVARIANT(id_isar4_el1) |
| 488 | FUNCTION_INVARIANT(id_isar5_el1) |
| 489 | FUNCTION_INVARIANT(clidr_el1) |
| 490 | FUNCTION_INVARIANT(aidr_el1) |
| 491 | |
| 492 | /* ->val is filled in by kvm_sys_reg_table_init() */ |
| 493 | static struct sys_reg_desc invariant_sys_regs[] = { |
| 494 | { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000), |
| 495 | NULL, get_midr_el1 }, |
| 496 | { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110), |
| 497 | NULL, get_revidr_el1 }, |
| 498 | { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000), |
| 499 | NULL, get_id_pfr0_el1 }, |
| 500 | { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001), |
| 501 | NULL, get_id_pfr1_el1 }, |
| 502 | { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010), |
| 503 | NULL, get_id_dfr0_el1 }, |
| 504 | { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011), |
| 505 | NULL, get_id_afr0_el1 }, |
| 506 | { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100), |
| 507 | NULL, get_id_mmfr0_el1 }, |
| 508 | { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101), |
| 509 | NULL, get_id_mmfr1_el1 }, |
| 510 | { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110), |
| 511 | NULL, get_id_mmfr2_el1 }, |
| 512 | { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111), |
| 513 | NULL, get_id_mmfr3_el1 }, |
| 514 | { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000), |
| 515 | NULL, get_id_isar0_el1 }, |
| 516 | { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001), |
| 517 | NULL, get_id_isar1_el1 }, |
| 518 | { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010), |
| 519 | NULL, get_id_isar2_el1 }, |
| 520 | { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011), |
| 521 | NULL, get_id_isar3_el1 }, |
| 522 | { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100), |
| 523 | NULL, get_id_isar4_el1 }, |
| 524 | { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101), |
| 525 | NULL, get_id_isar5_el1 }, |
| 526 | { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001), |
| 527 | NULL, get_clidr_el1 }, |
| 528 | { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111), |
| 529 | NULL, get_aidr_el1 }, |
| 530 | { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001), |
| 531 | NULL, get_ctr_el0 }, |
| 532 | }; |
| 533 | |
| 534 | static int reg_from_user(void *val, const void __user *uaddr, u64 id) |
| 535 | { |
| 536 | /* This Just Works because we are little endian. */ |
| 537 | if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0) |
| 538 | return -EFAULT; |
| 539 | return 0; |
| 540 | } |
| 541 | |
| 542 | static int reg_to_user(void __user *uaddr, const void *val, u64 id) |
| 543 | { |
| 544 | /* This Just Works because we are little endian. */ |
| 545 | if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0) |
| 546 | return -EFAULT; |
| 547 | return 0; |
| 548 | } |
| 549 | |
| 550 | static int get_invariant_sys_reg(u64 id, void __user *uaddr) |
| 551 | { |
| 552 | struct sys_reg_params params; |
| 553 | const struct sys_reg_desc *r; |
| 554 | |
| 555 | if (!index_to_params(id, ¶ms)) |
| 556 | return -ENOENT; |
| 557 | |
| 558 | r = find_reg(¶ms, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)); |
| 559 | if (!r) |
| 560 | return -ENOENT; |
| 561 | |
| 562 | return reg_to_user(uaddr, &r->val, id); |
| 563 | } |
| 564 | |
| 565 | static int set_invariant_sys_reg(u64 id, void __user *uaddr) |
| 566 | { |
| 567 | struct sys_reg_params params; |
| 568 | const struct sys_reg_desc *r; |
| 569 | int err; |
| 570 | u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */ |
| 571 | |
| 572 | if (!index_to_params(id, ¶ms)) |
| 573 | return -ENOENT; |
| 574 | r = find_reg(¶ms, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)); |
| 575 | if (!r) |
| 576 | return -ENOENT; |
| 577 | |
| 578 | err = reg_from_user(&val, uaddr, id); |
| 579 | if (err) |
| 580 | return err; |
| 581 | |
| 582 | /* This is what we mean by invariant: you can't change it. */ |
| 583 | if (r->val != val) |
| 584 | return -EINVAL; |
| 585 | |
| 586 | return 0; |
| 587 | } |
| 588 | |
| 589 | static bool is_valid_cache(u32 val) |
| 590 | { |
| 591 | u32 level, ctype; |
| 592 | |
| 593 | if (val >= CSSELR_MAX) |
| 594 | return -ENOENT; |
| 595 | |
| 596 | /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */ |
| 597 | level = (val >> 1); |
| 598 | ctype = (cache_levels >> (level * 3)) & 7; |
| 599 | |
| 600 | switch (ctype) { |
| 601 | case 0: /* No cache */ |
| 602 | return false; |
| 603 | case 1: /* Instruction cache only */ |
| 604 | return (val & 1); |
| 605 | case 2: /* Data cache only */ |
| 606 | case 4: /* Unified cache */ |
| 607 | return !(val & 1); |
| 608 | case 3: /* Separate instruction and data caches */ |
| 609 | return true; |
| 610 | default: /* Reserved: we can't know instruction or data. */ |
| 611 | return false; |
| 612 | } |
| 613 | } |
| 614 | |
| 615 | static int demux_c15_get(u64 id, void __user *uaddr) |
| 616 | { |
| 617 | u32 val; |
| 618 | u32 __user *uval = uaddr; |
| 619 | |
| 620 | /* Fail if we have unknown bits set. */ |
| 621 | if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK |
| 622 | | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) |
| 623 | return -ENOENT; |
| 624 | |
| 625 | switch (id & KVM_REG_ARM_DEMUX_ID_MASK) { |
| 626 | case KVM_REG_ARM_DEMUX_ID_CCSIDR: |
| 627 | if (KVM_REG_SIZE(id) != 4) |
| 628 | return -ENOENT; |
| 629 | val = (id & KVM_REG_ARM_DEMUX_VAL_MASK) |
| 630 | >> KVM_REG_ARM_DEMUX_VAL_SHIFT; |
| 631 | if (!is_valid_cache(val)) |
| 632 | return -ENOENT; |
| 633 | |
| 634 | return put_user(get_ccsidr(val), uval); |
| 635 | default: |
| 636 | return -ENOENT; |
| 637 | } |
| 638 | } |
| 639 | |
| 640 | static int demux_c15_set(u64 id, void __user *uaddr) |
| 641 | { |
| 642 | u32 val, newval; |
| 643 | u32 __user *uval = uaddr; |
| 644 | |
| 645 | /* Fail if we have unknown bits set. */ |
| 646 | if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK |
| 647 | | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) |
| 648 | return -ENOENT; |
| 649 | |
| 650 | switch (id & KVM_REG_ARM_DEMUX_ID_MASK) { |
| 651 | case KVM_REG_ARM_DEMUX_ID_CCSIDR: |
| 652 | if (KVM_REG_SIZE(id) != 4) |
| 653 | return -ENOENT; |
| 654 | val = (id & KVM_REG_ARM_DEMUX_VAL_MASK) |
| 655 | >> KVM_REG_ARM_DEMUX_VAL_SHIFT; |
| 656 | if (!is_valid_cache(val)) |
| 657 | return -ENOENT; |
| 658 | |
| 659 | if (get_user(newval, uval)) |
| 660 | return -EFAULT; |
| 661 | |
| 662 | /* This is also invariant: you can't change it. */ |
| 663 | if (newval != get_ccsidr(val)) |
| 664 | return -EINVAL; |
| 665 | return 0; |
| 666 | default: |
| 667 | return -ENOENT; |
| 668 | } |
| 669 | } |
| 670 | |
| 671 | int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) |
| 672 | { |
| 673 | const struct sys_reg_desc *r; |
| 674 | void __user *uaddr = (void __user *)(unsigned long)reg->addr; |
| 675 | |
| 676 | if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX) |
| 677 | return demux_c15_get(reg->id, uaddr); |
| 678 | |
| 679 | if (KVM_REG_SIZE(reg->id) != sizeof(__u64)) |
| 680 | return -ENOENT; |
| 681 | |
| 682 | r = index_to_sys_reg_desc(vcpu, reg->id); |
| 683 | if (!r) |
| 684 | return get_invariant_sys_reg(reg->id, uaddr); |
| 685 | |
| 686 | return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id); |
| 687 | } |
| 688 | |
| 689 | int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) |
| 690 | { |
| 691 | const struct sys_reg_desc *r; |
| 692 | void __user *uaddr = (void __user *)(unsigned long)reg->addr; |
| 693 | |
| 694 | if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX) |
| 695 | return demux_c15_set(reg->id, uaddr); |
| 696 | |
| 697 | if (KVM_REG_SIZE(reg->id) != sizeof(__u64)) |
| 698 | return -ENOENT; |
| 699 | |
| 700 | r = index_to_sys_reg_desc(vcpu, reg->id); |
| 701 | if (!r) |
| 702 | return set_invariant_sys_reg(reg->id, uaddr); |
| 703 | |
| 704 | return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id); |
| 705 | } |
| 706 | |
| 707 | static unsigned int num_demux_regs(void) |
| 708 | { |
| 709 | unsigned int i, count = 0; |
| 710 | |
| 711 | for (i = 0; i < CSSELR_MAX; i++) |
| 712 | if (is_valid_cache(i)) |
| 713 | count++; |
| 714 | |
| 715 | return count; |
| 716 | } |
| 717 | |
| 718 | static int write_demux_regids(u64 __user *uindices) |
| 719 | { |
| 720 | u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX; |
| 721 | unsigned int i; |
| 722 | |
| 723 | val |= KVM_REG_ARM_DEMUX_ID_CCSIDR; |
| 724 | for (i = 0; i < CSSELR_MAX; i++) { |
| 725 | if (!is_valid_cache(i)) |
| 726 | continue; |
| 727 | if (put_user(val | i, uindices)) |
| 728 | return -EFAULT; |
| 729 | uindices++; |
| 730 | } |
| 731 | return 0; |
| 732 | } |
| 733 | |
| 734 | static u64 sys_reg_to_index(const struct sys_reg_desc *reg) |
| 735 | { |
| 736 | return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | |
| 737 | KVM_REG_ARM64_SYSREG | |
| 738 | (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) | |
| 739 | (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) | |
| 740 | (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) | |
| 741 | (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) | |
| 742 | (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT)); |
| 743 | } |
| 744 | |
| 745 | static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind) |
| 746 | { |
| 747 | if (!*uind) |
| 748 | return true; |
| 749 | |
| 750 | if (put_user(sys_reg_to_index(reg), *uind)) |
| 751 | return false; |
| 752 | |
| 753 | (*uind)++; |
| 754 | return true; |
| 755 | } |
| 756 | |
| 757 | /* Assumed ordered tables, see kvm_sys_reg_table_init. */ |
| 758 | static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind) |
| 759 | { |
| 760 | const struct sys_reg_desc *i1, *i2, *end1, *end2; |
| 761 | unsigned int total = 0; |
| 762 | size_t num; |
| 763 | |
| 764 | /* We check for duplicates here, to allow arch-specific overrides. */ |
| 765 | i1 = get_target_table(vcpu->arch.target, &num); |
| 766 | end1 = i1 + num; |
| 767 | i2 = sys_reg_descs; |
| 768 | end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs); |
| 769 | |
| 770 | BUG_ON(i1 == end1 || i2 == end2); |
| 771 | |
| 772 | /* Walk carefully, as both tables may refer to the same register. */ |
| 773 | while (i1 || i2) { |
| 774 | int cmp = cmp_sys_reg(i1, i2); |
| 775 | /* target-specific overrides generic entry. */ |
| 776 | if (cmp <= 0) { |
| 777 | /* Ignore registers we trap but don't save. */ |
| 778 | if (i1->reg) { |
| 779 | if (!copy_reg_to_user(i1, &uind)) |
| 780 | return -EFAULT; |
| 781 | total++; |
| 782 | } |
| 783 | } else { |
| 784 | /* Ignore registers we trap but don't save. */ |
| 785 | if (i2->reg) { |
| 786 | if (!copy_reg_to_user(i2, &uind)) |
| 787 | return -EFAULT; |
| 788 | total++; |
| 789 | } |
| 790 | } |
| 791 | |
| 792 | if (cmp <= 0 && ++i1 == end1) |
| 793 | i1 = NULL; |
| 794 | if (cmp >= 0 && ++i2 == end2) |
| 795 | i2 = NULL; |
| 796 | } |
| 797 | return total; |
| 798 | } |
| 799 | |
| 800 | unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu) |
| 801 | { |
| 802 | return ARRAY_SIZE(invariant_sys_regs) |
| 803 | + num_demux_regs() |
| 804 | + walk_sys_regs(vcpu, (u64 __user *)NULL); |
| 805 | } |
| 806 | |
| 807 | int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices) |
| 808 | { |
| 809 | unsigned int i; |
| 810 | int err; |
| 811 | |
| 812 | /* Then give them all the invariant registers' indices. */ |
| 813 | for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) { |
| 814 | if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices)) |
| 815 | return -EFAULT; |
| 816 | uindices++; |
| 817 | } |
| 818 | |
| 819 | err = walk_sys_regs(vcpu, uindices); |
| 820 | if (err < 0) |
| 821 | return err; |
| 822 | uindices += err; |
| 823 | |
| 824 | return write_demux_regids(uindices); |
| 825 | } |
| 826 | |
| 827 | void kvm_sys_reg_table_init(void) |
| 828 | { |
| 829 | unsigned int i; |
| 830 | struct sys_reg_desc clidr; |
| 831 | |
| 832 | /* Make sure tables are unique and in order. */ |
| 833 | for (i = 1; i < ARRAY_SIZE(sys_reg_descs); i++) |
| 834 | BUG_ON(cmp_sys_reg(&sys_reg_descs[i-1], &sys_reg_descs[i]) >= 0); |
| 835 | |
| 836 | /* We abuse the reset function to overwrite the table itself. */ |
| 837 | for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) |
| 838 | invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]); |
| 839 | |
| 840 | /* |
| 841 | * CLIDR format is awkward, so clean it up. See ARM B4.1.20: |
| 842 | * |
| 843 | * If software reads the Cache Type fields from Ctype1 |
| 844 | * upwards, once it has seen a value of 0b000, no caches |
| 845 | * exist at further-out levels of the hierarchy. So, for |
| 846 | * example, if Ctype3 is the first Cache Type field with a |
| 847 | * value of 0b000, the values of Ctype4 to Ctype7 must be |
| 848 | * ignored. |
| 849 | */ |
| 850 | get_clidr_el1(NULL, &clidr); /* Ugly... */ |
| 851 | cache_levels = clidr.val; |
| 852 | for (i = 0; i < 7; i++) |
| 853 | if (((cache_levels >> (i*3)) & 7) == 0) |
| 854 | break; |
| 855 | /* Clear all higher bits. */ |
| 856 | cache_levels &= (1 << (i*3))-1; |
| 857 | } |
| 858 | |
| 859 | /** |
| 860 | * kvm_reset_sys_regs - sets system registers to reset value |
| 861 | * @vcpu: The VCPU pointer |
| 862 | * |
| 863 | * This function finds the right table above and sets the registers on the |
| 864 | * virtual CPU struct to their architecturally defined reset values. |
| 865 | */ |
| 866 | void kvm_reset_sys_regs(struct kvm_vcpu *vcpu) |
| 867 | { |
| 868 | size_t num; |
| 869 | const struct sys_reg_desc *table; |
| 870 | |
| 871 | /* Catch someone adding a register without putting in reset entry. */ |
| 872 | memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs)); |
| 873 | |
| 874 | /* Generic chip reset first (so target could override). */ |
| 875 | reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); |
| 876 | |
| 877 | table = get_target_table(vcpu->arch.target, &num); |
| 878 | reset_sys_reg_descs(vcpu, table, num); |
| 879 | |
| 880 | for (num = 1; num < NR_SYS_REGS; num++) |
| 881 | if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242) |
| 882 | panic("Didn't reset vcpu_sys_reg(%zi)", num); |
| 883 | } |