| Joe Thornber | 991d9fa0 | 2011-10-31 20:21:18 +0000 | [diff] [blame] | 1 | /* | 
 | 2 |  * Copyright (C) 2011 Red Hat UK. | 
 | 3 |  * | 
 | 4 |  * This file is released under the GPL. | 
 | 5 |  */ | 
 | 6 |  | 
 | 7 | #include "dm-thin-metadata.h" | 
 | 8 |  | 
 | 9 | #include <linux/device-mapper.h> | 
 | 10 | #include <linux/dm-io.h> | 
 | 11 | #include <linux/dm-kcopyd.h> | 
 | 12 | #include <linux/list.h> | 
 | 13 | #include <linux/init.h> | 
 | 14 | #include <linux/module.h> | 
 | 15 | #include <linux/slab.h> | 
 | 16 |  | 
 | 17 | #define	DM_MSG_PREFIX	"thin" | 
 | 18 |  | 
 | 19 | /* | 
 | 20 |  * Tunable constants | 
 | 21 |  */ | 
 | 22 | #define ENDIO_HOOK_POOL_SIZE 10240 | 
 | 23 | #define DEFERRED_SET_SIZE 64 | 
 | 24 | #define MAPPING_POOL_SIZE 1024 | 
 | 25 | #define PRISON_CELLS 1024 | 
 | 26 |  | 
 | 27 | /* | 
 | 28 |  * The block size of the device holding pool data must be | 
 | 29 |  * between 64KB and 1GB. | 
 | 30 |  */ | 
 | 31 | #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT) | 
 | 32 | #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) | 
 | 33 |  | 
 | 34 | /* | 
 | 35 |  * The metadata device is currently limited in size.  The limitation is | 
 | 36 |  * checked lower down in dm-space-map-metadata, but we also check it here | 
 | 37 |  * so we can fail early. | 
 | 38 |  * | 
 | 39 |  * We have one block of index, which can hold 255 index entries.  Each | 
 | 40 |  * index entry contains allocation info about 16k metadata blocks. | 
 | 41 |  */ | 
 | 42 | #define METADATA_DEV_MAX_SECTORS (255 * (1 << 14) * (THIN_METADATA_BLOCK_SIZE / (1 << SECTOR_SHIFT))) | 
 | 43 |  | 
 | 44 | /* | 
 | 45 |  * Device id is restricted to 24 bits. | 
 | 46 |  */ | 
 | 47 | #define MAX_DEV_ID ((1 << 24) - 1) | 
 | 48 |  | 
 | 49 | /* | 
 | 50 |  * How do we handle breaking sharing of data blocks? | 
 | 51 |  * ================================================= | 
 | 52 |  * | 
 | 53 |  * We use a standard copy-on-write btree to store the mappings for the | 
 | 54 |  * devices (note I'm talking about copy-on-write of the metadata here, not | 
 | 55 |  * the data).  When you take an internal snapshot you clone the root node | 
 | 56 |  * of the origin btree.  After this there is no concept of an origin or a | 
 | 57 |  * snapshot.  They are just two device trees that happen to point to the | 
 | 58 |  * same data blocks. | 
 | 59 |  * | 
 | 60 |  * When we get a write in we decide if it's to a shared data block using | 
 | 61 |  * some timestamp magic.  If it is, we have to break sharing. | 
 | 62 |  * | 
 | 63 |  * Let's say we write to a shared block in what was the origin.  The | 
 | 64 |  * steps are: | 
 | 65 |  * | 
 | 66 |  * i) plug io further to this physical block. (see bio_prison code). | 
 | 67 |  * | 
 | 68 |  * ii) quiesce any read io to that shared data block.  Obviously | 
 | 69 |  * including all devices that share this block.  (see deferred_set code) | 
 | 70 |  * | 
 | 71 |  * iii) copy the data block to a newly allocate block.  This step can be | 
 | 72 |  * missed out if the io covers the block. (schedule_copy). | 
 | 73 |  * | 
 | 74 |  * iv) insert the new mapping into the origin's btree | 
 | 75 |  * (process_prepared_mappings).  This act of inserting breaks some | 
 | 76 |  * sharing of btree nodes between the two devices.  Breaking sharing only | 
 | 77 |  * effects the btree of that specific device.  Btrees for the other | 
 | 78 |  * devices that share the block never change.  The btree for the origin | 
 | 79 |  * device as it was after the last commit is untouched, ie. we're using | 
 | 80 |  * persistent data structures in the functional programming sense. | 
 | 81 |  * | 
 | 82 |  * v) unplug io to this physical block, including the io that triggered | 
 | 83 |  * the breaking of sharing. | 
 | 84 |  * | 
 | 85 |  * Steps (ii) and (iii) occur in parallel. | 
 | 86 |  * | 
 | 87 |  * The metadata _doesn't_ need to be committed before the io continues.  We | 
 | 88 |  * get away with this because the io is always written to a _new_ block. | 
 | 89 |  * If there's a crash, then: | 
 | 90 |  * | 
 | 91 |  * - The origin mapping will point to the old origin block (the shared | 
 | 92 |  * one).  This will contain the data as it was before the io that triggered | 
 | 93 |  * the breaking of sharing came in. | 
 | 94 |  * | 
 | 95 |  * - The snap mapping still points to the old block.  As it would after | 
 | 96 |  * the commit. | 
 | 97 |  * | 
 | 98 |  * The downside of this scheme is the timestamp magic isn't perfect, and | 
 | 99 |  * will continue to think that data block in the snapshot device is shared | 
 | 100 |  * even after the write to the origin has broken sharing.  I suspect data | 
 | 101 |  * blocks will typically be shared by many different devices, so we're | 
 | 102 |  * breaking sharing n + 1 times, rather than n, where n is the number of | 
 | 103 |  * devices that reference this data block.  At the moment I think the | 
 | 104 |  * benefits far, far outweigh the disadvantages. | 
 | 105 |  */ | 
 | 106 |  | 
 | 107 | /*----------------------------------------------------------------*/ | 
 | 108 |  | 
 | 109 | /* | 
 | 110 |  * Sometimes we can't deal with a bio straight away.  We put them in prison | 
 | 111 |  * where they can't cause any mischief.  Bios are put in a cell identified | 
 | 112 |  * by a key, multiple bios can be in the same cell.  When the cell is | 
 | 113 |  * subsequently unlocked the bios become available. | 
 | 114 |  */ | 
 | 115 | struct bio_prison; | 
 | 116 |  | 
 | 117 | struct cell_key { | 
 | 118 | 	int virtual; | 
 | 119 | 	dm_thin_id dev; | 
 | 120 | 	dm_block_t block; | 
 | 121 | }; | 
 | 122 |  | 
 | 123 | struct cell { | 
 | 124 | 	struct hlist_node list; | 
 | 125 | 	struct bio_prison *prison; | 
 | 126 | 	struct cell_key key; | 
 | 127 | 	unsigned count; | 
 | 128 | 	struct bio_list bios; | 
 | 129 | }; | 
 | 130 |  | 
 | 131 | struct bio_prison { | 
 | 132 | 	spinlock_t lock; | 
 | 133 | 	mempool_t *cell_pool; | 
 | 134 |  | 
 | 135 | 	unsigned nr_buckets; | 
 | 136 | 	unsigned hash_mask; | 
 | 137 | 	struct hlist_head *cells; | 
 | 138 | }; | 
 | 139 |  | 
 | 140 | static uint32_t calc_nr_buckets(unsigned nr_cells) | 
 | 141 | { | 
 | 142 | 	uint32_t n = 128; | 
 | 143 |  | 
 | 144 | 	nr_cells /= 4; | 
 | 145 | 	nr_cells = min(nr_cells, 8192u); | 
 | 146 |  | 
 | 147 | 	while (n < nr_cells) | 
 | 148 | 		n <<= 1; | 
 | 149 |  | 
 | 150 | 	return n; | 
 | 151 | } | 
 | 152 |  | 
 | 153 | /* | 
 | 154 |  * @nr_cells should be the number of cells you want in use _concurrently_. | 
 | 155 |  * Don't confuse it with the number of distinct keys. | 
 | 156 |  */ | 
 | 157 | static struct bio_prison *prison_create(unsigned nr_cells) | 
 | 158 | { | 
 | 159 | 	unsigned i; | 
 | 160 | 	uint32_t nr_buckets = calc_nr_buckets(nr_cells); | 
 | 161 | 	size_t len = sizeof(struct bio_prison) + | 
 | 162 | 		(sizeof(struct hlist_head) * nr_buckets); | 
 | 163 | 	struct bio_prison *prison = kmalloc(len, GFP_KERNEL); | 
 | 164 |  | 
 | 165 | 	if (!prison) | 
 | 166 | 		return NULL; | 
 | 167 |  | 
 | 168 | 	spin_lock_init(&prison->lock); | 
 | 169 | 	prison->cell_pool = mempool_create_kmalloc_pool(nr_cells, | 
 | 170 | 							sizeof(struct cell)); | 
 | 171 | 	if (!prison->cell_pool) { | 
 | 172 | 		kfree(prison); | 
 | 173 | 		return NULL; | 
 | 174 | 	} | 
 | 175 |  | 
 | 176 | 	prison->nr_buckets = nr_buckets; | 
 | 177 | 	prison->hash_mask = nr_buckets - 1; | 
 | 178 | 	prison->cells = (struct hlist_head *) (prison + 1); | 
 | 179 | 	for (i = 0; i < nr_buckets; i++) | 
 | 180 | 		INIT_HLIST_HEAD(prison->cells + i); | 
 | 181 |  | 
 | 182 | 	return prison; | 
 | 183 | } | 
 | 184 |  | 
 | 185 | static void prison_destroy(struct bio_prison *prison) | 
 | 186 | { | 
 | 187 | 	mempool_destroy(prison->cell_pool); | 
 | 188 | 	kfree(prison); | 
 | 189 | } | 
 | 190 |  | 
 | 191 | static uint32_t hash_key(struct bio_prison *prison, struct cell_key *key) | 
 | 192 | { | 
 | 193 | 	const unsigned long BIG_PRIME = 4294967291UL; | 
 | 194 | 	uint64_t hash = key->block * BIG_PRIME; | 
 | 195 |  | 
 | 196 | 	return (uint32_t) (hash & prison->hash_mask); | 
 | 197 | } | 
 | 198 |  | 
 | 199 | static int keys_equal(struct cell_key *lhs, struct cell_key *rhs) | 
 | 200 | { | 
 | 201 | 	       return (lhs->virtual == rhs->virtual) && | 
 | 202 | 		       (lhs->dev == rhs->dev) && | 
 | 203 | 		       (lhs->block == rhs->block); | 
 | 204 | } | 
 | 205 |  | 
 | 206 | static struct cell *__search_bucket(struct hlist_head *bucket, | 
 | 207 | 				    struct cell_key *key) | 
 | 208 | { | 
 | 209 | 	struct cell *cell; | 
 | 210 | 	struct hlist_node *tmp; | 
 | 211 |  | 
 | 212 | 	hlist_for_each_entry(cell, tmp, bucket, list) | 
 | 213 | 		if (keys_equal(&cell->key, key)) | 
 | 214 | 			return cell; | 
 | 215 |  | 
 | 216 | 	return NULL; | 
 | 217 | } | 
 | 218 |  | 
 | 219 | /* | 
 | 220 |  * This may block if a new cell needs allocating.  You must ensure that | 
 | 221 |  * cells will be unlocked even if the calling thread is blocked. | 
 | 222 |  * | 
 | 223 |  * Returns the number of entries in the cell prior to the new addition | 
 | 224 |  * or < 0 on failure. | 
 | 225 |  */ | 
 | 226 | static int bio_detain(struct bio_prison *prison, struct cell_key *key, | 
 | 227 | 		      struct bio *inmate, struct cell **ref) | 
 | 228 | { | 
 | 229 | 	int r; | 
 | 230 | 	unsigned long flags; | 
 | 231 | 	uint32_t hash = hash_key(prison, key); | 
 | 232 | 	struct cell *uninitialized_var(cell), *cell2 = NULL; | 
 | 233 |  | 
 | 234 | 	BUG_ON(hash > prison->nr_buckets); | 
 | 235 |  | 
 | 236 | 	spin_lock_irqsave(&prison->lock, flags); | 
 | 237 | 	cell = __search_bucket(prison->cells + hash, key); | 
 | 238 |  | 
 | 239 | 	if (!cell) { | 
 | 240 | 		/* | 
 | 241 | 		 * Allocate a new cell | 
 | 242 | 		 */ | 
 | 243 | 		spin_unlock_irqrestore(&prison->lock, flags); | 
 | 244 | 		cell2 = mempool_alloc(prison->cell_pool, GFP_NOIO); | 
 | 245 | 		spin_lock_irqsave(&prison->lock, flags); | 
 | 246 |  | 
 | 247 | 		/* | 
 | 248 | 		 * We've been unlocked, so we have to double check that | 
 | 249 | 		 * nobody else has inserted this cell in the meantime. | 
 | 250 | 		 */ | 
 | 251 | 		cell = __search_bucket(prison->cells + hash, key); | 
 | 252 |  | 
 | 253 | 		if (!cell) { | 
 | 254 | 			cell = cell2; | 
 | 255 | 			cell2 = NULL; | 
 | 256 |  | 
 | 257 | 			cell->prison = prison; | 
 | 258 | 			memcpy(&cell->key, key, sizeof(cell->key)); | 
 | 259 | 			cell->count = 0; | 
 | 260 | 			bio_list_init(&cell->bios); | 
 | 261 | 			hlist_add_head(&cell->list, prison->cells + hash); | 
 | 262 | 		} | 
 | 263 | 	} | 
 | 264 |  | 
 | 265 | 	r = cell->count++; | 
 | 266 | 	bio_list_add(&cell->bios, inmate); | 
 | 267 | 	spin_unlock_irqrestore(&prison->lock, flags); | 
 | 268 |  | 
 | 269 | 	if (cell2) | 
 | 270 | 		mempool_free(cell2, prison->cell_pool); | 
 | 271 |  | 
 | 272 | 	*ref = cell; | 
 | 273 |  | 
 | 274 | 	return r; | 
 | 275 | } | 
 | 276 |  | 
 | 277 | /* | 
 | 278 |  * @inmates must have been initialised prior to this call | 
 | 279 |  */ | 
 | 280 | static void __cell_release(struct cell *cell, struct bio_list *inmates) | 
 | 281 | { | 
 | 282 | 	struct bio_prison *prison = cell->prison; | 
 | 283 |  | 
 | 284 | 	hlist_del(&cell->list); | 
 | 285 |  | 
 | 286 | 	if (inmates) | 
 | 287 | 		bio_list_merge(inmates, &cell->bios); | 
 | 288 |  | 
 | 289 | 	mempool_free(cell, prison->cell_pool); | 
 | 290 | } | 
 | 291 |  | 
 | 292 | static void cell_release(struct cell *cell, struct bio_list *bios) | 
 | 293 | { | 
 | 294 | 	unsigned long flags; | 
 | 295 | 	struct bio_prison *prison = cell->prison; | 
 | 296 |  | 
 | 297 | 	spin_lock_irqsave(&prison->lock, flags); | 
 | 298 | 	__cell_release(cell, bios); | 
 | 299 | 	spin_unlock_irqrestore(&prison->lock, flags); | 
 | 300 | } | 
 | 301 |  | 
 | 302 | /* | 
 | 303 |  * There are a couple of places where we put a bio into a cell briefly | 
 | 304 |  * before taking it out again.  In these situations we know that no other | 
 | 305 |  * bio may be in the cell.  This function releases the cell, and also does | 
 | 306 |  * a sanity check. | 
 | 307 |  */ | 
 | 308 | static void cell_release_singleton(struct cell *cell, struct bio *bio) | 
 | 309 | { | 
 | 310 | 	struct bio_prison *prison = cell->prison; | 
 | 311 | 	struct bio_list bios; | 
 | 312 | 	struct bio *b; | 
 | 313 | 	unsigned long flags; | 
 | 314 |  | 
 | 315 | 	bio_list_init(&bios); | 
 | 316 |  | 
 | 317 | 	spin_lock_irqsave(&prison->lock, flags); | 
 | 318 | 	__cell_release(cell, &bios); | 
 | 319 | 	spin_unlock_irqrestore(&prison->lock, flags); | 
 | 320 |  | 
 | 321 | 	b = bio_list_pop(&bios); | 
 | 322 | 	BUG_ON(b != bio); | 
 | 323 | 	BUG_ON(!bio_list_empty(&bios)); | 
 | 324 | } | 
 | 325 |  | 
 | 326 | static void cell_error(struct cell *cell) | 
 | 327 | { | 
 | 328 | 	struct bio_prison *prison = cell->prison; | 
 | 329 | 	struct bio_list bios; | 
 | 330 | 	struct bio *bio; | 
 | 331 | 	unsigned long flags; | 
 | 332 |  | 
 | 333 | 	bio_list_init(&bios); | 
 | 334 |  | 
 | 335 | 	spin_lock_irqsave(&prison->lock, flags); | 
 | 336 | 	__cell_release(cell, &bios); | 
 | 337 | 	spin_unlock_irqrestore(&prison->lock, flags); | 
 | 338 |  | 
 | 339 | 	while ((bio = bio_list_pop(&bios))) | 
 | 340 | 		bio_io_error(bio); | 
 | 341 | } | 
 | 342 |  | 
 | 343 | /*----------------------------------------------------------------*/ | 
 | 344 |  | 
 | 345 | /* | 
 | 346 |  * We use the deferred set to keep track of pending reads to shared blocks. | 
 | 347 |  * We do this to ensure the new mapping caused by a write isn't performed | 
 | 348 |  * until these prior reads have completed.  Otherwise the insertion of the | 
 | 349 |  * new mapping could free the old block that the read bios are mapped to. | 
 | 350 |  */ | 
 | 351 |  | 
 | 352 | struct deferred_set; | 
 | 353 | struct deferred_entry { | 
 | 354 | 	struct deferred_set *ds; | 
 | 355 | 	unsigned count; | 
 | 356 | 	struct list_head work_items; | 
 | 357 | }; | 
 | 358 |  | 
 | 359 | struct deferred_set { | 
 | 360 | 	spinlock_t lock; | 
 | 361 | 	unsigned current_entry; | 
 | 362 | 	unsigned sweeper; | 
 | 363 | 	struct deferred_entry entries[DEFERRED_SET_SIZE]; | 
 | 364 | }; | 
 | 365 |  | 
 | 366 | static void ds_init(struct deferred_set *ds) | 
 | 367 | { | 
 | 368 | 	int i; | 
 | 369 |  | 
 | 370 | 	spin_lock_init(&ds->lock); | 
 | 371 | 	ds->current_entry = 0; | 
 | 372 | 	ds->sweeper = 0; | 
 | 373 | 	for (i = 0; i < DEFERRED_SET_SIZE; i++) { | 
 | 374 | 		ds->entries[i].ds = ds; | 
 | 375 | 		ds->entries[i].count = 0; | 
 | 376 | 		INIT_LIST_HEAD(&ds->entries[i].work_items); | 
 | 377 | 	} | 
 | 378 | } | 
 | 379 |  | 
 | 380 | static struct deferred_entry *ds_inc(struct deferred_set *ds) | 
 | 381 | { | 
 | 382 | 	unsigned long flags; | 
 | 383 | 	struct deferred_entry *entry; | 
 | 384 |  | 
 | 385 | 	spin_lock_irqsave(&ds->lock, flags); | 
 | 386 | 	entry = ds->entries + ds->current_entry; | 
 | 387 | 	entry->count++; | 
 | 388 | 	spin_unlock_irqrestore(&ds->lock, flags); | 
 | 389 |  | 
 | 390 | 	return entry; | 
 | 391 | } | 
 | 392 |  | 
 | 393 | static unsigned ds_next(unsigned index) | 
 | 394 | { | 
 | 395 | 	return (index + 1) % DEFERRED_SET_SIZE; | 
 | 396 | } | 
 | 397 |  | 
 | 398 | static void __sweep(struct deferred_set *ds, struct list_head *head) | 
 | 399 | { | 
 | 400 | 	while ((ds->sweeper != ds->current_entry) && | 
 | 401 | 	       !ds->entries[ds->sweeper].count) { | 
 | 402 | 		list_splice_init(&ds->entries[ds->sweeper].work_items, head); | 
 | 403 | 		ds->sweeper = ds_next(ds->sweeper); | 
 | 404 | 	} | 
 | 405 |  | 
 | 406 | 	if ((ds->sweeper == ds->current_entry) && !ds->entries[ds->sweeper].count) | 
 | 407 | 		list_splice_init(&ds->entries[ds->sweeper].work_items, head); | 
 | 408 | } | 
 | 409 |  | 
 | 410 | static void ds_dec(struct deferred_entry *entry, struct list_head *head) | 
 | 411 | { | 
 | 412 | 	unsigned long flags; | 
 | 413 |  | 
 | 414 | 	spin_lock_irqsave(&entry->ds->lock, flags); | 
 | 415 | 	BUG_ON(!entry->count); | 
 | 416 | 	--entry->count; | 
 | 417 | 	__sweep(entry->ds, head); | 
 | 418 | 	spin_unlock_irqrestore(&entry->ds->lock, flags); | 
 | 419 | } | 
 | 420 |  | 
 | 421 | /* | 
 | 422 |  * Returns 1 if deferred or 0 if no pending items to delay job. | 
 | 423 |  */ | 
 | 424 | static int ds_add_work(struct deferred_set *ds, struct list_head *work) | 
 | 425 | { | 
 | 426 | 	int r = 1; | 
 | 427 | 	unsigned long flags; | 
 | 428 | 	unsigned next_entry; | 
 | 429 |  | 
 | 430 | 	spin_lock_irqsave(&ds->lock, flags); | 
 | 431 | 	if ((ds->sweeper == ds->current_entry) && | 
 | 432 | 	    !ds->entries[ds->current_entry].count) | 
 | 433 | 		r = 0; | 
 | 434 | 	else { | 
 | 435 | 		list_add(work, &ds->entries[ds->current_entry].work_items); | 
 | 436 | 		next_entry = ds_next(ds->current_entry); | 
 | 437 | 		if (!ds->entries[next_entry].count) | 
 | 438 | 			ds->current_entry = next_entry; | 
 | 439 | 	} | 
 | 440 | 	spin_unlock_irqrestore(&ds->lock, flags); | 
 | 441 |  | 
 | 442 | 	return r; | 
 | 443 | } | 
 | 444 |  | 
 | 445 | /*----------------------------------------------------------------*/ | 
 | 446 |  | 
 | 447 | /* | 
 | 448 |  * Key building. | 
 | 449 |  */ | 
 | 450 | static void build_data_key(struct dm_thin_device *td, | 
 | 451 | 			   dm_block_t b, struct cell_key *key) | 
 | 452 | { | 
 | 453 | 	key->virtual = 0; | 
 | 454 | 	key->dev = dm_thin_dev_id(td); | 
 | 455 | 	key->block = b; | 
 | 456 | } | 
 | 457 |  | 
 | 458 | static void build_virtual_key(struct dm_thin_device *td, dm_block_t b, | 
 | 459 | 			      struct cell_key *key) | 
 | 460 | { | 
 | 461 | 	key->virtual = 1; | 
 | 462 | 	key->dev = dm_thin_dev_id(td); | 
 | 463 | 	key->block = b; | 
 | 464 | } | 
 | 465 |  | 
 | 466 | /*----------------------------------------------------------------*/ | 
 | 467 |  | 
 | 468 | /* | 
 | 469 |  * A pool device ties together a metadata device and a data device.  It | 
 | 470 |  * also provides the interface for creating and destroying internal | 
 | 471 |  * devices. | 
 | 472 |  */ | 
 | 473 | struct new_mapping; | 
 | 474 | struct pool { | 
 | 475 | 	struct list_head list; | 
 | 476 | 	struct dm_target *ti;	/* Only set if a pool target is bound */ | 
 | 477 |  | 
 | 478 | 	struct mapped_device *pool_md; | 
 | 479 | 	struct block_device *md_dev; | 
 | 480 | 	struct dm_pool_metadata *pmd; | 
 | 481 |  | 
 | 482 | 	uint32_t sectors_per_block; | 
 | 483 | 	unsigned block_shift; | 
 | 484 | 	dm_block_t offset_mask; | 
 | 485 | 	dm_block_t low_water_blocks; | 
 | 486 |  | 
 | 487 | 	unsigned zero_new_blocks:1; | 
 | 488 | 	unsigned low_water_triggered:1;	/* A dm event has been sent */ | 
 | 489 | 	unsigned no_free_space:1;	/* A -ENOSPC warning has been issued */ | 
 | 490 |  | 
 | 491 | 	struct bio_prison *prison; | 
 | 492 | 	struct dm_kcopyd_client *copier; | 
 | 493 |  | 
 | 494 | 	struct workqueue_struct *wq; | 
 | 495 | 	struct work_struct worker; | 
 | 496 |  | 
 | 497 | 	unsigned ref_count; | 
 | 498 |  | 
 | 499 | 	spinlock_t lock; | 
 | 500 | 	struct bio_list deferred_bios; | 
 | 501 | 	struct bio_list deferred_flush_bios; | 
 | 502 | 	struct list_head prepared_mappings; | 
 | 503 |  | 
 | 504 | 	struct bio_list retry_on_resume_list; | 
 | 505 |  | 
 | 506 | 	struct deferred_set ds;	/* FIXME: move to thin_c */ | 
 | 507 |  | 
 | 508 | 	struct new_mapping *next_mapping; | 
 | 509 | 	mempool_t *mapping_pool; | 
 | 510 | 	mempool_t *endio_hook_pool; | 
 | 511 | }; | 
 | 512 |  | 
 | 513 | /* | 
 | 514 |  * Target context for a pool. | 
 | 515 |  */ | 
 | 516 | struct pool_c { | 
 | 517 | 	struct dm_target *ti; | 
 | 518 | 	struct pool *pool; | 
 | 519 | 	struct dm_dev *data_dev; | 
 | 520 | 	struct dm_dev *metadata_dev; | 
 | 521 | 	struct dm_target_callbacks callbacks; | 
 | 522 |  | 
 | 523 | 	dm_block_t low_water_blocks; | 
 | 524 | 	unsigned zero_new_blocks:1; | 
 | 525 | }; | 
 | 526 |  | 
 | 527 | /* | 
 | 528 |  * Target context for a thin. | 
 | 529 |  */ | 
 | 530 | struct thin_c { | 
 | 531 | 	struct dm_dev *pool_dev; | 
 | 532 | 	dm_thin_id dev_id; | 
 | 533 |  | 
 | 534 | 	struct pool *pool; | 
 | 535 | 	struct dm_thin_device *td; | 
 | 536 | }; | 
 | 537 |  | 
 | 538 | /*----------------------------------------------------------------*/ | 
 | 539 |  | 
 | 540 | /* | 
 | 541 |  * A global list of pools that uses a struct mapped_device as a key. | 
 | 542 |  */ | 
 | 543 | static struct dm_thin_pool_table { | 
 | 544 | 	struct mutex mutex; | 
 | 545 | 	struct list_head pools; | 
 | 546 | } dm_thin_pool_table; | 
 | 547 |  | 
 | 548 | static void pool_table_init(void) | 
 | 549 | { | 
 | 550 | 	mutex_init(&dm_thin_pool_table.mutex); | 
 | 551 | 	INIT_LIST_HEAD(&dm_thin_pool_table.pools); | 
 | 552 | } | 
 | 553 |  | 
 | 554 | static void __pool_table_insert(struct pool *pool) | 
 | 555 | { | 
 | 556 | 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); | 
 | 557 | 	list_add(&pool->list, &dm_thin_pool_table.pools); | 
 | 558 | } | 
 | 559 |  | 
 | 560 | static void __pool_table_remove(struct pool *pool) | 
 | 561 | { | 
 | 562 | 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); | 
 | 563 | 	list_del(&pool->list); | 
 | 564 | } | 
 | 565 |  | 
 | 566 | static struct pool *__pool_table_lookup(struct mapped_device *md) | 
 | 567 | { | 
 | 568 | 	struct pool *pool = NULL, *tmp; | 
 | 569 |  | 
 | 570 | 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); | 
 | 571 |  | 
 | 572 | 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { | 
 | 573 | 		if (tmp->pool_md == md) { | 
 | 574 | 			pool = tmp; | 
 | 575 | 			break; | 
 | 576 | 		} | 
 | 577 | 	} | 
 | 578 |  | 
 | 579 | 	return pool; | 
 | 580 | } | 
 | 581 |  | 
 | 582 | static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev) | 
 | 583 | { | 
 | 584 | 	struct pool *pool = NULL, *tmp; | 
 | 585 |  | 
 | 586 | 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); | 
 | 587 |  | 
 | 588 | 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { | 
 | 589 | 		if (tmp->md_dev == md_dev) { | 
 | 590 | 			pool = tmp; | 
 | 591 | 			break; | 
 | 592 | 		} | 
 | 593 | 	} | 
 | 594 |  | 
 | 595 | 	return pool; | 
 | 596 | } | 
 | 597 |  | 
 | 598 | /*----------------------------------------------------------------*/ | 
 | 599 |  | 
 | 600 | static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master) | 
 | 601 | { | 
 | 602 | 	struct bio *bio; | 
 | 603 | 	struct bio_list bios; | 
 | 604 |  | 
 | 605 | 	bio_list_init(&bios); | 
 | 606 | 	bio_list_merge(&bios, master); | 
 | 607 | 	bio_list_init(master); | 
 | 608 |  | 
 | 609 | 	while ((bio = bio_list_pop(&bios))) { | 
 | 610 | 		if (dm_get_mapinfo(bio)->ptr == tc) | 
 | 611 | 			bio_endio(bio, DM_ENDIO_REQUEUE); | 
 | 612 | 		else | 
 | 613 | 			bio_list_add(master, bio); | 
 | 614 | 	} | 
 | 615 | } | 
 | 616 |  | 
 | 617 | static void requeue_io(struct thin_c *tc) | 
 | 618 | { | 
 | 619 | 	struct pool *pool = tc->pool; | 
 | 620 | 	unsigned long flags; | 
 | 621 |  | 
 | 622 | 	spin_lock_irqsave(&pool->lock, flags); | 
 | 623 | 	__requeue_bio_list(tc, &pool->deferred_bios); | 
 | 624 | 	__requeue_bio_list(tc, &pool->retry_on_resume_list); | 
 | 625 | 	spin_unlock_irqrestore(&pool->lock, flags); | 
 | 626 | } | 
 | 627 |  | 
 | 628 | /* | 
 | 629 |  * This section of code contains the logic for processing a thin device's IO. | 
 | 630 |  * Much of the code depends on pool object resources (lists, workqueues, etc) | 
 | 631 |  * but most is exclusively called from the thin target rather than the thin-pool | 
 | 632 |  * target. | 
 | 633 |  */ | 
 | 634 |  | 
 | 635 | static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio) | 
 | 636 | { | 
 | 637 | 	return bio->bi_sector >> tc->pool->block_shift; | 
 | 638 | } | 
 | 639 |  | 
 | 640 | static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block) | 
 | 641 | { | 
 | 642 | 	struct pool *pool = tc->pool; | 
 | 643 |  | 
 | 644 | 	bio->bi_bdev = tc->pool_dev->bdev; | 
 | 645 | 	bio->bi_sector = (block << pool->block_shift) + | 
 | 646 | 		(bio->bi_sector & pool->offset_mask); | 
 | 647 | } | 
 | 648 |  | 
 | 649 | static void remap_and_issue(struct thin_c *tc, struct bio *bio, | 
 | 650 | 			    dm_block_t block) | 
 | 651 | { | 
 | 652 | 	struct pool *pool = tc->pool; | 
 | 653 | 	unsigned long flags; | 
 | 654 |  | 
 | 655 | 	remap(tc, bio, block); | 
 | 656 |  | 
 | 657 | 	/* | 
 | 658 | 	 * Batch together any FUA/FLUSH bios we find and then issue | 
 | 659 | 	 * a single commit for them in process_deferred_bios(). | 
 | 660 | 	 */ | 
 | 661 | 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) { | 
 | 662 | 		spin_lock_irqsave(&pool->lock, flags); | 
 | 663 | 		bio_list_add(&pool->deferred_flush_bios, bio); | 
 | 664 | 		spin_unlock_irqrestore(&pool->lock, flags); | 
 | 665 | 	} else | 
 | 666 | 		generic_make_request(bio); | 
 | 667 | } | 
 | 668 |  | 
 | 669 | /* | 
 | 670 |  * wake_worker() is used when new work is queued and when pool_resume is | 
 | 671 |  * ready to continue deferred IO processing. | 
 | 672 |  */ | 
 | 673 | static void wake_worker(struct pool *pool) | 
 | 674 | { | 
 | 675 | 	queue_work(pool->wq, &pool->worker); | 
 | 676 | } | 
 | 677 |  | 
 | 678 | /*----------------------------------------------------------------*/ | 
 | 679 |  | 
 | 680 | /* | 
 | 681 |  * Bio endio functions. | 
 | 682 |  */ | 
 | 683 | struct endio_hook { | 
 | 684 | 	struct thin_c *tc; | 
 | 685 | 	bio_end_io_t *saved_bi_end_io; | 
 | 686 | 	struct deferred_entry *entry; | 
 | 687 | }; | 
 | 688 |  | 
 | 689 | struct new_mapping { | 
 | 690 | 	struct list_head list; | 
 | 691 |  | 
 | 692 | 	int prepared; | 
 | 693 |  | 
 | 694 | 	struct thin_c *tc; | 
 | 695 | 	dm_block_t virt_block; | 
 | 696 | 	dm_block_t data_block; | 
 | 697 | 	struct cell *cell; | 
 | 698 | 	int err; | 
 | 699 |  | 
 | 700 | 	/* | 
 | 701 | 	 * If the bio covers the whole area of a block then we can avoid | 
 | 702 | 	 * zeroing or copying.  Instead this bio is hooked.  The bio will | 
 | 703 | 	 * still be in the cell, so care has to be taken to avoid issuing | 
 | 704 | 	 * the bio twice. | 
 | 705 | 	 */ | 
 | 706 | 	struct bio *bio; | 
 | 707 | 	bio_end_io_t *saved_bi_end_io; | 
 | 708 | }; | 
 | 709 |  | 
 | 710 | static void __maybe_add_mapping(struct new_mapping *m) | 
 | 711 | { | 
 | 712 | 	struct pool *pool = m->tc->pool; | 
 | 713 |  | 
 | 714 | 	if (list_empty(&m->list) && m->prepared) { | 
 | 715 | 		list_add(&m->list, &pool->prepared_mappings); | 
 | 716 | 		wake_worker(pool); | 
 | 717 | 	} | 
 | 718 | } | 
 | 719 |  | 
 | 720 | static void copy_complete(int read_err, unsigned long write_err, void *context) | 
 | 721 | { | 
 | 722 | 	unsigned long flags; | 
 | 723 | 	struct new_mapping *m = context; | 
 | 724 | 	struct pool *pool = m->tc->pool; | 
 | 725 |  | 
 | 726 | 	m->err = read_err || write_err ? -EIO : 0; | 
 | 727 |  | 
 | 728 | 	spin_lock_irqsave(&pool->lock, flags); | 
 | 729 | 	m->prepared = 1; | 
 | 730 | 	__maybe_add_mapping(m); | 
 | 731 | 	spin_unlock_irqrestore(&pool->lock, flags); | 
 | 732 | } | 
 | 733 |  | 
 | 734 | static void overwrite_endio(struct bio *bio, int err) | 
 | 735 | { | 
 | 736 | 	unsigned long flags; | 
 | 737 | 	struct new_mapping *m = dm_get_mapinfo(bio)->ptr; | 
 | 738 | 	struct pool *pool = m->tc->pool; | 
 | 739 |  | 
 | 740 | 	m->err = err; | 
 | 741 |  | 
 | 742 | 	spin_lock_irqsave(&pool->lock, flags); | 
 | 743 | 	m->prepared = 1; | 
 | 744 | 	__maybe_add_mapping(m); | 
 | 745 | 	spin_unlock_irqrestore(&pool->lock, flags); | 
 | 746 | } | 
 | 747 |  | 
 | 748 | static void shared_read_endio(struct bio *bio, int err) | 
 | 749 | { | 
 | 750 | 	struct list_head mappings; | 
 | 751 | 	struct new_mapping *m, *tmp; | 
 | 752 | 	struct endio_hook *h = dm_get_mapinfo(bio)->ptr; | 
 | 753 | 	unsigned long flags; | 
 | 754 | 	struct pool *pool = h->tc->pool; | 
 | 755 |  | 
 | 756 | 	bio->bi_end_io = h->saved_bi_end_io; | 
 | 757 | 	bio_endio(bio, err); | 
 | 758 |  | 
 | 759 | 	INIT_LIST_HEAD(&mappings); | 
 | 760 | 	ds_dec(h->entry, &mappings); | 
 | 761 |  | 
 | 762 | 	spin_lock_irqsave(&pool->lock, flags); | 
 | 763 | 	list_for_each_entry_safe(m, tmp, &mappings, list) { | 
 | 764 | 		list_del(&m->list); | 
 | 765 | 		INIT_LIST_HEAD(&m->list); | 
 | 766 | 		__maybe_add_mapping(m); | 
 | 767 | 	} | 
 | 768 | 	spin_unlock_irqrestore(&pool->lock, flags); | 
 | 769 |  | 
 | 770 | 	mempool_free(h, pool->endio_hook_pool); | 
 | 771 | } | 
 | 772 |  | 
 | 773 | /*----------------------------------------------------------------*/ | 
 | 774 |  | 
 | 775 | /* | 
 | 776 |  * Workqueue. | 
 | 777 |  */ | 
 | 778 |  | 
 | 779 | /* | 
 | 780 |  * Prepared mapping jobs. | 
 | 781 |  */ | 
 | 782 |  | 
 | 783 | /* | 
 | 784 |  * This sends the bios in the cell back to the deferred_bios list. | 
 | 785 |  */ | 
 | 786 | static void cell_defer(struct thin_c *tc, struct cell *cell, | 
 | 787 | 		       dm_block_t data_block) | 
 | 788 | { | 
 | 789 | 	struct pool *pool = tc->pool; | 
 | 790 | 	unsigned long flags; | 
 | 791 |  | 
 | 792 | 	spin_lock_irqsave(&pool->lock, flags); | 
 | 793 | 	cell_release(cell, &pool->deferred_bios); | 
 | 794 | 	spin_unlock_irqrestore(&tc->pool->lock, flags); | 
 | 795 |  | 
 | 796 | 	wake_worker(pool); | 
 | 797 | } | 
 | 798 |  | 
 | 799 | /* | 
 | 800 |  * Same as cell_defer above, except it omits one particular detainee, | 
 | 801 |  * a write bio that covers the block and has already been processed. | 
 | 802 |  */ | 
 | 803 | static void cell_defer_except(struct thin_c *tc, struct cell *cell, | 
 | 804 | 			      struct bio *exception) | 
 | 805 | { | 
 | 806 | 	struct bio_list bios; | 
 | 807 | 	struct bio *bio; | 
 | 808 | 	struct pool *pool = tc->pool; | 
 | 809 | 	unsigned long flags; | 
 | 810 |  | 
 | 811 | 	bio_list_init(&bios); | 
 | 812 | 	cell_release(cell, &bios); | 
 | 813 |  | 
 | 814 | 	spin_lock_irqsave(&pool->lock, flags); | 
 | 815 | 	while ((bio = bio_list_pop(&bios))) | 
 | 816 | 		if (bio != exception) | 
 | 817 | 			bio_list_add(&pool->deferred_bios, bio); | 
 | 818 | 	spin_unlock_irqrestore(&pool->lock, flags); | 
 | 819 |  | 
 | 820 | 	wake_worker(pool); | 
 | 821 | } | 
 | 822 |  | 
 | 823 | static void process_prepared_mapping(struct new_mapping *m) | 
 | 824 | { | 
 | 825 | 	struct thin_c *tc = m->tc; | 
 | 826 | 	struct bio *bio; | 
 | 827 | 	int r; | 
 | 828 |  | 
 | 829 | 	bio = m->bio; | 
 | 830 | 	if (bio) | 
 | 831 | 		bio->bi_end_io = m->saved_bi_end_io; | 
 | 832 |  | 
 | 833 | 	if (m->err) { | 
 | 834 | 		cell_error(m->cell); | 
 | 835 | 		return; | 
 | 836 | 	} | 
 | 837 |  | 
 | 838 | 	/* | 
 | 839 | 	 * Commit the prepared block into the mapping btree. | 
 | 840 | 	 * Any I/O for this block arriving after this point will get | 
 | 841 | 	 * remapped to it directly. | 
 | 842 | 	 */ | 
 | 843 | 	r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block); | 
 | 844 | 	if (r) { | 
 | 845 | 		DMERR("dm_thin_insert_block() failed"); | 
 | 846 | 		cell_error(m->cell); | 
 | 847 | 		return; | 
 | 848 | 	} | 
 | 849 |  | 
 | 850 | 	/* | 
 | 851 | 	 * Release any bios held while the block was being provisioned. | 
 | 852 | 	 * If we are processing a write bio that completely covers the block, | 
 | 853 | 	 * we already processed it so can ignore it now when processing | 
 | 854 | 	 * the bios in the cell. | 
 | 855 | 	 */ | 
 | 856 | 	if (bio) { | 
 | 857 | 		cell_defer_except(tc, m->cell, bio); | 
 | 858 | 		bio_endio(bio, 0); | 
 | 859 | 	} else | 
 | 860 | 		cell_defer(tc, m->cell, m->data_block); | 
 | 861 |  | 
 | 862 | 	list_del(&m->list); | 
 | 863 | 	mempool_free(m, tc->pool->mapping_pool); | 
 | 864 | } | 
 | 865 |  | 
 | 866 | static void process_prepared_mappings(struct pool *pool) | 
 | 867 | { | 
 | 868 | 	unsigned long flags; | 
 | 869 | 	struct list_head maps; | 
 | 870 | 	struct new_mapping *m, *tmp; | 
 | 871 |  | 
 | 872 | 	INIT_LIST_HEAD(&maps); | 
 | 873 | 	spin_lock_irqsave(&pool->lock, flags); | 
 | 874 | 	list_splice_init(&pool->prepared_mappings, &maps); | 
 | 875 | 	spin_unlock_irqrestore(&pool->lock, flags); | 
 | 876 |  | 
 | 877 | 	list_for_each_entry_safe(m, tmp, &maps, list) | 
 | 878 | 		process_prepared_mapping(m); | 
 | 879 | } | 
 | 880 |  | 
 | 881 | /* | 
 | 882 |  * Deferred bio jobs. | 
 | 883 |  */ | 
 | 884 | static int io_overwrites_block(struct pool *pool, struct bio *bio) | 
 | 885 | { | 
 | 886 | 	return ((bio_data_dir(bio) == WRITE) && | 
 | 887 | 		!(bio->bi_sector & pool->offset_mask)) && | 
 | 888 | 		(bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT)); | 
 | 889 | } | 
 | 890 |  | 
 | 891 | static void save_and_set_endio(struct bio *bio, bio_end_io_t **save, | 
 | 892 | 			       bio_end_io_t *fn) | 
 | 893 | { | 
 | 894 | 	*save = bio->bi_end_io; | 
 | 895 | 	bio->bi_end_io = fn; | 
 | 896 | } | 
 | 897 |  | 
 | 898 | static int ensure_next_mapping(struct pool *pool) | 
 | 899 | { | 
 | 900 | 	if (pool->next_mapping) | 
 | 901 | 		return 0; | 
 | 902 |  | 
 | 903 | 	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC); | 
 | 904 |  | 
 | 905 | 	return pool->next_mapping ? 0 : -ENOMEM; | 
 | 906 | } | 
 | 907 |  | 
 | 908 | static struct new_mapping *get_next_mapping(struct pool *pool) | 
 | 909 | { | 
 | 910 | 	struct new_mapping *r = pool->next_mapping; | 
 | 911 |  | 
 | 912 | 	BUG_ON(!pool->next_mapping); | 
 | 913 |  | 
 | 914 | 	pool->next_mapping = NULL; | 
 | 915 |  | 
 | 916 | 	return r; | 
 | 917 | } | 
 | 918 |  | 
 | 919 | static void schedule_copy(struct thin_c *tc, dm_block_t virt_block, | 
 | 920 | 			  dm_block_t data_origin, dm_block_t data_dest, | 
 | 921 | 			  struct cell *cell, struct bio *bio) | 
 | 922 | { | 
 | 923 | 	int r; | 
 | 924 | 	struct pool *pool = tc->pool; | 
 | 925 | 	struct new_mapping *m = get_next_mapping(pool); | 
 | 926 |  | 
 | 927 | 	INIT_LIST_HEAD(&m->list); | 
 | 928 | 	m->prepared = 0; | 
 | 929 | 	m->tc = tc; | 
 | 930 | 	m->virt_block = virt_block; | 
 | 931 | 	m->data_block = data_dest; | 
 | 932 | 	m->cell = cell; | 
 | 933 | 	m->err = 0; | 
 | 934 | 	m->bio = NULL; | 
 | 935 |  | 
 | 936 | 	ds_add_work(&pool->ds, &m->list); | 
 | 937 |  | 
 | 938 | 	/* | 
 | 939 | 	 * IO to pool_dev remaps to the pool target's data_dev. | 
 | 940 | 	 * | 
 | 941 | 	 * If the whole block of data is being overwritten, we can issue the | 
 | 942 | 	 * bio immediately. Otherwise we use kcopyd to clone the data first. | 
 | 943 | 	 */ | 
 | 944 | 	if (io_overwrites_block(pool, bio)) { | 
 | 945 | 		m->bio = bio; | 
 | 946 | 		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); | 
 | 947 | 		dm_get_mapinfo(bio)->ptr = m; | 
 | 948 | 		remap_and_issue(tc, bio, data_dest); | 
 | 949 | 	} else { | 
 | 950 | 		struct dm_io_region from, to; | 
 | 951 |  | 
 | 952 | 		from.bdev = tc->pool_dev->bdev; | 
 | 953 | 		from.sector = data_origin * pool->sectors_per_block; | 
 | 954 | 		from.count = pool->sectors_per_block; | 
 | 955 |  | 
 | 956 | 		to.bdev = tc->pool_dev->bdev; | 
 | 957 | 		to.sector = data_dest * pool->sectors_per_block; | 
 | 958 | 		to.count = pool->sectors_per_block; | 
 | 959 |  | 
 | 960 | 		r = dm_kcopyd_copy(pool->copier, &from, 1, &to, | 
 | 961 | 				   0, copy_complete, m); | 
 | 962 | 		if (r < 0) { | 
 | 963 | 			mempool_free(m, pool->mapping_pool); | 
 | 964 | 			DMERR("dm_kcopyd_copy() failed"); | 
 | 965 | 			cell_error(cell); | 
 | 966 | 		} | 
 | 967 | 	} | 
 | 968 | } | 
 | 969 |  | 
 | 970 | static void schedule_zero(struct thin_c *tc, dm_block_t virt_block, | 
 | 971 | 			  dm_block_t data_block, struct cell *cell, | 
 | 972 | 			  struct bio *bio) | 
 | 973 | { | 
 | 974 | 	struct pool *pool = tc->pool; | 
 | 975 | 	struct new_mapping *m = get_next_mapping(pool); | 
 | 976 |  | 
 | 977 | 	INIT_LIST_HEAD(&m->list); | 
 | 978 | 	m->prepared = 0; | 
 | 979 | 	m->tc = tc; | 
 | 980 | 	m->virt_block = virt_block; | 
 | 981 | 	m->data_block = data_block; | 
 | 982 | 	m->cell = cell; | 
 | 983 | 	m->err = 0; | 
 | 984 | 	m->bio = NULL; | 
 | 985 |  | 
 | 986 | 	/* | 
 | 987 | 	 * If the whole block of data is being overwritten or we are not | 
 | 988 | 	 * zeroing pre-existing data, we can issue the bio immediately. | 
 | 989 | 	 * Otherwise we use kcopyd to zero the data first. | 
 | 990 | 	 */ | 
 | 991 | 	if (!pool->zero_new_blocks) | 
 | 992 | 		process_prepared_mapping(m); | 
 | 993 |  | 
 | 994 | 	else if (io_overwrites_block(pool, bio)) { | 
 | 995 | 		m->bio = bio; | 
 | 996 | 		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); | 
 | 997 | 		dm_get_mapinfo(bio)->ptr = m; | 
 | 998 | 		remap_and_issue(tc, bio, data_block); | 
 | 999 |  | 
 | 1000 | 	} else { | 
 | 1001 | 		int r; | 
 | 1002 | 		struct dm_io_region to; | 
 | 1003 |  | 
 | 1004 | 		to.bdev = tc->pool_dev->bdev; | 
 | 1005 | 		to.sector = data_block * pool->sectors_per_block; | 
 | 1006 | 		to.count = pool->sectors_per_block; | 
 | 1007 |  | 
 | 1008 | 		r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m); | 
 | 1009 | 		if (r < 0) { | 
 | 1010 | 			mempool_free(m, pool->mapping_pool); | 
 | 1011 | 			DMERR("dm_kcopyd_zero() failed"); | 
 | 1012 | 			cell_error(cell); | 
 | 1013 | 		} | 
 | 1014 | 	} | 
 | 1015 | } | 
 | 1016 |  | 
 | 1017 | static int alloc_data_block(struct thin_c *tc, dm_block_t *result) | 
 | 1018 | { | 
 | 1019 | 	int r; | 
 | 1020 | 	dm_block_t free_blocks; | 
 | 1021 | 	unsigned long flags; | 
 | 1022 | 	struct pool *pool = tc->pool; | 
 | 1023 |  | 
 | 1024 | 	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); | 
 | 1025 | 	if (r) | 
 | 1026 | 		return r; | 
 | 1027 |  | 
 | 1028 | 	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) { | 
 | 1029 | 		DMWARN("%s: reached low water mark, sending event.", | 
 | 1030 | 		       dm_device_name(pool->pool_md)); | 
 | 1031 | 		spin_lock_irqsave(&pool->lock, flags); | 
 | 1032 | 		pool->low_water_triggered = 1; | 
 | 1033 | 		spin_unlock_irqrestore(&pool->lock, flags); | 
 | 1034 | 		dm_table_event(pool->ti->table); | 
 | 1035 | 	} | 
 | 1036 |  | 
 | 1037 | 	if (!free_blocks) { | 
 | 1038 | 		if (pool->no_free_space) | 
 | 1039 | 			return -ENOSPC; | 
 | 1040 | 		else { | 
 | 1041 | 			/* | 
 | 1042 | 			 * Try to commit to see if that will free up some | 
 | 1043 | 			 * more space. | 
 | 1044 | 			 */ | 
 | 1045 | 			r = dm_pool_commit_metadata(pool->pmd); | 
 | 1046 | 			if (r) { | 
 | 1047 | 				DMERR("%s: dm_pool_commit_metadata() failed, error = %d", | 
 | 1048 | 				      __func__, r); | 
 | 1049 | 				return r; | 
 | 1050 | 			} | 
 | 1051 |  | 
 | 1052 | 			r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); | 
 | 1053 | 			if (r) | 
 | 1054 | 				return r; | 
 | 1055 |  | 
 | 1056 | 			/* | 
 | 1057 | 			 * If we still have no space we set a flag to avoid | 
 | 1058 | 			 * doing all this checking and return -ENOSPC. | 
 | 1059 | 			 */ | 
 | 1060 | 			if (!free_blocks) { | 
 | 1061 | 				DMWARN("%s: no free space available.", | 
 | 1062 | 				       dm_device_name(pool->pool_md)); | 
 | 1063 | 				spin_lock_irqsave(&pool->lock, flags); | 
 | 1064 | 				pool->no_free_space = 1; | 
 | 1065 | 				spin_unlock_irqrestore(&pool->lock, flags); | 
 | 1066 | 				return -ENOSPC; | 
 | 1067 | 			} | 
 | 1068 | 		} | 
 | 1069 | 	} | 
 | 1070 |  | 
 | 1071 | 	r = dm_pool_alloc_data_block(pool->pmd, result); | 
 | 1072 | 	if (r) | 
 | 1073 | 		return r; | 
 | 1074 |  | 
 | 1075 | 	return 0; | 
 | 1076 | } | 
 | 1077 |  | 
 | 1078 | /* | 
 | 1079 |  * If we have run out of space, queue bios until the device is | 
 | 1080 |  * resumed, presumably after having been reloaded with more space. | 
 | 1081 |  */ | 
 | 1082 | static void retry_on_resume(struct bio *bio) | 
 | 1083 | { | 
 | 1084 | 	struct thin_c *tc = dm_get_mapinfo(bio)->ptr; | 
 | 1085 | 	struct pool *pool = tc->pool; | 
 | 1086 | 	unsigned long flags; | 
 | 1087 |  | 
 | 1088 | 	spin_lock_irqsave(&pool->lock, flags); | 
 | 1089 | 	bio_list_add(&pool->retry_on_resume_list, bio); | 
 | 1090 | 	spin_unlock_irqrestore(&pool->lock, flags); | 
 | 1091 | } | 
 | 1092 |  | 
 | 1093 | static void no_space(struct cell *cell) | 
 | 1094 | { | 
 | 1095 | 	struct bio *bio; | 
 | 1096 | 	struct bio_list bios; | 
 | 1097 |  | 
 | 1098 | 	bio_list_init(&bios); | 
 | 1099 | 	cell_release(cell, &bios); | 
 | 1100 |  | 
 | 1101 | 	while ((bio = bio_list_pop(&bios))) | 
 | 1102 | 		retry_on_resume(bio); | 
 | 1103 | } | 
 | 1104 |  | 
 | 1105 | static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block, | 
 | 1106 | 			  struct cell_key *key, | 
 | 1107 | 			  struct dm_thin_lookup_result *lookup_result, | 
 | 1108 | 			  struct cell *cell) | 
 | 1109 | { | 
 | 1110 | 	int r; | 
 | 1111 | 	dm_block_t data_block; | 
 | 1112 |  | 
 | 1113 | 	r = alloc_data_block(tc, &data_block); | 
 | 1114 | 	switch (r) { | 
 | 1115 | 	case 0: | 
 | 1116 | 		schedule_copy(tc, block, lookup_result->block, | 
 | 1117 | 			      data_block, cell, bio); | 
 | 1118 | 		break; | 
 | 1119 |  | 
 | 1120 | 	case -ENOSPC: | 
 | 1121 | 		no_space(cell); | 
 | 1122 | 		break; | 
 | 1123 |  | 
 | 1124 | 	default: | 
 | 1125 | 		DMERR("%s: alloc_data_block() failed, error = %d", __func__, r); | 
 | 1126 | 		cell_error(cell); | 
 | 1127 | 		break; | 
 | 1128 | 	} | 
 | 1129 | } | 
 | 1130 |  | 
 | 1131 | static void process_shared_bio(struct thin_c *tc, struct bio *bio, | 
 | 1132 | 			       dm_block_t block, | 
 | 1133 | 			       struct dm_thin_lookup_result *lookup_result) | 
 | 1134 | { | 
 | 1135 | 	struct cell *cell; | 
 | 1136 | 	struct pool *pool = tc->pool; | 
 | 1137 | 	struct cell_key key; | 
 | 1138 |  | 
 | 1139 | 	/* | 
 | 1140 | 	 * If cell is already occupied, then sharing is already in the process | 
 | 1141 | 	 * of being broken so we have nothing further to do here. | 
 | 1142 | 	 */ | 
 | 1143 | 	build_data_key(tc->td, lookup_result->block, &key); | 
 | 1144 | 	if (bio_detain(pool->prison, &key, bio, &cell)) | 
 | 1145 | 		return; | 
 | 1146 |  | 
 | 1147 | 	if (bio_data_dir(bio) == WRITE) | 
 | 1148 | 		break_sharing(tc, bio, block, &key, lookup_result, cell); | 
 | 1149 | 	else { | 
 | 1150 | 		struct endio_hook *h; | 
 | 1151 | 		h = mempool_alloc(pool->endio_hook_pool, GFP_NOIO); | 
 | 1152 |  | 
 | 1153 | 		h->tc = tc; | 
 | 1154 | 		h->entry = ds_inc(&pool->ds); | 
 | 1155 | 		save_and_set_endio(bio, &h->saved_bi_end_io, shared_read_endio); | 
 | 1156 | 		dm_get_mapinfo(bio)->ptr = h; | 
 | 1157 |  | 
 | 1158 | 		cell_release_singleton(cell, bio); | 
 | 1159 | 		remap_and_issue(tc, bio, lookup_result->block); | 
 | 1160 | 	} | 
 | 1161 | } | 
 | 1162 |  | 
 | 1163 | static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block, | 
 | 1164 | 			    struct cell *cell) | 
 | 1165 | { | 
 | 1166 | 	int r; | 
 | 1167 | 	dm_block_t data_block; | 
 | 1168 |  | 
 | 1169 | 	/* | 
 | 1170 | 	 * Remap empty bios (flushes) immediately, without provisioning. | 
 | 1171 | 	 */ | 
 | 1172 | 	if (!bio->bi_size) { | 
 | 1173 | 		cell_release_singleton(cell, bio); | 
 | 1174 | 		remap_and_issue(tc, bio, 0); | 
 | 1175 | 		return; | 
 | 1176 | 	} | 
 | 1177 |  | 
 | 1178 | 	/* | 
 | 1179 | 	 * Fill read bios with zeroes and complete them immediately. | 
 | 1180 | 	 */ | 
 | 1181 | 	if (bio_data_dir(bio) == READ) { | 
 | 1182 | 		zero_fill_bio(bio); | 
 | 1183 | 		cell_release_singleton(cell, bio); | 
 | 1184 | 		bio_endio(bio, 0); | 
 | 1185 | 		return; | 
 | 1186 | 	} | 
 | 1187 |  | 
 | 1188 | 	r = alloc_data_block(tc, &data_block); | 
 | 1189 | 	switch (r) { | 
 | 1190 | 	case 0: | 
 | 1191 | 		schedule_zero(tc, block, data_block, cell, bio); | 
 | 1192 | 		break; | 
 | 1193 |  | 
 | 1194 | 	case -ENOSPC: | 
 | 1195 | 		no_space(cell); | 
 | 1196 | 		break; | 
 | 1197 |  | 
 | 1198 | 	default: | 
 | 1199 | 		DMERR("%s: alloc_data_block() failed, error = %d", __func__, r); | 
 | 1200 | 		cell_error(cell); | 
 | 1201 | 		break; | 
 | 1202 | 	} | 
 | 1203 | } | 
 | 1204 |  | 
 | 1205 | static void process_bio(struct thin_c *tc, struct bio *bio) | 
 | 1206 | { | 
 | 1207 | 	int r; | 
 | 1208 | 	dm_block_t block = get_bio_block(tc, bio); | 
 | 1209 | 	struct cell *cell; | 
 | 1210 | 	struct cell_key key; | 
 | 1211 | 	struct dm_thin_lookup_result lookup_result; | 
 | 1212 |  | 
 | 1213 | 	/* | 
 | 1214 | 	 * If cell is already occupied, then the block is already | 
 | 1215 | 	 * being provisioned so we have nothing further to do here. | 
 | 1216 | 	 */ | 
 | 1217 | 	build_virtual_key(tc->td, block, &key); | 
 | 1218 | 	if (bio_detain(tc->pool->prison, &key, bio, &cell)) | 
 | 1219 | 		return; | 
 | 1220 |  | 
 | 1221 | 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result); | 
 | 1222 | 	switch (r) { | 
 | 1223 | 	case 0: | 
 | 1224 | 		/* | 
 | 1225 | 		 * We can release this cell now.  This thread is the only | 
 | 1226 | 		 * one that puts bios into a cell, and we know there were | 
 | 1227 | 		 * no preceding bios. | 
 | 1228 | 		 */ | 
 | 1229 | 		/* | 
 | 1230 | 		 * TODO: this will probably have to change when discard goes | 
 | 1231 | 		 * back in. | 
 | 1232 | 		 */ | 
 | 1233 | 		cell_release_singleton(cell, bio); | 
 | 1234 |  | 
 | 1235 | 		if (lookup_result.shared) | 
 | 1236 | 			process_shared_bio(tc, bio, block, &lookup_result); | 
 | 1237 | 		else | 
 | 1238 | 			remap_and_issue(tc, bio, lookup_result.block); | 
 | 1239 | 		break; | 
 | 1240 |  | 
 | 1241 | 	case -ENODATA: | 
 | 1242 | 		provision_block(tc, bio, block, cell); | 
 | 1243 | 		break; | 
 | 1244 |  | 
 | 1245 | 	default: | 
 | 1246 | 		DMERR("dm_thin_find_block() failed, error = %d", r); | 
 | 1247 | 		bio_io_error(bio); | 
 | 1248 | 		break; | 
 | 1249 | 	} | 
 | 1250 | } | 
 | 1251 |  | 
 | 1252 | static void process_deferred_bios(struct pool *pool) | 
 | 1253 | { | 
 | 1254 | 	unsigned long flags; | 
 | 1255 | 	struct bio *bio; | 
 | 1256 | 	struct bio_list bios; | 
 | 1257 | 	int r; | 
 | 1258 |  | 
 | 1259 | 	bio_list_init(&bios); | 
 | 1260 |  | 
 | 1261 | 	spin_lock_irqsave(&pool->lock, flags); | 
 | 1262 | 	bio_list_merge(&bios, &pool->deferred_bios); | 
 | 1263 | 	bio_list_init(&pool->deferred_bios); | 
 | 1264 | 	spin_unlock_irqrestore(&pool->lock, flags); | 
 | 1265 |  | 
 | 1266 | 	while ((bio = bio_list_pop(&bios))) { | 
 | 1267 | 		struct thin_c *tc = dm_get_mapinfo(bio)->ptr; | 
 | 1268 | 		/* | 
 | 1269 | 		 * If we've got no free new_mapping structs, and processing | 
 | 1270 | 		 * this bio might require one, we pause until there are some | 
 | 1271 | 		 * prepared mappings to process. | 
 | 1272 | 		 */ | 
 | 1273 | 		if (ensure_next_mapping(pool)) { | 
 | 1274 | 			spin_lock_irqsave(&pool->lock, flags); | 
 | 1275 | 			bio_list_merge(&pool->deferred_bios, &bios); | 
 | 1276 | 			spin_unlock_irqrestore(&pool->lock, flags); | 
 | 1277 |  | 
 | 1278 | 			break; | 
 | 1279 | 		} | 
 | 1280 | 		process_bio(tc, bio); | 
 | 1281 | 	} | 
 | 1282 |  | 
 | 1283 | 	/* | 
 | 1284 | 	 * If there are any deferred flush bios, we must commit | 
 | 1285 | 	 * the metadata before issuing them. | 
 | 1286 | 	 */ | 
 | 1287 | 	bio_list_init(&bios); | 
 | 1288 | 	spin_lock_irqsave(&pool->lock, flags); | 
 | 1289 | 	bio_list_merge(&bios, &pool->deferred_flush_bios); | 
 | 1290 | 	bio_list_init(&pool->deferred_flush_bios); | 
 | 1291 | 	spin_unlock_irqrestore(&pool->lock, flags); | 
 | 1292 |  | 
 | 1293 | 	if (bio_list_empty(&bios)) | 
 | 1294 | 		return; | 
 | 1295 |  | 
 | 1296 | 	r = dm_pool_commit_metadata(pool->pmd); | 
 | 1297 | 	if (r) { | 
 | 1298 | 		DMERR("%s: dm_pool_commit_metadata() failed, error = %d", | 
 | 1299 | 		      __func__, r); | 
 | 1300 | 		while ((bio = bio_list_pop(&bios))) | 
 | 1301 | 			bio_io_error(bio); | 
 | 1302 | 		return; | 
 | 1303 | 	} | 
 | 1304 |  | 
 | 1305 | 	while ((bio = bio_list_pop(&bios))) | 
 | 1306 | 		generic_make_request(bio); | 
 | 1307 | } | 
 | 1308 |  | 
 | 1309 | static void do_worker(struct work_struct *ws) | 
 | 1310 | { | 
 | 1311 | 	struct pool *pool = container_of(ws, struct pool, worker); | 
 | 1312 |  | 
 | 1313 | 	process_prepared_mappings(pool); | 
 | 1314 | 	process_deferred_bios(pool); | 
 | 1315 | } | 
 | 1316 |  | 
 | 1317 | /*----------------------------------------------------------------*/ | 
 | 1318 |  | 
 | 1319 | /* | 
 | 1320 |  * Mapping functions. | 
 | 1321 |  */ | 
 | 1322 |  | 
 | 1323 | /* | 
 | 1324 |  * Called only while mapping a thin bio to hand it over to the workqueue. | 
 | 1325 |  */ | 
 | 1326 | static void thin_defer_bio(struct thin_c *tc, struct bio *bio) | 
 | 1327 | { | 
 | 1328 | 	unsigned long flags; | 
 | 1329 | 	struct pool *pool = tc->pool; | 
 | 1330 |  | 
 | 1331 | 	spin_lock_irqsave(&pool->lock, flags); | 
 | 1332 | 	bio_list_add(&pool->deferred_bios, bio); | 
 | 1333 | 	spin_unlock_irqrestore(&pool->lock, flags); | 
 | 1334 |  | 
 | 1335 | 	wake_worker(pool); | 
 | 1336 | } | 
 | 1337 |  | 
 | 1338 | /* | 
 | 1339 |  * Non-blocking function called from the thin target's map function. | 
 | 1340 |  */ | 
 | 1341 | static int thin_bio_map(struct dm_target *ti, struct bio *bio, | 
 | 1342 | 			union map_info *map_context) | 
 | 1343 | { | 
 | 1344 | 	int r; | 
 | 1345 | 	struct thin_c *tc = ti->private; | 
 | 1346 | 	dm_block_t block = get_bio_block(tc, bio); | 
 | 1347 | 	struct dm_thin_device *td = tc->td; | 
 | 1348 | 	struct dm_thin_lookup_result result; | 
 | 1349 |  | 
 | 1350 | 	/* | 
 | 1351 | 	 * Save the thin context for easy access from the deferred bio later. | 
 | 1352 | 	 */ | 
 | 1353 | 	map_context->ptr = tc; | 
 | 1354 |  | 
 | 1355 | 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) { | 
 | 1356 | 		thin_defer_bio(tc, bio); | 
 | 1357 | 		return DM_MAPIO_SUBMITTED; | 
 | 1358 | 	} | 
 | 1359 |  | 
 | 1360 | 	r = dm_thin_find_block(td, block, 0, &result); | 
 | 1361 |  | 
 | 1362 | 	/* | 
 | 1363 | 	 * Note that we defer readahead too. | 
 | 1364 | 	 */ | 
 | 1365 | 	switch (r) { | 
 | 1366 | 	case 0: | 
 | 1367 | 		if (unlikely(result.shared)) { | 
 | 1368 | 			/* | 
 | 1369 | 			 * We have a race condition here between the | 
 | 1370 | 			 * result.shared value returned by the lookup and | 
 | 1371 | 			 * snapshot creation, which may cause new | 
 | 1372 | 			 * sharing. | 
 | 1373 | 			 * | 
 | 1374 | 			 * To avoid this always quiesce the origin before | 
 | 1375 | 			 * taking the snap.  You want to do this anyway to | 
 | 1376 | 			 * ensure a consistent application view | 
 | 1377 | 			 * (i.e. lockfs). | 
 | 1378 | 			 * | 
 | 1379 | 			 * More distant ancestors are irrelevant. The | 
 | 1380 | 			 * shared flag will be set in their case. | 
 | 1381 | 			 */ | 
 | 1382 | 			thin_defer_bio(tc, bio); | 
 | 1383 | 			r = DM_MAPIO_SUBMITTED; | 
 | 1384 | 		} else { | 
 | 1385 | 			remap(tc, bio, result.block); | 
 | 1386 | 			r = DM_MAPIO_REMAPPED; | 
 | 1387 | 		} | 
 | 1388 | 		break; | 
 | 1389 |  | 
 | 1390 | 	case -ENODATA: | 
 | 1391 | 		/* | 
 | 1392 | 		 * In future, the failed dm_thin_find_block above could | 
 | 1393 | 		 * provide the hint to load the metadata into cache. | 
 | 1394 | 		 */ | 
 | 1395 | 	case -EWOULDBLOCK: | 
 | 1396 | 		thin_defer_bio(tc, bio); | 
 | 1397 | 		r = DM_MAPIO_SUBMITTED; | 
 | 1398 | 		break; | 
 | 1399 | 	} | 
 | 1400 |  | 
 | 1401 | 	return r; | 
 | 1402 | } | 
 | 1403 |  | 
 | 1404 | static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits) | 
 | 1405 | { | 
 | 1406 | 	int r; | 
 | 1407 | 	unsigned long flags; | 
 | 1408 | 	struct pool_c *pt = container_of(cb, struct pool_c, callbacks); | 
 | 1409 |  | 
 | 1410 | 	spin_lock_irqsave(&pt->pool->lock, flags); | 
 | 1411 | 	r = !bio_list_empty(&pt->pool->retry_on_resume_list); | 
 | 1412 | 	spin_unlock_irqrestore(&pt->pool->lock, flags); | 
 | 1413 |  | 
 | 1414 | 	if (!r) { | 
 | 1415 | 		struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); | 
 | 1416 | 		r = bdi_congested(&q->backing_dev_info, bdi_bits); | 
 | 1417 | 	} | 
 | 1418 |  | 
 | 1419 | 	return r; | 
 | 1420 | } | 
 | 1421 |  | 
 | 1422 | static void __requeue_bios(struct pool *pool) | 
 | 1423 | { | 
 | 1424 | 	bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list); | 
 | 1425 | 	bio_list_init(&pool->retry_on_resume_list); | 
 | 1426 | } | 
 | 1427 |  | 
 | 1428 | /*---------------------------------------------------------------- | 
 | 1429 |  * Binding of control targets to a pool object | 
 | 1430 |  *--------------------------------------------------------------*/ | 
 | 1431 | static int bind_control_target(struct pool *pool, struct dm_target *ti) | 
 | 1432 | { | 
 | 1433 | 	struct pool_c *pt = ti->private; | 
 | 1434 |  | 
 | 1435 | 	pool->ti = ti; | 
 | 1436 | 	pool->low_water_blocks = pt->low_water_blocks; | 
 | 1437 | 	pool->zero_new_blocks = pt->zero_new_blocks; | 
 | 1438 |  | 
 | 1439 | 	return 0; | 
 | 1440 | } | 
 | 1441 |  | 
 | 1442 | static void unbind_control_target(struct pool *pool, struct dm_target *ti) | 
 | 1443 | { | 
 | 1444 | 	if (pool->ti == ti) | 
 | 1445 | 		pool->ti = NULL; | 
 | 1446 | } | 
 | 1447 |  | 
 | 1448 | /*---------------------------------------------------------------- | 
 | 1449 |  * Pool creation | 
 | 1450 |  *--------------------------------------------------------------*/ | 
 | 1451 | static void __pool_destroy(struct pool *pool) | 
 | 1452 | { | 
 | 1453 | 	__pool_table_remove(pool); | 
 | 1454 |  | 
 | 1455 | 	if (dm_pool_metadata_close(pool->pmd) < 0) | 
 | 1456 | 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__); | 
 | 1457 |  | 
 | 1458 | 	prison_destroy(pool->prison); | 
 | 1459 | 	dm_kcopyd_client_destroy(pool->copier); | 
 | 1460 |  | 
 | 1461 | 	if (pool->wq) | 
 | 1462 | 		destroy_workqueue(pool->wq); | 
 | 1463 |  | 
 | 1464 | 	if (pool->next_mapping) | 
 | 1465 | 		mempool_free(pool->next_mapping, pool->mapping_pool); | 
 | 1466 | 	mempool_destroy(pool->mapping_pool); | 
 | 1467 | 	mempool_destroy(pool->endio_hook_pool); | 
 | 1468 | 	kfree(pool); | 
 | 1469 | } | 
 | 1470 |  | 
 | 1471 | static struct pool *pool_create(struct mapped_device *pool_md, | 
 | 1472 | 				struct block_device *metadata_dev, | 
 | 1473 | 				unsigned long block_size, char **error) | 
 | 1474 | { | 
 | 1475 | 	int r; | 
 | 1476 | 	void *err_p; | 
 | 1477 | 	struct pool *pool; | 
 | 1478 | 	struct dm_pool_metadata *pmd; | 
 | 1479 |  | 
 | 1480 | 	pmd = dm_pool_metadata_open(metadata_dev, block_size); | 
 | 1481 | 	if (IS_ERR(pmd)) { | 
 | 1482 | 		*error = "Error creating metadata object"; | 
 | 1483 | 		return (struct pool *)pmd; | 
 | 1484 | 	} | 
 | 1485 |  | 
 | 1486 | 	pool = kmalloc(sizeof(*pool), GFP_KERNEL); | 
 | 1487 | 	if (!pool) { | 
 | 1488 | 		*error = "Error allocating memory for pool"; | 
 | 1489 | 		err_p = ERR_PTR(-ENOMEM); | 
 | 1490 | 		goto bad_pool; | 
 | 1491 | 	} | 
 | 1492 |  | 
 | 1493 | 	pool->pmd = pmd; | 
 | 1494 | 	pool->sectors_per_block = block_size; | 
 | 1495 | 	pool->block_shift = ffs(block_size) - 1; | 
 | 1496 | 	pool->offset_mask = block_size - 1; | 
 | 1497 | 	pool->low_water_blocks = 0; | 
 | 1498 | 	pool->zero_new_blocks = 1; | 
 | 1499 | 	pool->prison = prison_create(PRISON_CELLS); | 
 | 1500 | 	if (!pool->prison) { | 
 | 1501 | 		*error = "Error creating pool's bio prison"; | 
 | 1502 | 		err_p = ERR_PTR(-ENOMEM); | 
 | 1503 | 		goto bad_prison; | 
 | 1504 | 	} | 
 | 1505 |  | 
 | 1506 | 	pool->copier = dm_kcopyd_client_create(); | 
 | 1507 | 	if (IS_ERR(pool->copier)) { | 
 | 1508 | 		r = PTR_ERR(pool->copier); | 
 | 1509 | 		*error = "Error creating pool's kcopyd client"; | 
 | 1510 | 		err_p = ERR_PTR(r); | 
 | 1511 | 		goto bad_kcopyd_client; | 
 | 1512 | 	} | 
 | 1513 |  | 
 | 1514 | 	/* | 
 | 1515 | 	 * Create singlethreaded workqueue that will service all devices | 
 | 1516 | 	 * that use this metadata. | 
 | 1517 | 	 */ | 
 | 1518 | 	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM); | 
 | 1519 | 	if (!pool->wq) { | 
 | 1520 | 		*error = "Error creating pool's workqueue"; | 
 | 1521 | 		err_p = ERR_PTR(-ENOMEM); | 
 | 1522 | 		goto bad_wq; | 
 | 1523 | 	} | 
 | 1524 |  | 
 | 1525 | 	INIT_WORK(&pool->worker, do_worker); | 
 | 1526 | 	spin_lock_init(&pool->lock); | 
 | 1527 | 	bio_list_init(&pool->deferred_bios); | 
 | 1528 | 	bio_list_init(&pool->deferred_flush_bios); | 
 | 1529 | 	INIT_LIST_HEAD(&pool->prepared_mappings); | 
 | 1530 | 	pool->low_water_triggered = 0; | 
 | 1531 | 	pool->no_free_space = 0; | 
 | 1532 | 	bio_list_init(&pool->retry_on_resume_list); | 
 | 1533 | 	ds_init(&pool->ds); | 
 | 1534 |  | 
 | 1535 | 	pool->next_mapping = NULL; | 
 | 1536 | 	pool->mapping_pool = | 
 | 1537 | 		mempool_create_kmalloc_pool(MAPPING_POOL_SIZE, sizeof(struct new_mapping)); | 
 | 1538 | 	if (!pool->mapping_pool) { | 
 | 1539 | 		*error = "Error creating pool's mapping mempool"; | 
 | 1540 | 		err_p = ERR_PTR(-ENOMEM); | 
 | 1541 | 		goto bad_mapping_pool; | 
 | 1542 | 	} | 
 | 1543 |  | 
 | 1544 | 	pool->endio_hook_pool = | 
 | 1545 | 		mempool_create_kmalloc_pool(ENDIO_HOOK_POOL_SIZE, sizeof(struct endio_hook)); | 
 | 1546 | 	if (!pool->endio_hook_pool) { | 
 | 1547 | 		*error = "Error creating pool's endio_hook mempool"; | 
 | 1548 | 		err_p = ERR_PTR(-ENOMEM); | 
 | 1549 | 		goto bad_endio_hook_pool; | 
 | 1550 | 	} | 
 | 1551 | 	pool->ref_count = 1; | 
 | 1552 | 	pool->pool_md = pool_md; | 
 | 1553 | 	pool->md_dev = metadata_dev; | 
 | 1554 | 	__pool_table_insert(pool); | 
 | 1555 |  | 
 | 1556 | 	return pool; | 
 | 1557 |  | 
 | 1558 | bad_endio_hook_pool: | 
 | 1559 | 	mempool_destroy(pool->mapping_pool); | 
 | 1560 | bad_mapping_pool: | 
 | 1561 | 	destroy_workqueue(pool->wq); | 
 | 1562 | bad_wq: | 
 | 1563 | 	dm_kcopyd_client_destroy(pool->copier); | 
 | 1564 | bad_kcopyd_client: | 
 | 1565 | 	prison_destroy(pool->prison); | 
 | 1566 | bad_prison: | 
 | 1567 | 	kfree(pool); | 
 | 1568 | bad_pool: | 
 | 1569 | 	if (dm_pool_metadata_close(pmd)) | 
 | 1570 | 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__); | 
 | 1571 |  | 
 | 1572 | 	return err_p; | 
 | 1573 | } | 
 | 1574 |  | 
 | 1575 | static void __pool_inc(struct pool *pool) | 
 | 1576 | { | 
 | 1577 | 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); | 
 | 1578 | 	pool->ref_count++; | 
 | 1579 | } | 
 | 1580 |  | 
 | 1581 | static void __pool_dec(struct pool *pool) | 
 | 1582 | { | 
 | 1583 | 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); | 
 | 1584 | 	BUG_ON(!pool->ref_count); | 
 | 1585 | 	if (!--pool->ref_count) | 
 | 1586 | 		__pool_destroy(pool); | 
 | 1587 | } | 
 | 1588 |  | 
 | 1589 | static struct pool *__pool_find(struct mapped_device *pool_md, | 
 | 1590 | 				struct block_device *metadata_dev, | 
 | 1591 | 				unsigned long block_size, char **error) | 
 | 1592 | { | 
 | 1593 | 	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev); | 
 | 1594 |  | 
 | 1595 | 	if (pool) { | 
 | 1596 | 		if (pool->pool_md != pool_md) | 
 | 1597 | 			return ERR_PTR(-EBUSY); | 
 | 1598 | 		__pool_inc(pool); | 
 | 1599 |  | 
 | 1600 | 	} else { | 
 | 1601 | 		pool = __pool_table_lookup(pool_md); | 
 | 1602 | 		if (pool) { | 
 | 1603 | 			if (pool->md_dev != metadata_dev) | 
 | 1604 | 				return ERR_PTR(-EINVAL); | 
 | 1605 | 			__pool_inc(pool); | 
 | 1606 |  | 
 | 1607 | 		} else | 
 | 1608 | 			pool = pool_create(pool_md, metadata_dev, block_size, error); | 
 | 1609 | 	} | 
 | 1610 |  | 
 | 1611 | 	return pool; | 
 | 1612 | } | 
 | 1613 |  | 
 | 1614 | /*---------------------------------------------------------------- | 
 | 1615 |  * Pool target methods | 
 | 1616 |  *--------------------------------------------------------------*/ | 
 | 1617 | static void pool_dtr(struct dm_target *ti) | 
 | 1618 | { | 
 | 1619 | 	struct pool_c *pt = ti->private; | 
 | 1620 |  | 
 | 1621 | 	mutex_lock(&dm_thin_pool_table.mutex); | 
 | 1622 |  | 
 | 1623 | 	unbind_control_target(pt->pool, ti); | 
 | 1624 | 	__pool_dec(pt->pool); | 
 | 1625 | 	dm_put_device(ti, pt->metadata_dev); | 
 | 1626 | 	dm_put_device(ti, pt->data_dev); | 
 | 1627 | 	kfree(pt); | 
 | 1628 |  | 
 | 1629 | 	mutex_unlock(&dm_thin_pool_table.mutex); | 
 | 1630 | } | 
 | 1631 |  | 
 | 1632 | struct pool_features { | 
 | 1633 | 	unsigned zero_new_blocks:1; | 
 | 1634 | }; | 
 | 1635 |  | 
 | 1636 | static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf, | 
 | 1637 | 			       struct dm_target *ti) | 
 | 1638 | { | 
 | 1639 | 	int r; | 
 | 1640 | 	unsigned argc; | 
 | 1641 | 	const char *arg_name; | 
 | 1642 |  | 
 | 1643 | 	static struct dm_arg _args[] = { | 
 | 1644 | 		{0, 1, "Invalid number of pool feature arguments"}, | 
 | 1645 | 	}; | 
 | 1646 |  | 
 | 1647 | 	/* | 
 | 1648 | 	 * No feature arguments supplied. | 
 | 1649 | 	 */ | 
 | 1650 | 	if (!as->argc) | 
 | 1651 | 		return 0; | 
 | 1652 |  | 
 | 1653 | 	r = dm_read_arg_group(_args, as, &argc, &ti->error); | 
 | 1654 | 	if (r) | 
 | 1655 | 		return -EINVAL; | 
 | 1656 |  | 
 | 1657 | 	while (argc && !r) { | 
 | 1658 | 		arg_name = dm_shift_arg(as); | 
 | 1659 | 		argc--; | 
 | 1660 |  | 
 | 1661 | 		if (!strcasecmp(arg_name, "skip_block_zeroing")) { | 
 | 1662 | 			pf->zero_new_blocks = 0; | 
 | 1663 | 			continue; | 
 | 1664 | 		} | 
 | 1665 |  | 
 | 1666 | 		ti->error = "Unrecognised pool feature requested"; | 
 | 1667 | 		r = -EINVAL; | 
 | 1668 | 	} | 
 | 1669 |  | 
 | 1670 | 	return r; | 
 | 1671 | } | 
 | 1672 |  | 
 | 1673 | /* | 
 | 1674 |  * thin-pool <metadata dev> <data dev> | 
 | 1675 |  *	     <data block size (sectors)> | 
 | 1676 |  *	     <low water mark (blocks)> | 
 | 1677 |  *	     [<#feature args> [<arg>]*] | 
 | 1678 |  * | 
 | 1679 |  * Optional feature arguments are: | 
 | 1680 |  *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks. | 
 | 1681 |  */ | 
 | 1682 | static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv) | 
 | 1683 | { | 
 | 1684 | 	int r; | 
 | 1685 | 	struct pool_c *pt; | 
 | 1686 | 	struct pool *pool; | 
 | 1687 | 	struct pool_features pf; | 
 | 1688 | 	struct dm_arg_set as; | 
 | 1689 | 	struct dm_dev *data_dev; | 
 | 1690 | 	unsigned long block_size; | 
 | 1691 | 	dm_block_t low_water_blocks; | 
 | 1692 | 	struct dm_dev *metadata_dev; | 
 | 1693 | 	sector_t metadata_dev_size; | 
 | 1694 |  | 
 | 1695 | 	/* | 
 | 1696 | 	 * FIXME Remove validation from scope of lock. | 
 | 1697 | 	 */ | 
 | 1698 | 	mutex_lock(&dm_thin_pool_table.mutex); | 
 | 1699 |  | 
 | 1700 | 	if (argc < 4) { | 
 | 1701 | 		ti->error = "Invalid argument count"; | 
 | 1702 | 		r = -EINVAL; | 
 | 1703 | 		goto out_unlock; | 
 | 1704 | 	} | 
 | 1705 | 	as.argc = argc; | 
 | 1706 | 	as.argv = argv; | 
 | 1707 |  | 
 | 1708 | 	r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev); | 
 | 1709 | 	if (r) { | 
 | 1710 | 		ti->error = "Error opening metadata block device"; | 
 | 1711 | 		goto out_unlock; | 
 | 1712 | 	} | 
 | 1713 |  | 
 | 1714 | 	metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT; | 
 | 1715 | 	if (metadata_dev_size > METADATA_DEV_MAX_SECTORS) { | 
 | 1716 | 		ti->error = "Metadata device is too large"; | 
 | 1717 | 		r = -EINVAL; | 
 | 1718 | 		goto out_metadata; | 
 | 1719 | 	} | 
 | 1720 |  | 
 | 1721 | 	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev); | 
 | 1722 | 	if (r) { | 
 | 1723 | 		ti->error = "Error getting data device"; | 
 | 1724 | 		goto out_metadata; | 
 | 1725 | 	} | 
 | 1726 |  | 
 | 1727 | 	if (kstrtoul(argv[2], 10, &block_size) || !block_size || | 
 | 1728 | 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || | 
 | 1729 | 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || | 
 | 1730 | 	    !is_power_of_2(block_size)) { | 
 | 1731 | 		ti->error = "Invalid block size"; | 
 | 1732 | 		r = -EINVAL; | 
 | 1733 | 		goto out; | 
 | 1734 | 	} | 
 | 1735 |  | 
 | 1736 | 	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) { | 
 | 1737 | 		ti->error = "Invalid low water mark"; | 
 | 1738 | 		r = -EINVAL; | 
 | 1739 | 		goto out; | 
 | 1740 | 	} | 
 | 1741 |  | 
 | 1742 | 	/* | 
 | 1743 | 	 * Set default pool features. | 
 | 1744 | 	 */ | 
 | 1745 | 	memset(&pf, 0, sizeof(pf)); | 
 | 1746 | 	pf.zero_new_blocks = 1; | 
 | 1747 |  | 
 | 1748 | 	dm_consume_args(&as, 4); | 
 | 1749 | 	r = parse_pool_features(&as, &pf, ti); | 
 | 1750 | 	if (r) | 
 | 1751 | 		goto out; | 
 | 1752 |  | 
 | 1753 | 	pt = kzalloc(sizeof(*pt), GFP_KERNEL); | 
 | 1754 | 	if (!pt) { | 
 | 1755 | 		r = -ENOMEM; | 
 | 1756 | 		goto out; | 
 | 1757 | 	} | 
 | 1758 |  | 
 | 1759 | 	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, | 
 | 1760 | 			   block_size, &ti->error); | 
 | 1761 | 	if (IS_ERR(pool)) { | 
 | 1762 | 		r = PTR_ERR(pool); | 
 | 1763 | 		goto out_free_pt; | 
 | 1764 | 	} | 
 | 1765 |  | 
 | 1766 | 	pt->pool = pool; | 
 | 1767 | 	pt->ti = ti; | 
 | 1768 | 	pt->metadata_dev = metadata_dev; | 
 | 1769 | 	pt->data_dev = data_dev; | 
 | 1770 | 	pt->low_water_blocks = low_water_blocks; | 
 | 1771 | 	pt->zero_new_blocks = pf.zero_new_blocks; | 
 | 1772 | 	ti->num_flush_requests = 1; | 
 | 1773 | 	ti->num_discard_requests = 0; | 
 | 1774 | 	ti->private = pt; | 
 | 1775 |  | 
 | 1776 | 	pt->callbacks.congested_fn = pool_is_congested; | 
 | 1777 | 	dm_table_add_target_callbacks(ti->table, &pt->callbacks); | 
 | 1778 |  | 
 | 1779 | 	mutex_unlock(&dm_thin_pool_table.mutex); | 
 | 1780 |  | 
 | 1781 | 	return 0; | 
 | 1782 |  | 
 | 1783 | out_free_pt: | 
 | 1784 | 	kfree(pt); | 
 | 1785 | out: | 
 | 1786 | 	dm_put_device(ti, data_dev); | 
 | 1787 | out_metadata: | 
 | 1788 | 	dm_put_device(ti, metadata_dev); | 
 | 1789 | out_unlock: | 
 | 1790 | 	mutex_unlock(&dm_thin_pool_table.mutex); | 
 | 1791 |  | 
 | 1792 | 	return r; | 
 | 1793 | } | 
 | 1794 |  | 
 | 1795 | static int pool_map(struct dm_target *ti, struct bio *bio, | 
 | 1796 | 		    union map_info *map_context) | 
 | 1797 | { | 
 | 1798 | 	int r; | 
 | 1799 | 	struct pool_c *pt = ti->private; | 
 | 1800 | 	struct pool *pool = pt->pool; | 
 | 1801 | 	unsigned long flags; | 
 | 1802 |  | 
 | 1803 | 	/* | 
 | 1804 | 	 * As this is a singleton target, ti->begin is always zero. | 
 | 1805 | 	 */ | 
 | 1806 | 	spin_lock_irqsave(&pool->lock, flags); | 
 | 1807 | 	bio->bi_bdev = pt->data_dev->bdev; | 
 | 1808 | 	r = DM_MAPIO_REMAPPED; | 
 | 1809 | 	spin_unlock_irqrestore(&pool->lock, flags); | 
 | 1810 |  | 
 | 1811 | 	return r; | 
 | 1812 | } | 
 | 1813 |  | 
 | 1814 | /* | 
 | 1815 |  * Retrieves the number of blocks of the data device from | 
 | 1816 |  * the superblock and compares it to the actual device size, | 
 | 1817 |  * thus resizing the data device in case it has grown. | 
 | 1818 |  * | 
 | 1819 |  * This both copes with opening preallocated data devices in the ctr | 
 | 1820 |  * being followed by a resume | 
 | 1821 |  * -and- | 
 | 1822 |  * calling the resume method individually after userspace has | 
 | 1823 |  * grown the data device in reaction to a table event. | 
 | 1824 |  */ | 
 | 1825 | static int pool_preresume(struct dm_target *ti) | 
 | 1826 | { | 
 | 1827 | 	int r; | 
 | 1828 | 	struct pool_c *pt = ti->private; | 
 | 1829 | 	struct pool *pool = pt->pool; | 
 | 1830 | 	dm_block_t data_size, sb_data_size; | 
 | 1831 |  | 
 | 1832 | 	/* | 
 | 1833 | 	 * Take control of the pool object. | 
 | 1834 | 	 */ | 
 | 1835 | 	r = bind_control_target(pool, ti); | 
 | 1836 | 	if (r) | 
 | 1837 | 		return r; | 
 | 1838 |  | 
 | 1839 | 	data_size = ti->len >> pool->block_shift; | 
 | 1840 | 	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size); | 
 | 1841 | 	if (r) { | 
 | 1842 | 		DMERR("failed to retrieve data device size"); | 
 | 1843 | 		return r; | 
 | 1844 | 	} | 
 | 1845 |  | 
 | 1846 | 	if (data_size < sb_data_size) { | 
 | 1847 | 		DMERR("pool target too small, is %llu blocks (expected %llu)", | 
 | 1848 | 		      data_size, sb_data_size); | 
 | 1849 | 		return -EINVAL; | 
 | 1850 |  | 
 | 1851 | 	} else if (data_size > sb_data_size) { | 
 | 1852 | 		r = dm_pool_resize_data_dev(pool->pmd, data_size); | 
 | 1853 | 		if (r) { | 
 | 1854 | 			DMERR("failed to resize data device"); | 
 | 1855 | 			return r; | 
 | 1856 | 		} | 
 | 1857 |  | 
 | 1858 | 		r = dm_pool_commit_metadata(pool->pmd); | 
 | 1859 | 		if (r) { | 
 | 1860 | 			DMERR("%s: dm_pool_commit_metadata() failed, error = %d", | 
 | 1861 | 			      __func__, r); | 
 | 1862 | 			return r; | 
 | 1863 | 		} | 
 | 1864 | 	} | 
 | 1865 |  | 
 | 1866 | 	return 0; | 
 | 1867 | } | 
 | 1868 |  | 
 | 1869 | static void pool_resume(struct dm_target *ti) | 
 | 1870 | { | 
 | 1871 | 	struct pool_c *pt = ti->private; | 
 | 1872 | 	struct pool *pool = pt->pool; | 
 | 1873 | 	unsigned long flags; | 
 | 1874 |  | 
 | 1875 | 	spin_lock_irqsave(&pool->lock, flags); | 
 | 1876 | 	pool->low_water_triggered = 0; | 
 | 1877 | 	pool->no_free_space = 0; | 
 | 1878 | 	__requeue_bios(pool); | 
 | 1879 | 	spin_unlock_irqrestore(&pool->lock, flags); | 
 | 1880 |  | 
 | 1881 | 	wake_worker(pool); | 
 | 1882 | } | 
 | 1883 |  | 
 | 1884 | static void pool_postsuspend(struct dm_target *ti) | 
 | 1885 | { | 
 | 1886 | 	int r; | 
 | 1887 | 	struct pool_c *pt = ti->private; | 
 | 1888 | 	struct pool *pool = pt->pool; | 
 | 1889 |  | 
 | 1890 | 	flush_workqueue(pool->wq); | 
 | 1891 |  | 
 | 1892 | 	r = dm_pool_commit_metadata(pool->pmd); | 
 | 1893 | 	if (r < 0) { | 
 | 1894 | 		DMERR("%s: dm_pool_commit_metadata() failed, error = %d", | 
 | 1895 | 		      __func__, r); | 
 | 1896 | 		/* FIXME: invalidate device? error the next FUA or FLUSH bio ?*/ | 
 | 1897 | 	} | 
 | 1898 | } | 
 | 1899 |  | 
 | 1900 | static int check_arg_count(unsigned argc, unsigned args_required) | 
 | 1901 | { | 
 | 1902 | 	if (argc != args_required) { | 
 | 1903 | 		DMWARN("Message received with %u arguments instead of %u.", | 
 | 1904 | 		       argc, args_required); | 
 | 1905 | 		return -EINVAL; | 
 | 1906 | 	} | 
 | 1907 |  | 
 | 1908 | 	return 0; | 
 | 1909 | } | 
 | 1910 |  | 
 | 1911 | static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning) | 
 | 1912 | { | 
 | 1913 | 	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) && | 
 | 1914 | 	    *dev_id <= MAX_DEV_ID) | 
 | 1915 | 		return 0; | 
 | 1916 |  | 
 | 1917 | 	if (warning) | 
 | 1918 | 		DMWARN("Message received with invalid device id: %s", arg); | 
 | 1919 |  | 
 | 1920 | 	return -EINVAL; | 
 | 1921 | } | 
 | 1922 |  | 
 | 1923 | static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool) | 
 | 1924 | { | 
 | 1925 | 	dm_thin_id dev_id; | 
 | 1926 | 	int r; | 
 | 1927 |  | 
 | 1928 | 	r = check_arg_count(argc, 2); | 
 | 1929 | 	if (r) | 
 | 1930 | 		return r; | 
 | 1931 |  | 
 | 1932 | 	r = read_dev_id(argv[1], &dev_id, 1); | 
 | 1933 | 	if (r) | 
 | 1934 | 		return r; | 
 | 1935 |  | 
 | 1936 | 	r = dm_pool_create_thin(pool->pmd, dev_id); | 
 | 1937 | 	if (r) { | 
 | 1938 | 		DMWARN("Creation of new thinly-provisioned device with id %s failed.", | 
 | 1939 | 		       argv[1]); | 
 | 1940 | 		return r; | 
 | 1941 | 	} | 
 | 1942 |  | 
 | 1943 | 	return 0; | 
 | 1944 | } | 
 | 1945 |  | 
 | 1946 | static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool) | 
 | 1947 | { | 
 | 1948 | 	dm_thin_id dev_id; | 
 | 1949 | 	dm_thin_id origin_dev_id; | 
 | 1950 | 	int r; | 
 | 1951 |  | 
 | 1952 | 	r = check_arg_count(argc, 3); | 
 | 1953 | 	if (r) | 
 | 1954 | 		return r; | 
 | 1955 |  | 
 | 1956 | 	r = read_dev_id(argv[1], &dev_id, 1); | 
 | 1957 | 	if (r) | 
 | 1958 | 		return r; | 
 | 1959 |  | 
 | 1960 | 	r = read_dev_id(argv[2], &origin_dev_id, 1); | 
 | 1961 | 	if (r) | 
 | 1962 | 		return r; | 
 | 1963 |  | 
 | 1964 | 	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id); | 
 | 1965 | 	if (r) { | 
 | 1966 | 		DMWARN("Creation of new snapshot %s of device %s failed.", | 
 | 1967 | 		       argv[1], argv[2]); | 
 | 1968 | 		return r; | 
 | 1969 | 	} | 
 | 1970 |  | 
 | 1971 | 	return 0; | 
 | 1972 | } | 
 | 1973 |  | 
 | 1974 | static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool) | 
 | 1975 | { | 
 | 1976 | 	dm_thin_id dev_id; | 
 | 1977 | 	int r; | 
 | 1978 |  | 
 | 1979 | 	r = check_arg_count(argc, 2); | 
 | 1980 | 	if (r) | 
 | 1981 | 		return r; | 
 | 1982 |  | 
 | 1983 | 	r = read_dev_id(argv[1], &dev_id, 1); | 
 | 1984 | 	if (r) | 
 | 1985 | 		return r; | 
 | 1986 |  | 
 | 1987 | 	r = dm_pool_delete_thin_device(pool->pmd, dev_id); | 
 | 1988 | 	if (r) | 
 | 1989 | 		DMWARN("Deletion of thin device %s failed.", argv[1]); | 
 | 1990 |  | 
 | 1991 | 	return r; | 
 | 1992 | } | 
 | 1993 |  | 
 | 1994 | static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool) | 
 | 1995 | { | 
 | 1996 | 	dm_thin_id old_id, new_id; | 
 | 1997 | 	int r; | 
 | 1998 |  | 
 | 1999 | 	r = check_arg_count(argc, 3); | 
 | 2000 | 	if (r) | 
 | 2001 | 		return r; | 
 | 2002 |  | 
 | 2003 | 	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) { | 
 | 2004 | 		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]); | 
 | 2005 | 		return -EINVAL; | 
 | 2006 | 	} | 
 | 2007 |  | 
 | 2008 | 	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) { | 
 | 2009 | 		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]); | 
 | 2010 | 		return -EINVAL; | 
 | 2011 | 	} | 
 | 2012 |  | 
 | 2013 | 	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id); | 
 | 2014 | 	if (r) { | 
 | 2015 | 		DMWARN("Failed to change transaction id from %s to %s.", | 
 | 2016 | 		       argv[1], argv[2]); | 
 | 2017 | 		return r; | 
 | 2018 | 	} | 
 | 2019 |  | 
 | 2020 | 	return 0; | 
 | 2021 | } | 
 | 2022 |  | 
 | 2023 | /* | 
 | 2024 |  * Messages supported: | 
 | 2025 |  *   create_thin	<dev_id> | 
 | 2026 |  *   create_snap	<dev_id> <origin_id> | 
 | 2027 |  *   delete		<dev_id> | 
 | 2028 |  *   trim		<dev_id> <new_size_in_sectors> | 
 | 2029 |  *   set_transaction_id <current_trans_id> <new_trans_id> | 
 | 2030 |  */ | 
 | 2031 | static int pool_message(struct dm_target *ti, unsigned argc, char **argv) | 
 | 2032 | { | 
 | 2033 | 	int r = -EINVAL; | 
 | 2034 | 	struct pool_c *pt = ti->private; | 
 | 2035 | 	struct pool *pool = pt->pool; | 
 | 2036 |  | 
 | 2037 | 	if (!strcasecmp(argv[0], "create_thin")) | 
 | 2038 | 		r = process_create_thin_mesg(argc, argv, pool); | 
 | 2039 |  | 
 | 2040 | 	else if (!strcasecmp(argv[0], "create_snap")) | 
 | 2041 | 		r = process_create_snap_mesg(argc, argv, pool); | 
 | 2042 |  | 
 | 2043 | 	else if (!strcasecmp(argv[0], "delete")) | 
 | 2044 | 		r = process_delete_mesg(argc, argv, pool); | 
 | 2045 |  | 
 | 2046 | 	else if (!strcasecmp(argv[0], "set_transaction_id")) | 
 | 2047 | 		r = process_set_transaction_id_mesg(argc, argv, pool); | 
 | 2048 |  | 
 | 2049 | 	else | 
 | 2050 | 		DMWARN("Unrecognised thin pool target message received: %s", argv[0]); | 
 | 2051 |  | 
 | 2052 | 	if (!r) { | 
 | 2053 | 		r = dm_pool_commit_metadata(pool->pmd); | 
 | 2054 | 		if (r) | 
 | 2055 | 			DMERR("%s message: dm_pool_commit_metadata() failed, error = %d", | 
 | 2056 | 			      argv[0], r); | 
 | 2057 | 	} | 
 | 2058 |  | 
 | 2059 | 	return r; | 
 | 2060 | } | 
 | 2061 |  | 
 | 2062 | /* | 
 | 2063 |  * Status line is: | 
 | 2064 |  *    <transaction id> <used metadata sectors>/<total metadata sectors> | 
 | 2065 |  *    <used data sectors>/<total data sectors> <held metadata root> | 
 | 2066 |  */ | 
 | 2067 | static int pool_status(struct dm_target *ti, status_type_t type, | 
 | 2068 | 		       char *result, unsigned maxlen) | 
 | 2069 | { | 
 | 2070 | 	int r; | 
 | 2071 | 	unsigned sz = 0; | 
 | 2072 | 	uint64_t transaction_id; | 
 | 2073 | 	dm_block_t nr_free_blocks_data; | 
 | 2074 | 	dm_block_t nr_free_blocks_metadata; | 
 | 2075 | 	dm_block_t nr_blocks_data; | 
 | 2076 | 	dm_block_t nr_blocks_metadata; | 
 | 2077 | 	dm_block_t held_root; | 
 | 2078 | 	char buf[BDEVNAME_SIZE]; | 
 | 2079 | 	char buf2[BDEVNAME_SIZE]; | 
 | 2080 | 	struct pool_c *pt = ti->private; | 
 | 2081 | 	struct pool *pool = pt->pool; | 
 | 2082 |  | 
 | 2083 | 	switch (type) { | 
 | 2084 | 	case STATUSTYPE_INFO: | 
 | 2085 | 		r = dm_pool_get_metadata_transaction_id(pool->pmd, | 
 | 2086 | 							&transaction_id); | 
 | 2087 | 		if (r) | 
 | 2088 | 			return r; | 
 | 2089 |  | 
 | 2090 | 		r = dm_pool_get_free_metadata_block_count(pool->pmd, | 
 | 2091 | 							  &nr_free_blocks_metadata); | 
 | 2092 | 		if (r) | 
 | 2093 | 			return r; | 
 | 2094 |  | 
 | 2095 | 		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata); | 
 | 2096 | 		if (r) | 
 | 2097 | 			return r; | 
 | 2098 |  | 
 | 2099 | 		r = dm_pool_get_free_block_count(pool->pmd, | 
 | 2100 | 						 &nr_free_blocks_data); | 
 | 2101 | 		if (r) | 
 | 2102 | 			return r; | 
 | 2103 |  | 
 | 2104 | 		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data); | 
 | 2105 | 		if (r) | 
 | 2106 | 			return r; | 
 | 2107 |  | 
 | 2108 | 		r = dm_pool_get_held_metadata_root(pool->pmd, &held_root); | 
 | 2109 | 		if (r) | 
 | 2110 | 			return r; | 
 | 2111 |  | 
 | 2112 | 		DMEMIT("%llu %llu/%llu %llu/%llu ", | 
 | 2113 | 		       (unsigned long long)transaction_id, | 
 | 2114 | 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), | 
 | 2115 | 		       (unsigned long long)nr_blocks_metadata, | 
 | 2116 | 		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data), | 
 | 2117 | 		       (unsigned long long)nr_blocks_data); | 
 | 2118 |  | 
 | 2119 | 		if (held_root) | 
 | 2120 | 			DMEMIT("%llu", held_root); | 
 | 2121 | 		else | 
 | 2122 | 			DMEMIT("-"); | 
 | 2123 |  | 
 | 2124 | 		break; | 
 | 2125 |  | 
 | 2126 | 	case STATUSTYPE_TABLE: | 
 | 2127 | 		DMEMIT("%s %s %lu %llu ", | 
 | 2128 | 		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev), | 
 | 2129 | 		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev), | 
 | 2130 | 		       (unsigned long)pool->sectors_per_block, | 
 | 2131 | 		       (unsigned long long)pt->low_water_blocks); | 
 | 2132 |  | 
 | 2133 | 		DMEMIT("%u ", !pool->zero_new_blocks); | 
 | 2134 |  | 
 | 2135 | 		if (!pool->zero_new_blocks) | 
 | 2136 | 			DMEMIT("skip_block_zeroing "); | 
 | 2137 | 		break; | 
 | 2138 | 	} | 
 | 2139 |  | 
 | 2140 | 	return 0; | 
 | 2141 | } | 
 | 2142 |  | 
 | 2143 | static int pool_iterate_devices(struct dm_target *ti, | 
 | 2144 | 				iterate_devices_callout_fn fn, void *data) | 
 | 2145 | { | 
 | 2146 | 	struct pool_c *pt = ti->private; | 
 | 2147 |  | 
 | 2148 | 	return fn(ti, pt->data_dev, 0, ti->len, data); | 
 | 2149 | } | 
 | 2150 |  | 
 | 2151 | static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm, | 
 | 2152 | 		      struct bio_vec *biovec, int max_size) | 
 | 2153 | { | 
 | 2154 | 	struct pool_c *pt = ti->private; | 
 | 2155 | 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); | 
 | 2156 |  | 
 | 2157 | 	if (!q->merge_bvec_fn) | 
 | 2158 | 		return max_size; | 
 | 2159 |  | 
 | 2160 | 	bvm->bi_bdev = pt->data_dev->bdev; | 
 | 2161 |  | 
 | 2162 | 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec)); | 
 | 2163 | } | 
 | 2164 |  | 
 | 2165 | static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits) | 
 | 2166 | { | 
 | 2167 | 	struct pool_c *pt = ti->private; | 
 | 2168 | 	struct pool *pool = pt->pool; | 
 | 2169 |  | 
 | 2170 | 	blk_limits_io_min(limits, 0); | 
 | 2171 | 	blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT); | 
 | 2172 | } | 
 | 2173 |  | 
 | 2174 | static struct target_type pool_target = { | 
 | 2175 | 	.name = "thin-pool", | 
 | 2176 | 	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE | | 
 | 2177 | 		    DM_TARGET_IMMUTABLE, | 
 | 2178 | 	.version = {1, 0, 0}, | 
 | 2179 | 	.module = THIS_MODULE, | 
 | 2180 | 	.ctr = pool_ctr, | 
 | 2181 | 	.dtr = pool_dtr, | 
 | 2182 | 	.map = pool_map, | 
 | 2183 | 	.postsuspend = pool_postsuspend, | 
 | 2184 | 	.preresume = pool_preresume, | 
 | 2185 | 	.resume = pool_resume, | 
 | 2186 | 	.message = pool_message, | 
 | 2187 | 	.status = pool_status, | 
 | 2188 | 	.merge = pool_merge, | 
 | 2189 | 	.iterate_devices = pool_iterate_devices, | 
 | 2190 | 	.io_hints = pool_io_hints, | 
 | 2191 | }; | 
 | 2192 |  | 
 | 2193 | /*---------------------------------------------------------------- | 
 | 2194 |  * Thin target methods | 
 | 2195 |  *--------------------------------------------------------------*/ | 
 | 2196 | static void thin_dtr(struct dm_target *ti) | 
 | 2197 | { | 
 | 2198 | 	struct thin_c *tc = ti->private; | 
 | 2199 |  | 
 | 2200 | 	mutex_lock(&dm_thin_pool_table.mutex); | 
 | 2201 |  | 
 | 2202 | 	__pool_dec(tc->pool); | 
 | 2203 | 	dm_pool_close_thin_device(tc->td); | 
 | 2204 | 	dm_put_device(ti, tc->pool_dev); | 
 | 2205 | 	kfree(tc); | 
 | 2206 |  | 
 | 2207 | 	mutex_unlock(&dm_thin_pool_table.mutex); | 
 | 2208 | } | 
 | 2209 |  | 
 | 2210 | /* | 
 | 2211 |  * Thin target parameters: | 
 | 2212 |  * | 
 | 2213 |  * <pool_dev> <dev_id> | 
 | 2214 |  * | 
 | 2215 |  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool) | 
 | 2216 |  * dev_id: the internal device identifier | 
 | 2217 |  */ | 
 | 2218 | static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv) | 
 | 2219 | { | 
 | 2220 | 	int r; | 
 | 2221 | 	struct thin_c *tc; | 
 | 2222 | 	struct dm_dev *pool_dev; | 
 | 2223 | 	struct mapped_device *pool_md; | 
 | 2224 |  | 
 | 2225 | 	mutex_lock(&dm_thin_pool_table.mutex); | 
 | 2226 |  | 
 | 2227 | 	if (argc != 2) { | 
 | 2228 | 		ti->error = "Invalid argument count"; | 
 | 2229 | 		r = -EINVAL; | 
 | 2230 | 		goto out_unlock; | 
 | 2231 | 	} | 
 | 2232 |  | 
 | 2233 | 	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL); | 
 | 2234 | 	if (!tc) { | 
 | 2235 | 		ti->error = "Out of memory"; | 
 | 2236 | 		r = -ENOMEM; | 
 | 2237 | 		goto out_unlock; | 
 | 2238 | 	} | 
 | 2239 |  | 
 | 2240 | 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev); | 
 | 2241 | 	if (r) { | 
 | 2242 | 		ti->error = "Error opening pool device"; | 
 | 2243 | 		goto bad_pool_dev; | 
 | 2244 | 	} | 
 | 2245 | 	tc->pool_dev = pool_dev; | 
 | 2246 |  | 
 | 2247 | 	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) { | 
 | 2248 | 		ti->error = "Invalid device id"; | 
 | 2249 | 		r = -EINVAL; | 
 | 2250 | 		goto bad_common; | 
 | 2251 | 	} | 
 | 2252 |  | 
 | 2253 | 	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev); | 
 | 2254 | 	if (!pool_md) { | 
 | 2255 | 		ti->error = "Couldn't get pool mapped device"; | 
 | 2256 | 		r = -EINVAL; | 
 | 2257 | 		goto bad_common; | 
 | 2258 | 	} | 
 | 2259 |  | 
 | 2260 | 	tc->pool = __pool_table_lookup(pool_md); | 
 | 2261 | 	if (!tc->pool) { | 
 | 2262 | 		ti->error = "Couldn't find pool object"; | 
 | 2263 | 		r = -EINVAL; | 
 | 2264 | 		goto bad_pool_lookup; | 
 | 2265 | 	} | 
 | 2266 | 	__pool_inc(tc->pool); | 
 | 2267 |  | 
 | 2268 | 	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td); | 
 | 2269 | 	if (r) { | 
 | 2270 | 		ti->error = "Couldn't open thin internal device"; | 
 | 2271 | 		goto bad_thin_open; | 
 | 2272 | 	} | 
 | 2273 |  | 
 | 2274 | 	ti->split_io = tc->pool->sectors_per_block; | 
 | 2275 | 	ti->num_flush_requests = 1; | 
 | 2276 | 	ti->num_discard_requests = 0; | 
 | 2277 | 	ti->discards_supported = 0; | 
 | 2278 |  | 
 | 2279 | 	dm_put(pool_md); | 
 | 2280 |  | 
 | 2281 | 	mutex_unlock(&dm_thin_pool_table.mutex); | 
 | 2282 |  | 
 | 2283 | 	return 0; | 
 | 2284 |  | 
 | 2285 | bad_thin_open: | 
 | 2286 | 	__pool_dec(tc->pool); | 
 | 2287 | bad_pool_lookup: | 
 | 2288 | 	dm_put(pool_md); | 
 | 2289 | bad_common: | 
 | 2290 | 	dm_put_device(ti, tc->pool_dev); | 
 | 2291 | bad_pool_dev: | 
 | 2292 | 	kfree(tc); | 
 | 2293 | out_unlock: | 
 | 2294 | 	mutex_unlock(&dm_thin_pool_table.mutex); | 
 | 2295 |  | 
 | 2296 | 	return r; | 
 | 2297 | } | 
 | 2298 |  | 
 | 2299 | static int thin_map(struct dm_target *ti, struct bio *bio, | 
 | 2300 | 		    union map_info *map_context) | 
 | 2301 | { | 
 | 2302 | 	bio->bi_sector -= ti->begin; | 
 | 2303 |  | 
 | 2304 | 	return thin_bio_map(ti, bio, map_context); | 
 | 2305 | } | 
 | 2306 |  | 
 | 2307 | static void thin_postsuspend(struct dm_target *ti) | 
 | 2308 | { | 
 | 2309 | 	if (dm_noflush_suspending(ti)) | 
 | 2310 | 		requeue_io((struct thin_c *)ti->private); | 
 | 2311 | } | 
 | 2312 |  | 
 | 2313 | /* | 
 | 2314 |  * <nr mapped sectors> <highest mapped sector> | 
 | 2315 |  */ | 
 | 2316 | static int thin_status(struct dm_target *ti, status_type_t type, | 
 | 2317 | 		       char *result, unsigned maxlen) | 
 | 2318 | { | 
 | 2319 | 	int r; | 
 | 2320 | 	ssize_t sz = 0; | 
 | 2321 | 	dm_block_t mapped, highest; | 
 | 2322 | 	char buf[BDEVNAME_SIZE]; | 
 | 2323 | 	struct thin_c *tc = ti->private; | 
 | 2324 |  | 
 | 2325 | 	if (!tc->td) | 
 | 2326 | 		DMEMIT("-"); | 
 | 2327 | 	else { | 
 | 2328 | 		switch (type) { | 
 | 2329 | 		case STATUSTYPE_INFO: | 
 | 2330 | 			r = dm_thin_get_mapped_count(tc->td, &mapped); | 
 | 2331 | 			if (r) | 
 | 2332 | 				return r; | 
 | 2333 |  | 
 | 2334 | 			r = dm_thin_get_highest_mapped_block(tc->td, &highest); | 
 | 2335 | 			if (r < 0) | 
 | 2336 | 				return r; | 
 | 2337 |  | 
 | 2338 | 			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block); | 
 | 2339 | 			if (r) | 
 | 2340 | 				DMEMIT("%llu", ((highest + 1) * | 
 | 2341 | 						tc->pool->sectors_per_block) - 1); | 
 | 2342 | 			else | 
 | 2343 | 				DMEMIT("-"); | 
 | 2344 | 			break; | 
 | 2345 |  | 
 | 2346 | 		case STATUSTYPE_TABLE: | 
 | 2347 | 			DMEMIT("%s %lu", | 
 | 2348 | 			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev), | 
 | 2349 | 			       (unsigned long) tc->dev_id); | 
 | 2350 | 			break; | 
 | 2351 | 		} | 
 | 2352 | 	} | 
 | 2353 |  | 
 | 2354 | 	return 0; | 
 | 2355 | } | 
 | 2356 |  | 
 | 2357 | static int thin_iterate_devices(struct dm_target *ti, | 
 | 2358 | 				iterate_devices_callout_fn fn, void *data) | 
 | 2359 | { | 
 | 2360 | 	dm_block_t blocks; | 
 | 2361 | 	struct thin_c *tc = ti->private; | 
 | 2362 |  | 
 | 2363 | 	/* | 
 | 2364 | 	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So | 
 | 2365 | 	 * we follow a more convoluted path through to the pool's target. | 
 | 2366 | 	 */ | 
 | 2367 | 	if (!tc->pool->ti) | 
 | 2368 | 		return 0;	/* nothing is bound */ | 
 | 2369 |  | 
 | 2370 | 	blocks = tc->pool->ti->len >> tc->pool->block_shift; | 
 | 2371 | 	if (blocks) | 
 | 2372 | 		return fn(ti, tc->pool_dev, 0, tc->pool->sectors_per_block * blocks, data); | 
 | 2373 |  | 
 | 2374 | 	return 0; | 
 | 2375 | } | 
 | 2376 |  | 
 | 2377 | static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits) | 
 | 2378 | { | 
 | 2379 | 	struct thin_c *tc = ti->private; | 
 | 2380 |  | 
 | 2381 | 	blk_limits_io_min(limits, 0); | 
 | 2382 | 	blk_limits_io_opt(limits, tc->pool->sectors_per_block << SECTOR_SHIFT); | 
 | 2383 | } | 
 | 2384 |  | 
 | 2385 | static struct target_type thin_target = { | 
 | 2386 | 	.name = "thin", | 
 | 2387 | 	.version = {1, 0, 0}, | 
 | 2388 | 	.module	= THIS_MODULE, | 
 | 2389 | 	.ctr = thin_ctr, | 
 | 2390 | 	.dtr = thin_dtr, | 
 | 2391 | 	.map = thin_map, | 
 | 2392 | 	.postsuspend = thin_postsuspend, | 
 | 2393 | 	.status = thin_status, | 
 | 2394 | 	.iterate_devices = thin_iterate_devices, | 
 | 2395 | 	.io_hints = thin_io_hints, | 
 | 2396 | }; | 
 | 2397 |  | 
 | 2398 | /*----------------------------------------------------------------*/ | 
 | 2399 |  | 
 | 2400 | static int __init dm_thin_init(void) | 
 | 2401 | { | 
 | 2402 | 	int r; | 
 | 2403 |  | 
 | 2404 | 	pool_table_init(); | 
 | 2405 |  | 
 | 2406 | 	r = dm_register_target(&thin_target); | 
 | 2407 | 	if (r) | 
 | 2408 | 		return r; | 
 | 2409 |  | 
 | 2410 | 	r = dm_register_target(&pool_target); | 
 | 2411 | 	if (r) | 
 | 2412 | 		dm_unregister_target(&thin_target); | 
 | 2413 |  | 
 | 2414 | 	return r; | 
 | 2415 | } | 
 | 2416 |  | 
 | 2417 | static void dm_thin_exit(void) | 
 | 2418 | { | 
 | 2419 | 	dm_unregister_target(&thin_target); | 
 | 2420 | 	dm_unregister_target(&pool_target); | 
 | 2421 | } | 
 | 2422 |  | 
 | 2423 | module_init(dm_thin_init); | 
 | 2424 | module_exit(dm_thin_exit); | 
 | 2425 |  | 
 | 2426 | MODULE_DESCRIPTION(DM_NAME "device-mapper thin provisioning target"); | 
 | 2427 | MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); | 
 | 2428 | MODULE_LICENSE("GPL"); |