blob: c4df2de6ca4a75b1905bfb9718a3ae2991e87bee [file] [log] [blame]
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
Peter Zijlstra21805082007-08-25 18:41:53 +020018 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020021 */
22
Arjan van de Ven97455122008-01-25 21:08:34 +010023#include <linux/latencytop.h>
Christian Ehrhardt1983a922009-11-30 12:16:47 +010024#include <linux/sched.h>
Sisir Koppaka3436ae12011-03-26 18:22:55 +053025#include <linux/cpumask.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020026#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
Peter Zijlstracbee9f82012-10-25 14:16:43 +020029#include <linux/mempolicy.h>
Mel Gormane14808b2012-11-19 10:59:15 +000030#include <linux/migrate.h>
Peter Zijlstracbee9f82012-10-25 14:16:43 +020031#include <linux/task_work.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020032
33#include <trace/events/sched.h>
34
35#include "sched.h"
Arjan van de Ven97455122008-01-25 21:08:34 +010036
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020037/*
Peter Zijlstra21805082007-08-25 18:41:53 +020038 * Targeted preemption latency for CPU-bound tasks:
Takuya Yoshikawa864616e2010-10-14 16:09:13 +090039 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020040 *
Peter Zijlstra21805082007-08-25 18:41:53 +020041 * NOTE: this latency value is not the same as the concept of
Ingo Molnard274a4c2007-10-15 17:00:14 +020042 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020045 *
Ingo Molnard274a4c2007-10-15 17:00:14 +020046 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020048 */
Mike Galbraith21406922010-03-11 17:17:15 +010049unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020051
52/*
Christian Ehrhardt1983a922009-11-30 12:16:47 +010053 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
64/*
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010065 * Minimal preemption granularity for CPU-bound tasks:
Takuya Yoshikawa864616e2010-10-14 16:09:13 +090066 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010067 */
Ingo Molnar0bf377b2010-09-12 08:14:52 +020068unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010070
71/*
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
Ingo Molnar0bf377b2010-09-12 08:14:52 +020074static unsigned int sched_nr_latency = 8;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010075
76/*
Mike Galbraith2bba22c2009-09-09 15:41:37 +020077 * After fork, child runs first. If set to 0 (default) then
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020078 * parent will (try to) run first.
79 */
Mike Galbraith2bba22c2009-09-09 15:41:37 +020080unsigned int sysctl_sched_child_runs_first __read_mostly;
Peter Zijlstra21805082007-08-25 18:41:53 +020081
82/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020083 * SCHED_OTHER wake-up granularity.
Mike Galbraith172e0822009-09-09 15:41:37 +020084 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020085 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
Mike Galbraith172e0822009-09-09 15:41:37 +020090unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +010091unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020092
Ingo Molnarda84d962007-10-15 17:00:18 +020093const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
Paul Turnera7a4f8a2010-11-15 15:47:06 -080095/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
Paul Turnerec12cb72011-07-21 09:43:30 -0700102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
Paul Gortmaker85276322013-04-19 15:10:50 -0400116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
Peter Zijlstra029632f2011-10-25 10:00:11 +0200134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
181#if BITS_PER_LONG == 32
182# define WMULT_CONST (~0UL)
183#else
184# define WMULT_CONST (1UL << 32)
185#endif
186
187#define WMULT_SHIFT 32
188
189/*
190 * Shift right and round:
191 */
192#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194/*
195 * delta *= weight / lw
196 */
197static unsigned long
198calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200{
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234}
235
236
237const struct sched_class fair_sched_class;
Peter Zijlstraa4c2f002008-10-17 19:27:03 +0200238
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200239/**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
243#ifdef CONFIG_FAIR_GROUP_SCHED
244
245/* cpu runqueue to which this cfs_rq is attached */
246static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247{
248 return cfs_rq->rq;
249}
250
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200251/* An entity is a task if it doesn't "own" a runqueue */
252#define entity_is_task(se) (!se->my_q)
253
Peter Zijlstra8f488942009-07-24 12:25:30 +0200254static inline struct task_struct *task_of(struct sched_entity *se)
255{
256#ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258#endif
259 return container_of(se, struct task_struct, se);
260}
261
Peter Zijlstrab7581492008-04-19 19:45:00 +0200262/* Walk up scheduling entities hierarchy */
263#define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267{
268 return p->se.cfs_rq;
269}
270
271/* runqueue on which this entity is (to be) queued */
272static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273{
274 return se->cfs_rq;
275}
276
277/* runqueue "owned" by this group */
278static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279{
280 return grp->my_q;
281}
282
Paul Turneraff3e492012-10-04 13:18:30 +0200283static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
Paul Turner9ee474f2012-10-04 13:18:30 +0200285
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
Paul Turner67e86252010-11-15 15:47:05 -0800289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
Paul Turner67e86252010-11-15 15:47:05 -0800299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 }
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800303
304 cfs_rq->on_list = 1;
Paul Turner9ee474f2012-10-04 13:18:30 +0200305 /* We should have no load, but we need to update last_decay. */
Paul Turneraff3e492012-10-04 13:18:30 +0200306 update_cfs_rq_blocked_load(cfs_rq, 0);
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800307 }
308}
309
310static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311{
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316}
317
Peter Zijlstrab7581492008-04-19 19:45:00 +0200318/* Iterate thr' all leaf cfs_rq's on a runqueue */
319#define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322/* Do the two (enqueued) entities belong to the same group ? */
323static inline int
324is_same_group(struct sched_entity *se, struct sched_entity *pse)
325{
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330}
331
332static inline struct sched_entity *parent_entity(struct sched_entity *se)
333{
334 return se->parent;
335}
336
Peter Zijlstra464b7522008-10-24 11:06:15 +0200337/* return depth at which a sched entity is present in the hierarchy */
338static inline int depth_se(struct sched_entity *se)
339{
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346}
347
348static void
349find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350{
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378}
379
Peter Zijlstra8f488942009-07-24 12:25:30 +0200380#else /* !CONFIG_FAIR_GROUP_SCHED */
381
382static inline struct task_struct *task_of(struct sched_entity *se)
383{
384 return container_of(se, struct task_struct, se);
385}
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200386
387static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388{
389 return container_of(cfs_rq, struct rq, cfs);
390}
391
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200392#define entity_is_task(se) 1
393
Peter Zijlstrab7581492008-04-19 19:45:00 +0200394#define for_each_sched_entity(se) \
395 for (; se; se = NULL)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200396
Peter Zijlstrab7581492008-04-19 19:45:00 +0200397static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200398{
Peter Zijlstrab7581492008-04-19 19:45:00 +0200399 return &task_rq(p)->cfs;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200400}
401
Peter Zijlstrab7581492008-04-19 19:45:00 +0200402static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403{
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408}
409
410/* runqueue "owned" by this group */
411static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412{
413 return NULL;
414}
415
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800416static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417{
418}
419
420static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421{
422}
423
Peter Zijlstrab7581492008-04-19 19:45:00 +0200424#define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427static inline int
428is_same_group(struct sched_entity *se, struct sched_entity *pse)
429{
430 return 1;
431}
432
433static inline struct sched_entity *parent_entity(struct sched_entity *se)
434{
435 return NULL;
436}
437
Peter Zijlstra464b7522008-10-24 11:06:15 +0200438static inline void
439find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440{
441}
442
Peter Zijlstrab7581492008-04-19 19:45:00 +0200443#endif /* CONFIG_FAIR_GROUP_SCHED */
444
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -0700445static __always_inline
446void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200447
448/**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
Andrei Epure1bf08232013-03-12 21:12:24 +0200452static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
Peter Zijlstra02e04312007-10-15 17:00:07 +0200453{
Andrei Epure1bf08232013-03-12 21:12:24 +0200454 s64 delta = (s64)(vruntime - max_vruntime);
Peter Zijlstra368059a2007-10-15 17:00:11 +0200455 if (delta > 0)
Andrei Epure1bf08232013-03-12 21:12:24 +0200456 max_vruntime = vruntime;
Peter Zijlstra02e04312007-10-15 17:00:07 +0200457
Andrei Epure1bf08232013-03-12 21:12:24 +0200458 return max_vruntime;
Peter Zijlstra02e04312007-10-15 17:00:07 +0200459}
460
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200461static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
Peter Zijlstrab0ffd242007-10-15 17:00:12 +0200462{
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468}
469
Fabio Checconi54fdc582009-07-16 12:32:27 +0200470static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472{
473 return (s64)(a->vruntime - b->vruntime) < 0;
474}
475
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200476static void update_min_vruntime(struct cfs_rq *cfs_rq)
477{
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
Peter Zijlstrae17036d2009-01-15 14:53:39 +0100488 if (!cfs_rq->curr)
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
Andrei Epure1bf08232013-03-12 21:12:24 +0200494 /* ensure we never gain time by being placed backwards. */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
Peter Zijlstra3fe16982011-04-05 17:23:48 +0200496#ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499#endif
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200500}
501
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200502/*
503 * Enqueue an entity into the rb-tree:
504 */
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200505static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200506{
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
Stephan Baerwolf2bd2d6f2011-07-20 14:46:59 +0200522 if (entity_before(se, entry)) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200534 if (leftmost)
Ingo Molnar57cb4992007-10-15 17:00:11 +0200535 cfs_rq->rb_leftmost = &se->run_node;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200539}
540
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200541static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200542{
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100548 }
Ingo Molnare9acbff2007-10-15 17:00:04 +0200549
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200551}
552
Peter Zijlstra029632f2011-10-25 10:00:11 +0200553struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200554{
Peter Zijlstraf4b67552008-11-04 21:25:07 +0100555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200561}
562
Rik van Rielac53db52011-02-01 09:51:03 -0500563static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564{
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571}
572
573#ifdef CONFIG_SCHED_DEBUG
Peter Zijlstra029632f2011-10-25 10:00:11 +0200574struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200575{
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200577
Balbir Singh70eee742008-02-22 13:25:53 +0530578 if (!last)
579 return NULL;
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100580
581 return rb_entry(last, struct sched_entity, run_node);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200582}
583
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200584/**************************************************************
585 * Scheduling class statistics methods:
586 */
587
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100588int sched_proc_update_handler(struct ctl_table *table, int write,
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700589 void __user *buffer, size_t *lenp,
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100590 loff_t *ppos)
591{
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100593 int factor = get_update_sysctl_factor();
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100601#define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100606#undef WRT_SYSCTL
607
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100608 return 0;
609}
610#endif
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200611
612/*
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200613 * delta /= w
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200614 */
615static inline unsigned long
616calc_delta_fair(unsigned long delta, struct sched_entity *se)
617{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200620
621 return delta;
622}
623
624/*
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200625 * The idea is to set a period in which each task runs once.
626 *
Borislav Petkov532b1852012-08-08 16:16:04 +0200627 * When there are too many tasks (sched_nr_latency) we have to stretch
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200632static u64 __sched_period(unsigned long nr_running)
633{
634 u64 period = sysctl_sched_latency;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100635 unsigned long nr_latency = sched_nr_latency;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200636
637 if (unlikely(nr_running > nr_latency)) {
Peter Zijlstra4bf0b772008-01-25 21:08:21 +0100638 period = sysctl_sched_min_granularity;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200639 period *= nr_running;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200640 }
641
642 return period;
643}
644
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200645/*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200649 * s = p*P[w/rw]
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200650 */
Peter Zijlstra6d0f0eb2007-10-15 17:00:05 +0200651static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Peter Zijlstra21805082007-08-25 18:41:53 +0200652{
Mike Galbraith0a582442009-01-02 12:16:42 +0100653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200654
Mike Galbraith0a582442009-01-02 12:16:42 +0100655 for_each_sched_entity(se) {
Lin Ming6272d682009-01-15 17:17:15 +0100656 struct load_weight *load;
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200657 struct load_weight lw;
Lin Ming6272d682009-01-15 17:17:15 +0100658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200661
Mike Galbraith0a582442009-01-02 12:16:42 +0100662 if (unlikely(!se->on_rq)) {
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200663 lw = cfs_rq->load;
Mike Galbraith0a582442009-01-02 12:16:42 +0100664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200671}
672
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200673/*
Andrei Epure660cc002013-03-11 12:03:20 +0200674 * We calculate the vruntime slice of a to-be-inserted task.
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200675 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200676 * vs = s/w
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200677 */
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200678static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200679{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200681}
682
Alex Shia75cdaa2013-06-20 10:18:47 +0800683#ifdef CONFIG_SMP
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100684static unsigned long task_h_load(struct task_struct *p);
685
Alex Shia75cdaa2013-06-20 10:18:47 +0800686static inline void __update_task_entity_contrib(struct sched_entity *se);
687
688/* Give new task start runnable values to heavy its load in infant time */
689void init_task_runnable_average(struct task_struct *p)
690{
691 u32 slice;
692
693 p->se.avg.decay_count = 0;
694 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
695 p->se.avg.runnable_avg_sum = slice;
696 p->se.avg.runnable_avg_period = slice;
697 __update_task_entity_contrib(&p->se);
698}
699#else
700void init_task_runnable_average(struct task_struct *p)
701{
702}
703#endif
704
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200705/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200706 * Update the current task's runtime statistics. Skip current tasks that
707 * are not in our scheduling class.
708 */
709static inline void
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200710__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
711 unsigned long delta_exec)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200712{
Ingo Molnarbbdba7c2007-10-15 17:00:06 +0200713 unsigned long delta_exec_weighted;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200714
Lucas De Marchi41acab82010-03-10 23:37:45 -0300715 schedstat_set(curr->statistics.exec_max,
716 max((u64)delta_exec, curr->statistics.exec_max));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200717
718 curr->sum_exec_runtime += delta_exec;
Ingo Molnar7a62eab2007-10-15 17:00:06 +0200719 schedstat_add(cfs_rq, exec_clock, delta_exec);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200720 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +0100721
Ingo Molnare9acbff2007-10-15 17:00:04 +0200722 curr->vruntime += delta_exec_weighted;
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200723 update_min_vruntime(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200724}
725
Ingo Molnarb7cc0892007-08-09 11:16:47 +0200726static void update_curr(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200727{
Ingo Molnar429d43b2007-10-15 17:00:03 +0200728 struct sched_entity *curr = cfs_rq->curr;
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200729 u64 now = rq_clock_task(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200730 unsigned long delta_exec;
731
732 if (unlikely(!curr))
733 return;
734
735 /*
736 * Get the amount of time the current task was running
737 * since the last time we changed load (this cannot
738 * overflow on 32 bits):
739 */
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200740 delta_exec = (unsigned long)(now - curr->exec_start);
Peter Zijlstra34f28ec2008-12-16 08:45:31 +0100741 if (!delta_exec)
742 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200743
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200744 __update_curr(cfs_rq, curr, delta_exec);
745 curr->exec_start = now;
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100746
747 if (entity_is_task(curr)) {
748 struct task_struct *curtask = task_of(curr);
749
Ingo Molnarf977bb42009-09-13 18:15:54 +0200750 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100751 cpuacct_charge(curtask, delta_exec);
Frank Mayharf06febc2008-09-12 09:54:39 -0700752 account_group_exec_runtime(curtask, delta_exec);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100753 }
Paul Turnerec12cb72011-07-21 09:43:30 -0700754
755 account_cfs_rq_runtime(cfs_rq, delta_exec);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200756}
757
758static inline void
Ingo Molnar5870db52007-08-09 11:16:47 +0200759update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200760{
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200761 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200762}
763
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200764/*
765 * Task is being enqueued - update stats:
766 */
Ingo Molnard2417e52007-08-09 11:16:47 +0200767static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200768{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200769 /*
770 * Are we enqueueing a waiting task? (for current tasks
771 * a dequeue/enqueue event is a NOP)
772 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200773 if (se != cfs_rq->curr)
Ingo Molnar5870db52007-08-09 11:16:47 +0200774 update_stats_wait_start(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200775}
776
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200777static void
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200778update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200779{
Lucas De Marchi41acab82010-03-10 23:37:45 -0300780 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200781 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
Lucas De Marchi41acab82010-03-10 23:37:45 -0300782 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
783 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200784 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200785#ifdef CONFIG_SCHEDSTATS
786 if (entity_is_task(se)) {
787 trace_sched_stat_wait(task_of(se),
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200788 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200789 }
790#endif
Lucas De Marchi41acab82010-03-10 23:37:45 -0300791 schedstat_set(se->statistics.wait_start, 0);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200792}
793
794static inline void
Ingo Molnar19b6a2e2007-08-09 11:16:48 +0200795update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200796{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200797 /*
798 * Mark the end of the wait period if dequeueing a
799 * waiting task:
800 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200801 if (se != cfs_rq->curr)
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200802 update_stats_wait_end(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200803}
804
805/*
806 * We are picking a new current task - update its stats:
807 */
808static inline void
Ingo Molnar79303e92007-08-09 11:16:47 +0200809update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200810{
811 /*
812 * We are starting a new run period:
813 */
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200814 se->exec_start = rq_clock_task(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200815}
816
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200817/**************************************************
818 * Scheduling class queueing methods:
819 */
820
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200821#ifdef CONFIG_NUMA_BALANCING
822/*
Mel Gorman598f0ec2013-10-07 11:28:55 +0100823 * Approximate time to scan a full NUMA task in ms. The task scan period is
824 * calculated based on the tasks virtual memory size and
825 * numa_balancing_scan_size.
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200826 */
Mel Gorman598f0ec2013-10-07 11:28:55 +0100827unsigned int sysctl_numa_balancing_scan_period_min = 1000;
828unsigned int sysctl_numa_balancing_scan_period_max = 60000;
829unsigned int sysctl_numa_balancing_scan_period_reset = 60000;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200830
831/* Portion of address space to scan in MB */
832unsigned int sysctl_numa_balancing_scan_size = 256;
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200833
Peter Zijlstra4b96a292012-10-25 14:16:47 +0200834/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
835unsigned int sysctl_numa_balancing_scan_delay = 1000;
836
Mel Gorman598f0ec2013-10-07 11:28:55 +0100837static unsigned int task_nr_scan_windows(struct task_struct *p)
838{
839 unsigned long rss = 0;
840 unsigned long nr_scan_pages;
841
842 /*
843 * Calculations based on RSS as non-present and empty pages are skipped
844 * by the PTE scanner and NUMA hinting faults should be trapped based
845 * on resident pages
846 */
847 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
848 rss = get_mm_rss(p->mm);
849 if (!rss)
850 rss = nr_scan_pages;
851
852 rss = round_up(rss, nr_scan_pages);
853 return rss / nr_scan_pages;
854}
855
856/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
857#define MAX_SCAN_WINDOW 2560
858
859static unsigned int task_scan_min(struct task_struct *p)
860{
861 unsigned int scan, floor;
862 unsigned int windows = 1;
863
864 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
865 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
866 floor = 1000 / windows;
867
868 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
869 return max_t(unsigned int, floor, scan);
870}
871
872static unsigned int task_scan_max(struct task_struct *p)
873{
874 unsigned int smin = task_scan_min(p);
875 unsigned int smax;
876
877 /* Watch for min being lower than max due to floor calculations */
878 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
879 return max(smin, smax);
880}
881
Mel Gorman3a7053b2013-10-07 11:29:00 +0100882/*
883 * Once a preferred node is selected the scheduler balancer will prefer moving
884 * a task to that node for sysctl_numa_balancing_settle_count number of PTE
885 * scans. This will give the process the chance to accumulate more faults on
886 * the preferred node but still allow the scheduler to move the task again if
887 * the nodes CPUs are overloaded.
888 */
Rik van Riel6fe6b2d2013-10-07 11:29:08 +0100889unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
Mel Gorman3a7053b2013-10-07 11:29:00 +0100890
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100891struct numa_group {
892 atomic_t refcount;
893
894 spinlock_t lock; /* nr_tasks, tasks */
895 int nr_tasks;
Mel Gormane29cf082013-10-07 11:29:22 +0100896 pid_t gid;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100897 struct list_head task_list;
898
899 struct rcu_head rcu;
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100900 atomic_long_t total_faults;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100901 atomic_long_t faults[0];
902};
903
Mel Gormane29cf082013-10-07 11:29:22 +0100904pid_t task_numa_group_id(struct task_struct *p)
905{
906 return p->numa_group ? p->numa_group->gid : 0;
907}
908
Mel Gormanac8e8952013-10-07 11:29:03 +0100909static inline int task_faults_idx(int nid, int priv)
910{
911 return 2 * nid + priv;
912}
913
914static inline unsigned long task_faults(struct task_struct *p, int nid)
915{
916 if (!p->numa_faults)
917 return 0;
918
919 return p->numa_faults[task_faults_idx(nid, 0)] +
920 p->numa_faults[task_faults_idx(nid, 1)];
921}
922
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100923static inline unsigned long group_faults(struct task_struct *p, int nid)
924{
925 if (!p->numa_group)
926 return 0;
927
928 return atomic_long_read(&p->numa_group->faults[2*nid]) +
929 atomic_long_read(&p->numa_group->faults[2*nid+1]);
930}
931
932/*
933 * These return the fraction of accesses done by a particular task, or
934 * task group, on a particular numa node. The group weight is given a
935 * larger multiplier, in order to group tasks together that are almost
936 * evenly spread out between numa nodes.
937 */
938static inline unsigned long task_weight(struct task_struct *p, int nid)
939{
940 unsigned long total_faults;
941
942 if (!p->numa_faults)
943 return 0;
944
945 total_faults = p->total_numa_faults;
946
947 if (!total_faults)
948 return 0;
949
950 return 1000 * task_faults(p, nid) / total_faults;
951}
952
953static inline unsigned long group_weight(struct task_struct *p, int nid)
954{
955 unsigned long total_faults;
956
957 if (!p->numa_group)
958 return 0;
959
960 total_faults = atomic_long_read(&p->numa_group->total_faults);
961
962 if (!total_faults)
963 return 0;
964
965 return 1200 * group_faults(p, nid) / total_faults;
966}
967
Mel Gormane6628d52013-10-07 11:29:02 +0100968static unsigned long weighted_cpuload(const int cpu);
Mel Gorman58d081b2013-10-07 11:29:10 +0100969static unsigned long source_load(int cpu, int type);
970static unsigned long target_load(int cpu, int type);
971static unsigned long power_of(int cpu);
972static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
Mel Gormane6628d52013-10-07 11:29:02 +0100973
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100974/* Cached statistics for all CPUs within a node */
Mel Gorman58d081b2013-10-07 11:29:10 +0100975struct numa_stats {
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100976 unsigned long nr_running;
Mel Gorman58d081b2013-10-07 11:29:10 +0100977 unsigned long load;
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100978
979 /* Total compute capacity of CPUs on a node */
980 unsigned long power;
981
982 /* Approximate capacity in terms of runnable tasks on a node */
983 unsigned long capacity;
984 int has_capacity;
Mel Gorman58d081b2013-10-07 11:29:10 +0100985};
Mel Gormane6628d52013-10-07 11:29:02 +0100986
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100987/*
988 * XXX borrowed from update_sg_lb_stats
989 */
990static void update_numa_stats(struct numa_stats *ns, int nid)
991{
992 int cpu;
993
994 memset(ns, 0, sizeof(*ns));
995 for_each_cpu(cpu, cpumask_of_node(nid)) {
996 struct rq *rq = cpu_rq(cpu);
997
998 ns->nr_running += rq->nr_running;
999 ns->load += weighted_cpuload(cpu);
1000 ns->power += power_of(cpu);
1001 }
1002
1003 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1004 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1005 ns->has_capacity = (ns->nr_running < ns->capacity);
1006}
1007
Mel Gorman58d081b2013-10-07 11:29:10 +01001008struct task_numa_env {
1009 struct task_struct *p;
1010
1011 int src_cpu, src_nid;
1012 int dst_cpu, dst_nid;
1013
1014 struct numa_stats src_stats, dst_stats;
1015
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001016 int imbalance_pct, idx;
1017
1018 struct task_struct *best_task;
1019 long best_imp;
Mel Gorman58d081b2013-10-07 11:29:10 +01001020 int best_cpu;
1021};
1022
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001023static void task_numa_assign(struct task_numa_env *env,
1024 struct task_struct *p, long imp)
1025{
1026 if (env->best_task)
1027 put_task_struct(env->best_task);
1028 if (p)
1029 get_task_struct(p);
1030
1031 env->best_task = p;
1032 env->best_imp = imp;
1033 env->best_cpu = env->dst_cpu;
1034}
1035
1036/*
1037 * This checks if the overall compute and NUMA accesses of the system would
1038 * be improved if the source tasks was migrated to the target dst_cpu taking
1039 * into account that it might be best if task running on the dst_cpu should
1040 * be exchanged with the source task
1041 */
1042static void task_numa_compare(struct task_numa_env *env, long imp)
1043{
1044 struct rq *src_rq = cpu_rq(env->src_cpu);
1045 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1046 struct task_struct *cur;
1047 long dst_load, src_load;
1048 long load;
1049
1050 rcu_read_lock();
1051 cur = ACCESS_ONCE(dst_rq->curr);
1052 if (cur->pid == 0) /* idle */
1053 cur = NULL;
1054
1055 /*
1056 * "imp" is the fault differential for the source task between the
1057 * source and destination node. Calculate the total differential for
1058 * the source task and potential destination task. The more negative
1059 * the value is, the more rmeote accesses that would be expected to
1060 * be incurred if the tasks were swapped.
1061 */
1062 if (cur) {
1063 /* Skip this swap candidate if cannot move to the source cpu */
1064 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1065 goto unlock;
1066
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001067 imp += task_weight(cur, env->src_nid) +
1068 group_weight(cur, env->src_nid) -
1069 task_weight(cur, env->dst_nid) -
1070 group_weight(cur, env->dst_nid);
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001071 }
1072
1073 if (imp < env->best_imp)
1074 goto unlock;
1075
1076 if (!cur) {
1077 /* Is there capacity at our destination? */
1078 if (env->src_stats.has_capacity &&
1079 !env->dst_stats.has_capacity)
1080 goto unlock;
1081
1082 goto balance;
1083 }
1084
1085 /* Balance doesn't matter much if we're running a task per cpu */
1086 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1087 goto assign;
1088
1089 /*
1090 * In the overloaded case, try and keep the load balanced.
1091 */
1092balance:
1093 dst_load = env->dst_stats.load;
1094 src_load = env->src_stats.load;
1095
1096 /* XXX missing power terms */
1097 load = task_h_load(env->p);
1098 dst_load += load;
1099 src_load -= load;
1100
1101 if (cur) {
1102 load = task_h_load(cur);
1103 dst_load -= load;
1104 src_load += load;
1105 }
1106
1107 /* make src_load the smaller */
1108 if (dst_load < src_load)
1109 swap(dst_load, src_load);
1110
1111 if (src_load * env->imbalance_pct < dst_load * 100)
1112 goto unlock;
1113
1114assign:
1115 task_numa_assign(env, cur, imp);
1116unlock:
1117 rcu_read_unlock();
1118}
1119
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001120static void task_numa_find_cpu(struct task_numa_env *env, long imp)
1121{
1122 int cpu;
1123
1124 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1125 /* Skip this CPU if the source task cannot migrate */
1126 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1127 continue;
1128
1129 env->dst_cpu = cpu;
1130 task_numa_compare(env, imp);
1131 }
1132}
1133
Mel Gorman58d081b2013-10-07 11:29:10 +01001134static int task_numa_migrate(struct task_struct *p)
Mel Gormane6628d52013-10-07 11:29:02 +01001135{
Mel Gorman58d081b2013-10-07 11:29:10 +01001136 struct task_numa_env env = {
1137 .p = p,
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001138
Mel Gorman58d081b2013-10-07 11:29:10 +01001139 .src_cpu = task_cpu(p),
1140 .src_nid = cpu_to_node(task_cpu(p)),
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001141
1142 .imbalance_pct = 112,
1143
1144 .best_task = NULL,
1145 .best_imp = 0,
1146 .best_cpu = -1
Mel Gorman58d081b2013-10-07 11:29:10 +01001147 };
1148 struct sched_domain *sd;
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001149 unsigned long weight;
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001150 int nid, ret;
1151 long imp;
Mel Gormane6628d52013-10-07 11:29:02 +01001152
Mel Gorman58d081b2013-10-07 11:29:10 +01001153 /*
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001154 * Pick the lowest SD_NUMA domain, as that would have the smallest
1155 * imbalance and would be the first to start moving tasks about.
1156 *
1157 * And we want to avoid any moving of tasks about, as that would create
1158 * random movement of tasks -- counter the numa conditions we're trying
1159 * to satisfy here.
Mel Gorman58d081b2013-10-07 11:29:10 +01001160 */
Mel Gormane6628d52013-10-07 11:29:02 +01001161 rcu_read_lock();
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001162 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1163 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
Mel Gormane6628d52013-10-07 11:29:02 +01001164 rcu_read_unlock();
1165
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001166 weight = task_weight(p, env.src_nid) + group_weight(p, env.src_nid);
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001167 update_numa_stats(&env.src_stats, env.src_nid);
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001168 env.dst_nid = p->numa_preferred_nid;
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001169 imp = task_weight(p, env.dst_nid) + group_weight(p, env.dst_nid) - weight;
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001170 update_numa_stats(&env.dst_stats, env.dst_nid);
Mel Gorman58d081b2013-10-07 11:29:10 +01001171
Rik van Riele1dda8a2013-10-07 11:29:19 +01001172 /* If the preferred nid has capacity, try to use it. */
1173 if (env.dst_stats.has_capacity)
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001174 task_numa_find_cpu(&env, imp);
Rik van Riele1dda8a2013-10-07 11:29:19 +01001175
1176 /* No space available on the preferred nid. Look elsewhere. */
1177 if (env.best_cpu == -1) {
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001178 for_each_online_node(nid) {
1179 if (nid == env.src_nid || nid == p->numa_preferred_nid)
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001180 continue;
1181
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001182 /* Only consider nodes where both task and groups benefit */
1183 imp = task_weight(p, nid) + group_weight(p, nid) - weight;
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001184 if (imp < 0)
1185 continue;
1186
1187 env.dst_nid = nid;
1188 update_numa_stats(&env.dst_stats, env.dst_nid);
1189 task_numa_find_cpu(&env, imp);
Mel Gorman58d081b2013-10-07 11:29:10 +01001190 }
1191 }
1192
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001193 /* No better CPU than the current one was found. */
1194 if (env.best_cpu == -1)
1195 return -EAGAIN;
1196
1197 if (env.best_task == NULL) {
1198 int ret = migrate_task_to(p, env.best_cpu);
1199 return ret;
1200 }
1201
1202 ret = migrate_swap(p, env.best_task);
1203 put_task_struct(env.best_task);
1204 return ret;
Mel Gormane6628d52013-10-07 11:29:02 +01001205}
1206
Mel Gorman6b9a7462013-10-07 11:29:11 +01001207/* Attempt to migrate a task to a CPU on the preferred node. */
1208static void numa_migrate_preferred(struct task_struct *p)
1209{
1210 /* Success if task is already running on preferred CPU */
1211 p->numa_migrate_retry = 0;
Rik van Riel06ea5e02013-10-07 11:29:12 +01001212 if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid) {
1213 /*
1214 * If migration is temporarily disabled due to a task migration
1215 * then re-enable it now as the task is running on its
1216 * preferred node and memory should migrate locally
1217 */
1218 if (!p->numa_migrate_seq)
1219 p->numa_migrate_seq++;
Mel Gorman6b9a7462013-10-07 11:29:11 +01001220 return;
Rik van Riel06ea5e02013-10-07 11:29:12 +01001221 }
Mel Gorman6b9a7462013-10-07 11:29:11 +01001222
1223 /* This task has no NUMA fault statistics yet */
1224 if (unlikely(p->numa_preferred_nid == -1))
1225 return;
1226
1227 /* Otherwise, try migrate to a CPU on the preferred node */
1228 if (task_numa_migrate(p) != 0)
1229 p->numa_migrate_retry = jiffies + HZ*5;
1230}
1231
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001232static void task_numa_placement(struct task_struct *p)
1233{
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001234 int seq, nid, max_nid = -1, max_group_nid = -1;
1235 unsigned long max_faults = 0, max_group_faults = 0;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001236
Hugh Dickins2832bc12012-12-19 17:42:16 -08001237 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001238 if (p->numa_scan_seq == seq)
1239 return;
1240 p->numa_scan_seq = seq;
Mel Gorman3a7053b2013-10-07 11:29:00 +01001241 p->numa_migrate_seq++;
Mel Gorman598f0ec2013-10-07 11:28:55 +01001242 p->numa_scan_period_max = task_scan_max(p);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001243
Mel Gorman688b7582013-10-07 11:28:58 +01001244 /* Find the node with the highest number of faults */
1245 for_each_online_node(nid) {
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001246 unsigned long faults = 0, group_faults = 0;
Mel Gormanac8e8952013-10-07 11:29:03 +01001247 int priv, i;
Mel Gorman745d6142013-10-07 11:28:59 +01001248
Mel Gormanac8e8952013-10-07 11:29:03 +01001249 for (priv = 0; priv < 2; priv++) {
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001250 long diff;
1251
Mel Gormanac8e8952013-10-07 11:29:03 +01001252 i = task_faults_idx(nid, priv);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001253 diff = -p->numa_faults[i];
Mel Gorman745d6142013-10-07 11:28:59 +01001254
Mel Gormanac8e8952013-10-07 11:29:03 +01001255 /* Decay existing window, copy faults since last scan */
1256 p->numa_faults[i] >>= 1;
1257 p->numa_faults[i] += p->numa_faults_buffer[i];
1258 p->numa_faults_buffer[i] = 0;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001259
1260 faults += p->numa_faults[i];
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001261 diff += p->numa_faults[i];
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001262 p->total_numa_faults += diff;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001263 if (p->numa_group) {
1264 /* safe because we can only change our own group */
1265 atomic_long_add(diff, &p->numa_group->faults[i]);
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001266 atomic_long_add(diff, &p->numa_group->total_faults);
1267 group_faults += atomic_long_read(&p->numa_group->faults[i]);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001268 }
Mel Gormanac8e8952013-10-07 11:29:03 +01001269 }
1270
Mel Gorman688b7582013-10-07 11:28:58 +01001271 if (faults > max_faults) {
1272 max_faults = faults;
1273 max_nid = nid;
1274 }
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001275
1276 if (group_faults > max_group_faults) {
1277 max_group_faults = group_faults;
1278 max_group_nid = nid;
1279 }
1280 }
1281
1282 /*
1283 * If the preferred task and group nids are different,
1284 * iterate over the nodes again to find the best place.
1285 */
1286 if (p->numa_group && max_nid != max_group_nid) {
1287 unsigned long weight, max_weight = 0;
1288
1289 for_each_online_node(nid) {
1290 weight = task_weight(p, nid) + group_weight(p, nid);
1291 if (weight > max_weight) {
1292 max_weight = weight;
1293 max_nid = nid;
1294 }
1295 }
Mel Gorman688b7582013-10-07 11:28:58 +01001296 }
1297
Mel Gorman6b9a7462013-10-07 11:29:11 +01001298 /* Preferred node as the node with the most faults */
Mel Gorman3a7053b2013-10-07 11:29:00 +01001299 if (max_faults && max_nid != p->numa_preferred_nid) {
Mel Gormane6628d52013-10-07 11:29:02 +01001300 /* Update the preferred nid and migrate task if possible */
Mel Gorman688b7582013-10-07 11:28:58 +01001301 p->numa_preferred_nid = max_nid;
Rik van Riel6fe6b2d2013-10-07 11:29:08 +01001302 p->numa_migrate_seq = 1;
Mel Gorman6b9a7462013-10-07 11:29:11 +01001303 numa_migrate_preferred(p);
Mel Gorman3a7053b2013-10-07 11:29:00 +01001304 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001305}
1306
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001307static inline int get_numa_group(struct numa_group *grp)
1308{
1309 return atomic_inc_not_zero(&grp->refcount);
1310}
1311
1312static inline void put_numa_group(struct numa_group *grp)
1313{
1314 if (atomic_dec_and_test(&grp->refcount))
1315 kfree_rcu(grp, rcu);
1316}
1317
1318static void double_lock(spinlock_t *l1, spinlock_t *l2)
1319{
1320 if (l1 > l2)
1321 swap(l1, l2);
1322
1323 spin_lock(l1);
1324 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1325}
1326
1327static void task_numa_group(struct task_struct *p, int cpupid)
1328{
1329 struct numa_group *grp, *my_grp;
1330 struct task_struct *tsk;
1331 bool join = false;
1332 int cpu = cpupid_to_cpu(cpupid);
1333 int i;
1334
1335 if (unlikely(!p->numa_group)) {
1336 unsigned int size = sizeof(struct numa_group) +
1337 2*nr_node_ids*sizeof(atomic_long_t);
1338
1339 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1340 if (!grp)
1341 return;
1342
1343 atomic_set(&grp->refcount, 1);
1344 spin_lock_init(&grp->lock);
1345 INIT_LIST_HEAD(&grp->task_list);
Mel Gormane29cf082013-10-07 11:29:22 +01001346 grp->gid = p->pid;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001347
1348 for (i = 0; i < 2*nr_node_ids; i++)
1349 atomic_long_set(&grp->faults[i], p->numa_faults[i]);
1350
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001351 atomic_long_set(&grp->total_faults, p->total_numa_faults);
1352
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001353 list_add(&p->numa_entry, &grp->task_list);
1354 grp->nr_tasks++;
1355 rcu_assign_pointer(p->numa_group, grp);
1356 }
1357
1358 rcu_read_lock();
1359 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1360
1361 if (!cpupid_match_pid(tsk, cpupid))
1362 goto unlock;
1363
1364 grp = rcu_dereference(tsk->numa_group);
1365 if (!grp)
1366 goto unlock;
1367
1368 my_grp = p->numa_group;
1369 if (grp == my_grp)
1370 goto unlock;
1371
1372 /*
1373 * Only join the other group if its bigger; if we're the bigger group,
1374 * the other task will join us.
1375 */
1376 if (my_grp->nr_tasks > grp->nr_tasks)
1377 goto unlock;
1378
1379 /*
1380 * Tie-break on the grp address.
1381 */
1382 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1383 goto unlock;
1384
1385 if (!get_numa_group(grp))
1386 goto unlock;
1387
1388 join = true;
1389
1390unlock:
1391 rcu_read_unlock();
1392
1393 if (!join)
1394 return;
1395
1396 for (i = 0; i < 2*nr_node_ids; i++) {
1397 atomic_long_sub(p->numa_faults[i], &my_grp->faults[i]);
1398 atomic_long_add(p->numa_faults[i], &grp->faults[i]);
1399 }
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001400 atomic_long_sub(p->total_numa_faults, &my_grp->total_faults);
1401 atomic_long_add(p->total_numa_faults, &grp->total_faults);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001402
1403 double_lock(&my_grp->lock, &grp->lock);
1404
1405 list_move(&p->numa_entry, &grp->task_list);
1406 my_grp->nr_tasks--;
1407 grp->nr_tasks++;
1408
1409 spin_unlock(&my_grp->lock);
1410 spin_unlock(&grp->lock);
1411
1412 rcu_assign_pointer(p->numa_group, grp);
1413
1414 put_numa_group(my_grp);
1415}
1416
1417void task_numa_free(struct task_struct *p)
1418{
1419 struct numa_group *grp = p->numa_group;
1420 int i;
Rik van Riel82727012013-10-07 11:29:28 +01001421 void *numa_faults = p->numa_faults;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001422
1423 if (grp) {
1424 for (i = 0; i < 2*nr_node_ids; i++)
1425 atomic_long_sub(p->numa_faults[i], &grp->faults[i]);
1426
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001427 atomic_long_sub(p->total_numa_faults, &grp->total_faults);
1428
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001429 spin_lock(&grp->lock);
1430 list_del(&p->numa_entry);
1431 grp->nr_tasks--;
1432 spin_unlock(&grp->lock);
1433 rcu_assign_pointer(p->numa_group, NULL);
1434 put_numa_group(grp);
1435 }
1436
Rik van Riel82727012013-10-07 11:29:28 +01001437 p->numa_faults = NULL;
1438 p->numa_faults_buffer = NULL;
1439 kfree(numa_faults);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001440}
1441
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001442/*
1443 * Got a PROT_NONE fault for a page on @node.
1444 */
Peter Zijlstra6688cc02013-10-07 11:29:24 +01001445void task_numa_fault(int last_cpupid, int node, int pages, int flags)
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001446{
1447 struct task_struct *p = current;
Peter Zijlstra6688cc02013-10-07 11:29:24 +01001448 bool migrated = flags & TNF_MIGRATED;
Mel Gormanac8e8952013-10-07 11:29:03 +01001449 int priv;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001450
Dave Kleikamp10e84b92013-07-31 13:53:35 -07001451 if (!numabalancing_enabled)
Mel Gorman1a687c22012-11-22 11:16:36 +00001452 return;
1453
Mel Gorman9ff1d9f2013-10-07 11:29:04 +01001454 /* for example, ksmd faulting in a user's mm */
1455 if (!p->mm)
1456 return;
1457
Rik van Riel82727012013-10-07 11:29:28 +01001458 /* Do not worry about placement if exiting */
1459 if (p->state == TASK_DEAD)
1460 return;
1461
Mel Gormanf809ca92013-10-07 11:28:57 +01001462 /* Allocate buffer to track faults on a per-node basis */
1463 if (unlikely(!p->numa_faults)) {
Mel Gormanac8e8952013-10-07 11:29:03 +01001464 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
Mel Gormanf809ca92013-10-07 11:28:57 +01001465
Mel Gorman745d6142013-10-07 11:28:59 +01001466 /* numa_faults and numa_faults_buffer share the allocation */
1467 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
Mel Gormanf809ca92013-10-07 11:28:57 +01001468 if (!p->numa_faults)
1469 return;
Mel Gorman745d6142013-10-07 11:28:59 +01001470
1471 BUG_ON(p->numa_faults_buffer);
Mel Gormanac8e8952013-10-07 11:29:03 +01001472 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001473 p->total_numa_faults = 0;
Mel Gormanf809ca92013-10-07 11:28:57 +01001474 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001475
Mel Gormanfb003b82012-11-15 09:01:14 +00001476 /*
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001477 * First accesses are treated as private, otherwise consider accesses
1478 * to be private if the accessing pid has not changed
1479 */
1480 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1481 priv = 1;
1482 } else {
1483 priv = cpupid_match_pid(p, last_cpupid);
Peter Zijlstra6688cc02013-10-07 11:29:24 +01001484 if (!priv && !(flags & TNF_NO_GROUP))
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001485 task_numa_group(p, last_cpupid);
1486 }
1487
1488 /*
Mel Gormanb8593bf2012-11-21 01:18:23 +00001489 * If pages are properly placed (did not migrate) then scan slower.
1490 * This is reset periodically in case of phase changes
Mel Gormanfb003b82012-11-15 09:01:14 +00001491 */
Mel Gorman598f0ec2013-10-07 11:28:55 +01001492 if (!migrated) {
1493 /* Initialise if necessary */
1494 if (!p->numa_scan_period_max)
1495 p->numa_scan_period_max = task_scan_max(p);
1496
1497 p->numa_scan_period = min(p->numa_scan_period_max,
1498 p->numa_scan_period + 10);
1499 }
Mel Gormanfb003b82012-11-15 09:01:14 +00001500
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001501 task_numa_placement(p);
Mel Gormanf809ca92013-10-07 11:28:57 +01001502
Mel Gorman6b9a7462013-10-07 11:29:11 +01001503 /* Retry task to preferred node migration if it previously failed */
1504 if (p->numa_migrate_retry && time_after(jiffies, p->numa_migrate_retry))
1505 numa_migrate_preferred(p);
1506
Mel Gormanac8e8952013-10-07 11:29:03 +01001507 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001508}
1509
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001510static void reset_ptenuma_scan(struct task_struct *p)
1511{
1512 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1513 p->mm->numa_scan_offset = 0;
1514}
1515
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001516/*
1517 * The expensive part of numa migration is done from task_work context.
1518 * Triggered from task_tick_numa().
1519 */
1520void task_numa_work(struct callback_head *work)
1521{
1522 unsigned long migrate, next_scan, now = jiffies;
1523 struct task_struct *p = current;
1524 struct mm_struct *mm = p->mm;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001525 struct vm_area_struct *vma;
Mel Gorman9f406042012-11-14 18:34:32 +00001526 unsigned long start, end;
Mel Gorman598f0ec2013-10-07 11:28:55 +01001527 unsigned long nr_pte_updates = 0;
Mel Gorman9f406042012-11-14 18:34:32 +00001528 long pages;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001529
1530 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1531
1532 work->next = work; /* protect against double add */
1533 /*
1534 * Who cares about NUMA placement when they're dying.
1535 *
1536 * NOTE: make sure not to dereference p->mm before this check,
1537 * exit_task_work() happens _after_ exit_mm() so we could be called
1538 * without p->mm even though we still had it when we enqueued this
1539 * work.
1540 */
1541 if (p->flags & PF_EXITING)
1542 return;
1543
Mel Gorman7e8d16b2013-10-07 11:28:54 +01001544 if (!mm->numa_next_reset || !mm->numa_next_scan) {
1545 mm->numa_next_scan = now +
1546 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1547 mm->numa_next_reset = now +
1548 msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1549 }
1550
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001551 /*
Mel Gormanb8593bf2012-11-21 01:18:23 +00001552 * Reset the scan period if enough time has gone by. Objective is that
1553 * scanning will be reduced if pages are properly placed. As tasks
1554 * can enter different phases this needs to be re-examined. Lacking
1555 * proper tracking of reference behaviour, this blunt hammer is used.
1556 */
1557 migrate = mm->numa_next_reset;
1558 if (time_after(now, migrate)) {
Mel Gorman598f0ec2013-10-07 11:28:55 +01001559 p->numa_scan_period = task_scan_min(p);
Mel Gormanb8593bf2012-11-21 01:18:23 +00001560 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1561 xchg(&mm->numa_next_reset, next_scan);
1562 }
1563
1564 /*
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001565 * Enforce maximal scan/migration frequency..
1566 */
1567 migrate = mm->numa_next_scan;
1568 if (time_before(now, migrate))
1569 return;
1570
Mel Gorman598f0ec2013-10-07 11:28:55 +01001571 if (p->numa_scan_period == 0) {
1572 p->numa_scan_period_max = task_scan_max(p);
1573 p->numa_scan_period = task_scan_min(p);
1574 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001575
Mel Gormanfb003b82012-11-15 09:01:14 +00001576 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001577 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1578 return;
1579
Mel Gormane14808b2012-11-19 10:59:15 +00001580 /*
Peter Zijlstra19a78d12013-10-07 11:28:51 +01001581 * Delay this task enough that another task of this mm will likely win
1582 * the next time around.
1583 */
1584 p->node_stamp += 2 * TICK_NSEC;
1585
Mel Gorman9f406042012-11-14 18:34:32 +00001586 start = mm->numa_scan_offset;
1587 pages = sysctl_numa_balancing_scan_size;
1588 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1589 if (!pages)
1590 return;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001591
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001592 down_read(&mm->mmap_sem);
Mel Gorman9f406042012-11-14 18:34:32 +00001593 vma = find_vma(mm, start);
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001594 if (!vma) {
1595 reset_ptenuma_scan(p);
Mel Gorman9f406042012-11-14 18:34:32 +00001596 start = 0;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001597 vma = mm->mmap;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001598 }
Mel Gorman9f406042012-11-14 18:34:32 +00001599 for (; vma; vma = vma->vm_next) {
Mel Gormanfc3147242013-10-07 11:29:09 +01001600 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001601 continue;
1602
Mel Gorman4591ce4f2013-10-07 11:29:13 +01001603 /*
1604 * Shared library pages mapped by multiple processes are not
1605 * migrated as it is expected they are cache replicated. Avoid
1606 * hinting faults in read-only file-backed mappings or the vdso
1607 * as migrating the pages will be of marginal benefit.
1608 */
1609 if (!vma->vm_mm ||
1610 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1611 continue;
1612
Mel Gorman9f406042012-11-14 18:34:32 +00001613 do {
1614 start = max(start, vma->vm_start);
1615 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1616 end = min(end, vma->vm_end);
Mel Gorman598f0ec2013-10-07 11:28:55 +01001617 nr_pte_updates += change_prot_numa(vma, start, end);
1618
1619 /*
1620 * Scan sysctl_numa_balancing_scan_size but ensure that
1621 * at least one PTE is updated so that unused virtual
1622 * address space is quickly skipped.
1623 */
1624 if (nr_pte_updates)
1625 pages -= (end - start) >> PAGE_SHIFT;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001626
Mel Gorman9f406042012-11-14 18:34:32 +00001627 start = end;
1628 if (pages <= 0)
1629 goto out;
1630 } while (end != vma->vm_end);
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001631 }
1632
Mel Gorman9f406042012-11-14 18:34:32 +00001633out:
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001634 /*
Mel Gormanf307cd12013-10-07 11:28:56 +01001635 * If the whole process was scanned without updates then no NUMA
1636 * hinting faults are being recorded and scan rate should be lower.
1637 */
1638 if (mm->numa_scan_offset == 0 && !nr_pte_updates) {
1639 p->numa_scan_period = min(p->numa_scan_period_max,
1640 p->numa_scan_period << 1);
1641
1642 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1643 mm->numa_next_scan = next_scan;
1644 }
1645
1646 /*
Peter Zijlstrac69307d2013-10-07 11:28:41 +01001647 * It is possible to reach the end of the VMA list but the last few
1648 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1649 * would find the !migratable VMA on the next scan but not reset the
1650 * scanner to the start so check it now.
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001651 */
1652 if (vma)
Mel Gorman9f406042012-11-14 18:34:32 +00001653 mm->numa_scan_offset = start;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001654 else
1655 reset_ptenuma_scan(p);
1656 up_read(&mm->mmap_sem);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001657}
1658
1659/*
1660 * Drive the periodic memory faults..
1661 */
1662void task_tick_numa(struct rq *rq, struct task_struct *curr)
1663{
1664 struct callback_head *work = &curr->numa_work;
1665 u64 period, now;
1666
1667 /*
1668 * We don't care about NUMA placement if we don't have memory.
1669 */
1670 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1671 return;
1672
1673 /*
1674 * Using runtime rather than walltime has the dual advantage that
1675 * we (mostly) drive the selection from busy threads and that the
1676 * task needs to have done some actual work before we bother with
1677 * NUMA placement.
1678 */
1679 now = curr->se.sum_exec_runtime;
1680 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1681
1682 if (now - curr->node_stamp > period) {
Peter Zijlstra4b96a292012-10-25 14:16:47 +02001683 if (!curr->node_stamp)
Mel Gorman598f0ec2013-10-07 11:28:55 +01001684 curr->numa_scan_period = task_scan_min(curr);
Peter Zijlstra19a78d12013-10-07 11:28:51 +01001685 curr->node_stamp += period;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001686
1687 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1688 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1689 task_work_add(curr, work, true);
1690 }
1691 }
1692}
1693#else
1694static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1695{
1696}
1697#endif /* CONFIG_NUMA_BALANCING */
1698
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001699static void
1700account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1701{
1702 update_load_add(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +02001703 if (!parent_entity(se))
Peter Zijlstra029632f2011-10-25 10:00:11 +02001704 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
Peter Zijlstra367456c2012-02-20 21:49:09 +01001705#ifdef CONFIG_SMP
1706 if (entity_is_task(se))
Peter Zijlstraeb953082012-04-17 13:38:40 +02001707 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
Peter Zijlstra367456c2012-02-20 21:49:09 +01001708#endif
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001709 cfs_rq->nr_running++;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001710}
1711
1712static void
1713account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1714{
1715 update_load_sub(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +02001716 if (!parent_entity(se))
Peter Zijlstra029632f2011-10-25 10:00:11 +02001717 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
Peter Zijlstra367456c2012-02-20 21:49:09 +01001718 if (entity_is_task(se))
Bharata B Raob87f1722008-09-25 09:53:54 +05301719 list_del_init(&se->group_node);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001720 cfs_rq->nr_running--;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001721}
1722
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001723#ifdef CONFIG_FAIR_GROUP_SCHED
1724# ifdef CONFIG_SMP
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001725static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1726{
1727 long tg_weight;
1728
1729 /*
1730 * Use this CPU's actual weight instead of the last load_contribution
1731 * to gain a more accurate current total weight. See
1732 * update_cfs_rq_load_contribution().
1733 */
Alex Shibf5b9862013-06-20 10:18:54 +08001734 tg_weight = atomic_long_read(&tg->load_avg);
Paul Turner82958362012-10-04 13:18:31 +02001735 tg_weight -= cfs_rq->tg_load_contrib;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001736 tg_weight += cfs_rq->load.weight;
1737
1738 return tg_weight;
1739}
1740
Paul Turner6d5ab292011-01-21 20:45:01 -08001741static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001742{
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001743 long tg_weight, load, shares;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001744
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001745 tg_weight = calc_tg_weight(tg, cfs_rq);
Paul Turner6d5ab292011-01-21 20:45:01 -08001746 load = cfs_rq->load.weight;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001747
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001748 shares = (tg->shares * load);
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001749 if (tg_weight)
1750 shares /= tg_weight;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001751
1752 if (shares < MIN_SHARES)
1753 shares = MIN_SHARES;
1754 if (shares > tg->shares)
1755 shares = tg->shares;
1756
1757 return shares;
1758}
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001759# else /* CONFIG_SMP */
Paul Turner6d5ab292011-01-21 20:45:01 -08001760static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001761{
1762 return tg->shares;
1763}
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001764# endif /* CONFIG_SMP */
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001765static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1766 unsigned long weight)
1767{
Paul Turner19e5eeb2010-12-15 19:10:18 -08001768 if (se->on_rq) {
1769 /* commit outstanding execution time */
1770 if (cfs_rq->curr == se)
1771 update_curr(cfs_rq);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001772 account_entity_dequeue(cfs_rq, se);
Paul Turner19e5eeb2010-12-15 19:10:18 -08001773 }
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001774
1775 update_load_set(&se->load, weight);
1776
1777 if (se->on_rq)
1778 account_entity_enqueue(cfs_rq, se);
1779}
1780
Paul Turner82958362012-10-04 13:18:31 +02001781static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1782
Paul Turner6d5ab292011-01-21 20:45:01 -08001783static void update_cfs_shares(struct cfs_rq *cfs_rq)
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001784{
1785 struct task_group *tg;
1786 struct sched_entity *se;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001787 long shares;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001788
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001789 tg = cfs_rq->tg;
1790 se = tg->se[cpu_of(rq_of(cfs_rq))];
Paul Turner64660c82011-07-21 09:43:36 -07001791 if (!se || throttled_hierarchy(cfs_rq))
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001792 return;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001793#ifndef CONFIG_SMP
1794 if (likely(se->load.weight == tg->shares))
1795 return;
1796#endif
Paul Turner6d5ab292011-01-21 20:45:01 -08001797 shares = calc_cfs_shares(cfs_rq, tg);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001798
1799 reweight_entity(cfs_rq_of(se), se, shares);
1800}
1801#else /* CONFIG_FAIR_GROUP_SCHED */
Paul Turner6d5ab292011-01-21 20:45:01 -08001802static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001803{
1804}
1805#endif /* CONFIG_FAIR_GROUP_SCHED */
1806
Alex Shi141965c2013-06-26 13:05:39 +08001807#ifdef CONFIG_SMP
Paul Turner9d85f212012-10-04 13:18:29 +02001808/*
Paul Turner5b51f2f2012-10-04 13:18:32 +02001809 * We choose a half-life close to 1 scheduling period.
1810 * Note: The tables below are dependent on this value.
1811 */
1812#define LOAD_AVG_PERIOD 32
1813#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1814#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1815
1816/* Precomputed fixed inverse multiplies for multiplication by y^n */
1817static const u32 runnable_avg_yN_inv[] = {
1818 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1819 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1820 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1821 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1822 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1823 0x85aac367, 0x82cd8698,
1824};
1825
1826/*
1827 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1828 * over-estimates when re-combining.
1829 */
1830static const u32 runnable_avg_yN_sum[] = {
1831 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1832 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1833 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1834};
1835
1836/*
Paul Turner9d85f212012-10-04 13:18:29 +02001837 * Approximate:
1838 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1839 */
1840static __always_inline u64 decay_load(u64 val, u64 n)
1841{
Paul Turner5b51f2f2012-10-04 13:18:32 +02001842 unsigned int local_n;
1843
1844 if (!n)
1845 return val;
1846 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1847 return 0;
1848
1849 /* after bounds checking we can collapse to 32-bit */
1850 local_n = n;
1851
1852 /*
1853 * As y^PERIOD = 1/2, we can combine
1854 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1855 * With a look-up table which covers k^n (n<PERIOD)
1856 *
1857 * To achieve constant time decay_load.
1858 */
1859 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1860 val >>= local_n / LOAD_AVG_PERIOD;
1861 local_n %= LOAD_AVG_PERIOD;
Paul Turner9d85f212012-10-04 13:18:29 +02001862 }
1863
Paul Turner5b51f2f2012-10-04 13:18:32 +02001864 val *= runnable_avg_yN_inv[local_n];
1865 /* We don't use SRR here since we always want to round down. */
1866 return val >> 32;
1867}
1868
1869/*
1870 * For updates fully spanning n periods, the contribution to runnable
1871 * average will be: \Sum 1024*y^n
1872 *
1873 * We can compute this reasonably efficiently by combining:
1874 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1875 */
1876static u32 __compute_runnable_contrib(u64 n)
1877{
1878 u32 contrib = 0;
1879
1880 if (likely(n <= LOAD_AVG_PERIOD))
1881 return runnable_avg_yN_sum[n];
1882 else if (unlikely(n >= LOAD_AVG_MAX_N))
1883 return LOAD_AVG_MAX;
1884
1885 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1886 do {
1887 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1888 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1889
1890 n -= LOAD_AVG_PERIOD;
1891 } while (n > LOAD_AVG_PERIOD);
1892
1893 contrib = decay_load(contrib, n);
1894 return contrib + runnable_avg_yN_sum[n];
Paul Turner9d85f212012-10-04 13:18:29 +02001895}
1896
1897/*
1898 * We can represent the historical contribution to runnable average as the
1899 * coefficients of a geometric series. To do this we sub-divide our runnable
1900 * history into segments of approximately 1ms (1024us); label the segment that
1901 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1902 *
1903 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1904 * p0 p1 p2
1905 * (now) (~1ms ago) (~2ms ago)
1906 *
1907 * Let u_i denote the fraction of p_i that the entity was runnable.
1908 *
1909 * We then designate the fractions u_i as our co-efficients, yielding the
1910 * following representation of historical load:
1911 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1912 *
1913 * We choose y based on the with of a reasonably scheduling period, fixing:
1914 * y^32 = 0.5
1915 *
1916 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1917 * approximately half as much as the contribution to load within the last ms
1918 * (u_0).
1919 *
1920 * When a period "rolls over" and we have new u_0`, multiplying the previous
1921 * sum again by y is sufficient to update:
1922 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1923 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1924 */
1925static __always_inline int __update_entity_runnable_avg(u64 now,
1926 struct sched_avg *sa,
1927 int runnable)
1928{
Paul Turner5b51f2f2012-10-04 13:18:32 +02001929 u64 delta, periods;
1930 u32 runnable_contrib;
Paul Turner9d85f212012-10-04 13:18:29 +02001931 int delta_w, decayed = 0;
1932
1933 delta = now - sa->last_runnable_update;
1934 /*
1935 * This should only happen when time goes backwards, which it
1936 * unfortunately does during sched clock init when we swap over to TSC.
1937 */
1938 if ((s64)delta < 0) {
1939 sa->last_runnable_update = now;
1940 return 0;
1941 }
1942
1943 /*
1944 * Use 1024ns as the unit of measurement since it's a reasonable
1945 * approximation of 1us and fast to compute.
1946 */
1947 delta >>= 10;
1948 if (!delta)
1949 return 0;
1950 sa->last_runnable_update = now;
1951
1952 /* delta_w is the amount already accumulated against our next period */
1953 delta_w = sa->runnable_avg_period % 1024;
1954 if (delta + delta_w >= 1024) {
1955 /* period roll-over */
1956 decayed = 1;
1957
1958 /*
1959 * Now that we know we're crossing a period boundary, figure
1960 * out how much from delta we need to complete the current
1961 * period and accrue it.
1962 */
1963 delta_w = 1024 - delta_w;
Paul Turner5b51f2f2012-10-04 13:18:32 +02001964 if (runnable)
1965 sa->runnable_avg_sum += delta_w;
1966 sa->runnable_avg_period += delta_w;
Paul Turner9d85f212012-10-04 13:18:29 +02001967
Paul Turner5b51f2f2012-10-04 13:18:32 +02001968 delta -= delta_w;
Paul Turner9d85f212012-10-04 13:18:29 +02001969
Paul Turner5b51f2f2012-10-04 13:18:32 +02001970 /* Figure out how many additional periods this update spans */
1971 periods = delta / 1024;
1972 delta %= 1024;
1973
1974 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1975 periods + 1);
1976 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1977 periods + 1);
1978
1979 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
1980 runnable_contrib = __compute_runnable_contrib(periods);
1981 if (runnable)
1982 sa->runnable_avg_sum += runnable_contrib;
1983 sa->runnable_avg_period += runnable_contrib;
Paul Turner9d85f212012-10-04 13:18:29 +02001984 }
1985
1986 /* Remainder of delta accrued against u_0` */
1987 if (runnable)
1988 sa->runnable_avg_sum += delta;
1989 sa->runnable_avg_period += delta;
1990
1991 return decayed;
1992}
1993
Paul Turner9ee474f2012-10-04 13:18:30 +02001994/* Synchronize an entity's decay with its parenting cfs_rq.*/
Paul Turneraff3e492012-10-04 13:18:30 +02001995static inline u64 __synchronize_entity_decay(struct sched_entity *se)
Paul Turner9ee474f2012-10-04 13:18:30 +02001996{
1997 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1998 u64 decays = atomic64_read(&cfs_rq->decay_counter);
1999
2000 decays -= se->avg.decay_count;
2001 if (!decays)
Paul Turneraff3e492012-10-04 13:18:30 +02002002 return 0;
Paul Turner9ee474f2012-10-04 13:18:30 +02002003
2004 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2005 se->avg.decay_count = 0;
Paul Turneraff3e492012-10-04 13:18:30 +02002006
2007 return decays;
Paul Turner9ee474f2012-10-04 13:18:30 +02002008}
2009
Paul Turnerc566e8e2012-10-04 13:18:30 +02002010#ifdef CONFIG_FAIR_GROUP_SCHED
2011static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2012 int force_update)
2013{
2014 struct task_group *tg = cfs_rq->tg;
Alex Shibf5b9862013-06-20 10:18:54 +08002015 long tg_contrib;
Paul Turnerc566e8e2012-10-04 13:18:30 +02002016
2017 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2018 tg_contrib -= cfs_rq->tg_load_contrib;
2019
Alex Shibf5b9862013-06-20 10:18:54 +08002020 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2021 atomic_long_add(tg_contrib, &tg->load_avg);
Paul Turnerc566e8e2012-10-04 13:18:30 +02002022 cfs_rq->tg_load_contrib += tg_contrib;
2023 }
2024}
Paul Turner8165e142012-10-04 13:18:31 +02002025
Paul Turnerbb17f652012-10-04 13:18:31 +02002026/*
2027 * Aggregate cfs_rq runnable averages into an equivalent task_group
2028 * representation for computing load contributions.
2029 */
2030static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2031 struct cfs_rq *cfs_rq)
2032{
2033 struct task_group *tg = cfs_rq->tg;
2034 long contrib;
2035
2036 /* The fraction of a cpu used by this cfs_rq */
2037 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
2038 sa->runnable_avg_period + 1);
2039 contrib -= cfs_rq->tg_runnable_contrib;
2040
2041 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2042 atomic_add(contrib, &tg->runnable_avg);
2043 cfs_rq->tg_runnable_contrib += contrib;
2044 }
2045}
2046
Paul Turner8165e142012-10-04 13:18:31 +02002047static inline void __update_group_entity_contrib(struct sched_entity *se)
2048{
2049 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2050 struct task_group *tg = cfs_rq->tg;
Paul Turnerbb17f652012-10-04 13:18:31 +02002051 int runnable_avg;
2052
Paul Turner8165e142012-10-04 13:18:31 +02002053 u64 contrib;
2054
2055 contrib = cfs_rq->tg_load_contrib * tg->shares;
Alex Shibf5b9862013-06-20 10:18:54 +08002056 se->avg.load_avg_contrib = div_u64(contrib,
2057 atomic_long_read(&tg->load_avg) + 1);
Paul Turnerbb17f652012-10-04 13:18:31 +02002058
2059 /*
2060 * For group entities we need to compute a correction term in the case
2061 * that they are consuming <1 cpu so that we would contribute the same
2062 * load as a task of equal weight.
2063 *
2064 * Explicitly co-ordinating this measurement would be expensive, but
2065 * fortunately the sum of each cpus contribution forms a usable
2066 * lower-bound on the true value.
2067 *
2068 * Consider the aggregate of 2 contributions. Either they are disjoint
2069 * (and the sum represents true value) or they are disjoint and we are
2070 * understating by the aggregate of their overlap.
2071 *
2072 * Extending this to N cpus, for a given overlap, the maximum amount we
2073 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2074 * cpus that overlap for this interval and w_i is the interval width.
2075 *
2076 * On a small machine; the first term is well-bounded which bounds the
2077 * total error since w_i is a subset of the period. Whereas on a
2078 * larger machine, while this first term can be larger, if w_i is the
2079 * of consequential size guaranteed to see n_i*w_i quickly converge to
2080 * our upper bound of 1-cpu.
2081 */
2082 runnable_avg = atomic_read(&tg->runnable_avg);
2083 if (runnable_avg < NICE_0_LOAD) {
2084 se->avg.load_avg_contrib *= runnable_avg;
2085 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2086 }
Paul Turner8165e142012-10-04 13:18:31 +02002087}
Paul Turnerc566e8e2012-10-04 13:18:30 +02002088#else
2089static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2090 int force_update) {}
Paul Turnerbb17f652012-10-04 13:18:31 +02002091static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2092 struct cfs_rq *cfs_rq) {}
Paul Turner8165e142012-10-04 13:18:31 +02002093static inline void __update_group_entity_contrib(struct sched_entity *se) {}
Paul Turnerc566e8e2012-10-04 13:18:30 +02002094#endif
2095
Paul Turner8165e142012-10-04 13:18:31 +02002096static inline void __update_task_entity_contrib(struct sched_entity *se)
2097{
2098 u32 contrib;
2099
2100 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2101 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2102 contrib /= (se->avg.runnable_avg_period + 1);
2103 se->avg.load_avg_contrib = scale_load(contrib);
2104}
2105
Paul Turner2dac7542012-10-04 13:18:30 +02002106/* Compute the current contribution to load_avg by se, return any delta */
2107static long __update_entity_load_avg_contrib(struct sched_entity *se)
2108{
2109 long old_contrib = se->avg.load_avg_contrib;
2110
Paul Turner8165e142012-10-04 13:18:31 +02002111 if (entity_is_task(se)) {
2112 __update_task_entity_contrib(se);
2113 } else {
Paul Turnerbb17f652012-10-04 13:18:31 +02002114 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
Paul Turner8165e142012-10-04 13:18:31 +02002115 __update_group_entity_contrib(se);
2116 }
Paul Turner2dac7542012-10-04 13:18:30 +02002117
2118 return se->avg.load_avg_contrib - old_contrib;
2119}
2120
Paul Turner9ee474f2012-10-04 13:18:30 +02002121static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2122 long load_contrib)
2123{
2124 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2125 cfs_rq->blocked_load_avg -= load_contrib;
2126 else
2127 cfs_rq->blocked_load_avg = 0;
2128}
2129
Paul Turnerf1b17282012-10-04 13:18:31 +02002130static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2131
Paul Turner9d85f212012-10-04 13:18:29 +02002132/* Update a sched_entity's runnable average */
Paul Turner9ee474f2012-10-04 13:18:30 +02002133static inline void update_entity_load_avg(struct sched_entity *se,
2134 int update_cfs_rq)
Paul Turner9d85f212012-10-04 13:18:29 +02002135{
Paul Turner2dac7542012-10-04 13:18:30 +02002136 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2137 long contrib_delta;
Paul Turnerf1b17282012-10-04 13:18:31 +02002138 u64 now;
Paul Turner2dac7542012-10-04 13:18:30 +02002139
Paul Turnerf1b17282012-10-04 13:18:31 +02002140 /*
2141 * For a group entity we need to use their owned cfs_rq_clock_task() in
2142 * case they are the parent of a throttled hierarchy.
2143 */
2144 if (entity_is_task(se))
2145 now = cfs_rq_clock_task(cfs_rq);
2146 else
2147 now = cfs_rq_clock_task(group_cfs_rq(se));
2148
2149 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
Paul Turner2dac7542012-10-04 13:18:30 +02002150 return;
2151
2152 contrib_delta = __update_entity_load_avg_contrib(se);
Paul Turner9ee474f2012-10-04 13:18:30 +02002153
2154 if (!update_cfs_rq)
2155 return;
2156
Paul Turner2dac7542012-10-04 13:18:30 +02002157 if (se->on_rq)
2158 cfs_rq->runnable_load_avg += contrib_delta;
Paul Turner9ee474f2012-10-04 13:18:30 +02002159 else
2160 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2161}
2162
2163/*
2164 * Decay the load contributed by all blocked children and account this so that
2165 * their contribution may appropriately discounted when they wake up.
2166 */
Paul Turneraff3e492012-10-04 13:18:30 +02002167static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
Paul Turner9ee474f2012-10-04 13:18:30 +02002168{
Paul Turnerf1b17282012-10-04 13:18:31 +02002169 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
Paul Turner9ee474f2012-10-04 13:18:30 +02002170 u64 decays;
2171
2172 decays = now - cfs_rq->last_decay;
Paul Turneraff3e492012-10-04 13:18:30 +02002173 if (!decays && !force_update)
Paul Turner9ee474f2012-10-04 13:18:30 +02002174 return;
2175
Alex Shi25099402013-06-20 10:18:55 +08002176 if (atomic_long_read(&cfs_rq->removed_load)) {
2177 unsigned long removed_load;
2178 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
Paul Turneraff3e492012-10-04 13:18:30 +02002179 subtract_blocked_load_contrib(cfs_rq, removed_load);
2180 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002181
Paul Turneraff3e492012-10-04 13:18:30 +02002182 if (decays) {
2183 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2184 decays);
2185 atomic64_add(decays, &cfs_rq->decay_counter);
2186 cfs_rq->last_decay = now;
2187 }
Paul Turnerc566e8e2012-10-04 13:18:30 +02002188
2189 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
Paul Turner9d85f212012-10-04 13:18:29 +02002190}
Ben Segall18bf2802012-10-04 12:51:20 +02002191
2192static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2193{
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002194 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
Paul Turnerbb17f652012-10-04 13:18:31 +02002195 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
Ben Segall18bf2802012-10-04 12:51:20 +02002196}
Paul Turner2dac7542012-10-04 13:18:30 +02002197
2198/* Add the load generated by se into cfs_rq's child load-average */
2199static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002200 struct sched_entity *se,
2201 int wakeup)
Paul Turner2dac7542012-10-04 13:18:30 +02002202{
Paul Turneraff3e492012-10-04 13:18:30 +02002203 /*
2204 * We track migrations using entity decay_count <= 0, on a wake-up
2205 * migration we use a negative decay count to track the remote decays
2206 * accumulated while sleeping.
Alex Shia75cdaa2013-06-20 10:18:47 +08002207 *
2208 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2209 * are seen by enqueue_entity_load_avg() as a migration with an already
2210 * constructed load_avg_contrib.
Paul Turneraff3e492012-10-04 13:18:30 +02002211 */
2212 if (unlikely(se->avg.decay_count <= 0)) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002213 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
Paul Turneraff3e492012-10-04 13:18:30 +02002214 if (se->avg.decay_count) {
2215 /*
2216 * In a wake-up migration we have to approximate the
2217 * time sleeping. This is because we can't synchronize
2218 * clock_task between the two cpus, and it is not
2219 * guaranteed to be read-safe. Instead, we can
2220 * approximate this using our carried decays, which are
2221 * explicitly atomically readable.
2222 */
2223 se->avg.last_runnable_update -= (-se->avg.decay_count)
2224 << 20;
2225 update_entity_load_avg(se, 0);
2226 /* Indicate that we're now synchronized and on-rq */
2227 se->avg.decay_count = 0;
2228 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002229 wakeup = 0;
2230 } else {
Alex Shi282cf492013-06-20 10:18:48 +08002231 /*
2232 * Task re-woke on same cpu (or else migrate_task_rq_fair()
2233 * would have made count negative); we must be careful to avoid
2234 * double-accounting blocked time after synchronizing decays.
2235 */
2236 se->avg.last_runnable_update += __synchronize_entity_decay(se)
2237 << 20;
Paul Turner9ee474f2012-10-04 13:18:30 +02002238 }
2239
Paul Turneraff3e492012-10-04 13:18:30 +02002240 /* migrated tasks did not contribute to our blocked load */
2241 if (wakeup) {
Paul Turner9ee474f2012-10-04 13:18:30 +02002242 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
Paul Turneraff3e492012-10-04 13:18:30 +02002243 update_entity_load_avg(se, 0);
2244 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002245
Paul Turner2dac7542012-10-04 13:18:30 +02002246 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
Paul Turneraff3e492012-10-04 13:18:30 +02002247 /* we force update consideration on load-balancer moves */
2248 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
Paul Turner2dac7542012-10-04 13:18:30 +02002249}
2250
Paul Turner9ee474f2012-10-04 13:18:30 +02002251/*
2252 * Remove se's load from this cfs_rq child load-average, if the entity is
2253 * transitioning to a blocked state we track its projected decay using
2254 * blocked_load_avg.
2255 */
Paul Turner2dac7542012-10-04 13:18:30 +02002256static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002257 struct sched_entity *se,
2258 int sleep)
Paul Turner2dac7542012-10-04 13:18:30 +02002259{
Paul Turner9ee474f2012-10-04 13:18:30 +02002260 update_entity_load_avg(se, 1);
Paul Turneraff3e492012-10-04 13:18:30 +02002261 /* we force update consideration on load-balancer moves */
2262 update_cfs_rq_blocked_load(cfs_rq, !sleep);
Paul Turner9ee474f2012-10-04 13:18:30 +02002263
Paul Turner2dac7542012-10-04 13:18:30 +02002264 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
Paul Turner9ee474f2012-10-04 13:18:30 +02002265 if (sleep) {
2266 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2267 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2268 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
Paul Turner2dac7542012-10-04 13:18:30 +02002269}
Vincent Guittot642dbc32013-04-18 18:34:26 +02002270
2271/*
2272 * Update the rq's load with the elapsed running time before entering
2273 * idle. if the last scheduled task is not a CFS task, idle_enter will
2274 * be the only way to update the runnable statistic.
2275 */
2276void idle_enter_fair(struct rq *this_rq)
2277{
2278 update_rq_runnable_avg(this_rq, 1);
2279}
2280
2281/*
2282 * Update the rq's load with the elapsed idle time before a task is
2283 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2284 * be the only way to update the runnable statistic.
2285 */
2286void idle_exit_fair(struct rq *this_rq)
2287{
2288 update_rq_runnable_avg(this_rq, 0);
2289}
2290
Paul Turner9d85f212012-10-04 13:18:29 +02002291#else
Paul Turner9ee474f2012-10-04 13:18:30 +02002292static inline void update_entity_load_avg(struct sched_entity *se,
2293 int update_cfs_rq) {}
Ben Segall18bf2802012-10-04 12:51:20 +02002294static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
Paul Turner2dac7542012-10-04 13:18:30 +02002295static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002296 struct sched_entity *se,
2297 int wakeup) {}
Paul Turner2dac7542012-10-04 13:18:30 +02002298static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002299 struct sched_entity *se,
2300 int sleep) {}
Paul Turneraff3e492012-10-04 13:18:30 +02002301static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2302 int force_update) {}
Paul Turner9d85f212012-10-04 13:18:29 +02002303#endif
2304
Ingo Molnar2396af62007-08-09 11:16:48 +02002305static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002306{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002307#ifdef CONFIG_SCHEDSTATS
Peter Zijlstrae4143142009-07-23 20:13:26 +02002308 struct task_struct *tsk = NULL;
2309
2310 if (entity_is_task(se))
2311 tsk = task_of(se);
2312
Lucas De Marchi41acab82010-03-10 23:37:45 -03002313 if (se->statistics.sleep_start) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002314 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002315
2316 if ((s64)delta < 0)
2317 delta = 0;
2318
Lucas De Marchi41acab82010-03-10 23:37:45 -03002319 if (unlikely(delta > se->statistics.sleep_max))
2320 se->statistics.sleep_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002321
Peter Zijlstra8c79a042012-01-30 14:51:37 +01002322 se->statistics.sleep_start = 0;
Lucas De Marchi41acab82010-03-10 23:37:45 -03002323 se->statistics.sum_sleep_runtime += delta;
Arjan van de Ven97455122008-01-25 21:08:34 +01002324
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002325 if (tsk) {
Peter Zijlstrae4143142009-07-23 20:13:26 +02002326 account_scheduler_latency(tsk, delta >> 10, 1);
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002327 trace_sched_stat_sleep(tsk, delta);
2328 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002329 }
Lucas De Marchi41acab82010-03-10 23:37:45 -03002330 if (se->statistics.block_start) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002331 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002332
2333 if ((s64)delta < 0)
2334 delta = 0;
2335
Lucas De Marchi41acab82010-03-10 23:37:45 -03002336 if (unlikely(delta > se->statistics.block_max))
2337 se->statistics.block_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002338
Peter Zijlstra8c79a042012-01-30 14:51:37 +01002339 se->statistics.block_start = 0;
Lucas De Marchi41acab82010-03-10 23:37:45 -03002340 se->statistics.sum_sleep_runtime += delta;
Ingo Molnar30084fb2007-10-02 14:13:08 +02002341
Peter Zijlstrae4143142009-07-23 20:13:26 +02002342 if (tsk) {
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -07002343 if (tsk->in_iowait) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03002344 se->statistics.iowait_sum += delta;
2345 se->statistics.iowait_count++;
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002346 trace_sched_stat_iowait(tsk, delta);
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -07002347 }
2348
Andrew Vaginb781a602011-11-28 12:03:35 +03002349 trace_sched_stat_blocked(tsk, delta);
2350
Peter Zijlstrae4143142009-07-23 20:13:26 +02002351 /*
2352 * Blocking time is in units of nanosecs, so shift by
2353 * 20 to get a milliseconds-range estimation of the
2354 * amount of time that the task spent sleeping:
2355 */
2356 if (unlikely(prof_on == SLEEP_PROFILING)) {
2357 profile_hits(SLEEP_PROFILING,
2358 (void *)get_wchan(tsk),
2359 delta >> 20);
2360 }
2361 account_scheduler_latency(tsk, delta >> 10, 0);
Ingo Molnar30084fb2007-10-02 14:13:08 +02002362 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002363 }
2364#endif
2365}
2366
Peter Zijlstraddc97292007-10-15 17:00:10 +02002367static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2368{
2369#ifdef CONFIG_SCHED_DEBUG
2370 s64 d = se->vruntime - cfs_rq->min_vruntime;
2371
2372 if (d < 0)
2373 d = -d;
2374
2375 if (d > 3*sysctl_sched_latency)
2376 schedstat_inc(cfs_rq, nr_spread_over);
2377#endif
2378}
2379
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002380static void
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002381place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2382{
Peter Zijlstra1af5f732008-10-24 11:06:13 +02002383 u64 vruntime = cfs_rq->min_vruntime;
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +02002384
Peter Zijlstra2cb86002007-11-09 22:39:37 +01002385 /*
2386 * The 'current' period is already promised to the current tasks,
2387 * however the extra weight of the new task will slow them down a
2388 * little, place the new task so that it fits in the slot that
2389 * stays open at the end.
2390 */
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +02002391 if (initial && sched_feat(START_DEBIT))
Peter Zijlstraf9c0b092008-10-17 19:27:04 +02002392 vruntime += sched_vslice(cfs_rq, se);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002393
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002394 /* sleeps up to a single latency don't count. */
Mike Galbraith5ca98802010-03-11 17:17:17 +01002395 if (!initial) {
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002396 unsigned long thresh = sysctl_sched_latency;
Peter Zijlstraa7be37a2008-06-27 13:41:11 +02002397
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002398 /*
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002399 * Halve their sleep time's effect, to allow
2400 * for a gentler effect of sleepers:
2401 */
2402 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2403 thresh >>= 1;
Ingo Molnar51e03042009-09-16 08:54:45 +02002404
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002405 vruntime -= thresh;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002406 }
2407
Mike Galbraithb5d9d732009-09-08 11:12:28 +02002408 /* ensure we never gain time by being placed backwards. */
Viresh Kumar16c8f1c2012-11-08 13:33:46 +05302409 se->vruntime = max_vruntime(se->vruntime, vruntime);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002410}
2411
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002412static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2413
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002414static void
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002415enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002416{
2417 /*
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002418 * Update the normalized vruntime before updating min_vruntime
Kamalesh Babulal0fc576d2013-06-27 11:24:18 +05302419 * through calling update_curr().
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002420 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002421 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002422 se->vruntime += cfs_rq->min_vruntime;
2423
2424 /*
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002425 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002426 */
Ingo Molnarb7cc0892007-08-09 11:16:47 +02002427 update_curr(cfs_rq);
Paul Turnerf269ae02012-10-04 13:18:31 +02002428 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002429 account_entity_enqueue(cfs_rq, se);
2430 update_cfs_shares(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002431
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002432 if (flags & ENQUEUE_WAKEUP) {
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002433 place_entity(cfs_rq, se, 0);
Ingo Molnar2396af62007-08-09 11:16:48 +02002434 enqueue_sleeper(cfs_rq, se);
Ingo Molnare9acbff2007-10-15 17:00:04 +02002435 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002436
Ingo Molnard2417e52007-08-09 11:16:47 +02002437 update_stats_enqueue(cfs_rq, se);
Peter Zijlstraddc97292007-10-15 17:00:10 +02002438 check_spread(cfs_rq, se);
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002439 if (se != cfs_rq->curr)
2440 __enqueue_entity(cfs_rq, se);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002441 se->on_rq = 1;
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -08002442
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002443 if (cfs_rq->nr_running == 1) {
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -08002444 list_add_leaf_cfs_rq(cfs_rq);
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002445 check_enqueue_throttle(cfs_rq);
2446 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002447}
2448
Rik van Riel2c13c9192011-02-01 09:48:37 -05002449static void __clear_buddies_last(struct sched_entity *se)
Peter Zijlstra2002c692008-11-11 11:52:33 +01002450{
Rik van Riel2c13c9192011-02-01 09:48:37 -05002451 for_each_sched_entity(se) {
2452 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2453 if (cfs_rq->last == se)
2454 cfs_rq->last = NULL;
2455 else
2456 break;
2457 }
2458}
Peter Zijlstra2002c692008-11-11 11:52:33 +01002459
Rik van Riel2c13c9192011-02-01 09:48:37 -05002460static void __clear_buddies_next(struct sched_entity *se)
2461{
2462 for_each_sched_entity(se) {
2463 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2464 if (cfs_rq->next == se)
2465 cfs_rq->next = NULL;
2466 else
2467 break;
2468 }
Peter Zijlstra2002c692008-11-11 11:52:33 +01002469}
2470
Rik van Rielac53db52011-02-01 09:51:03 -05002471static void __clear_buddies_skip(struct sched_entity *se)
2472{
2473 for_each_sched_entity(se) {
2474 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2475 if (cfs_rq->skip == se)
2476 cfs_rq->skip = NULL;
2477 else
2478 break;
2479 }
2480}
2481
Peter Zijlstraa571bbe2009-01-28 14:51:40 +01002482static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2483{
Rik van Riel2c13c9192011-02-01 09:48:37 -05002484 if (cfs_rq->last == se)
2485 __clear_buddies_last(se);
2486
2487 if (cfs_rq->next == se)
2488 __clear_buddies_next(se);
Rik van Rielac53db52011-02-01 09:51:03 -05002489
2490 if (cfs_rq->skip == se)
2491 __clear_buddies_skip(se);
Peter Zijlstraa571bbe2009-01-28 14:51:40 +01002492}
2493
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07002494static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
Paul Turnerd8b49862011-07-21 09:43:41 -07002495
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002496static void
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002497dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002498{
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002499 /*
2500 * Update run-time statistics of the 'current'.
2501 */
2502 update_curr(cfs_rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002503 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002504
Ingo Molnar19b6a2e2007-08-09 11:16:48 +02002505 update_stats_dequeue(cfs_rq, se);
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002506 if (flags & DEQUEUE_SLEEP) {
Peter Zijlstra67e9fb22007-10-15 17:00:10 +02002507#ifdef CONFIG_SCHEDSTATS
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002508 if (entity_is_task(se)) {
2509 struct task_struct *tsk = task_of(se);
2510
2511 if (tsk->state & TASK_INTERRUPTIBLE)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002512 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002513 if (tsk->state & TASK_UNINTERRUPTIBLE)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002514 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002515 }
Dmitry Adamushkodb36cc72007-10-15 17:00:06 +02002516#endif
Peter Zijlstra67e9fb22007-10-15 17:00:10 +02002517 }
2518
Peter Zijlstra2002c692008-11-11 11:52:33 +01002519 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +01002520
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002521 if (se != cfs_rq->curr)
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002522 __dequeue_entity(cfs_rq, se);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002523 se->on_rq = 0;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002524 account_entity_dequeue(cfs_rq, se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002525
2526 /*
2527 * Normalize the entity after updating the min_vruntime because the
2528 * update can refer to the ->curr item and we need to reflect this
2529 * movement in our normalized position.
2530 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002531 if (!(flags & DEQUEUE_SLEEP))
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002532 se->vruntime -= cfs_rq->min_vruntime;
Peter Zijlstra1e876232011-05-17 16:21:10 -07002533
Paul Turnerd8b49862011-07-21 09:43:41 -07002534 /* return excess runtime on last dequeue */
2535 return_cfs_rq_runtime(cfs_rq);
2536
Peter Zijlstra1e876232011-05-17 16:21:10 -07002537 update_min_vruntime(cfs_rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002538 update_cfs_shares(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002539}
2540
2541/*
2542 * Preempt the current task with a newly woken task if needed:
2543 */
Peter Zijlstra7c92e542007-09-05 14:32:49 +02002544static void
Ingo Molnar2e09bf52007-10-15 17:00:05 +02002545check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002546{
Peter Zijlstra11697832007-09-05 14:32:49 +02002547 unsigned long ideal_runtime, delta_exec;
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002548 struct sched_entity *se;
2549 s64 delta;
Peter Zijlstra11697832007-09-05 14:32:49 +02002550
Peter Zijlstra6d0f0eb2007-10-15 17:00:05 +02002551 ideal_runtime = sched_slice(cfs_rq, curr);
Peter Zijlstra11697832007-09-05 14:32:49 +02002552 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +01002553 if (delta_exec > ideal_runtime) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002554 resched_task(rq_of(cfs_rq)->curr);
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +01002555 /*
2556 * The current task ran long enough, ensure it doesn't get
2557 * re-elected due to buddy favours.
2558 */
2559 clear_buddies(cfs_rq, curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +02002560 return;
2561 }
2562
2563 /*
2564 * Ensure that a task that missed wakeup preemption by a
2565 * narrow margin doesn't have to wait for a full slice.
2566 * This also mitigates buddy induced latencies under load.
2567 */
Mike Galbraithf685cea2009-10-23 23:09:22 +02002568 if (delta_exec < sysctl_sched_min_granularity)
2569 return;
2570
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002571 se = __pick_first_entity(cfs_rq);
2572 delta = curr->vruntime - se->vruntime;
Mike Galbraithf685cea2009-10-23 23:09:22 +02002573
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002574 if (delta < 0)
2575 return;
Mike Galbraithd7d82942011-01-05 05:41:17 +01002576
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002577 if (delta > ideal_runtime)
2578 resched_task(rq_of(cfs_rq)->curr);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002579}
2580
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002581static void
Ingo Molnar8494f412007-08-09 11:16:48 +02002582set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002583{
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002584 /* 'current' is not kept within the tree. */
2585 if (se->on_rq) {
2586 /*
2587 * Any task has to be enqueued before it get to execute on
2588 * a CPU. So account for the time it spent waiting on the
2589 * runqueue.
2590 */
2591 update_stats_wait_end(cfs_rq, se);
2592 __dequeue_entity(cfs_rq, se);
2593 }
2594
Ingo Molnar79303e92007-08-09 11:16:47 +02002595 update_stats_curr_start(cfs_rq, se);
Ingo Molnar429d43b2007-10-15 17:00:03 +02002596 cfs_rq->curr = se;
Ingo Molnareba1ed42007-10-15 17:00:02 +02002597#ifdef CONFIG_SCHEDSTATS
2598 /*
2599 * Track our maximum slice length, if the CPU's load is at
2600 * least twice that of our own weight (i.e. dont track it
2601 * when there are only lesser-weight tasks around):
2602 */
Dmitry Adamushko495eca42007-10-15 17:00:06 +02002603 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03002604 se->statistics.slice_max = max(se->statistics.slice_max,
Ingo Molnareba1ed42007-10-15 17:00:02 +02002605 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2606 }
2607#endif
Peter Zijlstra4a55b452007-09-05 14:32:49 +02002608 se->prev_sum_exec_runtime = se->sum_exec_runtime;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002609}
2610
Peter Zijlstra3f3a4902008-10-24 11:06:16 +02002611static int
2612wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2613
Rik van Rielac53db52011-02-01 09:51:03 -05002614/*
2615 * Pick the next process, keeping these things in mind, in this order:
2616 * 1) keep things fair between processes/task groups
2617 * 2) pick the "next" process, since someone really wants that to run
2618 * 3) pick the "last" process, for cache locality
2619 * 4) do not run the "skip" process, if something else is available
2620 */
Peter Zijlstraf4b67552008-11-04 21:25:07 +01002621static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002622{
Rik van Rielac53db52011-02-01 09:51:03 -05002623 struct sched_entity *se = __pick_first_entity(cfs_rq);
Mike Galbraithf685cea2009-10-23 23:09:22 +02002624 struct sched_entity *left = se;
Peter Zijlstraf4b67552008-11-04 21:25:07 +01002625
Rik van Rielac53db52011-02-01 09:51:03 -05002626 /*
2627 * Avoid running the skip buddy, if running something else can
2628 * be done without getting too unfair.
2629 */
2630 if (cfs_rq->skip == se) {
2631 struct sched_entity *second = __pick_next_entity(se);
2632 if (second && wakeup_preempt_entity(second, left) < 1)
2633 se = second;
2634 }
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002635
Mike Galbraithf685cea2009-10-23 23:09:22 +02002636 /*
2637 * Prefer last buddy, try to return the CPU to a preempted task.
2638 */
2639 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2640 se = cfs_rq->last;
2641
Rik van Rielac53db52011-02-01 09:51:03 -05002642 /*
2643 * Someone really wants this to run. If it's not unfair, run it.
2644 */
2645 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2646 se = cfs_rq->next;
2647
Mike Galbraithf685cea2009-10-23 23:09:22 +02002648 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +01002649
2650 return se;
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002651}
2652
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002653static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2654
Ingo Molnarab6cde22007-08-09 11:16:48 +02002655static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002656{
2657 /*
2658 * If still on the runqueue then deactivate_task()
2659 * was not called and update_curr() has to be done:
2660 */
2661 if (prev->on_rq)
Ingo Molnarb7cc0892007-08-09 11:16:47 +02002662 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002663
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002664 /* throttle cfs_rqs exceeding runtime */
2665 check_cfs_rq_runtime(cfs_rq);
2666
Peter Zijlstraddc97292007-10-15 17:00:10 +02002667 check_spread(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002668 if (prev->on_rq) {
Ingo Molnar5870db52007-08-09 11:16:47 +02002669 update_stats_wait_start(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002670 /* Put 'current' back into the tree. */
2671 __enqueue_entity(cfs_rq, prev);
Paul Turner9d85f212012-10-04 13:18:29 +02002672 /* in !on_rq case, update occurred at dequeue */
Paul Turner9ee474f2012-10-04 13:18:30 +02002673 update_entity_load_avg(prev, 1);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002674 }
Ingo Molnar429d43b2007-10-15 17:00:03 +02002675 cfs_rq->curr = NULL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002676}
2677
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002678static void
2679entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002680{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002681 /*
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002682 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002683 */
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002684 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002685
Paul Turner43365bd2010-12-15 19:10:17 -08002686 /*
Paul Turner9d85f212012-10-04 13:18:29 +02002687 * Ensure that runnable average is periodically updated.
2688 */
Paul Turner9ee474f2012-10-04 13:18:30 +02002689 update_entity_load_avg(curr, 1);
Paul Turneraff3e492012-10-04 13:18:30 +02002690 update_cfs_rq_blocked_load(cfs_rq, 1);
Peter Zijlstrabf0bd942013-07-26 23:48:42 +02002691 update_cfs_shares(cfs_rq);
Paul Turner9d85f212012-10-04 13:18:29 +02002692
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002693#ifdef CONFIG_SCHED_HRTICK
2694 /*
2695 * queued ticks are scheduled to match the slice, so don't bother
2696 * validating it and just reschedule.
2697 */
Harvey Harrison983ed7a2008-04-24 18:17:55 -07002698 if (queued) {
2699 resched_task(rq_of(cfs_rq)->curr);
2700 return;
2701 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002702 /*
2703 * don't let the period tick interfere with the hrtick preemption
2704 */
2705 if (!sched_feat(DOUBLE_TICK) &&
2706 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2707 return;
2708#endif
2709
Yong Zhang2c2efae2011-07-29 16:20:33 +08002710 if (cfs_rq->nr_running > 1)
Ingo Molnar2e09bf52007-10-15 17:00:05 +02002711 check_preempt_tick(cfs_rq, curr);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002712}
2713
Paul Turnerab84d312011-07-21 09:43:28 -07002714
2715/**************************************************
2716 * CFS bandwidth control machinery
2717 */
2718
2719#ifdef CONFIG_CFS_BANDWIDTH
Peter Zijlstra029632f2011-10-25 10:00:11 +02002720
2721#ifdef HAVE_JUMP_LABEL
Ingo Molnarc5905af2012-02-24 08:31:31 +01002722static struct static_key __cfs_bandwidth_used;
Peter Zijlstra029632f2011-10-25 10:00:11 +02002723
2724static inline bool cfs_bandwidth_used(void)
2725{
Ingo Molnarc5905af2012-02-24 08:31:31 +01002726 return static_key_false(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002727}
2728
2729void account_cfs_bandwidth_used(int enabled, int was_enabled)
2730{
2731 /* only need to count groups transitioning between enabled/!enabled */
2732 if (enabled && !was_enabled)
Ingo Molnarc5905af2012-02-24 08:31:31 +01002733 static_key_slow_inc(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002734 else if (!enabled && was_enabled)
Ingo Molnarc5905af2012-02-24 08:31:31 +01002735 static_key_slow_dec(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002736}
2737#else /* HAVE_JUMP_LABEL */
2738static bool cfs_bandwidth_used(void)
2739{
2740 return true;
2741}
2742
2743void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2744#endif /* HAVE_JUMP_LABEL */
2745
Paul Turnerab84d312011-07-21 09:43:28 -07002746/*
2747 * default period for cfs group bandwidth.
2748 * default: 0.1s, units: nanoseconds
2749 */
2750static inline u64 default_cfs_period(void)
2751{
2752 return 100000000ULL;
2753}
Paul Turnerec12cb72011-07-21 09:43:30 -07002754
2755static inline u64 sched_cfs_bandwidth_slice(void)
2756{
2757 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2758}
2759
Paul Turnera9cf55b2011-07-21 09:43:32 -07002760/*
2761 * Replenish runtime according to assigned quota and update expiration time.
2762 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2763 * additional synchronization around rq->lock.
2764 *
2765 * requires cfs_b->lock
2766 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02002767void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
Paul Turnera9cf55b2011-07-21 09:43:32 -07002768{
2769 u64 now;
2770
2771 if (cfs_b->quota == RUNTIME_INF)
2772 return;
2773
2774 now = sched_clock_cpu(smp_processor_id());
2775 cfs_b->runtime = cfs_b->quota;
2776 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2777}
2778
Peter Zijlstra029632f2011-10-25 10:00:11 +02002779static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2780{
2781 return &tg->cfs_bandwidth;
2782}
2783
Paul Turnerf1b17282012-10-04 13:18:31 +02002784/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2785static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2786{
2787 if (unlikely(cfs_rq->throttle_count))
2788 return cfs_rq->throttled_clock_task;
2789
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002790 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
Paul Turnerf1b17282012-10-04 13:18:31 +02002791}
2792
Paul Turner85dac902011-07-21 09:43:33 -07002793/* returns 0 on failure to allocate runtime */
2794static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
Paul Turnerec12cb72011-07-21 09:43:30 -07002795{
2796 struct task_group *tg = cfs_rq->tg;
2797 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002798 u64 amount = 0, min_amount, expires;
Paul Turnerec12cb72011-07-21 09:43:30 -07002799
2800 /* note: this is a positive sum as runtime_remaining <= 0 */
2801 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2802
2803 raw_spin_lock(&cfs_b->lock);
2804 if (cfs_b->quota == RUNTIME_INF)
2805 amount = min_amount;
Paul Turner58088ad2011-07-21 09:43:31 -07002806 else {
Paul Turnera9cf55b2011-07-21 09:43:32 -07002807 /*
2808 * If the bandwidth pool has become inactive, then at least one
2809 * period must have elapsed since the last consumption.
2810 * Refresh the global state and ensure bandwidth timer becomes
2811 * active.
2812 */
2813 if (!cfs_b->timer_active) {
2814 __refill_cfs_bandwidth_runtime(cfs_b);
Paul Turner58088ad2011-07-21 09:43:31 -07002815 __start_cfs_bandwidth(cfs_b);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002816 }
Paul Turner58088ad2011-07-21 09:43:31 -07002817
2818 if (cfs_b->runtime > 0) {
2819 amount = min(cfs_b->runtime, min_amount);
2820 cfs_b->runtime -= amount;
2821 cfs_b->idle = 0;
2822 }
Paul Turnerec12cb72011-07-21 09:43:30 -07002823 }
Paul Turnera9cf55b2011-07-21 09:43:32 -07002824 expires = cfs_b->runtime_expires;
Paul Turnerec12cb72011-07-21 09:43:30 -07002825 raw_spin_unlock(&cfs_b->lock);
2826
2827 cfs_rq->runtime_remaining += amount;
Paul Turnera9cf55b2011-07-21 09:43:32 -07002828 /*
2829 * we may have advanced our local expiration to account for allowed
2830 * spread between our sched_clock and the one on which runtime was
2831 * issued.
2832 */
2833 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2834 cfs_rq->runtime_expires = expires;
Paul Turner85dac902011-07-21 09:43:33 -07002835
2836 return cfs_rq->runtime_remaining > 0;
Paul Turnera9cf55b2011-07-21 09:43:32 -07002837}
2838
2839/*
2840 * Note: This depends on the synchronization provided by sched_clock and the
2841 * fact that rq->clock snapshots this value.
2842 */
2843static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2844{
2845 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002846
2847 /* if the deadline is ahead of our clock, nothing to do */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002848 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
Paul Turnera9cf55b2011-07-21 09:43:32 -07002849 return;
2850
2851 if (cfs_rq->runtime_remaining < 0)
2852 return;
2853
2854 /*
2855 * If the local deadline has passed we have to consider the
2856 * possibility that our sched_clock is 'fast' and the global deadline
2857 * has not truly expired.
2858 *
2859 * Fortunately we can check determine whether this the case by checking
2860 * whether the global deadline has advanced.
2861 */
2862
2863 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2864 /* extend local deadline, drift is bounded above by 2 ticks */
2865 cfs_rq->runtime_expires += TICK_NSEC;
2866 } else {
2867 /* global deadline is ahead, expiration has passed */
2868 cfs_rq->runtime_remaining = 0;
2869 }
Paul Turnerec12cb72011-07-21 09:43:30 -07002870}
2871
2872static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2873 unsigned long delta_exec)
2874{
Paul Turnera9cf55b2011-07-21 09:43:32 -07002875 /* dock delta_exec before expiring quota (as it could span periods) */
Paul Turnerec12cb72011-07-21 09:43:30 -07002876 cfs_rq->runtime_remaining -= delta_exec;
Paul Turnera9cf55b2011-07-21 09:43:32 -07002877 expire_cfs_rq_runtime(cfs_rq);
2878
2879 if (likely(cfs_rq->runtime_remaining > 0))
Paul Turnerec12cb72011-07-21 09:43:30 -07002880 return;
2881
Paul Turner85dac902011-07-21 09:43:33 -07002882 /*
2883 * if we're unable to extend our runtime we resched so that the active
2884 * hierarchy can be throttled
2885 */
2886 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2887 resched_task(rq_of(cfs_rq)->curr);
Paul Turnerec12cb72011-07-21 09:43:30 -07002888}
2889
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07002890static __always_inline
2891void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
Paul Turnerec12cb72011-07-21 09:43:30 -07002892{
Paul Turner56f570e2011-11-07 20:26:33 -08002893 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
Paul Turnerec12cb72011-07-21 09:43:30 -07002894 return;
2895
2896 __account_cfs_rq_runtime(cfs_rq, delta_exec);
2897}
2898
Paul Turner85dac902011-07-21 09:43:33 -07002899static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2900{
Paul Turner56f570e2011-11-07 20:26:33 -08002901 return cfs_bandwidth_used() && cfs_rq->throttled;
Paul Turner85dac902011-07-21 09:43:33 -07002902}
2903
Paul Turner64660c82011-07-21 09:43:36 -07002904/* check whether cfs_rq, or any parent, is throttled */
2905static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2906{
Paul Turner56f570e2011-11-07 20:26:33 -08002907 return cfs_bandwidth_used() && cfs_rq->throttle_count;
Paul Turner64660c82011-07-21 09:43:36 -07002908}
2909
2910/*
2911 * Ensure that neither of the group entities corresponding to src_cpu or
2912 * dest_cpu are members of a throttled hierarchy when performing group
2913 * load-balance operations.
2914 */
2915static inline int throttled_lb_pair(struct task_group *tg,
2916 int src_cpu, int dest_cpu)
2917{
2918 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2919
2920 src_cfs_rq = tg->cfs_rq[src_cpu];
2921 dest_cfs_rq = tg->cfs_rq[dest_cpu];
2922
2923 return throttled_hierarchy(src_cfs_rq) ||
2924 throttled_hierarchy(dest_cfs_rq);
2925}
2926
2927/* updated child weight may affect parent so we have to do this bottom up */
2928static int tg_unthrottle_up(struct task_group *tg, void *data)
2929{
2930 struct rq *rq = data;
2931 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2932
2933 cfs_rq->throttle_count--;
2934#ifdef CONFIG_SMP
2935 if (!cfs_rq->throttle_count) {
Paul Turnerf1b17282012-10-04 13:18:31 +02002936 /* adjust cfs_rq_clock_task() */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002937 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
Paul Turnerf1b17282012-10-04 13:18:31 +02002938 cfs_rq->throttled_clock_task;
Paul Turner64660c82011-07-21 09:43:36 -07002939 }
2940#endif
2941
2942 return 0;
2943}
2944
2945static int tg_throttle_down(struct task_group *tg, void *data)
2946{
2947 struct rq *rq = data;
2948 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2949
Paul Turner82958362012-10-04 13:18:31 +02002950 /* group is entering throttled state, stop time */
2951 if (!cfs_rq->throttle_count)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002952 cfs_rq->throttled_clock_task = rq_clock_task(rq);
Paul Turner64660c82011-07-21 09:43:36 -07002953 cfs_rq->throttle_count++;
2954
2955 return 0;
2956}
2957
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002958static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
Paul Turner85dac902011-07-21 09:43:33 -07002959{
2960 struct rq *rq = rq_of(cfs_rq);
2961 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2962 struct sched_entity *se;
2963 long task_delta, dequeue = 1;
2964
2965 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2966
Paul Turnerf1b17282012-10-04 13:18:31 +02002967 /* freeze hierarchy runnable averages while throttled */
Paul Turner64660c82011-07-21 09:43:36 -07002968 rcu_read_lock();
2969 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2970 rcu_read_unlock();
Paul Turner85dac902011-07-21 09:43:33 -07002971
2972 task_delta = cfs_rq->h_nr_running;
2973 for_each_sched_entity(se) {
2974 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2975 /* throttled entity or throttle-on-deactivate */
2976 if (!se->on_rq)
2977 break;
2978
2979 if (dequeue)
2980 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2981 qcfs_rq->h_nr_running -= task_delta;
2982
2983 if (qcfs_rq->load.weight)
2984 dequeue = 0;
2985 }
2986
2987 if (!se)
2988 rq->nr_running -= task_delta;
2989
2990 cfs_rq->throttled = 1;
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002991 cfs_rq->throttled_clock = rq_clock(rq);
Paul Turner85dac902011-07-21 09:43:33 -07002992 raw_spin_lock(&cfs_b->lock);
2993 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
2994 raw_spin_unlock(&cfs_b->lock);
2995}
2996
Peter Zijlstra029632f2011-10-25 10:00:11 +02002997void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
Paul Turner671fd9d2011-07-21 09:43:34 -07002998{
2999 struct rq *rq = rq_of(cfs_rq);
3000 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3001 struct sched_entity *se;
3002 int enqueue = 1;
3003 long task_delta;
3004
Michael Wang22b958d2013-06-04 14:23:39 +08003005 se = cfs_rq->tg->se[cpu_of(rq)];
Paul Turner671fd9d2011-07-21 09:43:34 -07003006
3007 cfs_rq->throttled = 0;
Frederic Weisbecker1a55af22013-04-12 01:51:01 +02003008
3009 update_rq_clock(rq);
3010
Paul Turner671fd9d2011-07-21 09:43:34 -07003011 raw_spin_lock(&cfs_b->lock);
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003012 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
Paul Turner671fd9d2011-07-21 09:43:34 -07003013 list_del_rcu(&cfs_rq->throttled_list);
3014 raw_spin_unlock(&cfs_b->lock);
3015
Paul Turner64660c82011-07-21 09:43:36 -07003016 /* update hierarchical throttle state */
3017 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3018
Paul Turner671fd9d2011-07-21 09:43:34 -07003019 if (!cfs_rq->load.weight)
3020 return;
3021
3022 task_delta = cfs_rq->h_nr_running;
3023 for_each_sched_entity(se) {
3024 if (se->on_rq)
3025 enqueue = 0;
3026
3027 cfs_rq = cfs_rq_of(se);
3028 if (enqueue)
3029 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3030 cfs_rq->h_nr_running += task_delta;
3031
3032 if (cfs_rq_throttled(cfs_rq))
3033 break;
3034 }
3035
3036 if (!se)
3037 rq->nr_running += task_delta;
3038
3039 /* determine whether we need to wake up potentially idle cpu */
3040 if (rq->curr == rq->idle && rq->cfs.nr_running)
3041 resched_task(rq->curr);
3042}
3043
3044static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3045 u64 remaining, u64 expires)
3046{
3047 struct cfs_rq *cfs_rq;
3048 u64 runtime = remaining;
3049
3050 rcu_read_lock();
3051 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3052 throttled_list) {
3053 struct rq *rq = rq_of(cfs_rq);
3054
3055 raw_spin_lock(&rq->lock);
3056 if (!cfs_rq_throttled(cfs_rq))
3057 goto next;
3058
3059 runtime = -cfs_rq->runtime_remaining + 1;
3060 if (runtime > remaining)
3061 runtime = remaining;
3062 remaining -= runtime;
3063
3064 cfs_rq->runtime_remaining += runtime;
3065 cfs_rq->runtime_expires = expires;
3066
3067 /* we check whether we're throttled above */
3068 if (cfs_rq->runtime_remaining > 0)
3069 unthrottle_cfs_rq(cfs_rq);
3070
3071next:
3072 raw_spin_unlock(&rq->lock);
3073
3074 if (!remaining)
3075 break;
3076 }
3077 rcu_read_unlock();
3078
3079 return remaining;
3080}
3081
Paul Turner58088ad2011-07-21 09:43:31 -07003082/*
3083 * Responsible for refilling a task_group's bandwidth and unthrottling its
3084 * cfs_rqs as appropriate. If there has been no activity within the last
3085 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3086 * used to track this state.
3087 */
3088static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3089{
Paul Turner671fd9d2011-07-21 09:43:34 -07003090 u64 runtime, runtime_expires;
3091 int idle = 1, throttled;
Paul Turner58088ad2011-07-21 09:43:31 -07003092
3093 raw_spin_lock(&cfs_b->lock);
3094 /* no need to continue the timer with no bandwidth constraint */
3095 if (cfs_b->quota == RUNTIME_INF)
3096 goto out_unlock;
3097
Paul Turner671fd9d2011-07-21 09:43:34 -07003098 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3099 /* idle depends on !throttled (for the case of a large deficit) */
3100 idle = cfs_b->idle && !throttled;
Nikhil Raoe8da1b12011-07-21 09:43:40 -07003101 cfs_b->nr_periods += overrun;
Paul Turner671fd9d2011-07-21 09:43:34 -07003102
Paul Turnera9cf55b2011-07-21 09:43:32 -07003103 /* if we're going inactive then everything else can be deferred */
3104 if (idle)
3105 goto out_unlock;
3106
3107 __refill_cfs_bandwidth_runtime(cfs_b);
3108
Paul Turner671fd9d2011-07-21 09:43:34 -07003109 if (!throttled) {
3110 /* mark as potentially idle for the upcoming period */
3111 cfs_b->idle = 1;
3112 goto out_unlock;
3113 }
Paul Turner58088ad2011-07-21 09:43:31 -07003114
Nikhil Raoe8da1b12011-07-21 09:43:40 -07003115 /* account preceding periods in which throttling occurred */
3116 cfs_b->nr_throttled += overrun;
3117
Paul Turner671fd9d2011-07-21 09:43:34 -07003118 /*
3119 * There are throttled entities so we must first use the new bandwidth
3120 * to unthrottle them before making it generally available. This
3121 * ensures that all existing debts will be paid before a new cfs_rq is
3122 * allowed to run.
3123 */
3124 runtime = cfs_b->runtime;
3125 runtime_expires = cfs_b->runtime_expires;
3126 cfs_b->runtime = 0;
3127
3128 /*
3129 * This check is repeated as we are holding onto the new bandwidth
3130 * while we unthrottle. This can potentially race with an unthrottled
3131 * group trying to acquire new bandwidth from the global pool.
3132 */
3133 while (throttled && runtime > 0) {
3134 raw_spin_unlock(&cfs_b->lock);
3135 /* we can't nest cfs_b->lock while distributing bandwidth */
3136 runtime = distribute_cfs_runtime(cfs_b, runtime,
3137 runtime_expires);
3138 raw_spin_lock(&cfs_b->lock);
3139
3140 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3141 }
3142
3143 /* return (any) remaining runtime */
3144 cfs_b->runtime = runtime;
3145 /*
3146 * While we are ensured activity in the period following an
3147 * unthrottle, this also covers the case in which the new bandwidth is
3148 * insufficient to cover the existing bandwidth deficit. (Forcing the
3149 * timer to remain active while there are any throttled entities.)
3150 */
3151 cfs_b->idle = 0;
Paul Turner58088ad2011-07-21 09:43:31 -07003152out_unlock:
3153 if (idle)
3154 cfs_b->timer_active = 0;
3155 raw_spin_unlock(&cfs_b->lock);
3156
3157 return idle;
3158}
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003159
Paul Turnerd8b49862011-07-21 09:43:41 -07003160/* a cfs_rq won't donate quota below this amount */
3161static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3162/* minimum remaining period time to redistribute slack quota */
3163static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3164/* how long we wait to gather additional slack before distributing */
3165static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3166
3167/* are we near the end of the current quota period? */
3168static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3169{
3170 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3171 u64 remaining;
3172
3173 /* if the call-back is running a quota refresh is already occurring */
3174 if (hrtimer_callback_running(refresh_timer))
3175 return 1;
3176
3177 /* is a quota refresh about to occur? */
3178 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3179 if (remaining < min_expire)
3180 return 1;
3181
3182 return 0;
3183}
3184
3185static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3186{
3187 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3188
3189 /* if there's a quota refresh soon don't bother with slack */
3190 if (runtime_refresh_within(cfs_b, min_left))
3191 return;
3192
3193 start_bandwidth_timer(&cfs_b->slack_timer,
3194 ns_to_ktime(cfs_bandwidth_slack_period));
3195}
3196
3197/* we know any runtime found here is valid as update_curr() precedes return */
3198static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3199{
3200 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3201 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3202
3203 if (slack_runtime <= 0)
3204 return;
3205
3206 raw_spin_lock(&cfs_b->lock);
3207 if (cfs_b->quota != RUNTIME_INF &&
3208 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3209 cfs_b->runtime += slack_runtime;
3210
3211 /* we are under rq->lock, defer unthrottling using a timer */
3212 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3213 !list_empty(&cfs_b->throttled_cfs_rq))
3214 start_cfs_slack_bandwidth(cfs_b);
3215 }
3216 raw_spin_unlock(&cfs_b->lock);
3217
3218 /* even if it's not valid for return we don't want to try again */
3219 cfs_rq->runtime_remaining -= slack_runtime;
3220}
3221
3222static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3223{
Paul Turner56f570e2011-11-07 20:26:33 -08003224 if (!cfs_bandwidth_used())
3225 return;
3226
Paul Turnerfccfdc62011-11-07 20:26:34 -08003227 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
Paul Turnerd8b49862011-07-21 09:43:41 -07003228 return;
3229
3230 __return_cfs_rq_runtime(cfs_rq);
3231}
3232
3233/*
3234 * This is done with a timer (instead of inline with bandwidth return) since
3235 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3236 */
3237static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3238{
3239 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3240 u64 expires;
3241
3242 /* confirm we're still not at a refresh boundary */
3243 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
3244 return;
3245
3246 raw_spin_lock(&cfs_b->lock);
3247 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3248 runtime = cfs_b->runtime;
3249 cfs_b->runtime = 0;
3250 }
3251 expires = cfs_b->runtime_expires;
3252 raw_spin_unlock(&cfs_b->lock);
3253
3254 if (!runtime)
3255 return;
3256
3257 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3258
3259 raw_spin_lock(&cfs_b->lock);
3260 if (expires == cfs_b->runtime_expires)
3261 cfs_b->runtime = runtime;
3262 raw_spin_unlock(&cfs_b->lock);
3263}
3264
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003265/*
3266 * When a group wakes up we want to make sure that its quota is not already
3267 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3268 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3269 */
3270static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3271{
Paul Turner56f570e2011-11-07 20:26:33 -08003272 if (!cfs_bandwidth_used())
3273 return;
3274
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003275 /* an active group must be handled by the update_curr()->put() path */
3276 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3277 return;
3278
3279 /* ensure the group is not already throttled */
3280 if (cfs_rq_throttled(cfs_rq))
3281 return;
3282
3283 /* update runtime allocation */
3284 account_cfs_rq_runtime(cfs_rq, 0);
3285 if (cfs_rq->runtime_remaining <= 0)
3286 throttle_cfs_rq(cfs_rq);
3287}
3288
3289/* conditionally throttle active cfs_rq's from put_prev_entity() */
3290static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3291{
Paul Turner56f570e2011-11-07 20:26:33 -08003292 if (!cfs_bandwidth_used())
3293 return;
3294
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003295 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3296 return;
3297
3298 /*
3299 * it's possible for a throttled entity to be forced into a running
3300 * state (e.g. set_curr_task), in this case we're finished.
3301 */
3302 if (cfs_rq_throttled(cfs_rq))
3303 return;
3304
3305 throttle_cfs_rq(cfs_rq);
3306}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003307
Peter Zijlstra029632f2011-10-25 10:00:11 +02003308static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3309{
3310 struct cfs_bandwidth *cfs_b =
3311 container_of(timer, struct cfs_bandwidth, slack_timer);
3312 do_sched_cfs_slack_timer(cfs_b);
3313
3314 return HRTIMER_NORESTART;
3315}
3316
3317static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3318{
3319 struct cfs_bandwidth *cfs_b =
3320 container_of(timer, struct cfs_bandwidth, period_timer);
3321 ktime_t now;
3322 int overrun;
3323 int idle = 0;
3324
3325 for (;;) {
3326 now = hrtimer_cb_get_time(timer);
3327 overrun = hrtimer_forward(timer, now, cfs_b->period);
3328
3329 if (!overrun)
3330 break;
3331
3332 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3333 }
3334
3335 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3336}
3337
3338void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3339{
3340 raw_spin_lock_init(&cfs_b->lock);
3341 cfs_b->runtime = 0;
3342 cfs_b->quota = RUNTIME_INF;
3343 cfs_b->period = ns_to_ktime(default_cfs_period());
3344
3345 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3346 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3347 cfs_b->period_timer.function = sched_cfs_period_timer;
3348 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3349 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3350}
3351
3352static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3353{
3354 cfs_rq->runtime_enabled = 0;
3355 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3356}
3357
3358/* requires cfs_b->lock, may release to reprogram timer */
3359void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3360{
3361 /*
3362 * The timer may be active because we're trying to set a new bandwidth
3363 * period or because we're racing with the tear-down path
3364 * (timer_active==0 becomes visible before the hrtimer call-back
3365 * terminates). In either case we ensure that it's re-programmed
3366 */
3367 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
3368 raw_spin_unlock(&cfs_b->lock);
3369 /* ensure cfs_b->lock is available while we wait */
3370 hrtimer_cancel(&cfs_b->period_timer);
3371
3372 raw_spin_lock(&cfs_b->lock);
3373 /* if someone else restarted the timer then we're done */
3374 if (cfs_b->timer_active)
3375 return;
3376 }
3377
3378 cfs_b->timer_active = 1;
3379 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3380}
3381
3382static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3383{
3384 hrtimer_cancel(&cfs_b->period_timer);
3385 hrtimer_cancel(&cfs_b->slack_timer);
3386}
3387
Arnd Bergmann38dc3342013-01-25 14:14:22 +00003388static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
Peter Zijlstra029632f2011-10-25 10:00:11 +02003389{
3390 struct cfs_rq *cfs_rq;
3391
3392 for_each_leaf_cfs_rq(rq, cfs_rq) {
3393 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3394
3395 if (!cfs_rq->runtime_enabled)
3396 continue;
3397
3398 /*
3399 * clock_task is not advancing so we just need to make sure
3400 * there's some valid quota amount
3401 */
3402 cfs_rq->runtime_remaining = cfs_b->quota;
3403 if (cfs_rq_throttled(cfs_rq))
3404 unthrottle_cfs_rq(cfs_rq);
3405 }
3406}
3407
3408#else /* CONFIG_CFS_BANDWIDTH */
Paul Turnerf1b17282012-10-04 13:18:31 +02003409static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3410{
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003411 return rq_clock_task(rq_of(cfs_rq));
Paul Turnerf1b17282012-10-04 13:18:31 +02003412}
3413
3414static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3415 unsigned long delta_exec) {}
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003416static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3417static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07003418static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
Paul Turner85dac902011-07-21 09:43:33 -07003419
3420static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3421{
3422 return 0;
3423}
Paul Turner64660c82011-07-21 09:43:36 -07003424
3425static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3426{
3427 return 0;
3428}
3429
3430static inline int throttled_lb_pair(struct task_group *tg,
3431 int src_cpu, int dest_cpu)
3432{
3433 return 0;
3434}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003435
3436void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3437
3438#ifdef CONFIG_FAIR_GROUP_SCHED
3439static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
Paul Turnerab84d312011-07-21 09:43:28 -07003440#endif
3441
Peter Zijlstra029632f2011-10-25 10:00:11 +02003442static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3443{
3444 return NULL;
3445}
3446static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
Peter Boonstoppela4c96ae2012-08-09 15:34:47 -07003447static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003448
3449#endif /* CONFIG_CFS_BANDWIDTH */
3450
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003451/**************************************************
3452 * CFS operations on tasks:
3453 */
3454
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003455#ifdef CONFIG_SCHED_HRTICK
3456static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3457{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003458 struct sched_entity *se = &p->se;
3459 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3460
3461 WARN_ON(task_rq(p) != rq);
3462
Mike Galbraithb39e66e2011-11-22 15:20:07 +01003463 if (cfs_rq->nr_running > 1) {
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003464 u64 slice = sched_slice(cfs_rq, se);
3465 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3466 s64 delta = slice - ran;
3467
3468 if (delta < 0) {
3469 if (rq->curr == p)
3470 resched_task(p);
3471 return;
3472 }
3473
3474 /*
3475 * Don't schedule slices shorter than 10000ns, that just
3476 * doesn't make sense. Rely on vruntime for fairness.
3477 */
Peter Zijlstra31656512008-07-18 18:01:23 +02003478 if (rq->curr != p)
Peter Zijlstra157124c2008-07-28 11:53:11 +02003479 delta = max_t(s64, 10000LL, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003480
Peter Zijlstra31656512008-07-18 18:01:23 +02003481 hrtick_start(rq, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003482 }
3483}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003484
3485/*
3486 * called from enqueue/dequeue and updates the hrtick when the
3487 * current task is from our class and nr_running is low enough
3488 * to matter.
3489 */
3490static void hrtick_update(struct rq *rq)
3491{
3492 struct task_struct *curr = rq->curr;
3493
Mike Galbraithb39e66e2011-11-22 15:20:07 +01003494 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003495 return;
3496
3497 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3498 hrtick_start_fair(rq, curr);
3499}
Dhaval Giani55e12e52008-06-24 23:39:43 +05303500#else /* !CONFIG_SCHED_HRTICK */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003501static inline void
3502hrtick_start_fair(struct rq *rq, struct task_struct *p)
3503{
3504}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003505
3506static inline void hrtick_update(struct rq *rq)
3507{
3508}
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003509#endif
3510
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003511/*
3512 * The enqueue_task method is called before nr_running is
3513 * increased. Here we update the fair scheduling stats and
3514 * then put the task into the rbtree:
3515 */
Thomas Gleixnerea87bb72010-01-20 20:58:57 +00003516static void
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003517enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003518{
3519 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003520 struct sched_entity *se = &p->se;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003521
3522 for_each_sched_entity(se) {
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003523 if (se->on_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003524 break;
3525 cfs_rq = cfs_rq_of(se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003526 enqueue_entity(cfs_rq, se, flags);
Paul Turner85dac902011-07-21 09:43:33 -07003527
3528 /*
3529 * end evaluation on encountering a throttled cfs_rq
3530 *
3531 * note: in the case of encountering a throttled cfs_rq we will
3532 * post the final h_nr_running increment below.
3533 */
3534 if (cfs_rq_throttled(cfs_rq))
3535 break;
Paul Turner953bfcd2011-07-21 09:43:27 -07003536 cfs_rq->h_nr_running++;
Paul Turner85dac902011-07-21 09:43:33 -07003537
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003538 flags = ENQUEUE_WAKEUP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003539 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003540
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003541 for_each_sched_entity(se) {
Lin Ming0f317142011-07-22 09:14:31 +08003542 cfs_rq = cfs_rq_of(se);
Paul Turner953bfcd2011-07-21 09:43:27 -07003543 cfs_rq->h_nr_running++;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003544
Paul Turner85dac902011-07-21 09:43:33 -07003545 if (cfs_rq_throttled(cfs_rq))
3546 break;
3547
Linus Torvalds17bc14b2012-12-14 07:20:43 -08003548 update_cfs_shares(cfs_rq);
Paul Turner9ee474f2012-10-04 13:18:30 +02003549 update_entity_load_avg(se, 1);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003550 }
3551
Ben Segall18bf2802012-10-04 12:51:20 +02003552 if (!se) {
3553 update_rq_runnable_avg(rq, rq->nr_running);
Paul Turner85dac902011-07-21 09:43:33 -07003554 inc_nr_running(rq);
Ben Segall18bf2802012-10-04 12:51:20 +02003555 }
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003556 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003557}
3558
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003559static void set_next_buddy(struct sched_entity *se);
3560
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003561/*
3562 * The dequeue_task method is called before nr_running is
3563 * decreased. We remove the task from the rbtree and
3564 * update the fair scheduling stats:
3565 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003566static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003567{
3568 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003569 struct sched_entity *se = &p->se;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003570 int task_sleep = flags & DEQUEUE_SLEEP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003571
3572 for_each_sched_entity(se) {
3573 cfs_rq = cfs_rq_of(se);
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003574 dequeue_entity(cfs_rq, se, flags);
Paul Turner85dac902011-07-21 09:43:33 -07003575
3576 /*
3577 * end evaluation on encountering a throttled cfs_rq
3578 *
3579 * note: in the case of encountering a throttled cfs_rq we will
3580 * post the final h_nr_running decrement below.
3581 */
3582 if (cfs_rq_throttled(cfs_rq))
3583 break;
Paul Turner953bfcd2011-07-21 09:43:27 -07003584 cfs_rq->h_nr_running--;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003585
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003586 /* Don't dequeue parent if it has other entities besides us */
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003587 if (cfs_rq->load.weight) {
3588 /*
3589 * Bias pick_next to pick a task from this cfs_rq, as
3590 * p is sleeping when it is within its sched_slice.
3591 */
3592 if (task_sleep && parent_entity(se))
3593 set_next_buddy(parent_entity(se));
Paul Turner9598c822011-07-06 22:30:37 -07003594
3595 /* avoid re-evaluating load for this entity */
3596 se = parent_entity(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003597 break;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003598 }
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003599 flags |= DEQUEUE_SLEEP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003600 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003601
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003602 for_each_sched_entity(se) {
Lin Ming0f317142011-07-22 09:14:31 +08003603 cfs_rq = cfs_rq_of(se);
Paul Turner953bfcd2011-07-21 09:43:27 -07003604 cfs_rq->h_nr_running--;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003605
Paul Turner85dac902011-07-21 09:43:33 -07003606 if (cfs_rq_throttled(cfs_rq))
3607 break;
3608
Linus Torvalds17bc14b2012-12-14 07:20:43 -08003609 update_cfs_shares(cfs_rq);
Paul Turner9ee474f2012-10-04 13:18:30 +02003610 update_entity_load_avg(se, 1);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003611 }
3612
Ben Segall18bf2802012-10-04 12:51:20 +02003613 if (!se) {
Paul Turner85dac902011-07-21 09:43:33 -07003614 dec_nr_running(rq);
Ben Segall18bf2802012-10-04 12:51:20 +02003615 update_rq_runnable_avg(rq, 1);
3616 }
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003617 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003618}
3619
Gregory Haskinse7693a32008-01-25 21:08:09 +01003620#ifdef CONFIG_SMP
Peter Zijlstra029632f2011-10-25 10:00:11 +02003621/* Used instead of source_load when we know the type == 0 */
3622static unsigned long weighted_cpuload(const int cpu)
3623{
Alex Shib92486c2013-06-20 10:18:50 +08003624 return cpu_rq(cpu)->cfs.runnable_load_avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003625}
3626
3627/*
3628 * Return a low guess at the load of a migration-source cpu weighted
3629 * according to the scheduling class and "nice" value.
3630 *
3631 * We want to under-estimate the load of migration sources, to
3632 * balance conservatively.
3633 */
3634static unsigned long source_load(int cpu, int type)
3635{
3636 struct rq *rq = cpu_rq(cpu);
3637 unsigned long total = weighted_cpuload(cpu);
3638
3639 if (type == 0 || !sched_feat(LB_BIAS))
3640 return total;
3641
3642 return min(rq->cpu_load[type-1], total);
3643}
3644
3645/*
3646 * Return a high guess at the load of a migration-target cpu weighted
3647 * according to the scheduling class and "nice" value.
3648 */
3649static unsigned long target_load(int cpu, int type)
3650{
3651 struct rq *rq = cpu_rq(cpu);
3652 unsigned long total = weighted_cpuload(cpu);
3653
3654 if (type == 0 || !sched_feat(LB_BIAS))
3655 return total;
3656
3657 return max(rq->cpu_load[type-1], total);
3658}
3659
3660static unsigned long power_of(int cpu)
3661{
3662 return cpu_rq(cpu)->cpu_power;
3663}
3664
3665static unsigned long cpu_avg_load_per_task(int cpu)
3666{
3667 struct rq *rq = cpu_rq(cpu);
3668 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
Alex Shib92486c2013-06-20 10:18:50 +08003669 unsigned long load_avg = rq->cfs.runnable_load_avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003670
3671 if (nr_running)
Alex Shib92486c2013-06-20 10:18:50 +08003672 return load_avg / nr_running;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003673
3674 return 0;
3675}
3676
Michael Wang62470412013-07-04 12:55:51 +08003677static void record_wakee(struct task_struct *p)
3678{
3679 /*
3680 * Rough decay (wiping) for cost saving, don't worry
3681 * about the boundary, really active task won't care
3682 * about the loss.
3683 */
3684 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3685 current->wakee_flips = 0;
3686 current->wakee_flip_decay_ts = jiffies;
3687 }
3688
3689 if (current->last_wakee != p) {
3690 current->last_wakee = p;
3691 current->wakee_flips++;
3692 }
3693}
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003694
Peter Zijlstra74f8e4b2011-04-05 17:23:47 +02003695static void task_waking_fair(struct task_struct *p)
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003696{
3697 struct sched_entity *se = &p->se;
3698 struct cfs_rq *cfs_rq = cfs_rq_of(se);
Peter Zijlstra3fe16982011-04-05 17:23:48 +02003699 u64 min_vruntime;
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003700
Peter Zijlstra3fe16982011-04-05 17:23:48 +02003701#ifndef CONFIG_64BIT
3702 u64 min_vruntime_copy;
Peter Zijlstra74f8e4b2011-04-05 17:23:47 +02003703
Peter Zijlstra3fe16982011-04-05 17:23:48 +02003704 do {
3705 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3706 smp_rmb();
3707 min_vruntime = cfs_rq->min_vruntime;
3708 } while (min_vruntime != min_vruntime_copy);
3709#else
3710 min_vruntime = cfs_rq->min_vruntime;
3711#endif
3712
3713 se->vruntime -= min_vruntime;
Michael Wang62470412013-07-04 12:55:51 +08003714 record_wakee(p);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003715}
3716
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003717#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02003718/*
3719 * effective_load() calculates the load change as seen from the root_task_group
3720 *
3721 * Adding load to a group doesn't make a group heavier, but can cause movement
3722 * of group shares between cpus. Assuming the shares were perfectly aligned one
3723 * can calculate the shift in shares.
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003724 *
3725 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3726 * on this @cpu and results in a total addition (subtraction) of @wg to the
3727 * total group weight.
3728 *
3729 * Given a runqueue weight distribution (rw_i) we can compute a shares
3730 * distribution (s_i) using:
3731 *
3732 * s_i = rw_i / \Sum rw_j (1)
3733 *
3734 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3735 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3736 * shares distribution (s_i):
3737 *
3738 * rw_i = { 2, 4, 1, 0 }
3739 * s_i = { 2/7, 4/7, 1/7, 0 }
3740 *
3741 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3742 * task used to run on and the CPU the waker is running on), we need to
3743 * compute the effect of waking a task on either CPU and, in case of a sync
3744 * wakeup, compute the effect of the current task going to sleep.
3745 *
3746 * So for a change of @wl to the local @cpu with an overall group weight change
3747 * of @wl we can compute the new shares distribution (s'_i) using:
3748 *
3749 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3750 *
3751 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3752 * differences in waking a task to CPU 0. The additional task changes the
3753 * weight and shares distributions like:
3754 *
3755 * rw'_i = { 3, 4, 1, 0 }
3756 * s'_i = { 3/8, 4/8, 1/8, 0 }
3757 *
3758 * We can then compute the difference in effective weight by using:
3759 *
3760 * dw_i = S * (s'_i - s_i) (3)
3761 *
3762 * Where 'S' is the group weight as seen by its parent.
3763 *
3764 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3765 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3766 * 4/7) times the weight of the group.
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02003767 */
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003768static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003769{
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003770 struct sched_entity *se = tg->se[cpu];
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02003771
Mel Gorman58d081b2013-10-07 11:29:10 +01003772 if (!tg->parent || !wl) /* the trivial, non-cgroup case */
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02003773 return wl;
3774
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003775 for_each_sched_entity(se) {
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003776 long w, W;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003777
Paul Turner977dda72011-01-14 17:57:50 -08003778 tg = se->my_q->tg;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003779
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003780 /*
3781 * W = @wg + \Sum rw_j
3782 */
3783 W = wg + calc_tg_weight(tg, se->my_q);
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003784
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003785 /*
3786 * w = rw_i + @wl
3787 */
3788 w = se->my_q->load.weight + wl;
Peter Zijlstra940959e2008-09-23 15:33:42 +02003789
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003790 /*
3791 * wl = S * s'_i; see (2)
3792 */
3793 if (W > 0 && w < W)
3794 wl = (w * tg->shares) / W;
Paul Turner977dda72011-01-14 17:57:50 -08003795 else
3796 wl = tg->shares;
Peter Zijlstra940959e2008-09-23 15:33:42 +02003797
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003798 /*
3799 * Per the above, wl is the new se->load.weight value; since
3800 * those are clipped to [MIN_SHARES, ...) do so now. See
3801 * calc_cfs_shares().
3802 */
Paul Turner977dda72011-01-14 17:57:50 -08003803 if (wl < MIN_SHARES)
3804 wl = MIN_SHARES;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003805
3806 /*
3807 * wl = dw_i = S * (s'_i - s_i); see (3)
3808 */
Paul Turner977dda72011-01-14 17:57:50 -08003809 wl -= se->load.weight;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003810
3811 /*
3812 * Recursively apply this logic to all parent groups to compute
3813 * the final effective load change on the root group. Since
3814 * only the @tg group gets extra weight, all parent groups can
3815 * only redistribute existing shares. @wl is the shift in shares
3816 * resulting from this level per the above.
3817 */
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003818 wg = 0;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003819 }
3820
3821 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003822}
3823#else
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003824
Mel Gorman58d081b2013-10-07 11:29:10 +01003825static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003826{
Peter Zijlstra83378262008-06-27 13:41:37 +02003827 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003828}
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003829
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003830#endif
3831
Michael Wang62470412013-07-04 12:55:51 +08003832static int wake_wide(struct task_struct *p)
3833{
Peter Zijlstra7d9ffa82013-07-04 12:56:46 +08003834 int factor = this_cpu_read(sd_llc_size);
Michael Wang62470412013-07-04 12:55:51 +08003835
3836 /*
3837 * Yeah, it's the switching-frequency, could means many wakee or
3838 * rapidly switch, use factor here will just help to automatically
3839 * adjust the loose-degree, so bigger node will lead to more pull.
3840 */
3841 if (p->wakee_flips > factor) {
3842 /*
3843 * wakee is somewhat hot, it needs certain amount of cpu
3844 * resource, so if waker is far more hot, prefer to leave
3845 * it alone.
3846 */
3847 if (current->wakee_flips > (factor * p->wakee_flips))
3848 return 1;
3849 }
3850
3851 return 0;
3852}
3853
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003854static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003855{
Paul Turnere37b6a72011-01-21 20:44:59 -08003856 s64 this_load, load;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003857 int idx, this_cpu, prev_cpu;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003858 unsigned long tl_per_task;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003859 struct task_group *tg;
Peter Zijlstra83378262008-06-27 13:41:37 +02003860 unsigned long weight;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02003861 int balanced;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003862
Michael Wang62470412013-07-04 12:55:51 +08003863 /*
3864 * If we wake multiple tasks be careful to not bounce
3865 * ourselves around too much.
3866 */
3867 if (wake_wide(p))
3868 return 0;
3869
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003870 idx = sd->wake_idx;
3871 this_cpu = smp_processor_id();
3872 prev_cpu = task_cpu(p);
3873 load = source_load(prev_cpu, idx);
3874 this_load = target_load(this_cpu, idx);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003875
3876 /*
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003877 * If sync wakeup then subtract the (maximum possible)
3878 * effect of the currently running task from the load
3879 * of the current CPU:
3880 */
Peter Zijlstra83378262008-06-27 13:41:37 +02003881 if (sync) {
3882 tg = task_group(current);
3883 weight = current->se.load.weight;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003884
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003885 this_load += effective_load(tg, this_cpu, -weight, -weight);
Peter Zijlstra83378262008-06-27 13:41:37 +02003886 load += effective_load(tg, prev_cpu, 0, -weight);
3887 }
3888
3889 tg = task_group(p);
3890 weight = p->se.load.weight;
3891
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02003892 /*
3893 * In low-load situations, where prev_cpu is idle and this_cpu is idle
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003894 * due to the sync cause above having dropped this_load to 0, we'll
3895 * always have an imbalance, but there's really nothing you can do
3896 * about that, so that's good too.
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02003897 *
3898 * Otherwise check if either cpus are near enough in load to allow this
3899 * task to be woken on this_cpu.
3900 */
Paul Turnere37b6a72011-01-21 20:44:59 -08003901 if (this_load > 0) {
3902 s64 this_eff_load, prev_eff_load;
Peter Zijlstrae51fd5e2010-05-31 12:37:30 +02003903
3904 this_eff_load = 100;
3905 this_eff_load *= power_of(prev_cpu);
3906 this_eff_load *= this_load +
3907 effective_load(tg, this_cpu, weight, weight);
3908
3909 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3910 prev_eff_load *= power_of(this_cpu);
3911 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3912
3913 balanced = this_eff_load <= prev_eff_load;
3914 } else
3915 balanced = true;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02003916
3917 /*
3918 * If the currently running task will sleep within
3919 * a reasonable amount of time then attract this newly
3920 * woken task:
3921 */
Peter Zijlstra2fb76352008-10-08 09:16:04 +02003922 if (sync && balanced)
3923 return 1;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02003924
Lucas De Marchi41acab82010-03-10 23:37:45 -03003925 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
Mike Galbraithb3137bc2008-05-29 11:11:41 +02003926 tl_per_task = cpu_avg_load_per_task(this_cpu);
3927
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003928 if (balanced ||
3929 (this_load <= load &&
3930 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003931 /*
3932 * This domain has SD_WAKE_AFFINE and
3933 * p is cache cold in this domain, and
3934 * there is no bad imbalance.
3935 */
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003936 schedstat_inc(sd, ttwu_move_affine);
Lucas De Marchi41acab82010-03-10 23:37:45 -03003937 schedstat_inc(p, se.statistics.nr_wakeups_affine);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003938
3939 return 1;
3940 }
3941 return 0;
3942}
3943
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003944/*
3945 * find_idlest_group finds and returns the least busy CPU group within the
3946 * domain.
3947 */
3948static struct sched_group *
Peter Zijlstra78e7ed52009-09-03 13:16:51 +02003949find_idlest_group(struct sched_domain *sd, struct task_struct *p,
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02003950 int this_cpu, int load_idx)
Gregory Haskinse7693a32008-01-25 21:08:09 +01003951{
Andi Kleenb3bd3de2010-08-10 14:17:51 -07003952 struct sched_group *idlest = NULL, *group = sd->groups;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003953 unsigned long min_load = ULONG_MAX, this_load = 0;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003954 int imbalance = 100 + (sd->imbalance_pct-100)/2;
Gregory Haskinse7693a32008-01-25 21:08:09 +01003955
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003956 do {
3957 unsigned long load, avg_load;
3958 int local_group;
3959 int i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01003960
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003961 /* Skip over this group if it has no CPUs allowed */
3962 if (!cpumask_intersects(sched_group_cpus(group),
Peter Zijlstrafa17b502011-06-16 12:23:22 +02003963 tsk_cpus_allowed(p)))
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003964 continue;
3965
3966 local_group = cpumask_test_cpu(this_cpu,
3967 sched_group_cpus(group));
3968
3969 /* Tally up the load of all CPUs in the group */
3970 avg_load = 0;
3971
3972 for_each_cpu(i, sched_group_cpus(group)) {
3973 /* Bias balancing toward cpus of our domain */
3974 if (local_group)
3975 load = source_load(i, load_idx);
3976 else
3977 load = target_load(i, load_idx);
3978
3979 avg_load += load;
3980 }
3981
3982 /* Adjust by relative CPU power of the group */
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02003983 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003984
3985 if (local_group) {
3986 this_load = avg_load;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003987 } else if (avg_load < min_load) {
3988 min_load = avg_load;
3989 idlest = group;
3990 }
3991 } while (group = group->next, group != sd->groups);
3992
3993 if (!idlest || 100*this_load < imbalance*min_load)
3994 return NULL;
3995 return idlest;
3996}
3997
3998/*
3999 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4000 */
4001static int
4002find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4003{
4004 unsigned long load, min_load = ULONG_MAX;
4005 int idlest = -1;
4006 int i;
4007
4008 /* Traverse only the allowed CPUs */
Peter Zijlstrafa17b502011-06-16 12:23:22 +02004009 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004010 load = weighted_cpuload(i);
4011
4012 if (load < min_load || (load == min_load && i == this_cpu)) {
4013 min_load = load;
4014 idlest = i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004015 }
4016 }
4017
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004018 return idlest;
4019}
Gregory Haskinse7693a32008-01-25 21:08:09 +01004020
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004021/*
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004022 * Try and locate an idle CPU in the sched_domain.
4023 */
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004024static int select_idle_sibling(struct task_struct *p, int target)
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004025{
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004026 struct sched_domain *sd;
Linus Torvalds37407ea2012-09-16 12:29:43 -07004027 struct sched_group *sg;
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004028 int i = task_cpu(p);
4029
4030 if (idle_cpu(target))
4031 return target;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004032
4033 /*
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004034 * If the prevous cpu is cache affine and idle, don't be stupid.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004035 */
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004036 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4037 return i;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004038
4039 /*
Linus Torvalds37407ea2012-09-16 12:29:43 -07004040 * Otherwise, iterate the domains and find an elegible idle cpu.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004041 */
Peter Zijlstra518cd622011-12-07 15:07:31 +01004042 sd = rcu_dereference(per_cpu(sd_llc, target));
Suresh Siddha77e81362011-11-17 11:08:23 -08004043 for_each_lower_domain(sd) {
Linus Torvalds37407ea2012-09-16 12:29:43 -07004044 sg = sd->groups;
4045 do {
4046 if (!cpumask_intersects(sched_group_cpus(sg),
4047 tsk_cpus_allowed(p)))
4048 goto next;
Mike Galbraith970e1782012-06-12 05:18:32 +02004049
Linus Torvalds37407ea2012-09-16 12:29:43 -07004050 for_each_cpu(i, sched_group_cpus(sg)) {
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004051 if (i == target || !idle_cpu(i))
Linus Torvalds37407ea2012-09-16 12:29:43 -07004052 goto next;
4053 }
4054
4055 target = cpumask_first_and(sched_group_cpus(sg),
4056 tsk_cpus_allowed(p));
4057 goto done;
4058next:
4059 sg = sg->next;
4060 } while (sg != sd->groups);
4061 }
4062done:
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004063 return target;
4064}
4065
4066/*
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004067 * sched_balance_self: balance the current task (running on cpu) in domains
4068 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
4069 * SD_BALANCE_EXEC.
4070 *
4071 * Balance, ie. select the least loaded group.
4072 *
4073 * Returns the target CPU number, or the same CPU if no balancing is needed.
4074 *
4075 * preempt must be disabled.
4076 */
Peter Zijlstra0017d732010-03-24 18:34:10 +01004077static int
Peter Zijlstraac66f542013-10-07 11:29:16 +01004078select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004079{
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02004080 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004081 int cpu = smp_processor_id();
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004082 int new_cpu = cpu;
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004083 int want_affine = 0;
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004084 int sync = wake_flags & WF_SYNC;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004085
Peter Zijlstra29baa742012-04-23 12:11:21 +02004086 if (p->nr_cpus_allowed == 1)
Mike Galbraith76854c72011-11-22 15:18:24 +01004087 return prev_cpu;
4088
Peter Zijlstra0763a662009-09-14 19:37:39 +02004089 if (sd_flag & SD_BALANCE_WAKE) {
Peter Zijlstrafa17b502011-06-16 12:23:22 +02004090 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004091 want_affine = 1;
4092 new_cpu = prev_cpu;
4093 }
Gregory Haskinse7693a32008-01-25 21:08:09 +01004094
Peter Zijlstradce840a2011-04-07 14:09:50 +02004095 rcu_read_lock();
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004096 for_each_domain(cpu, tmp) {
Peter Zijlstrae4f42882009-12-16 18:04:34 +01004097 if (!(tmp->flags & SD_LOAD_BALANCE))
4098 continue;
4099
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004100 /*
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004101 * If both cpu and prev_cpu are part of this domain,
4102 * cpu is a valid SD_WAKE_AFFINE target.
Peter Zijlstrafe3bcfe2009-11-12 15:55:29 +01004103 */
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004104 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4105 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4106 affine_sd = tmp;
Alex Shif03542a2012-07-26 08:55:34 +08004107 break;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004108 }
4109
Alex Shif03542a2012-07-26 08:55:34 +08004110 if (tmp->flags & sd_flag)
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02004111 sd = tmp;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004112 }
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004113
Mike Galbraith8b911ac2010-03-11 17:17:16 +01004114 if (affine_sd) {
Alex Shif03542a2012-07-26 08:55:34 +08004115 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
Peter Zijlstradce840a2011-04-07 14:09:50 +02004116 prev_cpu = cpu;
4117
4118 new_cpu = select_idle_sibling(p, prev_cpu);
4119 goto unlock;
Mike Galbraith8b911ac2010-03-11 17:17:16 +01004120 }
Peter Zijlstra3b640892009-09-16 13:44:33 +02004121
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004122 while (sd) {
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004123 int load_idx = sd->forkexec_idx;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004124 struct sched_group *group;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004125 int weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004126
Peter Zijlstra0763a662009-09-14 19:37:39 +02004127 if (!(sd->flags & sd_flag)) {
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004128 sd = sd->child;
4129 continue;
4130 }
4131
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004132 if (sd_flag & SD_BALANCE_WAKE)
4133 load_idx = sd->wake_idx;
4134
4135 group = find_idlest_group(sd, p, cpu, load_idx);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004136 if (!group) {
4137 sd = sd->child;
4138 continue;
4139 }
4140
Peter Zijlstrad7c33c42009-09-11 12:45:38 +02004141 new_cpu = find_idlest_cpu(group, p, cpu);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004142 if (new_cpu == -1 || new_cpu == cpu) {
4143 /* Now try balancing at a lower domain level of cpu */
4144 sd = sd->child;
4145 continue;
4146 }
4147
4148 /* Now try balancing at a lower domain level of new_cpu */
4149 cpu = new_cpu;
Peter Zijlstra669c55e2010-04-16 14:59:29 +02004150 weight = sd->span_weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004151 sd = NULL;
4152 for_each_domain(cpu, tmp) {
Peter Zijlstra669c55e2010-04-16 14:59:29 +02004153 if (weight <= tmp->span_weight)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004154 break;
Peter Zijlstra0763a662009-09-14 19:37:39 +02004155 if (tmp->flags & sd_flag)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004156 sd = tmp;
4157 }
4158 /* while loop will break here if sd == NULL */
Gregory Haskinse7693a32008-01-25 21:08:09 +01004159 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02004160unlock:
4161 rcu_read_unlock();
Gregory Haskinse7693a32008-01-25 21:08:09 +01004162
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004163 return new_cpu;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004164}
Paul Turner0a74bef2012-10-04 13:18:30 +02004165
4166/*
4167 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4168 * cfs_rq_of(p) references at time of call are still valid and identify the
4169 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4170 * other assumptions, including the state of rq->lock, should be made.
4171 */
4172static void
4173migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4174{
Paul Turneraff3e492012-10-04 13:18:30 +02004175 struct sched_entity *se = &p->se;
4176 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4177
4178 /*
4179 * Load tracking: accumulate removed load so that it can be processed
4180 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4181 * to blocked load iff they have a positive decay-count. It can never
4182 * be negative here since on-rq tasks have decay-count == 0.
4183 */
4184 if (se->avg.decay_count) {
4185 se->avg.decay_count = -__synchronize_entity_decay(se);
Alex Shi25099402013-06-20 10:18:55 +08004186 atomic_long_add(se->avg.load_avg_contrib,
4187 &cfs_rq->removed_load);
Paul Turneraff3e492012-10-04 13:18:30 +02004188 }
Paul Turner0a74bef2012-10-04 13:18:30 +02004189}
Gregory Haskinse7693a32008-01-25 21:08:09 +01004190#endif /* CONFIG_SMP */
4191
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004192static unsigned long
4193wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004194{
4195 unsigned long gran = sysctl_sched_wakeup_granularity;
4196
4197 /*
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004198 * Since its curr running now, convert the gran from real-time
4199 * to virtual-time in his units.
Mike Galbraith13814d42010-03-11 17:17:04 +01004200 *
4201 * By using 'se' instead of 'curr' we penalize light tasks, so
4202 * they get preempted easier. That is, if 'se' < 'curr' then
4203 * the resulting gran will be larger, therefore penalizing the
4204 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4205 * be smaller, again penalizing the lighter task.
4206 *
4207 * This is especially important for buddies when the leftmost
4208 * task is higher priority than the buddy.
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004209 */
Shaohua Lif4ad9bd2011-04-08 12:53:09 +08004210 return calc_delta_fair(gran, se);
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004211}
4212
4213/*
Peter Zijlstra464b7522008-10-24 11:06:15 +02004214 * Should 'se' preempt 'curr'.
4215 *
4216 * |s1
4217 * |s2
4218 * |s3
4219 * g
4220 * |<--->|c
4221 *
4222 * w(c, s1) = -1
4223 * w(c, s2) = 0
4224 * w(c, s3) = 1
4225 *
4226 */
4227static int
4228wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4229{
4230 s64 gran, vdiff = curr->vruntime - se->vruntime;
4231
4232 if (vdiff <= 0)
4233 return -1;
4234
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004235 gran = wakeup_gran(curr, se);
Peter Zijlstra464b7522008-10-24 11:06:15 +02004236 if (vdiff > gran)
4237 return 1;
4238
4239 return 0;
4240}
4241
Peter Zijlstra02479092008-11-04 21:25:10 +01004242static void set_last_buddy(struct sched_entity *se)
4243{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004244 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4245 return;
4246
4247 for_each_sched_entity(se)
4248 cfs_rq_of(se)->last = se;
Peter Zijlstra02479092008-11-04 21:25:10 +01004249}
4250
4251static void set_next_buddy(struct sched_entity *se)
4252{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004253 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4254 return;
4255
4256 for_each_sched_entity(se)
4257 cfs_rq_of(se)->next = se;
Peter Zijlstra02479092008-11-04 21:25:10 +01004258}
4259
Rik van Rielac53db52011-02-01 09:51:03 -05004260static void set_skip_buddy(struct sched_entity *se)
4261{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004262 for_each_sched_entity(se)
4263 cfs_rq_of(se)->skip = se;
Rik van Rielac53db52011-02-01 09:51:03 -05004264}
4265
Peter Zijlstra464b7522008-10-24 11:06:15 +02004266/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004267 * Preempt the current task with a newly woken task if needed:
4268 */
Peter Zijlstra5a9b86f2009-09-16 13:47:58 +02004269static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004270{
4271 struct task_struct *curr = rq->curr;
Srivatsa Vaddagiri8651a862007-10-15 17:00:12 +02004272 struct sched_entity *se = &curr->se, *pse = &p->se;
Mike Galbraith03e89e42008-12-16 08:45:30 +01004273 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +02004274 int scale = cfs_rq->nr_running >= sched_nr_latency;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004275 int next_buddy_marked = 0;
Mike Galbraith03e89e42008-12-16 08:45:30 +01004276
Ingo Molnar4ae7d5c2008-03-19 01:42:00 +01004277 if (unlikely(se == pse))
4278 return;
4279
Paul Turner5238cdd2011-07-21 09:43:37 -07004280 /*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004281 * This is possible from callers such as move_task(), in which we
Paul Turner5238cdd2011-07-21 09:43:37 -07004282 * unconditionally check_prempt_curr() after an enqueue (which may have
4283 * lead to a throttle). This both saves work and prevents false
4284 * next-buddy nomination below.
4285 */
4286 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4287 return;
4288
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004289 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
Mike Galbraith3cb63d52009-09-11 12:01:17 +02004290 set_next_buddy(pse);
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004291 next_buddy_marked = 1;
4292 }
Peter Zijlstra57fdc262008-09-23 15:33:45 +02004293
Bharata B Raoaec0a512008-08-28 14:42:49 +05304294 /*
4295 * We can come here with TIF_NEED_RESCHED already set from new task
4296 * wake up path.
Paul Turner5238cdd2011-07-21 09:43:37 -07004297 *
4298 * Note: this also catches the edge-case of curr being in a throttled
4299 * group (e.g. via set_curr_task), since update_curr() (in the
4300 * enqueue of curr) will have resulted in resched being set. This
4301 * prevents us from potentially nominating it as a false LAST_BUDDY
4302 * below.
Bharata B Raoaec0a512008-08-28 14:42:49 +05304303 */
4304 if (test_tsk_need_resched(curr))
4305 return;
4306
Darren Harta2f5c9a2011-02-22 13:04:33 -08004307 /* Idle tasks are by definition preempted by non-idle tasks. */
4308 if (unlikely(curr->policy == SCHED_IDLE) &&
4309 likely(p->policy != SCHED_IDLE))
4310 goto preempt;
4311
Ingo Molnar91c234b2007-10-15 17:00:18 +02004312 /*
Darren Harta2f5c9a2011-02-22 13:04:33 -08004313 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4314 * is driven by the tick):
Ingo Molnar91c234b2007-10-15 17:00:18 +02004315 */
Ingo Molnar8ed92e52012-10-14 14:28:50 +02004316 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
Ingo Molnar91c234b2007-10-15 17:00:18 +02004317 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004318
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004319 find_matching_se(&se, &pse);
Paul Turner9bbd7372011-07-05 19:07:21 -07004320 update_curr(cfs_rq_of(se));
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004321 BUG_ON(!pse);
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004322 if (wakeup_preempt_entity(se, pse) == 1) {
4323 /*
4324 * Bias pick_next to pick the sched entity that is
4325 * triggering this preemption.
4326 */
4327 if (!next_buddy_marked)
4328 set_next_buddy(pse);
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004329 goto preempt;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004330 }
Jupyung Leea65ac742009-11-17 18:51:40 +09004331
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004332 return;
4333
4334preempt:
4335 resched_task(curr);
4336 /*
4337 * Only set the backward buddy when the current task is still
4338 * on the rq. This can happen when a wakeup gets interleaved
4339 * with schedule on the ->pre_schedule() or idle_balance()
4340 * point, either of which can * drop the rq lock.
4341 *
4342 * Also, during early boot the idle thread is in the fair class,
4343 * for obvious reasons its a bad idea to schedule back to it.
4344 */
4345 if (unlikely(!se->on_rq || curr == rq->idle))
4346 return;
4347
4348 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4349 set_last_buddy(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004350}
4351
Ingo Molnarfb8d4722007-08-09 11:16:48 +02004352static struct task_struct *pick_next_task_fair(struct rq *rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004353{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004354 struct task_struct *p;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004355 struct cfs_rq *cfs_rq = &rq->cfs;
4356 struct sched_entity *se;
4357
Tim Blechmann36ace272009-11-24 11:55:45 +01004358 if (!cfs_rq->nr_running)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004359 return NULL;
4360
4361 do {
Ingo Molnar9948f4b2007-08-09 11:16:48 +02004362 se = pick_next_entity(cfs_rq);
Peter Zijlstraf4b67552008-11-04 21:25:07 +01004363 set_next_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004364 cfs_rq = group_cfs_rq(se);
4365 } while (cfs_rq);
4366
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004367 p = task_of(se);
Mike Galbraithb39e66e2011-11-22 15:20:07 +01004368 if (hrtick_enabled(rq))
4369 hrtick_start_fair(rq, p);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004370
4371 return p;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004372}
4373
4374/*
4375 * Account for a descheduled task:
4376 */
Ingo Molnar31ee5292007-08-09 11:16:49 +02004377static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004378{
4379 struct sched_entity *se = &prev->se;
4380 struct cfs_rq *cfs_rq;
4381
4382 for_each_sched_entity(se) {
4383 cfs_rq = cfs_rq_of(se);
Ingo Molnarab6cde22007-08-09 11:16:48 +02004384 put_prev_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004385 }
4386}
4387
Rik van Rielac53db52011-02-01 09:51:03 -05004388/*
4389 * sched_yield() is very simple
4390 *
4391 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4392 */
4393static void yield_task_fair(struct rq *rq)
4394{
4395 struct task_struct *curr = rq->curr;
4396 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4397 struct sched_entity *se = &curr->se;
4398
4399 /*
4400 * Are we the only task in the tree?
4401 */
4402 if (unlikely(rq->nr_running == 1))
4403 return;
4404
4405 clear_buddies(cfs_rq, se);
4406
4407 if (curr->policy != SCHED_BATCH) {
4408 update_rq_clock(rq);
4409 /*
4410 * Update run-time statistics of the 'current'.
4411 */
4412 update_curr(cfs_rq);
Mike Galbraith916671c2011-11-22 15:21:26 +01004413 /*
4414 * Tell update_rq_clock() that we've just updated,
4415 * so we don't do microscopic update in schedule()
4416 * and double the fastpath cost.
4417 */
4418 rq->skip_clock_update = 1;
Rik van Rielac53db52011-02-01 09:51:03 -05004419 }
4420
4421 set_skip_buddy(se);
4422}
4423
Mike Galbraithd95f4122011-02-01 09:50:51 -05004424static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4425{
4426 struct sched_entity *se = &p->se;
4427
Paul Turner5238cdd2011-07-21 09:43:37 -07004428 /* throttled hierarchies are not runnable */
4429 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
Mike Galbraithd95f4122011-02-01 09:50:51 -05004430 return false;
4431
4432 /* Tell the scheduler that we'd really like pse to run next. */
4433 set_next_buddy(se);
4434
Mike Galbraithd95f4122011-02-01 09:50:51 -05004435 yield_task_fair(rq);
4436
4437 return true;
4438}
4439
Peter Williams681f3e62007-10-24 18:23:51 +02004440#ifdef CONFIG_SMP
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004441/**************************************************
Peter Zijlstrae9c84cb2012-07-03 13:53:26 +02004442 * Fair scheduling class load-balancing methods.
4443 *
4444 * BASICS
4445 *
4446 * The purpose of load-balancing is to achieve the same basic fairness the
4447 * per-cpu scheduler provides, namely provide a proportional amount of compute
4448 * time to each task. This is expressed in the following equation:
4449 *
4450 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4451 *
4452 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4453 * W_i,0 is defined as:
4454 *
4455 * W_i,0 = \Sum_j w_i,j (2)
4456 *
4457 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4458 * is derived from the nice value as per prio_to_weight[].
4459 *
4460 * The weight average is an exponential decay average of the instantaneous
4461 * weight:
4462 *
4463 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4464 *
4465 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4466 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4467 * can also include other factors [XXX].
4468 *
4469 * To achieve this balance we define a measure of imbalance which follows
4470 * directly from (1):
4471 *
4472 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4473 *
4474 * We them move tasks around to minimize the imbalance. In the continuous
4475 * function space it is obvious this converges, in the discrete case we get
4476 * a few fun cases generally called infeasible weight scenarios.
4477 *
4478 * [XXX expand on:
4479 * - infeasible weights;
4480 * - local vs global optima in the discrete case. ]
4481 *
4482 *
4483 * SCHED DOMAINS
4484 *
4485 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4486 * for all i,j solution, we create a tree of cpus that follows the hardware
4487 * topology where each level pairs two lower groups (or better). This results
4488 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4489 * tree to only the first of the previous level and we decrease the frequency
4490 * of load-balance at each level inv. proportional to the number of cpus in
4491 * the groups.
4492 *
4493 * This yields:
4494 *
4495 * log_2 n 1 n
4496 * \Sum { --- * --- * 2^i } = O(n) (5)
4497 * i = 0 2^i 2^i
4498 * `- size of each group
4499 * | | `- number of cpus doing load-balance
4500 * | `- freq
4501 * `- sum over all levels
4502 *
4503 * Coupled with a limit on how many tasks we can migrate every balance pass,
4504 * this makes (5) the runtime complexity of the balancer.
4505 *
4506 * An important property here is that each CPU is still (indirectly) connected
4507 * to every other cpu in at most O(log n) steps:
4508 *
4509 * The adjacency matrix of the resulting graph is given by:
4510 *
4511 * log_2 n
4512 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4513 * k = 0
4514 *
4515 * And you'll find that:
4516 *
4517 * A^(log_2 n)_i,j != 0 for all i,j (7)
4518 *
4519 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4520 * The task movement gives a factor of O(m), giving a convergence complexity
4521 * of:
4522 *
4523 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4524 *
4525 *
4526 * WORK CONSERVING
4527 *
4528 * In order to avoid CPUs going idle while there's still work to do, new idle
4529 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4530 * tree itself instead of relying on other CPUs to bring it work.
4531 *
4532 * This adds some complexity to both (5) and (8) but it reduces the total idle
4533 * time.
4534 *
4535 * [XXX more?]
4536 *
4537 *
4538 * CGROUPS
4539 *
4540 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4541 *
4542 * s_k,i
4543 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4544 * S_k
4545 *
4546 * Where
4547 *
4548 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4549 *
4550 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4551 *
4552 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4553 * property.
4554 *
4555 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4556 * rewrite all of this once again.]
4557 */
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004558
Hiroshi Shimamotoed387b72012-01-31 11:40:32 +09004559static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4560
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004561#define LBF_ALL_PINNED 0x01
Peter Zijlstra367456c2012-02-20 21:49:09 +01004562#define LBF_NEED_BREAK 0x02
Peter Zijlstra62633222013-08-19 12:41:09 +02004563#define LBF_DST_PINNED 0x04
4564#define LBF_SOME_PINNED 0x08
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004565
4566struct lb_env {
4567 struct sched_domain *sd;
4568
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004569 struct rq *src_rq;
Prashanth Nageshappa85c1e7d2012-06-19 17:47:34 +05304570 int src_cpu;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004571
4572 int dst_cpu;
4573 struct rq *dst_rq;
4574
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304575 struct cpumask *dst_grpmask;
4576 int new_dst_cpu;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004577 enum cpu_idle_type idle;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004578 long imbalance;
Michael Wangb9403132012-07-12 16:10:13 +08004579 /* The set of CPUs under consideration for load-balancing */
4580 struct cpumask *cpus;
4581
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004582 unsigned int flags;
Peter Zijlstra367456c2012-02-20 21:49:09 +01004583
4584 unsigned int loop;
4585 unsigned int loop_break;
4586 unsigned int loop_max;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004587};
4588
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004589/*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004590 * move_task - move a task from one runqueue to another runqueue.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004591 * Both runqueues must be locked.
4592 */
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004593static void move_task(struct task_struct *p, struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004594{
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004595 deactivate_task(env->src_rq, p, 0);
4596 set_task_cpu(p, env->dst_cpu);
4597 activate_task(env->dst_rq, p, 0);
4598 check_preempt_curr(env->dst_rq, p, 0);
Rik van Riel6fe6b2d2013-10-07 11:29:08 +01004599#ifdef CONFIG_NUMA_BALANCING
4600 if (p->numa_preferred_nid != -1) {
4601 int src_nid = cpu_to_node(env->src_cpu);
4602 int dst_nid = cpu_to_node(env->dst_cpu);
4603
4604 /*
4605 * If the load balancer has moved the task then limit
4606 * migrations from taking place in the short term in
4607 * case this is a short-lived migration.
4608 */
4609 if (src_nid != dst_nid && dst_nid != p->numa_preferred_nid)
4610 p->numa_migrate_seq = 0;
4611 }
4612#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004613}
4614
4615/*
Peter Zijlstra029632f2011-10-25 10:00:11 +02004616 * Is this task likely cache-hot:
4617 */
4618static int
4619task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4620{
4621 s64 delta;
4622
4623 if (p->sched_class != &fair_sched_class)
4624 return 0;
4625
4626 if (unlikely(p->policy == SCHED_IDLE))
4627 return 0;
4628
4629 /*
4630 * Buddy candidates are cache hot:
4631 */
4632 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4633 (&p->se == cfs_rq_of(&p->se)->next ||
4634 &p->se == cfs_rq_of(&p->se)->last))
4635 return 1;
4636
4637 if (sysctl_sched_migration_cost == -1)
4638 return 1;
4639 if (sysctl_sched_migration_cost == 0)
4640 return 0;
4641
4642 delta = now - p->se.exec_start;
4643
4644 return delta < (s64)sysctl_sched_migration_cost;
4645}
4646
Mel Gorman3a7053b2013-10-07 11:29:00 +01004647#ifdef CONFIG_NUMA_BALANCING
4648/* Returns true if the destination node has incurred more faults */
4649static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4650{
4651 int src_nid, dst_nid;
4652
4653 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4654 !(env->sd->flags & SD_NUMA)) {
4655 return false;
4656 }
4657
4658 src_nid = cpu_to_node(env->src_cpu);
4659 dst_nid = cpu_to_node(env->dst_cpu);
4660
Mel Gorman83e1d2c2013-10-07 11:29:27 +01004661 if (src_nid == dst_nid)
Mel Gorman3a7053b2013-10-07 11:29:00 +01004662 return false;
4663
Mel Gorman83e1d2c2013-10-07 11:29:27 +01004664 /* Always encourage migration to the preferred node. */
4665 if (dst_nid == p->numa_preferred_nid)
4666 return true;
4667
4668 /* After the task has settled, check if the new node is better. */
4669 if (p->numa_migrate_seq >= sysctl_numa_balancing_settle_count &&
4670 task_weight(p, dst_nid) + group_weight(p, dst_nid) >
4671 task_weight(p, src_nid) + group_weight(p, src_nid))
Mel Gorman3a7053b2013-10-07 11:29:00 +01004672 return true;
4673
4674 return false;
4675}
Mel Gorman7a0f3082013-10-07 11:29:01 +01004676
4677
4678static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4679{
4680 int src_nid, dst_nid;
4681
4682 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4683 return false;
4684
4685 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4686 return false;
4687
4688 src_nid = cpu_to_node(env->src_cpu);
4689 dst_nid = cpu_to_node(env->dst_cpu);
4690
Mel Gorman83e1d2c2013-10-07 11:29:27 +01004691 if (src_nid == dst_nid)
Mel Gorman7a0f3082013-10-07 11:29:01 +01004692 return false;
4693
Mel Gorman83e1d2c2013-10-07 11:29:27 +01004694 /* Migrating away from the preferred node is always bad. */
4695 if (src_nid == p->numa_preferred_nid)
4696 return true;
4697
4698 /* After the task has settled, check if the new node is worse. */
4699 if (p->numa_migrate_seq >= sysctl_numa_balancing_settle_count &&
4700 task_weight(p, dst_nid) + group_weight(p, dst_nid) <
4701 task_weight(p, src_nid) + group_weight(p, src_nid))
Mel Gorman7a0f3082013-10-07 11:29:01 +01004702 return true;
4703
4704 return false;
4705}
4706
Mel Gorman3a7053b2013-10-07 11:29:00 +01004707#else
4708static inline bool migrate_improves_locality(struct task_struct *p,
4709 struct lb_env *env)
4710{
4711 return false;
4712}
Mel Gorman7a0f3082013-10-07 11:29:01 +01004713
4714static inline bool migrate_degrades_locality(struct task_struct *p,
4715 struct lb_env *env)
4716{
4717 return false;
4718}
Mel Gorman3a7053b2013-10-07 11:29:00 +01004719#endif
4720
Peter Zijlstra029632f2011-10-25 10:00:11 +02004721/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004722 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4723 */
4724static
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004725int can_migrate_task(struct task_struct *p, struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004726{
4727 int tsk_cache_hot = 0;
4728 /*
4729 * We do not migrate tasks that are:
Joonsoo Kimd3198082013-04-23 17:27:40 +09004730 * 1) throttled_lb_pair, or
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004731 * 2) cannot be migrated to this CPU due to cpus_allowed, or
Joonsoo Kimd3198082013-04-23 17:27:40 +09004732 * 3) running (obviously), or
4733 * 4) are cache-hot on their current CPU.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004734 */
Joonsoo Kimd3198082013-04-23 17:27:40 +09004735 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4736 return 0;
4737
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004738 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004739 int cpu;
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304740
Lucas De Marchi41acab82010-03-10 23:37:45 -03004741 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304742
Peter Zijlstra62633222013-08-19 12:41:09 +02004743 env->flags |= LBF_SOME_PINNED;
4744
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304745 /*
4746 * Remember if this task can be migrated to any other cpu in
4747 * our sched_group. We may want to revisit it if we couldn't
4748 * meet load balance goals by pulling other tasks on src_cpu.
4749 *
4750 * Also avoid computing new_dst_cpu if we have already computed
4751 * one in current iteration.
4752 */
Peter Zijlstra62633222013-08-19 12:41:09 +02004753 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304754 return 0;
4755
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004756 /* Prevent to re-select dst_cpu via env's cpus */
4757 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4758 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
Peter Zijlstra62633222013-08-19 12:41:09 +02004759 env->flags |= LBF_DST_PINNED;
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004760 env->new_dst_cpu = cpu;
4761 break;
4762 }
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304763 }
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004764
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004765 return 0;
4766 }
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304767
4768 /* Record that we found atleast one task that could run on dst_cpu */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004769 env->flags &= ~LBF_ALL_PINNED;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004770
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004771 if (task_running(env->src_rq, p)) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03004772 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004773 return 0;
4774 }
4775
4776 /*
4777 * Aggressive migration if:
Mel Gorman3a7053b2013-10-07 11:29:00 +01004778 * 1) destination numa is preferred
4779 * 2) task is cache cold, or
4780 * 3) too many balance attempts have failed.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004781 */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02004782 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
Mel Gorman7a0f3082013-10-07 11:29:01 +01004783 if (!tsk_cache_hot)
4784 tsk_cache_hot = migrate_degrades_locality(p, env);
Mel Gorman3a7053b2013-10-07 11:29:00 +01004785
4786 if (migrate_improves_locality(p, env)) {
4787#ifdef CONFIG_SCHEDSTATS
4788 if (tsk_cache_hot) {
4789 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4790 schedstat_inc(p, se.statistics.nr_forced_migrations);
4791 }
4792#endif
4793 return 1;
4794 }
4795
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004796 if (!tsk_cache_hot ||
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004797 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
Zhang Hang4e2dcb72013-04-10 14:04:55 +08004798
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004799 if (tsk_cache_hot) {
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004800 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
Lucas De Marchi41acab82010-03-10 23:37:45 -03004801 schedstat_inc(p, se.statistics.nr_forced_migrations);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004802 }
Zhang Hang4e2dcb72013-04-10 14:04:55 +08004803
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004804 return 1;
4805 }
4806
Zhang Hang4e2dcb72013-04-10 14:04:55 +08004807 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4808 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004809}
4810
Peter Zijlstra897c3952009-12-17 17:45:42 +01004811/*
4812 * move_one_task tries to move exactly one task from busiest to this_rq, as
4813 * part of active balancing operations within "domain".
4814 * Returns 1 if successful and 0 otherwise.
4815 *
4816 * Called with both runqueues locked.
4817 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004818static int move_one_task(struct lb_env *env)
Peter Zijlstra897c3952009-12-17 17:45:42 +01004819{
4820 struct task_struct *p, *n;
Peter Zijlstra897c3952009-12-17 17:45:42 +01004821
Peter Zijlstra367456c2012-02-20 21:49:09 +01004822 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
Peter Zijlstra367456c2012-02-20 21:49:09 +01004823 if (!can_migrate_task(p, env))
4824 continue;
Peter Zijlstra897c3952009-12-17 17:45:42 +01004825
Peter Zijlstra367456c2012-02-20 21:49:09 +01004826 move_task(p, env);
4827 /*
4828 * Right now, this is only the second place move_task()
4829 * is called, so we can safely collect move_task()
4830 * stats here rather than inside move_task().
4831 */
4832 schedstat_inc(env->sd, lb_gained[env->idle]);
4833 return 1;
Peter Zijlstra897c3952009-12-17 17:45:42 +01004834 }
Peter Zijlstra897c3952009-12-17 17:45:42 +01004835 return 0;
4836}
4837
Peter Zijlstraeb953082012-04-17 13:38:40 +02004838static const unsigned int sched_nr_migrate_break = 32;
4839
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004840/*
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004841 * move_tasks tries to move up to imbalance weighted load from busiest to
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004842 * this_rq, as part of a balancing operation within domain "sd".
4843 * Returns 1 if successful and 0 otherwise.
4844 *
4845 * Called with both runqueues locked.
4846 */
4847static int move_tasks(struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004848{
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004849 struct list_head *tasks = &env->src_rq->cfs_tasks;
4850 struct task_struct *p;
Peter Zijlstra367456c2012-02-20 21:49:09 +01004851 unsigned long load;
4852 int pulled = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004853
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004854 if (env->imbalance <= 0)
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004855 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004856
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004857 while (!list_empty(tasks)) {
4858 p = list_first_entry(tasks, struct task_struct, se.group_node);
4859
Peter Zijlstra367456c2012-02-20 21:49:09 +01004860 env->loop++;
4861 /* We've more or less seen every task there is, call it quits */
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004862 if (env->loop > env->loop_max)
Peter Zijlstra367456c2012-02-20 21:49:09 +01004863 break;
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004864
4865 /* take a breather every nr_migrate tasks */
Peter Zijlstra367456c2012-02-20 21:49:09 +01004866 if (env->loop > env->loop_break) {
Peter Zijlstraeb953082012-04-17 13:38:40 +02004867 env->loop_break += sched_nr_migrate_break;
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004868 env->flags |= LBF_NEED_BREAK;
Peter Zijlstraee00e662009-12-17 17:25:20 +01004869 break;
Peter Zijlstraa195f002011-09-22 15:30:18 +02004870 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004871
Joonsoo Kimd3198082013-04-23 17:27:40 +09004872 if (!can_migrate_task(p, env))
Peter Zijlstra367456c2012-02-20 21:49:09 +01004873 goto next;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004874
Peter Zijlstra367456c2012-02-20 21:49:09 +01004875 load = task_h_load(p);
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004876
Peter Zijlstraeb953082012-04-17 13:38:40 +02004877 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
Peter Zijlstra367456c2012-02-20 21:49:09 +01004878 goto next;
4879
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004880 if ((load / 2) > env->imbalance)
Peter Zijlstra367456c2012-02-20 21:49:09 +01004881 goto next;
4882
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004883 move_task(p, env);
Peter Zijlstraee00e662009-12-17 17:25:20 +01004884 pulled++;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004885 env->imbalance -= load;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004886
4887#ifdef CONFIG_PREEMPT
Peter Zijlstraee00e662009-12-17 17:25:20 +01004888 /*
4889 * NEWIDLE balancing is a source of latency, so preemptible
4890 * kernels will stop after the first task is pulled to minimize
4891 * the critical section.
4892 */
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004893 if (env->idle == CPU_NEWLY_IDLE)
Peter Zijlstraee00e662009-12-17 17:25:20 +01004894 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004895#endif
4896
Peter Zijlstraee00e662009-12-17 17:25:20 +01004897 /*
4898 * We only want to steal up to the prescribed amount of
4899 * weighted load.
4900 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004901 if (env->imbalance <= 0)
Peter Zijlstraee00e662009-12-17 17:25:20 +01004902 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004903
Peter Zijlstra367456c2012-02-20 21:49:09 +01004904 continue;
4905next:
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004906 list_move_tail(&p->se.group_node, tasks);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004907 }
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004908
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004909 /*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004910 * Right now, this is one of only two places move_task() is called,
4911 * so we can safely collect move_task() stats here rather than
4912 * inside move_task().
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004913 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004914 schedstat_add(env->sd, lb_gained[env->idle], pulled);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004915
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004916 return pulled;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004917}
4918
Peter Zijlstra230059de2009-12-17 17:47:12 +01004919#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004920/*
4921 * update tg->load_weight by folding this cpu's load_avg
4922 */
Paul Turner48a16752012-10-04 13:18:31 +02004923static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004924{
Paul Turner48a16752012-10-04 13:18:31 +02004925 struct sched_entity *se = tg->se[cpu];
4926 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004927
Paul Turner48a16752012-10-04 13:18:31 +02004928 /* throttled entities do not contribute to load */
4929 if (throttled_hierarchy(cfs_rq))
4930 return;
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004931
Paul Turneraff3e492012-10-04 13:18:30 +02004932 update_cfs_rq_blocked_load(cfs_rq, 1);
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004933
Paul Turner82958362012-10-04 13:18:31 +02004934 if (se) {
4935 update_entity_load_avg(se, 1);
4936 /*
4937 * We pivot on our runnable average having decayed to zero for
4938 * list removal. This generally implies that all our children
4939 * have also been removed (modulo rounding error or bandwidth
4940 * control); however, such cases are rare and we can fix these
4941 * at enqueue.
4942 *
4943 * TODO: fix up out-of-order children on enqueue.
4944 */
4945 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
4946 list_del_leaf_cfs_rq(cfs_rq);
4947 } else {
Paul Turner48a16752012-10-04 13:18:31 +02004948 struct rq *rq = rq_of(cfs_rq);
Paul Turner82958362012-10-04 13:18:31 +02004949 update_rq_runnable_avg(rq, rq->nr_running);
4950 }
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004951}
4952
Paul Turner48a16752012-10-04 13:18:31 +02004953static void update_blocked_averages(int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004954{
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004955 struct rq *rq = cpu_rq(cpu);
Paul Turner48a16752012-10-04 13:18:31 +02004956 struct cfs_rq *cfs_rq;
4957 unsigned long flags;
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004958
Paul Turner48a16752012-10-04 13:18:31 +02004959 raw_spin_lock_irqsave(&rq->lock, flags);
4960 update_rq_clock(rq);
Peter Zijlstra9763b672011-07-13 13:09:25 +02004961 /*
4962 * Iterates the task_group tree in a bottom up fashion, see
4963 * list_add_leaf_cfs_rq() for details.
4964 */
Paul Turner64660c82011-07-21 09:43:36 -07004965 for_each_leaf_cfs_rq(rq, cfs_rq) {
Paul Turner48a16752012-10-04 13:18:31 +02004966 /*
4967 * Note: We may want to consider periodically releasing
4968 * rq->lock about these updates so that creating many task
4969 * groups does not result in continually extending hold time.
4970 */
4971 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
Paul Turner64660c82011-07-21 09:43:36 -07004972 }
Paul Turner48a16752012-10-04 13:18:31 +02004973
4974 raw_spin_unlock_irqrestore(&rq->lock, flags);
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004975}
4976
Peter Zijlstra9763b672011-07-13 13:09:25 +02004977/*
Vladimir Davydov68520792013-07-15 17:49:19 +04004978 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
Peter Zijlstra9763b672011-07-13 13:09:25 +02004979 * This needs to be done in a top-down fashion because the load of a child
4980 * group is a fraction of its parents load.
4981 */
Vladimir Davydov68520792013-07-15 17:49:19 +04004982static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
Peter Zijlstra9763b672011-07-13 13:09:25 +02004983{
Vladimir Davydov68520792013-07-15 17:49:19 +04004984 struct rq *rq = rq_of(cfs_rq);
4985 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
Peter Zijlstraa35b6462012-08-08 21:46:40 +02004986 unsigned long now = jiffies;
Vladimir Davydov68520792013-07-15 17:49:19 +04004987 unsigned long load;
Peter Zijlstraa35b6462012-08-08 21:46:40 +02004988
Vladimir Davydov68520792013-07-15 17:49:19 +04004989 if (cfs_rq->last_h_load_update == now)
Peter Zijlstraa35b6462012-08-08 21:46:40 +02004990 return;
4991
Vladimir Davydov68520792013-07-15 17:49:19 +04004992 cfs_rq->h_load_next = NULL;
4993 for_each_sched_entity(se) {
4994 cfs_rq = cfs_rq_of(se);
4995 cfs_rq->h_load_next = se;
4996 if (cfs_rq->last_h_load_update == now)
4997 break;
4998 }
Peter Zijlstraa35b6462012-08-08 21:46:40 +02004999
Vladimir Davydov68520792013-07-15 17:49:19 +04005000 if (!se) {
Vladimir Davydov7e3115e2013-09-14 19:39:46 +04005001 cfs_rq->h_load = cfs_rq->runnable_load_avg;
Vladimir Davydov68520792013-07-15 17:49:19 +04005002 cfs_rq->last_h_load_update = now;
5003 }
5004
5005 while ((se = cfs_rq->h_load_next) != NULL) {
5006 load = cfs_rq->h_load;
5007 load = div64_ul(load * se->avg.load_avg_contrib,
5008 cfs_rq->runnable_load_avg + 1);
5009 cfs_rq = group_cfs_rq(se);
5010 cfs_rq->h_load = load;
5011 cfs_rq->last_h_load_update = now;
5012 }
Peter Zijlstra9763b672011-07-13 13:09:25 +02005013}
5014
Peter Zijlstra367456c2012-02-20 21:49:09 +01005015static unsigned long task_h_load(struct task_struct *p)
Peter Zijlstra230059de2009-12-17 17:47:12 +01005016{
Peter Zijlstra367456c2012-02-20 21:49:09 +01005017 struct cfs_rq *cfs_rq = task_cfs_rq(p);
Peter Zijlstra230059de2009-12-17 17:47:12 +01005018
Vladimir Davydov68520792013-07-15 17:49:19 +04005019 update_cfs_rq_h_load(cfs_rq);
Alex Shia003a252013-06-20 10:18:51 +08005020 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5021 cfs_rq->runnable_load_avg + 1);
Peter Zijlstra230059de2009-12-17 17:47:12 +01005022}
5023#else
Paul Turner48a16752012-10-04 13:18:31 +02005024static inline void update_blocked_averages(int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005025{
5026}
5027
Peter Zijlstra367456c2012-02-20 21:49:09 +01005028static unsigned long task_h_load(struct task_struct *p)
5029{
Alex Shia003a252013-06-20 10:18:51 +08005030 return p->se.avg.load_avg_contrib;
Peter Zijlstra230059de2009-12-17 17:47:12 +01005031}
5032#endif
5033
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005034/********** Helpers for find_busiest_group ************************/
5035/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005036 * sg_lb_stats - stats of a sched_group required for load_balancing
5037 */
5038struct sg_lb_stats {
5039 unsigned long avg_load; /*Avg load across the CPUs of the group */
5040 unsigned long group_load; /* Total load over the CPUs of the group */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005041 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005042 unsigned long load_per_task;
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005043 unsigned long group_power;
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005044 unsigned int sum_nr_running; /* Nr tasks running in the group */
5045 unsigned int group_capacity;
5046 unsigned int idle_cpus;
5047 unsigned int group_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005048 int group_imb; /* Is there an imbalance in the group ? */
Nikhil Raofab47622010-10-15 13:12:29 -07005049 int group_has_capacity; /* Is there extra capacity in the group? */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005050};
5051
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005052/*
5053 * sd_lb_stats - Structure to store the statistics of a sched_domain
5054 * during load balancing.
5055 */
5056struct sd_lb_stats {
5057 struct sched_group *busiest; /* Busiest group in this sd */
5058 struct sched_group *local; /* Local group in this sd */
5059 unsigned long total_load; /* Total load of all groups in sd */
5060 unsigned long total_pwr; /* Total power of all groups in sd */
5061 unsigned long avg_load; /* Average load across all groups in sd */
5062
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005063 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005064 struct sg_lb_stats local_stat; /* Statistics of the local group */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005065};
5066
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005067static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5068{
5069 /*
5070 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5071 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5072 * We must however clear busiest_stat::avg_load because
5073 * update_sd_pick_busiest() reads this before assignment.
5074 */
5075 *sds = (struct sd_lb_stats){
5076 .busiest = NULL,
5077 .local = NULL,
5078 .total_load = 0UL,
5079 .total_pwr = 0UL,
5080 .busiest_stat = {
5081 .avg_load = 0UL,
5082 },
5083 };
5084}
5085
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005086/**
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005087 * get_sd_load_idx - Obtain the load index for a given sched domain.
5088 * @sd: The sched_domain whose load_idx is to be obtained.
5089 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
Yacine Belkadie69f6182013-07-12 20:45:47 +02005090 *
5091 * Return: The load index.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005092 */
5093static inline int get_sd_load_idx(struct sched_domain *sd,
5094 enum cpu_idle_type idle)
5095{
5096 int load_idx;
5097
5098 switch (idle) {
5099 case CPU_NOT_IDLE:
5100 load_idx = sd->busy_idx;
5101 break;
5102
5103 case CPU_NEWLY_IDLE:
5104 load_idx = sd->newidle_idx;
5105 break;
5106 default:
5107 load_idx = sd->idle_idx;
5108 break;
5109 }
5110
5111 return load_idx;
5112}
5113
Li Zefan15f803c2013-03-05 16:07:11 +08005114static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005115{
Nikhil Rao1399fa72011-05-18 10:09:39 -07005116 return SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005117}
5118
5119unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5120{
5121 return default_scale_freq_power(sd, cpu);
5122}
5123
Li Zefan15f803c2013-03-05 16:07:11 +08005124static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005125{
Peter Zijlstra669c55e2010-04-16 14:59:29 +02005126 unsigned long weight = sd->span_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005127 unsigned long smt_gain = sd->smt_gain;
5128
5129 smt_gain /= weight;
5130
5131 return smt_gain;
5132}
5133
5134unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5135{
5136 return default_scale_smt_power(sd, cpu);
5137}
5138
Li Zefan15f803c2013-03-05 16:07:11 +08005139static unsigned long scale_rt_power(int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005140{
5141 struct rq *rq = cpu_rq(cpu);
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005142 u64 total, available, age_stamp, avg;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005143
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005144 /*
5145 * Since we're reading these variables without serialization make sure
5146 * we read them once before doing sanity checks on them.
5147 */
5148 age_stamp = ACCESS_ONCE(rq->age_stamp);
5149 avg = ACCESS_ONCE(rq->rt_avg);
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005150
Frederic Weisbecker78becc22013-04-12 01:51:02 +02005151 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005152
5153 if (unlikely(total < avg)) {
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005154 /* Ensures that power won't end up being negative */
5155 available = 0;
5156 } else {
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005157 available = total - avg;
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005158 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005159
Nikhil Rao1399fa72011-05-18 10:09:39 -07005160 if (unlikely((s64)total < SCHED_POWER_SCALE))
5161 total = SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005162
Nikhil Rao1399fa72011-05-18 10:09:39 -07005163 total >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005164
5165 return div_u64(available, total);
5166}
5167
5168static void update_cpu_power(struct sched_domain *sd, int cpu)
5169{
Peter Zijlstra669c55e2010-04-16 14:59:29 +02005170 unsigned long weight = sd->span_weight;
Nikhil Rao1399fa72011-05-18 10:09:39 -07005171 unsigned long power = SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005172 struct sched_group *sdg = sd->groups;
5173
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005174 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5175 if (sched_feat(ARCH_POWER))
5176 power *= arch_scale_smt_power(sd, cpu);
5177 else
5178 power *= default_scale_smt_power(sd, cpu);
5179
Nikhil Rao1399fa72011-05-18 10:09:39 -07005180 power >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005181 }
5182
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005183 sdg->sgp->power_orig = power;
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005184
5185 if (sched_feat(ARCH_POWER))
5186 power *= arch_scale_freq_power(sd, cpu);
5187 else
5188 power *= default_scale_freq_power(sd, cpu);
5189
Nikhil Rao1399fa72011-05-18 10:09:39 -07005190 power >>= SCHED_POWER_SHIFT;
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005191
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005192 power *= scale_rt_power(cpu);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005193 power >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005194
5195 if (!power)
5196 power = 1;
5197
Peter Zijlstrae51fd5e2010-05-31 12:37:30 +02005198 cpu_rq(cpu)->cpu_power = power;
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005199 sdg->sgp->power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005200}
5201
Peter Zijlstra029632f2011-10-25 10:00:11 +02005202void update_group_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005203{
5204 struct sched_domain *child = sd->child;
5205 struct sched_group *group, *sdg = sd->groups;
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005206 unsigned long power, power_orig;
Vincent Guittot4ec44122011-12-12 20:21:08 +01005207 unsigned long interval;
5208
5209 interval = msecs_to_jiffies(sd->balance_interval);
5210 interval = clamp(interval, 1UL, max_load_balance_interval);
5211 sdg->sgp->next_update = jiffies + interval;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005212
5213 if (!child) {
5214 update_cpu_power(sd, cpu);
5215 return;
5216 }
5217
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005218 power_orig = power = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005219
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005220 if (child->flags & SD_OVERLAP) {
5221 /*
5222 * SD_OVERLAP domains cannot assume that child groups
5223 * span the current group.
5224 */
5225
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005226 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5227 struct sched_group *sg = cpu_rq(cpu)->sd->groups;
5228
5229 power_orig += sg->sgp->power_orig;
5230 power += sg->sgp->power;
5231 }
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005232 } else {
5233 /*
5234 * !SD_OVERLAP domains can assume that child groups
5235 * span the current group.
5236 */
5237
5238 group = child->groups;
5239 do {
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005240 power_orig += group->sgp->power_orig;
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005241 power += group->sgp->power;
5242 group = group->next;
5243 } while (group != child->groups);
5244 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005245
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005246 sdg->sgp->power_orig = power_orig;
5247 sdg->sgp->power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005248}
5249
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005250/*
5251 * Try and fix up capacity for tiny siblings, this is needed when
5252 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5253 * which on its own isn't powerful enough.
5254 *
5255 * See update_sd_pick_busiest() and check_asym_packing().
5256 */
5257static inline int
5258fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5259{
5260 /*
Nikhil Rao1399fa72011-05-18 10:09:39 -07005261 * Only siblings can have significantly less than SCHED_POWER_SCALE
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005262 */
Peter Zijlstraa6c75f22011-04-07 14:09:52 +02005263 if (!(sd->flags & SD_SHARE_CPUPOWER))
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005264 return 0;
5265
5266 /*
5267 * If ~90% of the cpu_power is still there, we're good.
5268 */
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005269 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005270 return 1;
5271
5272 return 0;
5273}
5274
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005275/*
5276 * Group imbalance indicates (and tries to solve) the problem where balancing
5277 * groups is inadequate due to tsk_cpus_allowed() constraints.
5278 *
5279 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5280 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5281 * Something like:
5282 *
5283 * { 0 1 2 3 } { 4 5 6 7 }
5284 * * * * *
5285 *
5286 * If we were to balance group-wise we'd place two tasks in the first group and
5287 * two tasks in the second group. Clearly this is undesired as it will overload
5288 * cpu 3 and leave one of the cpus in the second group unused.
5289 *
5290 * The current solution to this issue is detecting the skew in the first group
Peter Zijlstra62633222013-08-19 12:41:09 +02005291 * by noticing the lower domain failed to reach balance and had difficulty
5292 * moving tasks due to affinity constraints.
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005293 *
5294 * When this is so detected; this group becomes a candidate for busiest; see
5295 * update_sd_pick_busiest(). And calculcate_imbalance() and
Peter Zijlstra62633222013-08-19 12:41:09 +02005296 * find_busiest_group() avoid some of the usual balance conditions to allow it
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005297 * to create an effective group imbalance.
5298 *
5299 * This is a somewhat tricky proposition since the next run might not find the
5300 * group imbalance and decide the groups need to be balanced again. A most
5301 * subtle and fragile situation.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005302 */
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005303
Peter Zijlstra62633222013-08-19 12:41:09 +02005304static inline int sg_imbalanced(struct sched_group *group)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005305{
Peter Zijlstra62633222013-08-19 12:41:09 +02005306 return group->sgp->imbalance;
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005307}
5308
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005309/*
5310 * Compute the group capacity.
5311 *
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005312 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5313 * first dividing out the smt factor and computing the actual number of cores
5314 * and limit power unit capacity with that.
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005315 */
5316static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5317{
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005318 unsigned int capacity, smt, cpus;
5319 unsigned int power, power_orig;
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005320
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005321 power = group->sgp->power;
5322 power_orig = group->sgp->power_orig;
5323 cpus = group->group_weight;
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005324
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005325 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5326 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5327 capacity = cpus / smt; /* cores */
5328
5329 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005330 if (!capacity)
5331 capacity = fix_small_capacity(env->sd, group);
5332
5333 return capacity;
5334}
5335
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005336/**
5337 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5338 * @env: The load balancing environment.
5339 * @group: sched_group whose statistics are to be updated.
5340 * @load_idx: Load index of sched_domain of this_cpu for load calc.
5341 * @local_group: Does group contain this_cpu.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005342 * @sgs: variable to hold the statistics for this group.
5343 */
5344static inline void update_sg_lb_stats(struct lb_env *env,
5345 struct sched_group *group, int load_idx,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005346 int local_group, struct sg_lb_stats *sgs)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005347{
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005348 unsigned long nr_running;
5349 unsigned long load;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005350 int i;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005351
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005352 memset(sgs, 0, sizeof(*sgs));
5353
Michael Wangb9403132012-07-12 16:10:13 +08005354 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005355 struct rq *rq = cpu_rq(i);
5356
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02005357 nr_running = rq->nr_running;
5358
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005359 /* Bias balancing toward cpus of our domain */
Peter Zijlstra62633222013-08-19 12:41:09 +02005360 if (local_group)
Peter Zijlstra04f733b2012-05-11 00:12:02 +02005361 load = target_load(i, load_idx);
Peter Zijlstra62633222013-08-19 12:41:09 +02005362 else
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005363 load = source_load(i, load_idx);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005364
5365 sgs->group_load += load;
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02005366 sgs->sum_nr_running += nr_running;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005367 sgs->sum_weighted_load += weighted_cpuload(i);
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005368 if (idle_cpu(i))
5369 sgs->idle_cpus++;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005370 }
5371
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005372 /* Adjust by relative CPU power of the group */
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005373 sgs->group_power = group->sgp->power;
5374 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005375
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005376 if (sgs->sum_nr_running)
Peter Zijlstra38d0f772013-08-15 19:47:56 +02005377 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005378
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005379 sgs->group_weight = group->group_weight;
Nikhil Raofab47622010-10-15 13:12:29 -07005380
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005381 sgs->group_imb = sg_imbalanced(group);
5382 sgs->group_capacity = sg_capacity(env, group);
5383
Nikhil Raofab47622010-10-15 13:12:29 -07005384 if (sgs->group_capacity > sgs->sum_nr_running)
5385 sgs->group_has_capacity = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005386}
5387
5388/**
Michael Neuling532cb4c2010-06-08 14:57:02 +10005389 * update_sd_pick_busiest - return 1 on busiest group
Randy Dunlapcd968912012-06-08 13:18:33 -07005390 * @env: The load balancing environment.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005391 * @sds: sched_domain statistics
5392 * @sg: sched_group candidate to be checked for being the busiest
Michael Neulingb6b12292010-06-10 12:06:21 +10005393 * @sgs: sched_group statistics
Michael Neuling532cb4c2010-06-08 14:57:02 +10005394 *
5395 * Determine if @sg is a busier group than the previously selected
5396 * busiest group.
Yacine Belkadie69f6182013-07-12 20:45:47 +02005397 *
5398 * Return: %true if @sg is a busier group than the previously selected
5399 * busiest group. %false otherwise.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005400 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005401static bool update_sd_pick_busiest(struct lb_env *env,
Michael Neuling532cb4c2010-06-08 14:57:02 +10005402 struct sd_lb_stats *sds,
5403 struct sched_group *sg,
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005404 struct sg_lb_stats *sgs)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005405{
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005406 if (sgs->avg_load <= sds->busiest_stat.avg_load)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005407 return false;
5408
5409 if (sgs->sum_nr_running > sgs->group_capacity)
5410 return true;
5411
5412 if (sgs->group_imb)
5413 return true;
5414
5415 /*
5416 * ASYM_PACKING needs to move all the work to the lowest
5417 * numbered CPUs in the group, therefore mark all groups
5418 * higher than ourself as busy.
5419 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005420 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5421 env->dst_cpu < group_first_cpu(sg)) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10005422 if (!sds->busiest)
5423 return true;
5424
5425 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5426 return true;
5427 }
5428
5429 return false;
5430}
5431
5432/**
Hui Kang461819a2011-10-11 23:00:59 -04005433 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
Randy Dunlapcd968912012-06-08 13:18:33 -07005434 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005435 * @balance: Should we balance.
5436 * @sds: variable to hold the statistics for this sched_domain.
5437 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005438static inline void update_sd_lb_stats(struct lb_env *env,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005439 struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005440{
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005441 struct sched_domain *child = env->sd->child;
5442 struct sched_group *sg = env->sd->groups;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005443 struct sg_lb_stats tmp_sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005444 int load_idx, prefer_sibling = 0;
5445
5446 if (child && child->flags & SD_PREFER_SIBLING)
5447 prefer_sibling = 1;
5448
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005449 load_idx = get_sd_load_idx(env->sd, env->idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005450
5451 do {
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005452 struct sg_lb_stats *sgs = &tmp_sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005453 int local_group;
5454
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005455 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005456 if (local_group) {
5457 sds->local = sg;
5458 sgs = &sds->local_stat;
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005459
5460 if (env->idle != CPU_NEWLY_IDLE ||
5461 time_after_eq(jiffies, sg->sgp->next_update))
5462 update_group_power(env->sd, env->dst_cpu);
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005463 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005464
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005465 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005466
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005467 if (local_group)
5468 goto next_group;
5469
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005470 /*
5471 * In case the child domain prefers tasks go to siblings
Michael Neuling532cb4c2010-06-08 14:57:02 +10005472 * first, lower the sg capacity to one so that we'll try
Nikhil Rao75dd3212010-10-15 13:12:30 -07005473 * and move all the excess tasks away. We lower the capacity
5474 * of a group only if the local group has the capacity to fit
5475 * these excess tasks, i.e. nr_running < group_capacity. The
5476 * extra check prevents the case where you always pull from the
5477 * heaviest group when it is already under-utilized (possible
5478 * with a large weight task outweighs the tasks on the system).
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005479 */
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005480 if (prefer_sibling && sds->local &&
5481 sds->local_stat.group_has_capacity)
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005482 sgs->group_capacity = min(sgs->group_capacity, 1U);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005483
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005484 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10005485 sds->busiest = sg;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005486 sds->busiest_stat = *sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005487 }
5488
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005489next_group:
5490 /* Now, start updating sd_lb_stats */
5491 sds->total_load += sgs->group_load;
5492 sds->total_pwr += sgs->group_power;
5493
Michael Neuling532cb4c2010-06-08 14:57:02 +10005494 sg = sg->next;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005495 } while (sg != env->sd->groups);
Michael Neuling532cb4c2010-06-08 14:57:02 +10005496}
5497
Michael Neuling532cb4c2010-06-08 14:57:02 +10005498/**
5499 * check_asym_packing - Check to see if the group is packed into the
5500 * sched doman.
5501 *
5502 * This is primarily intended to used at the sibling level. Some
5503 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5504 * case of POWER7, it can move to lower SMT modes only when higher
5505 * threads are idle. When in lower SMT modes, the threads will
5506 * perform better since they share less core resources. Hence when we
5507 * have idle threads, we want them to be the higher ones.
5508 *
5509 * This packing function is run on idle threads. It checks to see if
5510 * the busiest CPU in this domain (core in the P7 case) has a higher
5511 * CPU number than the packing function is being run on. Here we are
5512 * assuming lower CPU number will be equivalent to lower a SMT thread
5513 * number.
5514 *
Yacine Belkadie69f6182013-07-12 20:45:47 +02005515 * Return: 1 when packing is required and a task should be moved to
Michael Neulingb6b12292010-06-10 12:06:21 +10005516 * this CPU. The amount of the imbalance is returned in *imbalance.
5517 *
Randy Dunlapcd968912012-06-08 13:18:33 -07005518 * @env: The load balancing environment.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005519 * @sds: Statistics of the sched_domain which is to be packed
Michael Neuling532cb4c2010-06-08 14:57:02 +10005520 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005521static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005522{
5523 int busiest_cpu;
5524
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005525 if (!(env->sd->flags & SD_ASYM_PACKING))
Michael Neuling532cb4c2010-06-08 14:57:02 +10005526 return 0;
5527
5528 if (!sds->busiest)
5529 return 0;
5530
5531 busiest_cpu = group_first_cpu(sds->busiest);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005532 if (env->dst_cpu > busiest_cpu)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005533 return 0;
5534
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005535 env->imbalance = DIV_ROUND_CLOSEST(
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005536 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5537 SCHED_POWER_SCALE);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005538
Michael Neuling532cb4c2010-06-08 14:57:02 +10005539 return 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005540}
5541
5542/**
5543 * fix_small_imbalance - Calculate the minor imbalance that exists
5544 * amongst the groups of a sched_domain, during
5545 * load balancing.
Randy Dunlapcd968912012-06-08 13:18:33 -07005546 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005547 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005548 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005549static inline
5550void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005551{
5552 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5553 unsigned int imbn = 2;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005554 unsigned long scaled_busy_load_per_task;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005555 struct sg_lb_stats *local, *busiest;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005556
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005557 local = &sds->local_stat;
5558 busiest = &sds->busiest_stat;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005559
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005560 if (!local->sum_nr_running)
5561 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5562 else if (busiest->load_per_task > local->load_per_task)
5563 imbn = 1;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005564
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005565 scaled_busy_load_per_task =
5566 (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005567 busiest->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005568
Vladimir Davydov3029ede2013-09-15 17:49:14 +04005569 if (busiest->avg_load + scaled_busy_load_per_task >=
5570 local->avg_load + (scaled_busy_load_per_task * imbn)) {
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005571 env->imbalance = busiest->load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005572 return;
5573 }
5574
5575 /*
5576 * OK, we don't have enough imbalance to justify moving tasks,
5577 * however we may be able to increase total CPU power used by
5578 * moving them.
5579 */
5580
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005581 pwr_now += busiest->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005582 min(busiest->load_per_task, busiest->avg_load);
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005583 pwr_now += local->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005584 min(local->load_per_task, local->avg_load);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005585 pwr_now /= SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005586
5587 /* Amount of load we'd subtract */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005588 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005589 busiest->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005590 if (busiest->avg_load > tmp) {
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005591 pwr_move += busiest->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005592 min(busiest->load_per_task,
5593 busiest->avg_load - tmp);
5594 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005595
5596 /* Amount of load we'd add */
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005597 if (busiest->avg_load * busiest->group_power <
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005598 busiest->load_per_task * SCHED_POWER_SCALE) {
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005599 tmp = (busiest->avg_load * busiest->group_power) /
5600 local->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005601 } else {
5602 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005603 local->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005604 }
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005605 pwr_move += local->group_power *
5606 min(local->load_per_task, local->avg_load + tmp);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005607 pwr_move /= SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005608
5609 /* Move if we gain throughput */
5610 if (pwr_move > pwr_now)
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005611 env->imbalance = busiest->load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005612}
5613
5614/**
5615 * calculate_imbalance - Calculate the amount of imbalance present within the
5616 * groups of a given sched_domain during load balance.
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005617 * @env: load balance environment
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005618 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005619 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005620static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005621{
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005622 unsigned long max_pull, load_above_capacity = ~0UL;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005623 struct sg_lb_stats *local, *busiest;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005624
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005625 local = &sds->local_stat;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005626 busiest = &sds->busiest_stat;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005627
5628 if (busiest->group_imb) {
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005629 /*
5630 * In the group_imb case we cannot rely on group-wide averages
5631 * to ensure cpu-load equilibrium, look at wider averages. XXX
5632 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005633 busiest->load_per_task =
5634 min(busiest->load_per_task, sds->avg_load);
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005635 }
5636
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005637 /*
5638 * In the presence of smp nice balancing, certain scenarios can have
5639 * max load less than avg load(as we skip the groups at or below
5640 * its cpu_power, while calculating max_load..)
5641 */
Vladimir Davydovb1885552013-09-15 17:49:13 +04005642 if (busiest->avg_load <= sds->avg_load ||
5643 local->avg_load >= sds->avg_load) {
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005644 env->imbalance = 0;
5645 return fix_small_imbalance(env, sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005646 }
5647
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005648 if (!busiest->group_imb) {
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005649 /*
5650 * Don't want to pull so many tasks that a group would go idle.
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005651 * Except of course for the group_imb case, since then we might
5652 * have to drop below capacity to reach cpu-load equilibrium.
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005653 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005654 load_above_capacity =
5655 (busiest->sum_nr_running - busiest->group_capacity);
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005656
Nikhil Rao1399fa72011-05-18 10:09:39 -07005657 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005658 load_above_capacity /= busiest->group_power;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005659 }
5660
5661 /*
5662 * We're trying to get all the cpus to the average_load, so we don't
5663 * want to push ourselves above the average load, nor do we wish to
5664 * reduce the max loaded cpu below the average load. At the same time,
5665 * we also don't want to reduce the group load below the group capacity
5666 * (so that we can implement power-savings policies etc). Thus we look
5667 * for the minimum possible imbalance.
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005668 */
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005669 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005670
5671 /* How much load to actually move to equalise the imbalance */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005672 env->imbalance = min(
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005673 max_pull * busiest->group_power,
5674 (sds->avg_load - local->avg_load) * local->group_power
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005675 ) / SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005676
5677 /*
5678 * if *imbalance is less than the average load per runnable task
Lucas De Marchi25985ed2011-03-30 22:57:33 -03005679 * there is no guarantee that any tasks will be moved so we'll have
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005680 * a think about bumping its value to force at least one task to be
5681 * moved
5682 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005683 if (env->imbalance < busiest->load_per_task)
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005684 return fix_small_imbalance(env, sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005685}
Nikhil Raofab47622010-10-15 13:12:29 -07005686
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005687/******* find_busiest_group() helpers end here *********************/
5688
5689/**
5690 * find_busiest_group - Returns the busiest group within the sched_domain
5691 * if there is an imbalance. If there isn't an imbalance, and
5692 * the user has opted for power-savings, it returns a group whose
5693 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5694 * such a group exists.
5695 *
5696 * Also calculates the amount of weighted load which should be moved
5697 * to restore balance.
5698 *
Randy Dunlapcd968912012-06-08 13:18:33 -07005699 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005700 *
Yacine Belkadie69f6182013-07-12 20:45:47 +02005701 * Return: - The busiest group if imbalance exists.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005702 * - If no imbalance and user has opted for power-savings balance,
5703 * return the least loaded group whose CPUs can be
5704 * put to idle by rebalancing its tasks onto our group.
5705 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005706static struct sched_group *find_busiest_group(struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005707{
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005708 struct sg_lb_stats *local, *busiest;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005709 struct sd_lb_stats sds;
5710
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005711 init_sd_lb_stats(&sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005712
5713 /*
5714 * Compute the various statistics relavent for load balancing at
5715 * this level.
5716 */
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005717 update_sd_lb_stats(env, &sds);
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005718 local = &sds.local_stat;
5719 busiest = &sds.busiest_stat;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005720
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005721 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5722 check_asym_packing(env, &sds))
Michael Neuling532cb4c2010-06-08 14:57:02 +10005723 return sds.busiest;
5724
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005725 /* There is no busy sibling group to pull tasks from */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005726 if (!sds.busiest || busiest->sum_nr_running == 0)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005727 goto out_balanced;
5728
Nikhil Rao1399fa72011-05-18 10:09:39 -07005729 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
Ken Chenb0432d82011-04-07 17:23:22 -07005730
Peter Zijlstra866ab432011-02-21 18:56:47 +01005731 /*
5732 * If the busiest group is imbalanced the below checks don't
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005733 * work because they assume all things are equal, which typically
Peter Zijlstra866ab432011-02-21 18:56:47 +01005734 * isn't true due to cpus_allowed constraints and the like.
5735 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005736 if (busiest->group_imb)
Peter Zijlstra866ab432011-02-21 18:56:47 +01005737 goto force_balance;
5738
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005739 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005740 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5741 !busiest->group_has_capacity)
Nikhil Raofab47622010-10-15 13:12:29 -07005742 goto force_balance;
5743
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005744 /*
5745 * If the local group is more busy than the selected busiest group
5746 * don't try and pull any tasks.
5747 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005748 if (local->avg_load >= busiest->avg_load)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005749 goto out_balanced;
5750
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005751 /*
5752 * Don't pull any tasks if this group is already above the domain
5753 * average load.
5754 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005755 if (local->avg_load >= sds.avg_load)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005756 goto out_balanced;
5757
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005758 if (env->idle == CPU_IDLE) {
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005759 /*
5760 * This cpu is idle. If the busiest group load doesn't
5761 * have more tasks than the number of available cpu's and
5762 * there is no imbalance between this and busiest group
5763 * wrt to idle cpu's, it is balanced.
5764 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005765 if ((local->idle_cpus < busiest->idle_cpus) &&
5766 busiest->sum_nr_running <= busiest->group_weight)
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005767 goto out_balanced;
Peter Zijlstrac186faf2011-02-21 18:52:53 +01005768 } else {
5769 /*
5770 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5771 * imbalance_pct to be conservative.
5772 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005773 if (100 * busiest->avg_load <=
5774 env->sd->imbalance_pct * local->avg_load)
Peter Zijlstrac186faf2011-02-21 18:52:53 +01005775 goto out_balanced;
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005776 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005777
Nikhil Raofab47622010-10-15 13:12:29 -07005778force_balance:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005779 /* Looks like there is an imbalance. Compute it */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005780 calculate_imbalance(env, &sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005781 return sds.busiest;
5782
5783out_balanced:
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005784 env->imbalance = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005785 return NULL;
5786}
5787
5788/*
5789 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5790 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005791static struct rq *find_busiest_queue(struct lb_env *env,
Michael Wangb9403132012-07-12 16:10:13 +08005792 struct sched_group *group)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005793{
5794 struct rq *busiest = NULL, *rq;
Joonsoo Kim95a79b82013-08-06 17:36:41 +09005795 unsigned long busiest_load = 0, busiest_power = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005796 int i;
5797
Peter Zijlstra6906a402013-08-19 15:20:21 +02005798 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005799 unsigned long power = power_of(i);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005800 unsigned long capacity = DIV_ROUND_CLOSEST(power,
5801 SCHED_POWER_SCALE);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005802 unsigned long wl;
5803
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005804 if (!capacity)
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005805 capacity = fix_small_capacity(env->sd, group);
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005806
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005807 rq = cpu_rq(i);
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01005808 wl = weighted_cpuload(i);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005809
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01005810 /*
5811 * When comparing with imbalance, use weighted_cpuload()
5812 * which is not scaled with the cpu power.
5813 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005814 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005815 continue;
5816
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01005817 /*
5818 * For the load comparisons with the other cpu's, consider
5819 * the weighted_cpuload() scaled with the cpu power, so that
5820 * the load can be moved away from the cpu that is potentially
5821 * running at a lower capacity.
Joonsoo Kim95a79b82013-08-06 17:36:41 +09005822 *
5823 * Thus we're looking for max(wl_i / power_i), crosswise
5824 * multiplication to rid ourselves of the division works out
5825 * to: wl_i * power_j > wl_j * power_i; where j is our
5826 * previous maximum.
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01005827 */
Joonsoo Kim95a79b82013-08-06 17:36:41 +09005828 if (wl * busiest_power > busiest_load * power) {
5829 busiest_load = wl;
5830 busiest_power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005831 busiest = rq;
5832 }
5833 }
5834
5835 return busiest;
5836}
5837
5838/*
5839 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
5840 * so long as it is large enough.
5841 */
5842#define MAX_PINNED_INTERVAL 512
5843
5844/* Working cpumask for load_balance and load_balance_newidle. */
Joonsoo Kime6252c32013-04-23 17:27:41 +09005845DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005846
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005847static int need_active_balance(struct lb_env *env)
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01005848{
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005849 struct sched_domain *sd = env->sd;
5850
5851 if (env->idle == CPU_NEWLY_IDLE) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10005852
5853 /*
5854 * ASYM_PACKING needs to force migrate tasks from busy but
5855 * higher numbered CPUs in order to pack all tasks in the
5856 * lowest numbered CPUs.
5857 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005858 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005859 return 1;
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01005860 }
5861
5862 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
5863}
5864
Tejun Heo969c7922010-05-06 18:49:21 +02005865static int active_load_balance_cpu_stop(void *data);
5866
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005867static int should_we_balance(struct lb_env *env)
5868{
5869 struct sched_group *sg = env->sd->groups;
5870 struct cpumask *sg_cpus, *sg_mask;
5871 int cpu, balance_cpu = -1;
5872
5873 /*
5874 * In the newly idle case, we will allow all the cpu's
5875 * to do the newly idle load balance.
5876 */
5877 if (env->idle == CPU_NEWLY_IDLE)
5878 return 1;
5879
5880 sg_cpus = sched_group_cpus(sg);
5881 sg_mask = sched_group_mask(sg);
5882 /* Try to find first idle cpu */
5883 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
5884 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
5885 continue;
5886
5887 balance_cpu = cpu;
5888 break;
5889 }
5890
5891 if (balance_cpu == -1)
5892 balance_cpu = group_balance_cpu(sg);
5893
5894 /*
5895 * First idle cpu or the first cpu(busiest) in this sched group
5896 * is eligible for doing load balancing at this and above domains.
5897 */
Joonsoo Kimb0cff9d2013-09-10 15:54:49 +09005898 return balance_cpu == env->dst_cpu;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005899}
5900
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005901/*
5902 * Check this_cpu to ensure it is balanced within domain. Attempt to move
5903 * tasks if there is an imbalance.
5904 */
5905static int load_balance(int this_cpu, struct rq *this_rq,
5906 struct sched_domain *sd, enum cpu_idle_type idle,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005907 int *continue_balancing)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005908{
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305909 int ld_moved, cur_ld_moved, active_balance = 0;
Peter Zijlstra62633222013-08-19 12:41:09 +02005910 struct sched_domain *sd_parent = sd->parent;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005911 struct sched_group *group;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005912 struct rq *busiest;
5913 unsigned long flags;
Joonsoo Kime6252c32013-04-23 17:27:41 +09005914 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005915
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005916 struct lb_env env = {
5917 .sd = sd,
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005918 .dst_cpu = this_cpu,
5919 .dst_rq = this_rq,
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305920 .dst_grpmask = sched_group_cpus(sd->groups),
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005921 .idle = idle,
Peter Zijlstraeb953082012-04-17 13:38:40 +02005922 .loop_break = sched_nr_migrate_break,
Michael Wangb9403132012-07-12 16:10:13 +08005923 .cpus = cpus,
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005924 };
5925
Joonsoo Kimcfc03112013-04-23 17:27:39 +09005926 /*
5927 * For NEWLY_IDLE load_balancing, we don't need to consider
5928 * other cpus in our group
5929 */
Joonsoo Kime02e60c2013-04-23 17:27:42 +09005930 if (idle == CPU_NEWLY_IDLE)
Joonsoo Kimcfc03112013-04-23 17:27:39 +09005931 env.dst_grpmask = NULL;
Joonsoo Kimcfc03112013-04-23 17:27:39 +09005932
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005933 cpumask_copy(cpus, cpu_active_mask);
5934
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005935 schedstat_inc(sd, lb_count[idle]);
5936
5937redo:
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005938 if (!should_we_balance(&env)) {
5939 *continue_balancing = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005940 goto out_balanced;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005941 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005942
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005943 group = find_busiest_group(&env);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005944 if (!group) {
5945 schedstat_inc(sd, lb_nobusyg[idle]);
5946 goto out_balanced;
5947 }
5948
Michael Wangb9403132012-07-12 16:10:13 +08005949 busiest = find_busiest_queue(&env, group);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005950 if (!busiest) {
5951 schedstat_inc(sd, lb_nobusyq[idle]);
5952 goto out_balanced;
5953 }
5954
Michael Wang78feefc2012-08-06 16:41:59 +08005955 BUG_ON(busiest == env.dst_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005956
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005957 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005958
5959 ld_moved = 0;
5960 if (busiest->nr_running > 1) {
5961 /*
5962 * Attempt to move tasks. If find_busiest_group has found
5963 * an imbalance but busiest->nr_running <= 1, the group is
5964 * still unbalanced. ld_moved simply stays zero, so it is
5965 * correctly treated as an imbalance.
5966 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005967 env.flags |= LBF_ALL_PINNED;
Peter Zijlstrac82513e2012-04-26 13:12:27 +02005968 env.src_cpu = busiest->cpu;
5969 env.src_rq = busiest;
5970 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005971
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005972more_balance:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005973 local_irq_save(flags);
Michael Wang78feefc2012-08-06 16:41:59 +08005974 double_rq_lock(env.dst_rq, busiest);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305975
5976 /*
5977 * cur_ld_moved - load moved in current iteration
5978 * ld_moved - cumulative load moved across iterations
5979 */
5980 cur_ld_moved = move_tasks(&env);
5981 ld_moved += cur_ld_moved;
Michael Wang78feefc2012-08-06 16:41:59 +08005982 double_rq_unlock(env.dst_rq, busiest);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005983 local_irq_restore(flags);
5984
5985 /*
5986 * some other cpu did the load balance for us.
5987 */
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305988 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
5989 resched_cpu(env.dst_cpu);
5990
Joonsoo Kimf1cd0852013-04-23 17:27:37 +09005991 if (env.flags & LBF_NEED_BREAK) {
5992 env.flags &= ~LBF_NEED_BREAK;
5993 goto more_balance;
5994 }
5995
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305996 /*
5997 * Revisit (affine) tasks on src_cpu that couldn't be moved to
5998 * us and move them to an alternate dst_cpu in our sched_group
5999 * where they can run. The upper limit on how many times we
6000 * iterate on same src_cpu is dependent on number of cpus in our
6001 * sched_group.
6002 *
6003 * This changes load balance semantics a bit on who can move
6004 * load to a given_cpu. In addition to the given_cpu itself
6005 * (or a ilb_cpu acting on its behalf where given_cpu is
6006 * nohz-idle), we now have balance_cpu in a position to move
6007 * load to given_cpu. In rare situations, this may cause
6008 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6009 * _independently_ and at _same_ time to move some load to
6010 * given_cpu) causing exceess load to be moved to given_cpu.
6011 * This however should not happen so much in practice and
6012 * moreover subsequent load balance cycles should correct the
6013 * excess load moved.
6014 */
Peter Zijlstra62633222013-08-19 12:41:09 +02006015 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306016
Vladimir Davydov7aff2e32013-09-15 21:30:13 +04006017 /* Prevent to re-select dst_cpu via env's cpus */
6018 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6019
Michael Wang78feefc2012-08-06 16:41:59 +08006020 env.dst_rq = cpu_rq(env.new_dst_cpu);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306021 env.dst_cpu = env.new_dst_cpu;
Peter Zijlstra62633222013-08-19 12:41:09 +02006022 env.flags &= ~LBF_DST_PINNED;
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306023 env.loop = 0;
6024 env.loop_break = sched_nr_migrate_break;
Joonsoo Kime02e60c2013-04-23 17:27:42 +09006025
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306026 /*
6027 * Go back to "more_balance" rather than "redo" since we
6028 * need to continue with same src_cpu.
6029 */
6030 goto more_balance;
6031 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006032
Peter Zijlstra62633222013-08-19 12:41:09 +02006033 /*
6034 * We failed to reach balance because of affinity.
6035 */
6036 if (sd_parent) {
6037 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6038
6039 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6040 *group_imbalance = 1;
6041 } else if (*group_imbalance)
6042 *group_imbalance = 0;
6043 }
6044
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006045 /* All tasks on this runqueue were pinned by CPU affinity */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006046 if (unlikely(env.flags & LBF_ALL_PINNED)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006047 cpumask_clear_cpu(cpu_of(busiest), cpus);
Prashanth Nageshappabbf18b12012-06-19 17:52:07 +05306048 if (!cpumask_empty(cpus)) {
6049 env.loop = 0;
6050 env.loop_break = sched_nr_migrate_break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006051 goto redo;
Prashanth Nageshappabbf18b12012-06-19 17:52:07 +05306052 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006053 goto out_balanced;
6054 }
6055 }
6056
6057 if (!ld_moved) {
6058 schedstat_inc(sd, lb_failed[idle]);
Venkatesh Pallipadi58b26c42010-09-10 18:19:17 -07006059 /*
6060 * Increment the failure counter only on periodic balance.
6061 * We do not want newidle balance, which can be very
6062 * frequent, pollute the failure counter causing
6063 * excessive cache_hot migrations and active balances.
6064 */
6065 if (idle != CPU_NEWLY_IDLE)
6066 sd->nr_balance_failed++;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006067
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006068 if (need_active_balance(&env)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006069 raw_spin_lock_irqsave(&busiest->lock, flags);
6070
Tejun Heo969c7922010-05-06 18:49:21 +02006071 /* don't kick the active_load_balance_cpu_stop,
6072 * if the curr task on busiest cpu can't be
6073 * moved to this_cpu
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006074 */
6075 if (!cpumask_test_cpu(this_cpu,
Peter Zijlstrafa17b502011-06-16 12:23:22 +02006076 tsk_cpus_allowed(busiest->curr))) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006077 raw_spin_unlock_irqrestore(&busiest->lock,
6078 flags);
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006079 env.flags |= LBF_ALL_PINNED;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006080 goto out_one_pinned;
6081 }
6082
Tejun Heo969c7922010-05-06 18:49:21 +02006083 /*
6084 * ->active_balance synchronizes accesses to
6085 * ->active_balance_work. Once set, it's cleared
6086 * only after active load balance is finished.
6087 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006088 if (!busiest->active_balance) {
6089 busiest->active_balance = 1;
6090 busiest->push_cpu = this_cpu;
6091 active_balance = 1;
6092 }
6093 raw_spin_unlock_irqrestore(&busiest->lock, flags);
Tejun Heo969c7922010-05-06 18:49:21 +02006094
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006095 if (active_balance) {
Tejun Heo969c7922010-05-06 18:49:21 +02006096 stop_one_cpu_nowait(cpu_of(busiest),
6097 active_load_balance_cpu_stop, busiest,
6098 &busiest->active_balance_work);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006099 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006100
6101 /*
6102 * We've kicked active balancing, reset the failure
6103 * counter.
6104 */
6105 sd->nr_balance_failed = sd->cache_nice_tries+1;
6106 }
6107 } else
6108 sd->nr_balance_failed = 0;
6109
6110 if (likely(!active_balance)) {
6111 /* We were unbalanced, so reset the balancing interval */
6112 sd->balance_interval = sd->min_interval;
6113 } else {
6114 /*
6115 * If we've begun active balancing, start to back off. This
6116 * case may not be covered by the all_pinned logic if there
6117 * is only 1 task on the busy runqueue (because we don't call
6118 * move_tasks).
6119 */
6120 if (sd->balance_interval < sd->max_interval)
6121 sd->balance_interval *= 2;
6122 }
6123
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006124 goto out;
6125
6126out_balanced:
6127 schedstat_inc(sd, lb_balanced[idle]);
6128
6129 sd->nr_balance_failed = 0;
6130
6131out_one_pinned:
6132 /* tune up the balancing interval */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006133 if (((env.flags & LBF_ALL_PINNED) &&
Peter Zijlstra5b54b562011-09-22 15:23:13 +02006134 sd->balance_interval < MAX_PINNED_INTERVAL) ||
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006135 (sd->balance_interval < sd->max_interval))
6136 sd->balance_interval *= 2;
6137
Venkatesh Pallipadi46e49b32011-02-14 14:38:50 -08006138 ld_moved = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006139out:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006140 return ld_moved;
6141}
6142
6143/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006144 * idle_balance is called by schedule() if this_cpu is about to become
6145 * idle. Attempts to pull tasks from other CPUs.
6146 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006147void idle_balance(int this_cpu, struct rq *this_rq)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006148{
6149 struct sched_domain *sd;
6150 int pulled_task = 0;
6151 unsigned long next_balance = jiffies + HZ;
Jason Low9bd721c2013-09-13 11:26:52 -07006152 u64 curr_cost = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006153
Frederic Weisbecker78becc22013-04-12 01:51:02 +02006154 this_rq->idle_stamp = rq_clock(this_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006155
6156 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6157 return;
6158
Peter Zijlstraf492e122009-12-23 15:29:42 +01006159 /*
6160 * Drop the rq->lock, but keep IRQ/preempt disabled.
6161 */
6162 raw_spin_unlock(&this_rq->lock);
6163
Paul Turner48a16752012-10-04 13:18:31 +02006164 update_blocked_averages(this_cpu);
Peter Zijlstradce840a2011-04-07 14:09:50 +02006165 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006166 for_each_domain(this_cpu, sd) {
6167 unsigned long interval;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006168 int continue_balancing = 1;
Jason Low9bd721c2013-09-13 11:26:52 -07006169 u64 t0, domain_cost;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006170
6171 if (!(sd->flags & SD_LOAD_BALANCE))
6172 continue;
6173
Jason Low9bd721c2013-09-13 11:26:52 -07006174 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6175 break;
6176
Peter Zijlstraf492e122009-12-23 15:29:42 +01006177 if (sd->flags & SD_BALANCE_NEWIDLE) {
Jason Low9bd721c2013-09-13 11:26:52 -07006178 t0 = sched_clock_cpu(this_cpu);
6179
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006180 /* If we've pulled tasks over stop searching: */
Peter Zijlstraf492e122009-12-23 15:29:42 +01006181 pulled_task = load_balance(this_cpu, this_rq,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006182 sd, CPU_NEWLY_IDLE,
6183 &continue_balancing);
Jason Low9bd721c2013-09-13 11:26:52 -07006184
6185 domain_cost = sched_clock_cpu(this_cpu) - t0;
6186 if (domain_cost > sd->max_newidle_lb_cost)
6187 sd->max_newidle_lb_cost = domain_cost;
6188
6189 curr_cost += domain_cost;
Peter Zijlstraf492e122009-12-23 15:29:42 +01006190 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006191
6192 interval = msecs_to_jiffies(sd->balance_interval);
6193 if (time_after(next_balance, sd->last_balance + interval))
6194 next_balance = sd->last_balance + interval;
Nikhil Raod5ad1402010-11-17 11:42:04 -08006195 if (pulled_task) {
6196 this_rq->idle_stamp = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006197 break;
Nikhil Raod5ad1402010-11-17 11:42:04 -08006198 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006199 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006200 rcu_read_unlock();
Peter Zijlstraf492e122009-12-23 15:29:42 +01006201
6202 raw_spin_lock(&this_rq->lock);
6203
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006204 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6205 /*
6206 * We are going idle. next_balance may be set based on
6207 * a busy processor. So reset next_balance.
6208 */
6209 this_rq->next_balance = next_balance;
6210 }
Jason Low9bd721c2013-09-13 11:26:52 -07006211
6212 if (curr_cost > this_rq->max_idle_balance_cost)
6213 this_rq->max_idle_balance_cost = curr_cost;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006214}
6215
6216/*
Tejun Heo969c7922010-05-06 18:49:21 +02006217 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6218 * running tasks off the busiest CPU onto idle CPUs. It requires at
6219 * least 1 task to be running on each physical CPU where possible, and
6220 * avoids physical / logical imbalances.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006221 */
Tejun Heo969c7922010-05-06 18:49:21 +02006222static int active_load_balance_cpu_stop(void *data)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006223{
Tejun Heo969c7922010-05-06 18:49:21 +02006224 struct rq *busiest_rq = data;
6225 int busiest_cpu = cpu_of(busiest_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006226 int target_cpu = busiest_rq->push_cpu;
Tejun Heo969c7922010-05-06 18:49:21 +02006227 struct rq *target_rq = cpu_rq(target_cpu);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006228 struct sched_domain *sd;
Tejun Heo969c7922010-05-06 18:49:21 +02006229
6230 raw_spin_lock_irq(&busiest_rq->lock);
6231
6232 /* make sure the requested cpu hasn't gone down in the meantime */
6233 if (unlikely(busiest_cpu != smp_processor_id() ||
6234 !busiest_rq->active_balance))
6235 goto out_unlock;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006236
6237 /* Is there any task to move? */
6238 if (busiest_rq->nr_running <= 1)
Tejun Heo969c7922010-05-06 18:49:21 +02006239 goto out_unlock;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006240
6241 /*
6242 * This condition is "impossible", if it occurs
6243 * we need to fix it. Originally reported by
6244 * Bjorn Helgaas on a 128-cpu setup.
6245 */
6246 BUG_ON(busiest_rq == target_rq);
6247
6248 /* move a task from busiest_rq to target_rq */
6249 double_lock_balance(busiest_rq, target_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006250
6251 /* Search for an sd spanning us and the target CPU. */
Peter Zijlstradce840a2011-04-07 14:09:50 +02006252 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006253 for_each_domain(target_cpu, sd) {
6254 if ((sd->flags & SD_LOAD_BALANCE) &&
6255 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6256 break;
6257 }
6258
6259 if (likely(sd)) {
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006260 struct lb_env env = {
6261 .sd = sd,
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01006262 .dst_cpu = target_cpu,
6263 .dst_rq = target_rq,
6264 .src_cpu = busiest_rq->cpu,
6265 .src_rq = busiest_rq,
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006266 .idle = CPU_IDLE,
6267 };
6268
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006269 schedstat_inc(sd, alb_count);
6270
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006271 if (move_one_task(&env))
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006272 schedstat_inc(sd, alb_pushed);
6273 else
6274 schedstat_inc(sd, alb_failed);
6275 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006276 rcu_read_unlock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006277 double_unlock_balance(busiest_rq, target_rq);
Tejun Heo969c7922010-05-06 18:49:21 +02006278out_unlock:
6279 busiest_rq->active_balance = 0;
6280 raw_spin_unlock_irq(&busiest_rq->lock);
6281 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006282}
6283
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006284#ifdef CONFIG_NO_HZ_COMMON
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006285/*
6286 * idle load balancing details
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006287 * - When one of the busy CPUs notice that there may be an idle rebalancing
6288 * needed, they will kick the idle load balancer, which then does idle
6289 * load balancing for all the idle CPUs.
6290 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006291static struct {
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006292 cpumask_var_t idle_cpus_mask;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006293 atomic_t nr_cpus;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006294 unsigned long next_balance; /* in jiffy units */
6295} nohz ____cacheline_aligned;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006296
Peter Zijlstra8e7fbcb2012-01-09 11:28:35 +01006297static inline int find_new_ilb(int call_cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006298{
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006299 int ilb = cpumask_first(nohz.idle_cpus_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006300
Suresh Siddha786d6dc2011-12-01 17:07:35 -08006301 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6302 return ilb;
6303
6304 return nr_cpu_ids;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006305}
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006306
6307/*
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006308 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6309 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6310 * CPU (if there is one).
6311 */
6312static void nohz_balancer_kick(int cpu)
6313{
6314 int ilb_cpu;
6315
6316 nohz.next_balance++;
6317
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006318 ilb_cpu = find_new_ilb(cpu);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006319
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006320 if (ilb_cpu >= nr_cpu_ids)
6321 return;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006322
Suresh Siddhacd490c52011-12-06 11:26:34 -08006323 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
Suresh Siddha1c792db2011-12-01 17:07:32 -08006324 return;
6325 /*
6326 * Use smp_send_reschedule() instead of resched_cpu().
6327 * This way we generate a sched IPI on the target cpu which
6328 * is idle. And the softirq performing nohz idle load balance
6329 * will be run before returning from the IPI.
6330 */
6331 smp_send_reschedule(ilb_cpu);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006332 return;
6333}
6334
Alex Shic1cc0172012-09-10 15:10:58 +08006335static inline void nohz_balance_exit_idle(int cpu)
Suresh Siddha71325962012-01-19 18:28:57 -08006336{
6337 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6338 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6339 atomic_dec(&nohz.nr_cpus);
6340 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6341 }
6342}
6343
Suresh Siddha69e1e812011-12-01 17:07:33 -08006344static inline void set_cpu_sd_state_busy(void)
6345{
6346 struct sched_domain *sd;
Suresh Siddha69e1e812011-12-01 17:07:33 -08006347
Suresh Siddha69e1e812011-12-01 17:07:33 -08006348 rcu_read_lock();
Nathan Zimmer424c93f2013-05-09 11:24:03 -05006349 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006350
6351 if (!sd || !sd->nohz_idle)
6352 goto unlock;
6353 sd->nohz_idle = 0;
6354
6355 for (; sd; sd = sd->parent)
Suresh Siddha69e1e812011-12-01 17:07:33 -08006356 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006357unlock:
Suresh Siddha69e1e812011-12-01 17:07:33 -08006358 rcu_read_unlock();
6359}
6360
6361void set_cpu_sd_state_idle(void)
6362{
6363 struct sched_domain *sd;
Suresh Siddha69e1e812011-12-01 17:07:33 -08006364
Suresh Siddha69e1e812011-12-01 17:07:33 -08006365 rcu_read_lock();
Nathan Zimmer424c93f2013-05-09 11:24:03 -05006366 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006367
6368 if (!sd || sd->nohz_idle)
6369 goto unlock;
6370 sd->nohz_idle = 1;
6371
6372 for (; sd; sd = sd->parent)
Suresh Siddha69e1e812011-12-01 17:07:33 -08006373 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006374unlock:
Suresh Siddha69e1e812011-12-01 17:07:33 -08006375 rcu_read_unlock();
6376}
6377
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006378/*
Alex Shic1cc0172012-09-10 15:10:58 +08006379 * This routine will record that the cpu is going idle with tick stopped.
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006380 * This info will be used in performing idle load balancing in the future.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006381 */
Alex Shic1cc0172012-09-10 15:10:58 +08006382void nohz_balance_enter_idle(int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006383{
Suresh Siddha71325962012-01-19 18:28:57 -08006384 /*
6385 * If this cpu is going down, then nothing needs to be done.
6386 */
6387 if (!cpu_active(cpu))
6388 return;
6389
Alex Shic1cc0172012-09-10 15:10:58 +08006390 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6391 return;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006392
Alex Shic1cc0172012-09-10 15:10:58 +08006393 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6394 atomic_inc(&nohz.nr_cpus);
6395 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006396}
Suresh Siddha71325962012-01-19 18:28:57 -08006397
Paul Gortmaker0db06282013-06-19 14:53:51 -04006398static int sched_ilb_notifier(struct notifier_block *nfb,
Suresh Siddha71325962012-01-19 18:28:57 -08006399 unsigned long action, void *hcpu)
6400{
6401 switch (action & ~CPU_TASKS_FROZEN) {
6402 case CPU_DYING:
Alex Shic1cc0172012-09-10 15:10:58 +08006403 nohz_balance_exit_idle(smp_processor_id());
Suresh Siddha71325962012-01-19 18:28:57 -08006404 return NOTIFY_OK;
6405 default:
6406 return NOTIFY_DONE;
6407 }
6408}
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006409#endif
6410
6411static DEFINE_SPINLOCK(balancing);
6412
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006413/*
6414 * Scale the max load_balance interval with the number of CPUs in the system.
6415 * This trades load-balance latency on larger machines for less cross talk.
6416 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006417void update_max_interval(void)
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006418{
6419 max_load_balance_interval = HZ*num_online_cpus()/10;
6420}
6421
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006422/*
6423 * It checks each scheduling domain to see if it is due to be balanced,
6424 * and initiates a balancing operation if so.
6425 *
Libinb9b08532013-04-01 19:14:01 +08006426 * Balancing parameters are set up in init_sched_domains.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006427 */
6428static void rebalance_domains(int cpu, enum cpu_idle_type idle)
6429{
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006430 int continue_balancing = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006431 struct rq *rq = cpu_rq(cpu);
6432 unsigned long interval;
Peter Zijlstra04f733b2012-05-11 00:12:02 +02006433 struct sched_domain *sd;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006434 /* Earliest time when we have to do rebalance again */
6435 unsigned long next_balance = jiffies + 60*HZ;
6436 int update_next_balance = 0;
Jason Lowf48627e2013-09-13 11:26:53 -07006437 int need_serialize, need_decay = 0;
6438 u64 max_cost = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006439
Paul Turner48a16752012-10-04 13:18:31 +02006440 update_blocked_averages(cpu);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08006441
Peter Zijlstradce840a2011-04-07 14:09:50 +02006442 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006443 for_each_domain(cpu, sd) {
Jason Lowf48627e2013-09-13 11:26:53 -07006444 /*
6445 * Decay the newidle max times here because this is a regular
6446 * visit to all the domains. Decay ~1% per second.
6447 */
6448 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6449 sd->max_newidle_lb_cost =
6450 (sd->max_newidle_lb_cost * 253) / 256;
6451 sd->next_decay_max_lb_cost = jiffies + HZ;
6452 need_decay = 1;
6453 }
6454 max_cost += sd->max_newidle_lb_cost;
6455
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006456 if (!(sd->flags & SD_LOAD_BALANCE))
6457 continue;
6458
Jason Lowf48627e2013-09-13 11:26:53 -07006459 /*
6460 * Stop the load balance at this level. There is another
6461 * CPU in our sched group which is doing load balancing more
6462 * actively.
6463 */
6464 if (!continue_balancing) {
6465 if (need_decay)
6466 continue;
6467 break;
6468 }
6469
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006470 interval = sd->balance_interval;
6471 if (idle != CPU_IDLE)
6472 interval *= sd->busy_factor;
6473
6474 /* scale ms to jiffies */
6475 interval = msecs_to_jiffies(interval);
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006476 interval = clamp(interval, 1UL, max_load_balance_interval);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006477
6478 need_serialize = sd->flags & SD_SERIALIZE;
6479
6480 if (need_serialize) {
6481 if (!spin_trylock(&balancing))
6482 goto out;
6483 }
6484
6485 if (time_after_eq(jiffies, sd->last_balance + interval)) {
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006486 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006487 /*
Peter Zijlstra62633222013-08-19 12:41:09 +02006488 * The LBF_DST_PINNED logic could have changed
Joonsoo Kimde5eb2d2013-04-23 17:27:38 +09006489 * env->dst_cpu, so we can't know our idle
6490 * state even if we migrated tasks. Update it.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006491 */
Joonsoo Kimde5eb2d2013-04-23 17:27:38 +09006492 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006493 }
6494 sd->last_balance = jiffies;
6495 }
6496 if (need_serialize)
6497 spin_unlock(&balancing);
6498out:
6499 if (time_after(next_balance, sd->last_balance + interval)) {
6500 next_balance = sd->last_balance + interval;
6501 update_next_balance = 1;
6502 }
Jason Lowf48627e2013-09-13 11:26:53 -07006503 }
6504 if (need_decay) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006505 /*
Jason Lowf48627e2013-09-13 11:26:53 -07006506 * Ensure the rq-wide value also decays but keep it at a
6507 * reasonable floor to avoid funnies with rq->avg_idle.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006508 */
Jason Lowf48627e2013-09-13 11:26:53 -07006509 rq->max_idle_balance_cost =
6510 max((u64)sysctl_sched_migration_cost, max_cost);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006511 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006512 rcu_read_unlock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006513
6514 /*
6515 * next_balance will be updated only when there is a need.
6516 * When the cpu is attached to null domain for ex, it will not be
6517 * updated.
6518 */
6519 if (likely(update_next_balance))
6520 rq->next_balance = next_balance;
6521}
6522
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006523#ifdef CONFIG_NO_HZ_COMMON
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006524/*
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006525 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006526 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6527 */
6528static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
6529{
6530 struct rq *this_rq = cpu_rq(this_cpu);
6531 struct rq *rq;
6532 int balance_cpu;
6533
Suresh Siddha1c792db2011-12-01 17:07:32 -08006534 if (idle != CPU_IDLE ||
6535 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6536 goto end;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006537
6538 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
Suresh Siddha8a6d42d2011-12-06 11:19:37 -08006539 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006540 continue;
6541
6542 /*
6543 * If this cpu gets work to do, stop the load balancing
6544 * work being done for other cpus. Next load
6545 * balancing owner will pick it up.
6546 */
Suresh Siddha1c792db2011-12-01 17:07:32 -08006547 if (need_resched())
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006548 break;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006549
Vincent Guittot5ed4f1d2012-09-13 06:11:26 +02006550 rq = cpu_rq(balance_cpu);
6551
6552 raw_spin_lock_irq(&rq->lock);
6553 update_rq_clock(rq);
6554 update_idle_cpu_load(rq);
6555 raw_spin_unlock_irq(&rq->lock);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006556
6557 rebalance_domains(balance_cpu, CPU_IDLE);
6558
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006559 if (time_after(this_rq->next_balance, rq->next_balance))
6560 this_rq->next_balance = rq->next_balance;
6561 }
6562 nohz.next_balance = this_rq->next_balance;
Suresh Siddha1c792db2011-12-01 17:07:32 -08006563end:
6564 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006565}
6566
6567/*
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006568 * Current heuristic for kicking the idle load balancer in the presence
6569 * of an idle cpu is the system.
6570 * - This rq has more than one task.
6571 * - At any scheduler domain level, this cpu's scheduler group has multiple
6572 * busy cpu's exceeding the group's power.
6573 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6574 * domain span are idle.
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006575 */
6576static inline int nohz_kick_needed(struct rq *rq, int cpu)
6577{
6578 unsigned long now = jiffies;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006579 struct sched_domain *sd;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006580
Suresh Siddha1c792db2011-12-01 17:07:32 -08006581 if (unlikely(idle_cpu(cpu)))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006582 return 0;
6583
Suresh Siddha1c792db2011-12-01 17:07:32 -08006584 /*
6585 * We may be recently in ticked or tickless idle mode. At the first
6586 * busy tick after returning from idle, we will update the busy stats.
6587 */
Suresh Siddha69e1e812011-12-01 17:07:33 -08006588 set_cpu_sd_state_busy();
Alex Shic1cc0172012-09-10 15:10:58 +08006589 nohz_balance_exit_idle(cpu);
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006590
6591 /*
6592 * None are in tickless mode and hence no need for NOHZ idle load
6593 * balancing.
6594 */
6595 if (likely(!atomic_read(&nohz.nr_cpus)))
6596 return 0;
Suresh Siddha1c792db2011-12-01 17:07:32 -08006597
6598 if (time_before(now, nohz.next_balance))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006599 return 0;
6600
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006601 if (rq->nr_running >= 2)
6602 goto need_kick;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006603
Peter Zijlstra067491b2011-12-07 14:32:08 +01006604 rcu_read_lock();
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006605 for_each_domain(cpu, sd) {
6606 struct sched_group *sg = sd->groups;
6607 struct sched_group_power *sgp = sg->sgp;
6608 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006609
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006610 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
Peter Zijlstra067491b2011-12-07 14:32:08 +01006611 goto need_kick_unlock;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006612
6613 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
6614 && (cpumask_first_and(nohz.idle_cpus_mask,
6615 sched_domain_span(sd)) < cpu))
Peter Zijlstra067491b2011-12-07 14:32:08 +01006616 goto need_kick_unlock;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006617
6618 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
6619 break;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006620 }
Peter Zijlstra067491b2011-12-07 14:32:08 +01006621 rcu_read_unlock();
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006622 return 0;
Peter Zijlstra067491b2011-12-07 14:32:08 +01006623
6624need_kick_unlock:
6625 rcu_read_unlock();
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006626need_kick:
6627 return 1;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006628}
6629#else
6630static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
6631#endif
6632
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006633/*
6634 * run_rebalance_domains is triggered when needed from the scheduler tick.
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006635 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006636 */
6637static void run_rebalance_domains(struct softirq_action *h)
6638{
6639 int this_cpu = smp_processor_id();
6640 struct rq *this_rq = cpu_rq(this_cpu);
Suresh Siddha6eb57e02011-10-03 15:09:01 -07006641 enum cpu_idle_type idle = this_rq->idle_balance ?
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006642 CPU_IDLE : CPU_NOT_IDLE;
6643
6644 rebalance_domains(this_cpu, idle);
6645
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006646 /*
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006647 * If this cpu has a pending nohz_balance_kick, then do the
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006648 * balancing on behalf of the other idle cpus whose ticks are
6649 * stopped.
6650 */
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006651 nohz_idle_balance(this_cpu, idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006652}
6653
6654static inline int on_null_domain(int cpu)
6655{
Paul E. McKenney90a65012010-02-28 08:32:18 -08006656 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006657}
6658
6659/*
6660 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006661 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006662void trigger_load_balance(struct rq *rq, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006663{
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006664 /* Don't need to rebalance while attached to NULL domain */
6665 if (time_after_eq(jiffies, rq->next_balance) &&
6666 likely(!on_null_domain(cpu)))
6667 raise_softirq(SCHED_SOFTIRQ);
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006668#ifdef CONFIG_NO_HZ_COMMON
Suresh Siddha1c792db2011-12-01 17:07:32 -08006669 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006670 nohz_balancer_kick(cpu);
6671#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006672}
6673
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01006674static void rq_online_fair(struct rq *rq)
6675{
6676 update_sysctl();
6677}
6678
6679static void rq_offline_fair(struct rq *rq)
6680{
6681 update_sysctl();
Peter Boonstoppela4c96ae2012-08-09 15:34:47 -07006682
6683 /* Ensure any throttled groups are reachable by pick_next_task */
6684 unthrottle_offline_cfs_rqs(rq);
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01006685}
6686
Dhaval Giani55e12e52008-06-24 23:39:43 +05306687#endif /* CONFIG_SMP */
Peter Williamse1d14842007-10-24 18:23:51 +02006688
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006689/*
6690 * scheduler tick hitting a task of our scheduling class:
6691 */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01006692static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006693{
6694 struct cfs_rq *cfs_rq;
6695 struct sched_entity *se = &curr->se;
6696
6697 for_each_sched_entity(se) {
6698 cfs_rq = cfs_rq_of(se);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01006699 entity_tick(cfs_rq, se, queued);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006700 }
Ben Segall18bf2802012-10-04 12:51:20 +02006701
Dave Kleikamp10e84b92013-07-31 13:53:35 -07006702 if (numabalancing_enabled)
Peter Zijlstracbee9f82012-10-25 14:16:43 +02006703 task_tick_numa(rq, curr);
Linus Torvalds3d59eeb2012-12-16 14:33:25 -08006704
Ben Segall18bf2802012-10-04 12:51:20 +02006705 update_rq_runnable_avg(rq, 1);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006706}
6707
6708/*
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006709 * called on fork with the child task as argument from the parent's context
6710 * - child not yet on the tasklist
6711 * - preemption disabled
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006712 */
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006713static void task_fork_fair(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006714{
Daisuke Nishimura4fc420c2011-12-15 14:36:55 +09006715 struct cfs_rq *cfs_rq;
6716 struct sched_entity *se = &p->se, *curr;
Ingo Molnar00bf7bf2007-10-15 17:00:14 +02006717 int this_cpu = smp_processor_id();
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006718 struct rq *rq = this_rq();
6719 unsigned long flags;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006720
Thomas Gleixner05fa7852009-11-17 14:28:38 +01006721 raw_spin_lock_irqsave(&rq->lock, flags);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006722
Peter Zijlstra861d0342010-08-19 13:31:43 +02006723 update_rq_clock(rq);
6724
Daisuke Nishimura4fc420c2011-12-15 14:36:55 +09006725 cfs_rq = task_cfs_rq(current);
6726 curr = cfs_rq->curr;
6727
Daisuke Nishimura6c9a27f2013-09-10 18:16:36 +09006728 /*
6729 * Not only the cpu but also the task_group of the parent might have
6730 * been changed after parent->se.parent,cfs_rq were copied to
6731 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6732 * of child point to valid ones.
6733 */
6734 rcu_read_lock();
6735 __set_task_cpu(p, this_cpu);
6736 rcu_read_unlock();
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006737
Ting Yang7109c442007-08-28 12:53:24 +02006738 update_curr(cfs_rq);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006739
Mike Galbraithb5d9d732009-09-08 11:12:28 +02006740 if (curr)
6741 se->vruntime = curr->vruntime;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02006742 place_entity(cfs_rq, se, 1);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02006743
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006744 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
Dmitry Adamushko87fefa32007-10-15 17:00:08 +02006745 /*
Ingo Molnaredcb60a2007-10-15 17:00:08 +02006746 * Upon rescheduling, sched_class::put_prev_task() will place
6747 * 'current' within the tree based on its new key value.
6748 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02006749 swap(curr->vruntime, se->vruntime);
Bharata B Raoaec0a512008-08-28 14:42:49 +05306750 resched_task(rq->curr);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02006751 }
6752
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01006753 se->vruntime -= cfs_rq->min_vruntime;
6754
Thomas Gleixner05fa7852009-11-17 14:28:38 +01006755 raw_spin_unlock_irqrestore(&rq->lock, flags);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006756}
6757
Steven Rostedtcb469842008-01-25 21:08:22 +01006758/*
6759 * Priority of the task has changed. Check to see if we preempt
6760 * the current task.
6761 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006762static void
6763prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
Steven Rostedtcb469842008-01-25 21:08:22 +01006764{
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006765 if (!p->se.on_rq)
6766 return;
6767
Steven Rostedtcb469842008-01-25 21:08:22 +01006768 /*
6769 * Reschedule if we are currently running on this runqueue and
6770 * our priority decreased, or if we are not currently running on
6771 * this runqueue and our priority is higher than the current's
6772 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006773 if (rq->curr == p) {
Steven Rostedtcb469842008-01-25 21:08:22 +01006774 if (p->prio > oldprio)
6775 resched_task(rq->curr);
6776 } else
Peter Zijlstra15afe092008-09-20 23:38:02 +02006777 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01006778}
6779
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006780static void switched_from_fair(struct rq *rq, struct task_struct *p)
6781{
6782 struct sched_entity *se = &p->se;
6783 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6784
6785 /*
6786 * Ensure the task's vruntime is normalized, so that when its
6787 * switched back to the fair class the enqueue_entity(.flags=0) will
6788 * do the right thing.
6789 *
6790 * If it was on_rq, then the dequeue_entity(.flags=0) will already
6791 * have normalized the vruntime, if it was !on_rq, then only when
6792 * the task is sleeping will it still have non-normalized vruntime.
6793 */
6794 if (!se->on_rq && p->state != TASK_RUNNING) {
6795 /*
6796 * Fix up our vruntime so that the current sleep doesn't
6797 * cause 'unlimited' sleep bonus.
6798 */
6799 place_entity(cfs_rq, se, 0);
6800 se->vruntime -= cfs_rq->min_vruntime;
6801 }
Paul Turner9ee474f2012-10-04 13:18:30 +02006802
Alex Shi141965c2013-06-26 13:05:39 +08006803#ifdef CONFIG_SMP
Paul Turner9ee474f2012-10-04 13:18:30 +02006804 /*
6805 * Remove our load from contribution when we leave sched_fair
6806 * and ensure we don't carry in an old decay_count if we
6807 * switch back.
6808 */
Kirill Tkhai87e3c8a2013-07-21 04:32:07 +04006809 if (se->avg.decay_count) {
6810 __synchronize_entity_decay(se);
6811 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
Paul Turner9ee474f2012-10-04 13:18:30 +02006812 }
6813#endif
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006814}
6815
Steven Rostedtcb469842008-01-25 21:08:22 +01006816/*
6817 * We switched to the sched_fair class.
6818 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006819static void switched_to_fair(struct rq *rq, struct task_struct *p)
Steven Rostedtcb469842008-01-25 21:08:22 +01006820{
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006821 if (!p->se.on_rq)
6822 return;
6823
Steven Rostedtcb469842008-01-25 21:08:22 +01006824 /*
6825 * We were most likely switched from sched_rt, so
6826 * kick off the schedule if running, otherwise just see
6827 * if we can still preempt the current task.
6828 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006829 if (rq->curr == p)
Steven Rostedtcb469842008-01-25 21:08:22 +01006830 resched_task(rq->curr);
6831 else
Peter Zijlstra15afe092008-09-20 23:38:02 +02006832 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01006833}
6834
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02006835/* Account for a task changing its policy or group.
6836 *
6837 * This routine is mostly called to set cfs_rq->curr field when a task
6838 * migrates between groups/classes.
6839 */
6840static void set_curr_task_fair(struct rq *rq)
6841{
6842 struct sched_entity *se = &rq->curr->se;
6843
Paul Turnerec12cb72011-07-21 09:43:30 -07006844 for_each_sched_entity(se) {
6845 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6846
6847 set_next_entity(cfs_rq, se);
6848 /* ensure bandwidth has been allocated on our new cfs_rq */
6849 account_cfs_rq_runtime(cfs_rq, 0);
6850 }
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02006851}
6852
Peter Zijlstra029632f2011-10-25 10:00:11 +02006853void init_cfs_rq(struct cfs_rq *cfs_rq)
6854{
6855 cfs_rq->tasks_timeline = RB_ROOT;
Peter Zijlstra029632f2011-10-25 10:00:11 +02006856 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6857#ifndef CONFIG_64BIT
6858 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
6859#endif
Alex Shi141965c2013-06-26 13:05:39 +08006860#ifdef CONFIG_SMP
Paul Turner9ee474f2012-10-04 13:18:30 +02006861 atomic64_set(&cfs_rq->decay_counter, 1);
Alex Shi25099402013-06-20 10:18:55 +08006862 atomic_long_set(&cfs_rq->removed_load, 0);
Paul Turner9ee474f2012-10-04 13:18:30 +02006863#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02006864}
6865
Peter Zijlstra810b3812008-02-29 15:21:01 -05006866#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02006867static void task_move_group_fair(struct task_struct *p, int on_rq)
Peter Zijlstra810b3812008-02-29 15:21:01 -05006868{
Paul Turneraff3e492012-10-04 13:18:30 +02006869 struct cfs_rq *cfs_rq;
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02006870 /*
6871 * If the task was not on the rq at the time of this cgroup movement
6872 * it must have been asleep, sleeping tasks keep their ->vruntime
6873 * absolute on their old rq until wakeup (needed for the fair sleeper
6874 * bonus in place_entity()).
6875 *
6876 * If it was on the rq, we've just 'preempted' it, which does convert
6877 * ->vruntime to a relative base.
6878 *
6879 * Make sure both cases convert their relative position when migrating
6880 * to another cgroup's rq. This does somewhat interfere with the
6881 * fair sleeper stuff for the first placement, but who cares.
6882 */
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09006883 /*
6884 * When !on_rq, vruntime of the task has usually NOT been normalized.
6885 * But there are some cases where it has already been normalized:
6886 *
6887 * - Moving a forked child which is waiting for being woken up by
6888 * wake_up_new_task().
Daisuke Nishimura62af3782011-12-15 14:37:41 +09006889 * - Moving a task which has been woken up by try_to_wake_up() and
6890 * waiting for actually being woken up by sched_ttwu_pending().
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09006891 *
6892 * To prevent boost or penalty in the new cfs_rq caused by delta
6893 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
6894 */
Daisuke Nishimura62af3782011-12-15 14:37:41 +09006895 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09006896 on_rq = 1;
6897
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01006898 if (!on_rq)
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02006899 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
6900 set_task_rq(p, task_cpu(p));
Paul Turneraff3e492012-10-04 13:18:30 +02006901 if (!on_rq) {
6902 cfs_rq = cfs_rq_of(&p->se);
6903 p->se.vruntime += cfs_rq->min_vruntime;
6904#ifdef CONFIG_SMP
6905 /*
6906 * migrate_task_rq_fair() will have removed our previous
6907 * contribution, but we must synchronize for ongoing future
6908 * decay.
6909 */
6910 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
6911 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
6912#endif
6913 }
Peter Zijlstra810b3812008-02-29 15:21:01 -05006914}
Peter Zijlstra029632f2011-10-25 10:00:11 +02006915
6916void free_fair_sched_group(struct task_group *tg)
6917{
6918 int i;
6919
6920 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
6921
6922 for_each_possible_cpu(i) {
6923 if (tg->cfs_rq)
6924 kfree(tg->cfs_rq[i]);
6925 if (tg->se)
6926 kfree(tg->se[i]);
6927 }
6928
6929 kfree(tg->cfs_rq);
6930 kfree(tg->se);
6931}
6932
6933int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6934{
6935 struct cfs_rq *cfs_rq;
6936 struct sched_entity *se;
6937 int i;
6938
6939 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
6940 if (!tg->cfs_rq)
6941 goto err;
6942 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
6943 if (!tg->se)
6944 goto err;
6945
6946 tg->shares = NICE_0_LOAD;
6947
6948 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
6949
6950 for_each_possible_cpu(i) {
6951 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
6952 GFP_KERNEL, cpu_to_node(i));
6953 if (!cfs_rq)
6954 goto err;
6955
6956 se = kzalloc_node(sizeof(struct sched_entity),
6957 GFP_KERNEL, cpu_to_node(i));
6958 if (!se)
6959 goto err_free_rq;
6960
6961 init_cfs_rq(cfs_rq);
6962 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
6963 }
6964
6965 return 1;
6966
6967err_free_rq:
6968 kfree(cfs_rq);
6969err:
6970 return 0;
6971}
6972
6973void unregister_fair_sched_group(struct task_group *tg, int cpu)
6974{
6975 struct rq *rq = cpu_rq(cpu);
6976 unsigned long flags;
6977
6978 /*
6979 * Only empty task groups can be destroyed; so we can speculatively
6980 * check on_list without danger of it being re-added.
6981 */
6982 if (!tg->cfs_rq[cpu]->on_list)
6983 return;
6984
6985 raw_spin_lock_irqsave(&rq->lock, flags);
6986 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
6987 raw_spin_unlock_irqrestore(&rq->lock, flags);
6988}
6989
6990void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
6991 struct sched_entity *se, int cpu,
6992 struct sched_entity *parent)
6993{
6994 struct rq *rq = cpu_rq(cpu);
6995
6996 cfs_rq->tg = tg;
6997 cfs_rq->rq = rq;
Peter Zijlstra029632f2011-10-25 10:00:11 +02006998 init_cfs_rq_runtime(cfs_rq);
6999
7000 tg->cfs_rq[cpu] = cfs_rq;
7001 tg->se[cpu] = se;
7002
7003 /* se could be NULL for root_task_group */
7004 if (!se)
7005 return;
7006
7007 if (!parent)
7008 se->cfs_rq = &rq->cfs;
7009 else
7010 se->cfs_rq = parent->my_q;
7011
7012 se->my_q = cfs_rq;
7013 update_load_set(&se->load, 0);
7014 se->parent = parent;
7015}
7016
7017static DEFINE_MUTEX(shares_mutex);
7018
7019int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7020{
7021 int i;
7022 unsigned long flags;
7023
7024 /*
7025 * We can't change the weight of the root cgroup.
7026 */
7027 if (!tg->se[0])
7028 return -EINVAL;
7029
7030 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7031
7032 mutex_lock(&shares_mutex);
7033 if (tg->shares == shares)
7034 goto done;
7035
7036 tg->shares = shares;
7037 for_each_possible_cpu(i) {
7038 struct rq *rq = cpu_rq(i);
7039 struct sched_entity *se;
7040
7041 se = tg->se[i];
7042 /* Propagate contribution to hierarchy */
7043 raw_spin_lock_irqsave(&rq->lock, flags);
Frederic Weisbecker71b1da42013-04-12 01:50:59 +02007044
7045 /* Possible calls to update_curr() need rq clock */
7046 update_rq_clock(rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08007047 for_each_sched_entity(se)
Peter Zijlstra029632f2011-10-25 10:00:11 +02007048 update_cfs_shares(group_cfs_rq(se));
7049 raw_spin_unlock_irqrestore(&rq->lock, flags);
7050 }
7051
7052done:
7053 mutex_unlock(&shares_mutex);
7054 return 0;
7055}
7056#else /* CONFIG_FAIR_GROUP_SCHED */
7057
7058void free_fair_sched_group(struct task_group *tg) { }
7059
7060int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7061{
7062 return 1;
7063}
7064
7065void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7066
7067#endif /* CONFIG_FAIR_GROUP_SCHED */
7068
Peter Zijlstra810b3812008-02-29 15:21:01 -05007069
H Hartley Sweeten6d686f42010-01-13 20:21:52 -07007070static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
Peter Williams0d721ce2009-09-21 01:31:53 +00007071{
7072 struct sched_entity *se = &task->se;
Peter Williams0d721ce2009-09-21 01:31:53 +00007073 unsigned int rr_interval = 0;
7074
7075 /*
7076 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7077 * idle runqueue:
7078 */
Peter Williams0d721ce2009-09-21 01:31:53 +00007079 if (rq->cfs.load.weight)
Zhu Yanhaia59f4e02013-01-08 12:56:52 +08007080 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
Peter Williams0d721ce2009-09-21 01:31:53 +00007081
7082 return rr_interval;
7083}
7084
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007085/*
7086 * All the scheduling class methods:
7087 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02007088const struct sched_class fair_sched_class = {
Ingo Molnar5522d5d2007-10-15 17:00:12 +02007089 .next = &idle_sched_class,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007090 .enqueue_task = enqueue_task_fair,
7091 .dequeue_task = dequeue_task_fair,
7092 .yield_task = yield_task_fair,
Mike Galbraithd95f4122011-02-01 09:50:51 -05007093 .yield_to_task = yield_to_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007094
Ingo Molnar2e09bf52007-10-15 17:00:05 +02007095 .check_preempt_curr = check_preempt_wakeup,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007096
7097 .pick_next_task = pick_next_task_fair,
7098 .put_prev_task = put_prev_task_fair,
7099
Peter Williams681f3e62007-10-24 18:23:51 +02007100#ifdef CONFIG_SMP
Li Zefan4ce72a22008-10-22 15:25:26 +08007101 .select_task_rq = select_task_rq_fair,
Paul Turner0a74bef2012-10-04 13:18:30 +02007102 .migrate_task_rq = migrate_task_rq_fair,
Alex Shi141965c2013-06-26 13:05:39 +08007103
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01007104 .rq_online = rq_online_fair,
7105 .rq_offline = rq_offline_fair,
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01007106
7107 .task_waking = task_waking_fair,
Peter Williams681f3e62007-10-24 18:23:51 +02007108#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007109
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02007110 .set_curr_task = set_curr_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007111 .task_tick = task_tick_fair,
Peter Zijlstracd29fe62009-11-27 17:32:46 +01007112 .task_fork = task_fork_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01007113
7114 .prio_changed = prio_changed_fair,
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007115 .switched_from = switched_from_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01007116 .switched_to = switched_to_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05007117
Peter Williams0d721ce2009-09-21 01:31:53 +00007118 .get_rr_interval = get_rr_interval_fair,
7119
Peter Zijlstra810b3812008-02-29 15:21:01 -05007120#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007121 .task_move_group = task_move_group_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05007122#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007123};
7124
7125#ifdef CONFIG_SCHED_DEBUG
Peter Zijlstra029632f2011-10-25 10:00:11 +02007126void print_cfs_stats(struct seq_file *m, int cpu)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007127{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007128 struct cfs_rq *cfs_rq;
7129
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01007130 rcu_read_lock();
Ingo Molnarc3b64f12007-08-09 11:16:51 +02007131 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
Ingo Molnar5cef9ec2007-08-09 11:16:47 +02007132 print_cfs_rq(m, cpu, cfs_rq);
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01007133 rcu_read_unlock();
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007134}
7135#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02007136
7137__init void init_sched_fair_class(void)
7138{
7139#ifdef CONFIG_SMP
7140 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7141
Frederic Weisbecker3451d022011-08-10 23:21:01 +02007142#ifdef CONFIG_NO_HZ_COMMON
Diwakar Tundlam554ceca2012-03-07 14:44:26 -08007143 nohz.next_balance = jiffies;
Peter Zijlstra029632f2011-10-25 10:00:11 +02007144 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
Suresh Siddha71325962012-01-19 18:28:57 -08007145 cpu_notifier(sched_ilb_notifier, 0);
Peter Zijlstra029632f2011-10-25 10:00:11 +02007146#endif
7147#endif /* SMP */
7148
7149}