blob: b906ed17a8391a99ffbc15d8ea62c6861be90689 [file] [log] [blame]
Steven Whitehousef057f6c2009-01-12 10:43:39 +00001/*
2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
David Teiglande0c2a9a2012-01-09 17:18:05 -05003 * Copyright 2004-2011 Red Hat, Inc.
Steven Whitehousef057f6c2009-01-12 10:43:39 +00004 *
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
8 */
9
10#include <linux/fs.h>
11#include <linux/dlm.h>
Tejun Heo5a0e3ad2010-03-24 17:04:11 +090012#include <linux/slab.h>
Steven Whitehousef057f6c2009-01-12 10:43:39 +000013#include <linux/types.h>
David Teiglande0c2a9a2012-01-09 17:18:05 -050014#include <linux/delay.h>
Steven Whitehousef057f6c2009-01-12 10:43:39 +000015#include <linux/gfs2_ondisk.h>
16
17#include "incore.h"
18#include "glock.h"
19#include "util.h"
David Teiglande0c2a9a2012-01-09 17:18:05 -050020#include "sys.h"
Steven Whitehousea2457692012-01-20 10:38:36 +000021#include "trace_gfs2.h"
Steven Whitehousef057f6c2009-01-12 10:43:39 +000022
David Teiglande0c2a9a2012-01-09 17:18:05 -050023extern struct workqueue_struct *gfs2_control_wq;
Steven Whitehousef057f6c2009-01-12 10:43:39 +000024
Steven Whitehousea2457692012-01-20 10:38:36 +000025/**
26 * gfs2_update_stats - Update time based stats
27 * @mv: Pointer to mean/variance structure to update
28 * @sample: New data to include
29 *
30 * @delta is the difference between the current rtt sample and the
31 * running average srtt. We add 1/8 of that to the srtt in order to
32 * update the current srtt estimate. The varience estimate is a bit
33 * more complicated. We subtract the abs value of the @delta from
34 * the current variance estimate and add 1/4 of that to the running
35 * total.
36 *
37 * Note that the index points at the array entry containing the smoothed
38 * mean value, and the variance is always in the following entry
39 *
40 * Reference: TCP/IP Illustrated, vol 2, p. 831,832
41 * All times are in units of integer nanoseconds. Unlike the TCP/IP case,
42 * they are not scaled fixed point.
43 */
44
45static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
46 s64 sample)
47{
48 s64 delta = sample - s->stats[index];
49 s->stats[index] += (delta >> 3);
50 index++;
51 s->stats[index] += ((abs64(delta) - s->stats[index]) >> 2);
52}
53
54/**
55 * gfs2_update_reply_times - Update locking statistics
56 * @gl: The glock to update
57 *
58 * This assumes that gl->gl_dstamp has been set earlier.
59 *
60 * The rtt (lock round trip time) is an estimate of the time
61 * taken to perform a dlm lock request. We update it on each
62 * reply from the dlm.
63 *
64 * The blocking flag is set on the glock for all dlm requests
65 * which may potentially block due to lock requests from other nodes.
66 * DLM requests where the current lock state is exclusive, the
67 * requested state is null (or unlocked) or where the TRY or
68 * TRY_1CB flags are set are classified as non-blocking. All
69 * other DLM requests are counted as (potentially) blocking.
70 */
71static inline void gfs2_update_reply_times(struct gfs2_glock *gl)
72{
73 struct gfs2_pcpu_lkstats *lks;
74 const unsigned gltype = gl->gl_name.ln_type;
75 unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ?
76 GFS2_LKS_SRTTB : GFS2_LKS_SRTT;
77 s64 rtt;
78
79 preempt_disable();
80 rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
81 lks = this_cpu_ptr(gl->gl_sbd->sd_lkstats);
82 gfs2_update_stats(&gl->gl_stats, index, rtt); /* Local */
83 gfs2_update_stats(&lks->lkstats[gltype], index, rtt); /* Global */
84 preempt_enable();
85
86 trace_gfs2_glock_lock_time(gl, rtt);
87}
88
89/**
90 * gfs2_update_request_times - Update locking statistics
91 * @gl: The glock to update
92 *
93 * The irt (lock inter-request times) measures the average time
94 * between requests to the dlm. It is updated immediately before
95 * each dlm call.
96 */
97
98static inline void gfs2_update_request_times(struct gfs2_glock *gl)
99{
100 struct gfs2_pcpu_lkstats *lks;
101 const unsigned gltype = gl->gl_name.ln_type;
102 ktime_t dstamp;
103 s64 irt;
104
105 preempt_disable();
106 dstamp = gl->gl_dstamp;
107 gl->gl_dstamp = ktime_get_real();
108 irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
109 lks = this_cpu_ptr(gl->gl_sbd->sd_lkstats);
110 gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt); /* Local */
111 gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt); /* Global */
112 preempt_enable();
113}
114
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000115static void gdlm_ast(void *arg)
116{
117 struct gfs2_glock *gl = arg;
118 unsigned ret = gl->gl_state;
119
Steven Whitehousea2457692012-01-20 10:38:36 +0000120 gfs2_update_reply_times(gl);
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000121 BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
122
David Teigland4e2f8842012-11-14 13:47:37 -0500123 if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr)
124 memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE);
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000125
126 switch (gl->gl_lksb.sb_status) {
127 case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
Steven Whitehousefc0e38d2011-03-09 10:58:04 +0000128 gfs2_glock_free(gl);
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000129 return;
130 case -DLM_ECANCEL: /* Cancel while getting lock */
131 ret |= LM_OUT_CANCELED;
132 goto out;
133 case -EAGAIN: /* Try lock fails */
Steven Whitehouse1fea7c22010-09-08 10:09:25 +0100134 case -EDEADLK: /* Deadlock detected */
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000135 goto out;
Steven Whitehouse1fea7c22010-09-08 10:09:25 +0100136 case -ETIMEDOUT: /* Canceled due to timeout */
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000137 ret |= LM_OUT_ERROR;
138 goto out;
139 case 0: /* Success */
140 break;
141 default: /* Something unexpected */
142 BUG();
143 }
144
Benjamin Marzinski02ffad02009-03-06 10:03:20 -0600145 ret = gl->gl_req;
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000146 if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
Benjamin Marzinski02ffad02009-03-06 10:03:20 -0600147 if (gl->gl_req == LM_ST_SHARED)
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000148 ret = LM_ST_DEFERRED;
Benjamin Marzinski02ffad02009-03-06 10:03:20 -0600149 else if (gl->gl_req == LM_ST_DEFERRED)
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000150 ret = LM_ST_SHARED;
151 else
152 BUG();
153 }
154
155 set_bit(GLF_INITIAL, &gl->gl_flags);
156 gfs2_glock_complete(gl, ret);
157 return;
158out:
159 if (!test_bit(GLF_INITIAL, &gl->gl_flags))
160 gl->gl_lksb.sb_lkid = 0;
161 gfs2_glock_complete(gl, ret);
162}
163
164static void gdlm_bast(void *arg, int mode)
165{
166 struct gfs2_glock *gl = arg;
167
168 switch (mode) {
169 case DLM_LOCK_EX:
170 gfs2_glock_cb(gl, LM_ST_UNLOCKED);
171 break;
172 case DLM_LOCK_CW:
173 gfs2_glock_cb(gl, LM_ST_DEFERRED);
174 break;
175 case DLM_LOCK_PR:
176 gfs2_glock_cb(gl, LM_ST_SHARED);
177 break;
178 default:
179 printk(KERN_ERR "unknown bast mode %d", mode);
180 BUG();
181 }
182}
183
184/* convert gfs lock-state to dlm lock-mode */
185
186static int make_mode(const unsigned int lmstate)
187{
188 switch (lmstate) {
189 case LM_ST_UNLOCKED:
190 return DLM_LOCK_NL;
191 case LM_ST_EXCLUSIVE:
192 return DLM_LOCK_EX;
193 case LM_ST_DEFERRED:
194 return DLM_LOCK_CW;
195 case LM_ST_SHARED:
196 return DLM_LOCK_PR;
197 }
198 printk(KERN_ERR "unknown LM state %d", lmstate);
199 BUG();
200 return -1;
201}
202
Bob Peterson4c569a72012-04-10 14:45:24 -0400203static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags,
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000204 const int req)
205{
David Teiglanddba2d702012-11-14 13:46:53 -0500206 u32 lkf = 0;
207
David Teigland4e2f8842012-11-14 13:47:37 -0500208 if (gl->gl_lksb.sb_lvbptr)
David Teiglanddba2d702012-11-14 13:46:53 -0500209 lkf |= DLM_LKF_VALBLK;
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000210
211 if (gfs_flags & LM_FLAG_TRY)
212 lkf |= DLM_LKF_NOQUEUE;
213
214 if (gfs_flags & LM_FLAG_TRY_1CB) {
215 lkf |= DLM_LKF_NOQUEUE;
216 lkf |= DLM_LKF_NOQUEUEBAST;
217 }
218
219 if (gfs_flags & LM_FLAG_PRIORITY) {
220 lkf |= DLM_LKF_NOORDER;
221 lkf |= DLM_LKF_HEADQUE;
222 }
223
224 if (gfs_flags & LM_FLAG_ANY) {
225 if (req == DLM_LOCK_PR)
226 lkf |= DLM_LKF_ALTCW;
227 else if (req == DLM_LOCK_CW)
228 lkf |= DLM_LKF_ALTPR;
229 else
230 BUG();
231 }
232
David Teiglanddba2d702012-11-14 13:46:53 -0500233 if (gl->gl_lksb.sb_lkid != 0) {
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000234 lkf |= DLM_LKF_CONVERT;
Bob Peterson4c569a72012-04-10 14:45:24 -0400235 if (test_bit(GLF_BLOCKING, &gl->gl_flags))
236 lkf |= DLM_LKF_QUECVT;
237 }
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000238
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000239 return lkf;
240}
241
Steven Whitehousea2457692012-01-20 10:38:36 +0000242static void gfs2_reverse_hex(char *c, u64 value)
243{
Nathan Strazec148752012-12-11 17:01:24 -0500244 *c = '0';
Steven Whitehousea2457692012-01-20 10:38:36 +0000245 while (value) {
246 *c-- = hex_asc[value & 0x0f];
247 value >>= 4;
248 }
249}
250
Steven Whitehouse921169c2010-11-29 12:50:38 +0000251static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
252 unsigned int flags)
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000253{
254 struct lm_lockstruct *ls = &gl->gl_sbd->sd_lockstruct;
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000255 int req;
256 u32 lkf;
Steven Whitehousea2457692012-01-20 10:38:36 +0000257 char strname[GDLM_STRNAME_BYTES] = "";
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000258
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000259 req = make_mode(req_state);
Bob Peterson4c569a72012-04-10 14:45:24 -0400260 lkf = make_flags(gl, flags, req);
Steven Whitehousea2457692012-01-20 10:38:36 +0000261 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
262 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
263 if (gl->gl_lksb.sb_lkid) {
264 gfs2_update_request_times(gl);
265 } else {
266 memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
267 strname[GDLM_STRNAME_BYTES - 1] = '\0';
268 gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type);
269 gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number);
270 gl->gl_dstamp = ktime_get_real();
271 }
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000272 /*
273 * Submit the actual lock request.
274 */
275
Steven Whitehousea2457692012-01-20 10:38:36 +0000276 return dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname,
Steven Whitehouse921169c2010-11-29 12:50:38 +0000277 GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000278}
279
Steven Whitehousebc015cb2011-01-19 09:30:01 +0000280static void gdlm_put_lock(struct gfs2_glock *gl)
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000281{
Steven Whitehousee4027462010-01-25 11:20:19 +0000282 struct gfs2_sbd *sdp = gl->gl_sbd;
283 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000284 int error;
285
286 if (gl->gl_lksb.sb_lkid == 0) {
Steven Whitehousefc0e38d2011-03-09 10:58:04 +0000287 gfs2_glock_free(gl);
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000288 return;
289 }
290
Steven Whitehousea2457692012-01-20 10:38:36 +0000291 clear_bit(GLF_BLOCKING, &gl->gl_flags);
292 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
293 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
294 gfs2_update_request_times(gl);
David Teiglandfb6791d2012-11-13 10:58:56 -0500295
296 /* don't want to skip dlm_unlock writing the lvb when lock is ex */
297 if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) &&
David Teigland4e2f8842012-11-14 13:47:37 -0500298 gl->gl_lksb.sb_lvbptr && (gl->gl_state != LM_ST_EXCLUSIVE)) {
David Teiglandfb6791d2012-11-13 10:58:56 -0500299 gfs2_glock_free(gl);
300 return;
301 }
302
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000303 error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK,
304 NULL, gl);
305 if (error) {
306 printk(KERN_ERR "gdlm_unlock %x,%llx err=%d\n",
307 gl->gl_name.ln_type,
308 (unsigned long long)gl->gl_name.ln_number, error);
309 return;
310 }
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000311}
312
313static void gdlm_cancel(struct gfs2_glock *gl)
314{
315 struct lm_lockstruct *ls = &gl->gl_sbd->sd_lockstruct;
316 dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
317}
318
David Teiglande0c2a9a2012-01-09 17:18:05 -0500319/*
320 * dlm/gfs2 recovery coordination using dlm_recover callbacks
321 *
322 * 1. dlm_controld sees lockspace members change
323 * 2. dlm_controld blocks dlm-kernel locking activity
324 * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
325 * 4. dlm_controld starts and finishes its own user level recovery
326 * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
327 * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
328 * 7. dlm_recoverd does its own lock recovery
329 * 8. dlm_recoverd unblocks dlm-kernel locking activity
330 * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
331 * 10. gfs2_control updates control_lock lvb with new generation and jid bits
332 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
333 * 12. gfs2_recover dequeues and recovers journals of failed nodes
334 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
335 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
336 * 15. gfs2_control unblocks normal locking when all journals are recovered
337 *
338 * - failures during recovery
339 *
340 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
341 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
342 * recovering for a prior failure. gfs2_control needs a way to detect
343 * this so it can leave BLOCK_LOCKS set in step 15. This is managed using
344 * the recover_block and recover_start values.
345 *
346 * recover_done() provides a new lockspace generation number each time it
347 * is called (step 9). This generation number is saved as recover_start.
348 * When recover_prep() is called, it sets BLOCK_LOCKS and sets
349 * recover_block = recover_start. So, while recover_block is equal to
350 * recover_start, BLOCK_LOCKS should remain set. (recover_spin must
351 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
352 *
353 * - more specific gfs2 steps in sequence above
354 *
355 * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
356 * 6. recover_slot records any failed jids (maybe none)
357 * 9. recover_done sets recover_start = new generation number
358 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
359 * 12. gfs2_recover does journal recoveries for failed jids identified above
360 * 14. gfs2_control clears control_lock lvb bits for recovered jids
361 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
362 * again) then do nothing, otherwise if recover_start > recover_block
363 * then clear BLOCK_LOCKS.
364 *
365 * - parallel recovery steps across all nodes
366 *
367 * All nodes attempt to update the control_lock lvb with the new generation
368 * number and jid bits, but only the first to get the control_lock EX will
369 * do so; others will see that it's already done (lvb already contains new
370 * generation number.)
371 *
372 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
373 * . All nodes attempt to set control_lock lvb gen + bits for the new gen
374 * . One node gets control_lock first and writes the lvb, others see it's done
375 * . All nodes attempt to recover jids for which they see control_lock bits set
376 * . One node succeeds for a jid, and that one clears the jid bit in the lvb
377 * . All nodes will eventually see all lvb bits clear and unblock locks
378 *
379 * - is there a problem with clearing an lvb bit that should be set
380 * and missing a journal recovery?
381 *
382 * 1. jid fails
383 * 2. lvb bit set for step 1
384 * 3. jid recovered for step 1
385 * 4. jid taken again (new mount)
386 * 5. jid fails (for step 4)
387 * 6. lvb bit set for step 5 (will already be set)
388 * 7. lvb bit cleared for step 3
389 *
390 * This is not a problem because the failure in step 5 does not
391 * require recovery, because the mount in step 4 could not have
392 * progressed far enough to unblock locks and access the fs. The
393 * control_mount() function waits for all recoveries to be complete
394 * for the latest lockspace generation before ever unblocking locks
395 * and returning. The mount in step 4 waits until the recovery in
396 * step 1 is done.
397 *
398 * - special case of first mounter: first node to mount the fs
399 *
400 * The first node to mount a gfs2 fs needs to check all the journals
401 * and recover any that need recovery before other nodes are allowed
402 * to mount the fs. (Others may begin mounting, but they must wait
403 * for the first mounter to be done before taking locks on the fs
404 * or accessing the fs.) This has two parts:
405 *
406 * 1. The mounted_lock tells a node it's the first to mount the fs.
407 * Each node holds the mounted_lock in PR while it's mounted.
408 * Each node tries to acquire the mounted_lock in EX when it mounts.
409 * If a node is granted the mounted_lock EX it means there are no
410 * other mounted nodes (no PR locks exist), and it is the first mounter.
411 * The mounted_lock is demoted to PR when first recovery is done, so
412 * others will fail to get an EX lock, but will get a PR lock.
413 *
414 * 2. The control_lock blocks others in control_mount() while the first
415 * mounter is doing first mount recovery of all journals.
416 * A mounting node needs to acquire control_lock in EX mode before
417 * it can proceed. The first mounter holds control_lock in EX while doing
418 * the first mount recovery, blocking mounts from other nodes, then demotes
419 * control_lock to NL when it's done (others_may_mount/first_done),
420 * allowing other nodes to continue mounting.
421 *
422 * first mounter:
423 * control_lock EX/NOQUEUE success
424 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
425 * set first=1
426 * do first mounter recovery
427 * mounted_lock EX->PR
428 * control_lock EX->NL, write lvb generation
429 *
430 * other mounter:
431 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
432 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
433 * mounted_lock PR/NOQUEUE success
434 * read lvb generation
435 * control_lock EX->NL
436 * set first=0
437 *
438 * - mount during recovery
439 *
440 * If a node mounts while others are doing recovery (not first mounter),
441 * the mounting node will get its initial recover_done() callback without
442 * having seen any previous failures/callbacks.
443 *
444 * It must wait for all recoveries preceding its mount to be finished
445 * before it unblocks locks. It does this by repeating the "other mounter"
446 * steps above until the lvb generation number is >= its mount generation
447 * number (from initial recover_done) and all lvb bits are clear.
448 *
449 * - control_lock lvb format
450 *
451 * 4 bytes generation number: the latest dlm lockspace generation number
452 * from recover_done callback. Indicates the jid bitmap has been updated
453 * to reflect all slot failures through that generation.
454 * 4 bytes unused.
455 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
456 * that jid N needs recovery.
457 */
458
459#define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
460
461static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
462 char *lvb_bits)
463{
464 uint32_t gen;
465 memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
466 memcpy(&gen, lvb_bits, sizeof(uint32_t));
467 *lvb_gen = le32_to_cpu(gen);
468}
469
470static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
471 char *lvb_bits)
472{
473 uint32_t gen;
474 memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
475 gen = cpu_to_le32(lvb_gen);
476 memcpy(ls->ls_control_lvb, &gen, sizeof(uint32_t));
477}
478
479static int all_jid_bits_clear(char *lvb)
480{
481 int i;
482 for (i = JID_BITMAP_OFFSET; i < GDLM_LVB_SIZE; i++) {
483 if (lvb[i])
484 return 0;
485 }
486 return 1;
487}
488
489static void sync_wait_cb(void *arg)
490{
491 struct lm_lockstruct *ls = arg;
492 complete(&ls->ls_sync_wait);
493}
494
495static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000496{
497 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
498 int error;
499
David Teiglande0c2a9a2012-01-09 17:18:05 -0500500 error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
501 if (error) {
502 fs_err(sdp, "%s lkid %x error %d\n",
503 name, lksb->sb_lkid, error);
504 return error;
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000505 }
506
David Teiglande0c2a9a2012-01-09 17:18:05 -0500507 wait_for_completion(&ls->ls_sync_wait);
508
509 if (lksb->sb_status != -DLM_EUNLOCK) {
510 fs_err(sdp, "%s lkid %x status %d\n",
511 name, lksb->sb_lkid, lksb->sb_status);
512 return -1;
513 }
514 return 0;
515}
516
517static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
518 unsigned int num, struct dlm_lksb *lksb, char *name)
519{
520 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
521 char strname[GDLM_STRNAME_BYTES];
522 int error, status;
523
524 memset(strname, 0, GDLM_STRNAME_BYTES);
525 snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
526
527 error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
528 strname, GDLM_STRNAME_BYTES - 1,
529 0, sync_wait_cb, ls, NULL);
530 if (error) {
531 fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
532 name, lksb->sb_lkid, flags, mode, error);
533 return error;
534 }
535
536 wait_for_completion(&ls->ls_sync_wait);
537
538 status = lksb->sb_status;
539
540 if (status && status != -EAGAIN) {
541 fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
542 name, lksb->sb_lkid, flags, mode, status);
543 }
544
545 return status;
546}
547
548static int mounted_unlock(struct gfs2_sbd *sdp)
549{
550 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
551 return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
552}
553
554static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
555{
556 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
557 return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
558 &ls->ls_mounted_lksb, "mounted_lock");
559}
560
561static int control_unlock(struct gfs2_sbd *sdp)
562{
563 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
564 return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
565}
566
567static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
568{
569 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
570 return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
571 &ls->ls_control_lksb, "control_lock");
572}
573
574static void gfs2_control_func(struct work_struct *work)
575{
576 struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
577 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
578 char lvb_bits[GDLM_LVB_SIZE];
579 uint32_t block_gen, start_gen, lvb_gen, flags;
580 int recover_set = 0;
581 int write_lvb = 0;
582 int recover_size;
583 int i, error;
584
585 spin_lock(&ls->ls_recover_spin);
586 /*
587 * No MOUNT_DONE means we're still mounting; control_mount()
588 * will set this flag, after which this thread will take over
589 * all further clearing of BLOCK_LOCKS.
590 *
591 * FIRST_MOUNT means this node is doing first mounter recovery,
592 * for which recovery control is handled by
593 * control_mount()/control_first_done(), not this thread.
594 */
595 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
596 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
597 spin_unlock(&ls->ls_recover_spin);
598 return;
599 }
600 block_gen = ls->ls_recover_block;
601 start_gen = ls->ls_recover_start;
602 spin_unlock(&ls->ls_recover_spin);
603
604 /*
605 * Equal block_gen and start_gen implies we are between
606 * recover_prep and recover_done callbacks, which means
607 * dlm recovery is in progress and dlm locking is blocked.
608 * There's no point trying to do any work until recover_done.
609 */
610
611 if (block_gen == start_gen)
612 return;
613
614 /*
615 * Propagate recover_submit[] and recover_result[] to lvb:
616 * dlm_recoverd adds to recover_submit[] jids needing recovery
617 * gfs2_recover adds to recover_result[] journal recovery results
618 *
619 * set lvb bit for jids in recover_submit[] if the lvb has not
620 * yet been updated for the generation of the failure
621 *
622 * clear lvb bit for jids in recover_result[] if the result of
623 * the journal recovery is SUCCESS
624 */
625
626 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
627 if (error) {
628 fs_err(sdp, "control lock EX error %d\n", error);
629 return;
630 }
631
632 control_lvb_read(ls, &lvb_gen, lvb_bits);
633
634 spin_lock(&ls->ls_recover_spin);
635 if (block_gen != ls->ls_recover_block ||
636 start_gen != ls->ls_recover_start) {
637 fs_info(sdp, "recover generation %u block1 %u %u\n",
638 start_gen, block_gen, ls->ls_recover_block);
639 spin_unlock(&ls->ls_recover_spin);
640 control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
641 return;
642 }
643
644 recover_size = ls->ls_recover_size;
645
646 if (lvb_gen <= start_gen) {
647 /*
648 * Clear lvb bits for jids we've successfully recovered.
649 * Because all nodes attempt to recover failed journals,
650 * a journal can be recovered multiple times successfully
651 * in succession. Only the first will really do recovery,
652 * the others find it clean, but still report a successful
653 * recovery. So, another node may have already recovered
654 * the jid and cleared the lvb bit for it.
655 */
656 for (i = 0; i < recover_size; i++) {
657 if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
658 continue;
659
660 ls->ls_recover_result[i] = 0;
661
662 if (!test_bit_le(i, lvb_bits + JID_BITMAP_OFFSET))
663 continue;
664
665 __clear_bit_le(i, lvb_bits + JID_BITMAP_OFFSET);
666 write_lvb = 1;
667 }
668 }
669
670 if (lvb_gen == start_gen) {
671 /*
672 * Failed slots before start_gen are already set in lvb.
673 */
674 for (i = 0; i < recover_size; i++) {
675 if (!ls->ls_recover_submit[i])
676 continue;
677 if (ls->ls_recover_submit[i] < lvb_gen)
678 ls->ls_recover_submit[i] = 0;
679 }
680 } else if (lvb_gen < start_gen) {
681 /*
682 * Failed slots before start_gen are not yet set in lvb.
683 */
684 for (i = 0; i < recover_size; i++) {
685 if (!ls->ls_recover_submit[i])
686 continue;
687 if (ls->ls_recover_submit[i] < start_gen) {
688 ls->ls_recover_submit[i] = 0;
689 __set_bit_le(i, lvb_bits + JID_BITMAP_OFFSET);
690 }
691 }
692 /* even if there are no bits to set, we need to write the
693 latest generation to the lvb */
694 write_lvb = 1;
695 } else {
696 /*
697 * we should be getting a recover_done() for lvb_gen soon
698 */
699 }
700 spin_unlock(&ls->ls_recover_spin);
701
702 if (write_lvb) {
703 control_lvb_write(ls, start_gen, lvb_bits);
704 flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
705 } else {
706 flags = DLM_LKF_CONVERT;
707 }
708
709 error = control_lock(sdp, DLM_LOCK_NL, flags);
710 if (error) {
711 fs_err(sdp, "control lock NL error %d\n", error);
712 return;
713 }
714
715 /*
716 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
717 * and clear a jid bit in the lvb if the recovery is a success.
718 * Eventually all journals will be recovered, all jid bits will
719 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
720 */
721
722 for (i = 0; i < recover_size; i++) {
723 if (test_bit_le(i, lvb_bits + JID_BITMAP_OFFSET)) {
724 fs_info(sdp, "recover generation %u jid %d\n",
725 start_gen, i);
726 gfs2_recover_set(sdp, i);
727 recover_set++;
728 }
729 }
730 if (recover_set)
731 return;
732
733 /*
734 * No more jid bits set in lvb, all recovery is done, unblock locks
735 * (unless a new recover_prep callback has occured blocking locks
736 * again while working above)
737 */
738
739 spin_lock(&ls->ls_recover_spin);
740 if (ls->ls_recover_block == block_gen &&
741 ls->ls_recover_start == start_gen) {
742 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
743 spin_unlock(&ls->ls_recover_spin);
744 fs_info(sdp, "recover generation %u done\n", start_gen);
745 gfs2_glock_thaw(sdp);
746 } else {
747 fs_info(sdp, "recover generation %u block2 %u %u\n",
748 start_gen, block_gen, ls->ls_recover_block);
749 spin_unlock(&ls->ls_recover_spin);
750 }
751}
752
753static int control_mount(struct gfs2_sbd *sdp)
754{
755 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
756 char lvb_bits[GDLM_LVB_SIZE];
757 uint32_t start_gen, block_gen, mount_gen, lvb_gen;
758 int mounted_mode;
759 int retries = 0;
760 int error;
761
762 memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
763 memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
764 memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
765 ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
766 init_completion(&ls->ls_sync_wait);
767
768 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
769
770 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
771 if (error) {
772 fs_err(sdp, "control_mount control_lock NL error %d\n", error);
773 return error;
774 }
775
776 error = mounted_lock(sdp, DLM_LOCK_NL, 0);
777 if (error) {
778 fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
779 control_unlock(sdp);
780 return error;
781 }
782 mounted_mode = DLM_LOCK_NL;
783
784restart:
785 if (retries++ && signal_pending(current)) {
786 error = -EINTR;
787 goto fail;
788 }
789
790 /*
791 * We always start with both locks in NL. control_lock is
792 * demoted to NL below so we don't need to do it here.
793 */
794
795 if (mounted_mode != DLM_LOCK_NL) {
796 error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
797 if (error)
798 goto fail;
799 mounted_mode = DLM_LOCK_NL;
800 }
801
802 /*
803 * Other nodes need to do some work in dlm recovery and gfs2_control
804 * before the recover_done and control_lock will be ready for us below.
805 * A delay here is not required but often avoids having to retry.
806 */
807
808 msleep_interruptible(500);
809
810 /*
811 * Acquire control_lock in EX and mounted_lock in either EX or PR.
812 * control_lock lvb keeps track of any pending journal recoveries.
813 * mounted_lock indicates if any other nodes have the fs mounted.
814 */
815
816 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
817 if (error == -EAGAIN) {
818 goto restart;
819 } else if (error) {
820 fs_err(sdp, "control_mount control_lock EX error %d\n", error);
821 goto fail;
822 }
823
824 error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
825 if (!error) {
826 mounted_mode = DLM_LOCK_EX;
827 goto locks_done;
828 } else if (error != -EAGAIN) {
829 fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
830 goto fail;
831 }
832
833 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
834 if (!error) {
835 mounted_mode = DLM_LOCK_PR;
836 goto locks_done;
837 } else {
838 /* not even -EAGAIN should happen here */
839 fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
840 goto fail;
841 }
842
843locks_done:
844 /*
845 * If we got both locks above in EX, then we're the first mounter.
846 * If not, then we need to wait for the control_lock lvb to be
847 * updated by other mounted nodes to reflect our mount generation.
848 *
849 * In simple first mounter cases, first mounter will see zero lvb_gen,
850 * but in cases where all existing nodes leave/fail before mounting
851 * nodes finish control_mount, then all nodes will be mounting and
852 * lvb_gen will be non-zero.
853 */
854
855 control_lvb_read(ls, &lvb_gen, lvb_bits);
856
857 if (lvb_gen == 0xFFFFFFFF) {
858 /* special value to force mount attempts to fail */
859 fs_err(sdp, "control_mount control_lock disabled\n");
860 error = -EINVAL;
861 goto fail;
862 }
863
864 if (mounted_mode == DLM_LOCK_EX) {
865 /* first mounter, keep both EX while doing first recovery */
866 spin_lock(&ls->ls_recover_spin);
867 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
868 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
869 set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
870 spin_unlock(&ls->ls_recover_spin);
871 fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
872 return 0;
873 }
874
875 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000876 if (error)
David Teiglande0c2a9a2012-01-09 17:18:05 -0500877 goto fail;
878
879 /*
880 * We are not first mounter, now we need to wait for the control_lock
881 * lvb generation to be >= the generation from our first recover_done
882 * and all lvb bits to be clear (no pending journal recoveries.)
883 */
884
885 if (!all_jid_bits_clear(lvb_bits)) {
886 /* journals need recovery, wait until all are clear */
887 fs_info(sdp, "control_mount wait for journal recovery\n");
888 goto restart;
889 }
890
891 spin_lock(&ls->ls_recover_spin);
892 block_gen = ls->ls_recover_block;
893 start_gen = ls->ls_recover_start;
894 mount_gen = ls->ls_recover_mount;
895
896 if (lvb_gen < mount_gen) {
897 /* wait for mounted nodes to update control_lock lvb to our
898 generation, which might include new recovery bits set */
899 fs_info(sdp, "control_mount wait1 block %u start %u mount %u "
900 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
901 lvb_gen, ls->ls_recover_flags);
902 spin_unlock(&ls->ls_recover_spin);
903 goto restart;
904 }
905
906 if (lvb_gen != start_gen) {
907 /* wait for mounted nodes to update control_lock lvb to the
908 latest recovery generation */
909 fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
910 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
911 lvb_gen, ls->ls_recover_flags);
912 spin_unlock(&ls->ls_recover_spin);
913 goto restart;
914 }
915
916 if (block_gen == start_gen) {
917 /* dlm recovery in progress, wait for it to finish */
918 fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
919 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
920 lvb_gen, ls->ls_recover_flags);
921 spin_unlock(&ls->ls_recover_spin);
922 goto restart;
923 }
924
925 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
926 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
927 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
928 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
929 spin_unlock(&ls->ls_recover_spin);
930 return 0;
931
932fail:
933 mounted_unlock(sdp);
934 control_unlock(sdp);
935 return error;
936}
937
938static int dlm_recovery_wait(void *word)
939{
940 schedule();
941 return 0;
942}
943
944static int control_first_done(struct gfs2_sbd *sdp)
945{
946 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
947 char lvb_bits[GDLM_LVB_SIZE];
948 uint32_t start_gen, block_gen;
949 int error;
950
951restart:
952 spin_lock(&ls->ls_recover_spin);
953 start_gen = ls->ls_recover_start;
954 block_gen = ls->ls_recover_block;
955
956 if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
957 !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
958 !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
959 /* sanity check, should not happen */
960 fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
961 start_gen, block_gen, ls->ls_recover_flags);
962 spin_unlock(&ls->ls_recover_spin);
963 control_unlock(sdp);
964 return -1;
965 }
966
967 if (start_gen == block_gen) {
968 /*
969 * Wait for the end of a dlm recovery cycle to switch from
970 * first mounter recovery. We can ignore any recover_slot
971 * callbacks between the recover_prep and next recover_done
972 * because we are still the first mounter and any failed nodes
973 * have not fully mounted, so they don't need recovery.
974 */
975 spin_unlock(&ls->ls_recover_spin);
976 fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
977
978 wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
979 dlm_recovery_wait, TASK_UNINTERRUPTIBLE);
980 goto restart;
981 }
982
983 clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
984 set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
985 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
986 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
987 spin_unlock(&ls->ls_recover_spin);
988
989 memset(lvb_bits, 0, sizeof(lvb_bits));
990 control_lvb_write(ls, start_gen, lvb_bits);
991
992 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
993 if (error)
994 fs_err(sdp, "control_first_done mounted PR error %d\n", error);
995
996 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
997 if (error)
998 fs_err(sdp, "control_first_done control NL error %d\n", error);
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000999
1000 return error;
1001}
1002
David Teiglande0c2a9a2012-01-09 17:18:05 -05001003/*
1004 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
1005 * to accomodate the largest slot number. (NB dlm slot numbers start at 1,
1006 * gfs2 jids start at 0, so jid = slot - 1)
1007 */
1008
1009#define RECOVER_SIZE_INC 16
1010
1011static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
1012 int num_slots)
1013{
1014 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1015 uint32_t *submit = NULL;
1016 uint32_t *result = NULL;
1017 uint32_t old_size, new_size;
1018 int i, max_jid;
1019
1020 max_jid = 0;
1021 for (i = 0; i < num_slots; i++) {
1022 if (max_jid < slots[i].slot - 1)
1023 max_jid = slots[i].slot - 1;
1024 }
1025
1026 old_size = ls->ls_recover_size;
1027
1028 if (old_size >= max_jid + 1)
1029 return 0;
1030
1031 new_size = old_size + RECOVER_SIZE_INC;
1032
1033 submit = kzalloc(new_size * sizeof(uint32_t), GFP_NOFS);
1034 result = kzalloc(new_size * sizeof(uint32_t), GFP_NOFS);
1035 if (!submit || !result) {
1036 kfree(submit);
1037 kfree(result);
1038 return -ENOMEM;
1039 }
1040
1041 spin_lock(&ls->ls_recover_spin);
1042 memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
1043 memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
1044 kfree(ls->ls_recover_submit);
1045 kfree(ls->ls_recover_result);
1046 ls->ls_recover_submit = submit;
1047 ls->ls_recover_result = result;
1048 ls->ls_recover_size = new_size;
1049 spin_unlock(&ls->ls_recover_spin);
1050 return 0;
1051}
1052
1053static void free_recover_size(struct lm_lockstruct *ls)
1054{
1055 kfree(ls->ls_recover_submit);
1056 kfree(ls->ls_recover_result);
1057 ls->ls_recover_submit = NULL;
1058 ls->ls_recover_result = NULL;
1059 ls->ls_recover_size = 0;
1060}
1061
1062/* dlm calls before it does lock recovery */
1063
1064static void gdlm_recover_prep(void *arg)
1065{
1066 struct gfs2_sbd *sdp = arg;
1067 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1068
1069 spin_lock(&ls->ls_recover_spin);
1070 ls->ls_recover_block = ls->ls_recover_start;
1071 set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1072
1073 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1074 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1075 spin_unlock(&ls->ls_recover_spin);
1076 return;
1077 }
1078 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1079 spin_unlock(&ls->ls_recover_spin);
1080}
1081
1082/* dlm calls after recover_prep has been completed on all lockspace members;
1083 identifies slot/jid of failed member */
1084
1085static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
1086{
1087 struct gfs2_sbd *sdp = arg;
1088 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1089 int jid = slot->slot - 1;
1090
1091 spin_lock(&ls->ls_recover_spin);
1092 if (ls->ls_recover_size < jid + 1) {
1093 fs_err(sdp, "recover_slot jid %d gen %u short size %d",
1094 jid, ls->ls_recover_block, ls->ls_recover_size);
1095 spin_unlock(&ls->ls_recover_spin);
1096 return;
1097 }
1098
1099 if (ls->ls_recover_submit[jid]) {
1100 fs_info(sdp, "recover_slot jid %d gen %u prev %u",
1101 jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
1102 }
1103 ls->ls_recover_submit[jid] = ls->ls_recover_block;
1104 spin_unlock(&ls->ls_recover_spin);
1105}
1106
1107/* dlm calls after recover_slot and after it completes lock recovery */
1108
1109static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
1110 int our_slot, uint32_t generation)
1111{
1112 struct gfs2_sbd *sdp = arg;
1113 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1114
1115 /* ensure the ls jid arrays are large enough */
1116 set_recover_size(sdp, slots, num_slots);
1117
1118 spin_lock(&ls->ls_recover_spin);
1119 ls->ls_recover_start = generation;
1120
1121 if (!ls->ls_recover_mount) {
1122 ls->ls_recover_mount = generation;
1123 ls->ls_jid = our_slot - 1;
1124 }
1125
1126 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1127 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
1128
1129 clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1130 smp_mb__after_clear_bit();
1131 wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
1132 spin_unlock(&ls->ls_recover_spin);
1133}
1134
1135/* gfs2_recover thread has a journal recovery result */
1136
1137static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
1138 unsigned int result)
1139{
1140 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1141
1142 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1143 return;
1144
1145 /* don't care about the recovery of own journal during mount */
1146 if (jid == ls->ls_jid)
1147 return;
1148
1149 spin_lock(&ls->ls_recover_spin);
1150 if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1151 spin_unlock(&ls->ls_recover_spin);
1152 return;
1153 }
1154 if (ls->ls_recover_size < jid + 1) {
1155 fs_err(sdp, "recovery_result jid %d short size %d",
1156 jid, ls->ls_recover_size);
1157 spin_unlock(&ls->ls_recover_spin);
1158 return;
1159 }
1160
1161 fs_info(sdp, "recover jid %d result %s\n", jid,
1162 result == LM_RD_GAVEUP ? "busy" : "success");
1163
1164 ls->ls_recover_result[jid] = result;
1165
1166 /* GAVEUP means another node is recovering the journal; delay our
1167 next attempt to recover it, to give the other node a chance to
1168 finish before trying again */
1169
1170 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1171 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
1172 result == LM_RD_GAVEUP ? HZ : 0);
1173 spin_unlock(&ls->ls_recover_spin);
1174}
1175
1176const struct dlm_lockspace_ops gdlm_lockspace_ops = {
1177 .recover_prep = gdlm_recover_prep,
1178 .recover_slot = gdlm_recover_slot,
1179 .recover_done = gdlm_recover_done,
1180};
1181
1182static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
1183{
1184 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1185 char cluster[GFS2_LOCKNAME_LEN];
1186 const char *fsname;
1187 uint32_t flags;
1188 int error, ops_result;
1189
1190 /*
1191 * initialize everything
1192 */
1193
1194 INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
1195 spin_lock_init(&ls->ls_recover_spin);
1196 ls->ls_recover_flags = 0;
1197 ls->ls_recover_mount = 0;
1198 ls->ls_recover_start = 0;
1199 ls->ls_recover_block = 0;
1200 ls->ls_recover_size = 0;
1201 ls->ls_recover_submit = NULL;
1202 ls->ls_recover_result = NULL;
1203
1204 error = set_recover_size(sdp, NULL, 0);
1205 if (error)
1206 goto fail;
1207
1208 /*
1209 * prepare dlm_new_lockspace args
1210 */
1211
1212 fsname = strchr(table, ':');
1213 if (!fsname) {
1214 fs_info(sdp, "no fsname found\n");
1215 error = -EINVAL;
1216 goto fail_free;
1217 }
1218 memset(cluster, 0, sizeof(cluster));
1219 memcpy(cluster, table, strlen(table) - strlen(fsname));
1220 fsname++;
1221
1222 flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL;
David Teiglande0c2a9a2012-01-09 17:18:05 -05001223
1224 /*
1225 * create/join lockspace
1226 */
1227
1228 error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
1229 &gdlm_lockspace_ops, sdp, &ops_result,
1230 &ls->ls_dlm);
1231 if (error) {
1232 fs_err(sdp, "dlm_new_lockspace error %d\n", error);
1233 goto fail_free;
1234 }
1235
1236 if (ops_result < 0) {
1237 /*
1238 * dlm does not support ops callbacks,
1239 * old dlm_controld/gfs_controld are used, try without ops.
1240 */
1241 fs_info(sdp, "dlm lockspace ops not used\n");
1242 free_recover_size(ls);
1243 set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
1244 return 0;
1245 }
1246
1247 if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
1248 fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
1249 error = -EINVAL;
1250 goto fail_release;
1251 }
1252
1253 /*
1254 * control_mount() uses control_lock to determine first mounter,
1255 * and for later mounts, waits for any recoveries to be cleared.
1256 */
1257
1258 error = control_mount(sdp);
1259 if (error) {
1260 fs_err(sdp, "mount control error %d\n", error);
1261 goto fail_release;
1262 }
1263
1264 ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1265 clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
1266 smp_mb__after_clear_bit();
1267 wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
1268 return 0;
1269
1270fail_release:
1271 dlm_release_lockspace(ls->ls_dlm, 2);
1272fail_free:
1273 free_recover_size(ls);
1274fail:
1275 return error;
1276}
1277
1278static void gdlm_first_done(struct gfs2_sbd *sdp)
1279{
1280 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1281 int error;
1282
1283 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1284 return;
1285
1286 error = control_first_done(sdp);
1287 if (error)
1288 fs_err(sdp, "mount first_done error %d\n", error);
1289}
1290
Steven Whitehousef057f6c2009-01-12 10:43:39 +00001291static void gdlm_unmount(struct gfs2_sbd *sdp)
1292{
1293 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1294
David Teiglande0c2a9a2012-01-09 17:18:05 -05001295 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1296 goto release;
1297
1298 /* wait for gfs2_control_wq to be done with this mount */
1299
1300 spin_lock(&ls->ls_recover_spin);
1301 set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
1302 spin_unlock(&ls->ls_recover_spin);
Tejun Heo43829732012-08-20 14:51:24 -07001303 flush_delayed_work(&sdp->sd_control_work);
David Teiglande0c2a9a2012-01-09 17:18:05 -05001304
1305 /* mounted_lock and control_lock will be purged in dlm recovery */
1306release:
Steven Whitehousef057f6c2009-01-12 10:43:39 +00001307 if (ls->ls_dlm) {
1308 dlm_release_lockspace(ls->ls_dlm, 2);
1309 ls->ls_dlm = NULL;
1310 }
David Teiglande0c2a9a2012-01-09 17:18:05 -05001311
1312 free_recover_size(ls);
Steven Whitehousef057f6c2009-01-12 10:43:39 +00001313}
1314
1315static const match_table_t dlm_tokens = {
1316 { Opt_jid, "jid=%d"},
1317 { Opt_id, "id=%d"},
1318 { Opt_first, "first=%d"},
1319 { Opt_nodir, "nodir=%d"},
1320 { Opt_err, NULL },
1321};
1322
1323const struct lm_lockops gfs2_dlm_ops = {
1324 .lm_proto_name = "lock_dlm",
1325 .lm_mount = gdlm_mount,
David Teiglande0c2a9a2012-01-09 17:18:05 -05001326 .lm_first_done = gdlm_first_done,
1327 .lm_recovery_result = gdlm_recovery_result,
Steven Whitehousef057f6c2009-01-12 10:43:39 +00001328 .lm_unmount = gdlm_unmount,
1329 .lm_put_lock = gdlm_put_lock,
1330 .lm_lock = gdlm_lock,
1331 .lm_cancel = gdlm_cancel,
1332 .lm_tokens = &dlm_tokens,
1333};
1334