blob: 4c40e13310e9527534da84a6d3e46b357db3ea4e [file] [log] [blame]
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
Peter Zijlstra21805082007-08-25 18:41:53 +020018 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020021 */
22
Arjan van de Ven97455122008-01-25 21:08:34 +010023#include <linux/latencytop.h>
Christian Ehrhardt1983a922009-11-30 12:16:47 +010024#include <linux/sched.h>
Sisir Koppaka3436ae12011-03-26 18:22:55 +053025#include <linux/cpumask.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020026#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
Peter Zijlstracbee9f82012-10-25 14:16:43 +020029#include <linux/mempolicy.h>
Mel Gormane14808b2012-11-19 10:59:15 +000030#include <linux/migrate.h>
Peter Zijlstracbee9f82012-10-25 14:16:43 +020031#include <linux/task_work.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020032
33#include <trace/events/sched.h>
34
35#include "sched.h"
Arjan van de Ven97455122008-01-25 21:08:34 +010036
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020037/*
Peter Zijlstra21805082007-08-25 18:41:53 +020038 * Targeted preemption latency for CPU-bound tasks:
Takuya Yoshikawa864616e2010-10-14 16:09:13 +090039 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020040 *
Peter Zijlstra21805082007-08-25 18:41:53 +020041 * NOTE: this latency value is not the same as the concept of
Ingo Molnard274a4c2007-10-15 17:00:14 +020042 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020045 *
Ingo Molnard274a4c2007-10-15 17:00:14 +020046 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020048 */
Mike Galbraith21406922010-03-11 17:17:15 +010049unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020051
52/*
Christian Ehrhardt1983a922009-11-30 12:16:47 +010053 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
64/*
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010065 * Minimal preemption granularity for CPU-bound tasks:
Takuya Yoshikawa864616e2010-10-14 16:09:13 +090066 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010067 */
Ingo Molnar0bf377b2010-09-12 08:14:52 +020068unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010070
71/*
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
Ingo Molnar0bf377b2010-09-12 08:14:52 +020074static unsigned int sched_nr_latency = 8;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010075
76/*
Mike Galbraith2bba22c2009-09-09 15:41:37 +020077 * After fork, child runs first. If set to 0 (default) then
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020078 * parent will (try to) run first.
79 */
Mike Galbraith2bba22c2009-09-09 15:41:37 +020080unsigned int sysctl_sched_child_runs_first __read_mostly;
Peter Zijlstra21805082007-08-25 18:41:53 +020081
82/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020083 * SCHED_OTHER wake-up granularity.
Mike Galbraith172e0822009-09-09 15:41:37 +020084 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020085 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
Mike Galbraith172e0822009-09-09 15:41:37 +020090unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +010091unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020092
Ingo Molnarda84d962007-10-15 17:00:18 +020093const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
Paul Turnera7a4f8a2010-11-15 15:47:06 -080095/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
Paul Turnerec12cb72011-07-21 09:43:30 -0700102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
Paul Gortmaker85276322013-04-19 15:10:50 -0400116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
Peter Zijlstra029632f2011-10-25 10:00:11 +0200134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
181#if BITS_PER_LONG == 32
182# define WMULT_CONST (~0UL)
183#else
184# define WMULT_CONST (1UL << 32)
185#endif
186
187#define WMULT_SHIFT 32
188
189/*
190 * Shift right and round:
191 */
192#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194/*
195 * delta *= weight / lw
196 */
197static unsigned long
198calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200{
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234}
235
236
237const struct sched_class fair_sched_class;
Peter Zijlstraa4c2f002008-10-17 19:27:03 +0200238
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200239/**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
243#ifdef CONFIG_FAIR_GROUP_SCHED
244
245/* cpu runqueue to which this cfs_rq is attached */
246static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247{
248 return cfs_rq->rq;
249}
250
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200251/* An entity is a task if it doesn't "own" a runqueue */
252#define entity_is_task(se) (!se->my_q)
253
Peter Zijlstra8f488942009-07-24 12:25:30 +0200254static inline struct task_struct *task_of(struct sched_entity *se)
255{
256#ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258#endif
259 return container_of(se, struct task_struct, se);
260}
261
Peter Zijlstrab7581492008-04-19 19:45:00 +0200262/* Walk up scheduling entities hierarchy */
263#define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267{
268 return p->se.cfs_rq;
269}
270
271/* runqueue on which this entity is (to be) queued */
272static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273{
274 return se->cfs_rq;
275}
276
277/* runqueue "owned" by this group */
278static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279{
280 return grp->my_q;
281}
282
Paul Turneraff3e492012-10-04 13:18:30 +0200283static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
Paul Turner9ee474f2012-10-04 13:18:30 +0200285
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
Paul Turner67e86252010-11-15 15:47:05 -0800289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
Paul Turner67e86252010-11-15 15:47:05 -0800299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 }
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800303
304 cfs_rq->on_list = 1;
Paul Turner9ee474f2012-10-04 13:18:30 +0200305 /* We should have no load, but we need to update last_decay. */
Paul Turneraff3e492012-10-04 13:18:30 +0200306 update_cfs_rq_blocked_load(cfs_rq, 0);
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800307 }
308}
309
310static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311{
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316}
317
Peter Zijlstrab7581492008-04-19 19:45:00 +0200318/* Iterate thr' all leaf cfs_rq's on a runqueue */
319#define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322/* Do the two (enqueued) entities belong to the same group ? */
323static inline int
324is_same_group(struct sched_entity *se, struct sched_entity *pse)
325{
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330}
331
332static inline struct sched_entity *parent_entity(struct sched_entity *se)
333{
334 return se->parent;
335}
336
Peter Zijlstra464b7522008-10-24 11:06:15 +0200337/* return depth at which a sched entity is present in the hierarchy */
338static inline int depth_se(struct sched_entity *se)
339{
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346}
347
348static void
349find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350{
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378}
379
Peter Zijlstra8f488942009-07-24 12:25:30 +0200380#else /* !CONFIG_FAIR_GROUP_SCHED */
381
382static inline struct task_struct *task_of(struct sched_entity *se)
383{
384 return container_of(se, struct task_struct, se);
385}
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200386
387static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388{
389 return container_of(cfs_rq, struct rq, cfs);
390}
391
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200392#define entity_is_task(se) 1
393
Peter Zijlstrab7581492008-04-19 19:45:00 +0200394#define for_each_sched_entity(se) \
395 for (; se; se = NULL)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200396
Peter Zijlstrab7581492008-04-19 19:45:00 +0200397static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200398{
Peter Zijlstrab7581492008-04-19 19:45:00 +0200399 return &task_rq(p)->cfs;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200400}
401
Peter Zijlstrab7581492008-04-19 19:45:00 +0200402static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403{
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408}
409
410/* runqueue "owned" by this group */
411static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412{
413 return NULL;
414}
415
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800416static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417{
418}
419
420static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421{
422}
423
Peter Zijlstrab7581492008-04-19 19:45:00 +0200424#define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427static inline int
428is_same_group(struct sched_entity *se, struct sched_entity *pse)
429{
430 return 1;
431}
432
433static inline struct sched_entity *parent_entity(struct sched_entity *se)
434{
435 return NULL;
436}
437
Peter Zijlstra464b7522008-10-24 11:06:15 +0200438static inline void
439find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440{
441}
442
Peter Zijlstrab7581492008-04-19 19:45:00 +0200443#endif /* CONFIG_FAIR_GROUP_SCHED */
444
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -0700445static __always_inline
446void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200447
448/**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
Andrei Epure1bf08232013-03-12 21:12:24 +0200452static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
Peter Zijlstra02e04312007-10-15 17:00:07 +0200453{
Andrei Epure1bf08232013-03-12 21:12:24 +0200454 s64 delta = (s64)(vruntime - max_vruntime);
Peter Zijlstra368059a2007-10-15 17:00:11 +0200455 if (delta > 0)
Andrei Epure1bf08232013-03-12 21:12:24 +0200456 max_vruntime = vruntime;
Peter Zijlstra02e04312007-10-15 17:00:07 +0200457
Andrei Epure1bf08232013-03-12 21:12:24 +0200458 return max_vruntime;
Peter Zijlstra02e04312007-10-15 17:00:07 +0200459}
460
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200461static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
Peter Zijlstrab0ffd242007-10-15 17:00:12 +0200462{
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468}
469
Fabio Checconi54fdc582009-07-16 12:32:27 +0200470static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472{
473 return (s64)(a->vruntime - b->vruntime) < 0;
474}
475
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200476static void update_min_vruntime(struct cfs_rq *cfs_rq)
477{
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
Peter Zijlstrae17036d2009-01-15 14:53:39 +0100488 if (!cfs_rq->curr)
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
Andrei Epure1bf08232013-03-12 21:12:24 +0200494 /* ensure we never gain time by being placed backwards. */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
Peter Zijlstra3fe16982011-04-05 17:23:48 +0200496#ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499#endif
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200500}
501
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200502/*
503 * Enqueue an entity into the rb-tree:
504 */
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200505static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200506{
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
Stephan Baerwolf2bd2d6f2011-07-20 14:46:59 +0200522 if (entity_before(se, entry)) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200534 if (leftmost)
Ingo Molnar57cb4992007-10-15 17:00:11 +0200535 cfs_rq->rb_leftmost = &se->run_node;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200539}
540
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200541static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200542{
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100548 }
Ingo Molnare9acbff2007-10-15 17:00:04 +0200549
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200551}
552
Peter Zijlstra029632f2011-10-25 10:00:11 +0200553struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200554{
Peter Zijlstraf4b67552008-11-04 21:25:07 +0100555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200561}
562
Rik van Rielac53db52011-02-01 09:51:03 -0500563static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564{
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571}
572
573#ifdef CONFIG_SCHED_DEBUG
Peter Zijlstra029632f2011-10-25 10:00:11 +0200574struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200575{
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200577
Balbir Singh70eee742008-02-22 13:25:53 +0530578 if (!last)
579 return NULL;
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100580
581 return rb_entry(last, struct sched_entity, run_node);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200582}
583
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200584/**************************************************************
585 * Scheduling class statistics methods:
586 */
587
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100588int sched_proc_update_handler(struct ctl_table *table, int write,
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700589 void __user *buffer, size_t *lenp,
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100590 loff_t *ppos)
591{
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100593 int factor = get_update_sysctl_factor();
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100601#define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100606#undef WRT_SYSCTL
607
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100608 return 0;
609}
610#endif
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200611
612/*
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200613 * delta /= w
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200614 */
615static inline unsigned long
616calc_delta_fair(unsigned long delta, struct sched_entity *se)
617{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200620
621 return delta;
622}
623
624/*
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200625 * The idea is to set a period in which each task runs once.
626 *
Borislav Petkov532b1852012-08-08 16:16:04 +0200627 * When there are too many tasks (sched_nr_latency) we have to stretch
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200632static u64 __sched_period(unsigned long nr_running)
633{
634 u64 period = sysctl_sched_latency;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100635 unsigned long nr_latency = sched_nr_latency;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200636
637 if (unlikely(nr_running > nr_latency)) {
Peter Zijlstra4bf0b772008-01-25 21:08:21 +0100638 period = sysctl_sched_min_granularity;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200639 period *= nr_running;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200640 }
641
642 return period;
643}
644
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200645/*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200649 * s = p*P[w/rw]
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200650 */
Peter Zijlstra6d0f0eb2007-10-15 17:00:05 +0200651static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Peter Zijlstra21805082007-08-25 18:41:53 +0200652{
Mike Galbraith0a582442009-01-02 12:16:42 +0100653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200654
Mike Galbraith0a582442009-01-02 12:16:42 +0100655 for_each_sched_entity(se) {
Lin Ming6272d682009-01-15 17:17:15 +0100656 struct load_weight *load;
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200657 struct load_weight lw;
Lin Ming6272d682009-01-15 17:17:15 +0100658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200661
Mike Galbraith0a582442009-01-02 12:16:42 +0100662 if (unlikely(!se->on_rq)) {
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200663 lw = cfs_rq->load;
Mike Galbraith0a582442009-01-02 12:16:42 +0100664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200671}
672
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200673/*
Andrei Epure660cc002013-03-11 12:03:20 +0200674 * We calculate the vruntime slice of a to-be-inserted task.
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200675 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200676 * vs = s/w
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200677 */
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200678static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200679{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200681}
682
Alex Shia75cdaa2013-06-20 10:18:47 +0800683#ifdef CONFIG_SMP
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100684static unsigned long task_h_load(struct task_struct *p);
685
Alex Shia75cdaa2013-06-20 10:18:47 +0800686static inline void __update_task_entity_contrib(struct sched_entity *se);
687
688/* Give new task start runnable values to heavy its load in infant time */
689void init_task_runnable_average(struct task_struct *p)
690{
691 u32 slice;
692
693 p->se.avg.decay_count = 0;
694 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
695 p->se.avg.runnable_avg_sum = slice;
696 p->se.avg.runnable_avg_period = slice;
697 __update_task_entity_contrib(&p->se);
698}
699#else
700void init_task_runnable_average(struct task_struct *p)
701{
702}
703#endif
704
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200705/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200706 * Update the current task's runtime statistics. Skip current tasks that
707 * are not in our scheduling class.
708 */
709static inline void
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200710__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
711 unsigned long delta_exec)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200712{
Ingo Molnarbbdba7c2007-10-15 17:00:06 +0200713 unsigned long delta_exec_weighted;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200714
Lucas De Marchi41acab82010-03-10 23:37:45 -0300715 schedstat_set(curr->statistics.exec_max,
716 max((u64)delta_exec, curr->statistics.exec_max));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200717
718 curr->sum_exec_runtime += delta_exec;
Ingo Molnar7a62eab2007-10-15 17:00:06 +0200719 schedstat_add(cfs_rq, exec_clock, delta_exec);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200720 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +0100721
Ingo Molnare9acbff2007-10-15 17:00:04 +0200722 curr->vruntime += delta_exec_weighted;
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200723 update_min_vruntime(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200724}
725
Ingo Molnarb7cc0892007-08-09 11:16:47 +0200726static void update_curr(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200727{
Ingo Molnar429d43b2007-10-15 17:00:03 +0200728 struct sched_entity *curr = cfs_rq->curr;
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200729 u64 now = rq_clock_task(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200730 unsigned long delta_exec;
731
732 if (unlikely(!curr))
733 return;
734
735 /*
736 * Get the amount of time the current task was running
737 * since the last time we changed load (this cannot
738 * overflow on 32 bits):
739 */
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200740 delta_exec = (unsigned long)(now - curr->exec_start);
Peter Zijlstra34f28ec2008-12-16 08:45:31 +0100741 if (!delta_exec)
742 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200743
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200744 __update_curr(cfs_rq, curr, delta_exec);
745 curr->exec_start = now;
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100746
747 if (entity_is_task(curr)) {
748 struct task_struct *curtask = task_of(curr);
749
Ingo Molnarf977bb42009-09-13 18:15:54 +0200750 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100751 cpuacct_charge(curtask, delta_exec);
Frank Mayharf06febc2008-09-12 09:54:39 -0700752 account_group_exec_runtime(curtask, delta_exec);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100753 }
Paul Turnerec12cb72011-07-21 09:43:30 -0700754
755 account_cfs_rq_runtime(cfs_rq, delta_exec);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200756}
757
758static inline void
Ingo Molnar5870db52007-08-09 11:16:47 +0200759update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200760{
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200761 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200762}
763
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200764/*
765 * Task is being enqueued - update stats:
766 */
Ingo Molnard2417e52007-08-09 11:16:47 +0200767static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200768{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200769 /*
770 * Are we enqueueing a waiting task? (for current tasks
771 * a dequeue/enqueue event is a NOP)
772 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200773 if (se != cfs_rq->curr)
Ingo Molnar5870db52007-08-09 11:16:47 +0200774 update_stats_wait_start(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200775}
776
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200777static void
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200778update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200779{
Lucas De Marchi41acab82010-03-10 23:37:45 -0300780 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200781 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
Lucas De Marchi41acab82010-03-10 23:37:45 -0300782 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
783 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200784 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200785#ifdef CONFIG_SCHEDSTATS
786 if (entity_is_task(se)) {
787 trace_sched_stat_wait(task_of(se),
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200788 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200789 }
790#endif
Lucas De Marchi41acab82010-03-10 23:37:45 -0300791 schedstat_set(se->statistics.wait_start, 0);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200792}
793
794static inline void
Ingo Molnar19b6a2e2007-08-09 11:16:48 +0200795update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200796{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200797 /*
798 * Mark the end of the wait period if dequeueing a
799 * waiting task:
800 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200801 if (se != cfs_rq->curr)
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200802 update_stats_wait_end(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200803}
804
805/*
806 * We are picking a new current task - update its stats:
807 */
808static inline void
Ingo Molnar79303e92007-08-09 11:16:47 +0200809update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200810{
811 /*
812 * We are starting a new run period:
813 */
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200814 se->exec_start = rq_clock_task(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200815}
816
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200817/**************************************************
818 * Scheduling class queueing methods:
819 */
820
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200821#ifdef CONFIG_NUMA_BALANCING
822/*
Mel Gorman598f0ec2013-10-07 11:28:55 +0100823 * Approximate time to scan a full NUMA task in ms. The task scan period is
824 * calculated based on the tasks virtual memory size and
825 * numa_balancing_scan_size.
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200826 */
Mel Gorman598f0ec2013-10-07 11:28:55 +0100827unsigned int sysctl_numa_balancing_scan_period_min = 1000;
828unsigned int sysctl_numa_balancing_scan_period_max = 60000;
829unsigned int sysctl_numa_balancing_scan_period_reset = 60000;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200830
831/* Portion of address space to scan in MB */
832unsigned int sysctl_numa_balancing_scan_size = 256;
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200833
Peter Zijlstra4b96a292012-10-25 14:16:47 +0200834/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
835unsigned int sysctl_numa_balancing_scan_delay = 1000;
836
Mel Gorman598f0ec2013-10-07 11:28:55 +0100837static unsigned int task_nr_scan_windows(struct task_struct *p)
838{
839 unsigned long rss = 0;
840 unsigned long nr_scan_pages;
841
842 /*
843 * Calculations based on RSS as non-present and empty pages are skipped
844 * by the PTE scanner and NUMA hinting faults should be trapped based
845 * on resident pages
846 */
847 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
848 rss = get_mm_rss(p->mm);
849 if (!rss)
850 rss = nr_scan_pages;
851
852 rss = round_up(rss, nr_scan_pages);
853 return rss / nr_scan_pages;
854}
855
856/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
857#define MAX_SCAN_WINDOW 2560
858
859static unsigned int task_scan_min(struct task_struct *p)
860{
861 unsigned int scan, floor;
862 unsigned int windows = 1;
863
864 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
865 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
866 floor = 1000 / windows;
867
868 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
869 return max_t(unsigned int, floor, scan);
870}
871
872static unsigned int task_scan_max(struct task_struct *p)
873{
874 unsigned int smin = task_scan_min(p);
875 unsigned int smax;
876
877 /* Watch for min being lower than max due to floor calculations */
878 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
879 return max(smin, smax);
880}
881
Mel Gorman3a7053b2013-10-07 11:29:00 +0100882/*
883 * Once a preferred node is selected the scheduler balancer will prefer moving
884 * a task to that node for sysctl_numa_balancing_settle_count number of PTE
885 * scans. This will give the process the chance to accumulate more faults on
886 * the preferred node but still allow the scheduler to move the task again if
887 * the nodes CPUs are overloaded.
888 */
Rik van Riel6fe6b2d2013-10-07 11:29:08 +0100889unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
Mel Gorman3a7053b2013-10-07 11:29:00 +0100890
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100891struct numa_group {
892 atomic_t refcount;
893
894 spinlock_t lock; /* nr_tasks, tasks */
895 int nr_tasks;
Mel Gormane29cf082013-10-07 11:29:22 +0100896 pid_t gid;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100897 struct list_head task_list;
898
899 struct rcu_head rcu;
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100900 atomic_long_t total_faults;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100901 atomic_long_t faults[0];
902};
903
Mel Gormane29cf082013-10-07 11:29:22 +0100904pid_t task_numa_group_id(struct task_struct *p)
905{
906 return p->numa_group ? p->numa_group->gid : 0;
907}
908
Mel Gormanac8e8952013-10-07 11:29:03 +0100909static inline int task_faults_idx(int nid, int priv)
910{
911 return 2 * nid + priv;
912}
913
914static inline unsigned long task_faults(struct task_struct *p, int nid)
915{
916 if (!p->numa_faults)
917 return 0;
918
919 return p->numa_faults[task_faults_idx(nid, 0)] +
920 p->numa_faults[task_faults_idx(nid, 1)];
921}
922
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100923static inline unsigned long group_faults(struct task_struct *p, int nid)
924{
925 if (!p->numa_group)
926 return 0;
927
928 return atomic_long_read(&p->numa_group->faults[2*nid]) +
929 atomic_long_read(&p->numa_group->faults[2*nid+1]);
930}
931
932/*
933 * These return the fraction of accesses done by a particular task, or
934 * task group, on a particular numa node. The group weight is given a
935 * larger multiplier, in order to group tasks together that are almost
936 * evenly spread out between numa nodes.
937 */
938static inline unsigned long task_weight(struct task_struct *p, int nid)
939{
940 unsigned long total_faults;
941
942 if (!p->numa_faults)
943 return 0;
944
945 total_faults = p->total_numa_faults;
946
947 if (!total_faults)
948 return 0;
949
950 return 1000 * task_faults(p, nid) / total_faults;
951}
952
953static inline unsigned long group_weight(struct task_struct *p, int nid)
954{
955 unsigned long total_faults;
956
957 if (!p->numa_group)
958 return 0;
959
960 total_faults = atomic_long_read(&p->numa_group->total_faults);
961
962 if (!total_faults)
963 return 0;
964
965 return 1200 * group_faults(p, nid) / total_faults;
966}
967
Mel Gormane6628d52013-10-07 11:29:02 +0100968static unsigned long weighted_cpuload(const int cpu);
Mel Gorman58d081b2013-10-07 11:29:10 +0100969static unsigned long source_load(int cpu, int type);
970static unsigned long target_load(int cpu, int type);
971static unsigned long power_of(int cpu);
972static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
Mel Gormane6628d52013-10-07 11:29:02 +0100973
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100974/* Cached statistics for all CPUs within a node */
Mel Gorman58d081b2013-10-07 11:29:10 +0100975struct numa_stats {
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100976 unsigned long nr_running;
Mel Gorman58d081b2013-10-07 11:29:10 +0100977 unsigned long load;
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100978
979 /* Total compute capacity of CPUs on a node */
980 unsigned long power;
981
982 /* Approximate capacity in terms of runnable tasks on a node */
983 unsigned long capacity;
984 int has_capacity;
Mel Gorman58d081b2013-10-07 11:29:10 +0100985};
Mel Gormane6628d52013-10-07 11:29:02 +0100986
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100987/*
988 * XXX borrowed from update_sg_lb_stats
989 */
990static void update_numa_stats(struct numa_stats *ns, int nid)
991{
992 int cpu;
993
994 memset(ns, 0, sizeof(*ns));
995 for_each_cpu(cpu, cpumask_of_node(nid)) {
996 struct rq *rq = cpu_rq(cpu);
997
998 ns->nr_running += rq->nr_running;
999 ns->load += weighted_cpuload(cpu);
1000 ns->power += power_of(cpu);
1001 }
1002
1003 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1004 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1005 ns->has_capacity = (ns->nr_running < ns->capacity);
1006}
1007
Mel Gorman58d081b2013-10-07 11:29:10 +01001008struct task_numa_env {
1009 struct task_struct *p;
1010
1011 int src_cpu, src_nid;
1012 int dst_cpu, dst_nid;
1013
1014 struct numa_stats src_stats, dst_stats;
1015
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001016 int imbalance_pct, idx;
1017
1018 struct task_struct *best_task;
1019 long best_imp;
Mel Gorman58d081b2013-10-07 11:29:10 +01001020 int best_cpu;
1021};
1022
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001023static void task_numa_assign(struct task_numa_env *env,
1024 struct task_struct *p, long imp)
1025{
1026 if (env->best_task)
1027 put_task_struct(env->best_task);
1028 if (p)
1029 get_task_struct(p);
1030
1031 env->best_task = p;
1032 env->best_imp = imp;
1033 env->best_cpu = env->dst_cpu;
1034}
1035
1036/*
1037 * This checks if the overall compute and NUMA accesses of the system would
1038 * be improved if the source tasks was migrated to the target dst_cpu taking
1039 * into account that it might be best if task running on the dst_cpu should
1040 * be exchanged with the source task
1041 */
1042static void task_numa_compare(struct task_numa_env *env, long imp)
1043{
1044 struct rq *src_rq = cpu_rq(env->src_cpu);
1045 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1046 struct task_struct *cur;
1047 long dst_load, src_load;
1048 long load;
1049
1050 rcu_read_lock();
1051 cur = ACCESS_ONCE(dst_rq->curr);
1052 if (cur->pid == 0) /* idle */
1053 cur = NULL;
1054
1055 /*
1056 * "imp" is the fault differential for the source task between the
1057 * source and destination node. Calculate the total differential for
1058 * the source task and potential destination task. The more negative
1059 * the value is, the more rmeote accesses that would be expected to
1060 * be incurred if the tasks were swapped.
1061 */
1062 if (cur) {
1063 /* Skip this swap candidate if cannot move to the source cpu */
1064 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1065 goto unlock;
1066
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001067 imp += task_weight(cur, env->src_nid) +
1068 group_weight(cur, env->src_nid) -
1069 task_weight(cur, env->dst_nid) -
1070 group_weight(cur, env->dst_nid);
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001071 }
1072
1073 if (imp < env->best_imp)
1074 goto unlock;
1075
1076 if (!cur) {
1077 /* Is there capacity at our destination? */
1078 if (env->src_stats.has_capacity &&
1079 !env->dst_stats.has_capacity)
1080 goto unlock;
1081
1082 goto balance;
1083 }
1084
1085 /* Balance doesn't matter much if we're running a task per cpu */
1086 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1087 goto assign;
1088
1089 /*
1090 * In the overloaded case, try and keep the load balanced.
1091 */
1092balance:
1093 dst_load = env->dst_stats.load;
1094 src_load = env->src_stats.load;
1095
1096 /* XXX missing power terms */
1097 load = task_h_load(env->p);
1098 dst_load += load;
1099 src_load -= load;
1100
1101 if (cur) {
1102 load = task_h_load(cur);
1103 dst_load -= load;
1104 src_load += load;
1105 }
1106
1107 /* make src_load the smaller */
1108 if (dst_load < src_load)
1109 swap(dst_load, src_load);
1110
1111 if (src_load * env->imbalance_pct < dst_load * 100)
1112 goto unlock;
1113
1114assign:
1115 task_numa_assign(env, cur, imp);
1116unlock:
1117 rcu_read_unlock();
1118}
1119
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001120static void task_numa_find_cpu(struct task_numa_env *env, long imp)
1121{
1122 int cpu;
1123
1124 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1125 /* Skip this CPU if the source task cannot migrate */
1126 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1127 continue;
1128
1129 env->dst_cpu = cpu;
1130 task_numa_compare(env, imp);
1131 }
1132}
1133
Mel Gorman58d081b2013-10-07 11:29:10 +01001134static int task_numa_migrate(struct task_struct *p)
Mel Gormane6628d52013-10-07 11:29:02 +01001135{
Mel Gorman58d081b2013-10-07 11:29:10 +01001136 struct task_numa_env env = {
1137 .p = p,
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001138
Mel Gorman58d081b2013-10-07 11:29:10 +01001139 .src_cpu = task_cpu(p),
1140 .src_nid = cpu_to_node(task_cpu(p)),
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001141
1142 .imbalance_pct = 112,
1143
1144 .best_task = NULL,
1145 .best_imp = 0,
1146 .best_cpu = -1
Mel Gorman58d081b2013-10-07 11:29:10 +01001147 };
1148 struct sched_domain *sd;
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001149 unsigned long weight;
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001150 int nid, ret;
1151 long imp;
Mel Gormane6628d52013-10-07 11:29:02 +01001152
Mel Gorman58d081b2013-10-07 11:29:10 +01001153 /*
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001154 * Pick the lowest SD_NUMA domain, as that would have the smallest
1155 * imbalance and would be the first to start moving tasks about.
1156 *
1157 * And we want to avoid any moving of tasks about, as that would create
1158 * random movement of tasks -- counter the numa conditions we're trying
1159 * to satisfy here.
Mel Gorman58d081b2013-10-07 11:29:10 +01001160 */
Mel Gormane6628d52013-10-07 11:29:02 +01001161 rcu_read_lock();
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001162 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1163 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
Mel Gormane6628d52013-10-07 11:29:02 +01001164 rcu_read_unlock();
1165
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001166 weight = task_weight(p, env.src_nid) + group_weight(p, env.src_nid);
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001167 update_numa_stats(&env.src_stats, env.src_nid);
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001168 env.dst_nid = p->numa_preferred_nid;
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001169 imp = task_weight(p, env.dst_nid) + group_weight(p, env.dst_nid) - weight;
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001170 update_numa_stats(&env.dst_stats, env.dst_nid);
Mel Gorman58d081b2013-10-07 11:29:10 +01001171
Rik van Riele1dda8a2013-10-07 11:29:19 +01001172 /* If the preferred nid has capacity, try to use it. */
1173 if (env.dst_stats.has_capacity)
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001174 task_numa_find_cpu(&env, imp);
Rik van Riele1dda8a2013-10-07 11:29:19 +01001175
1176 /* No space available on the preferred nid. Look elsewhere. */
1177 if (env.best_cpu == -1) {
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001178 for_each_online_node(nid) {
1179 if (nid == env.src_nid || nid == p->numa_preferred_nid)
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001180 continue;
1181
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001182 /* Only consider nodes where both task and groups benefit */
1183 imp = task_weight(p, nid) + group_weight(p, nid) - weight;
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001184 if (imp < 0)
1185 continue;
1186
1187 env.dst_nid = nid;
1188 update_numa_stats(&env.dst_stats, env.dst_nid);
1189 task_numa_find_cpu(&env, imp);
Mel Gorman58d081b2013-10-07 11:29:10 +01001190 }
1191 }
1192
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001193 /* No better CPU than the current one was found. */
1194 if (env.best_cpu == -1)
1195 return -EAGAIN;
1196
1197 if (env.best_task == NULL) {
1198 int ret = migrate_task_to(p, env.best_cpu);
1199 return ret;
1200 }
1201
1202 ret = migrate_swap(p, env.best_task);
1203 put_task_struct(env.best_task);
1204 return ret;
Mel Gormane6628d52013-10-07 11:29:02 +01001205}
1206
Mel Gorman6b9a7462013-10-07 11:29:11 +01001207/* Attempt to migrate a task to a CPU on the preferred node. */
1208static void numa_migrate_preferred(struct task_struct *p)
1209{
1210 /* Success if task is already running on preferred CPU */
1211 p->numa_migrate_retry = 0;
Rik van Riel06ea5e02013-10-07 11:29:12 +01001212 if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid) {
1213 /*
1214 * If migration is temporarily disabled due to a task migration
1215 * then re-enable it now as the task is running on its
1216 * preferred node and memory should migrate locally
1217 */
1218 if (!p->numa_migrate_seq)
1219 p->numa_migrate_seq++;
Mel Gorman6b9a7462013-10-07 11:29:11 +01001220 return;
Rik van Riel06ea5e02013-10-07 11:29:12 +01001221 }
Mel Gorman6b9a7462013-10-07 11:29:11 +01001222
1223 /* This task has no NUMA fault statistics yet */
1224 if (unlikely(p->numa_preferred_nid == -1))
1225 return;
1226
1227 /* Otherwise, try migrate to a CPU on the preferred node */
1228 if (task_numa_migrate(p) != 0)
1229 p->numa_migrate_retry = jiffies + HZ*5;
1230}
1231
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001232static void task_numa_placement(struct task_struct *p)
1233{
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001234 int seq, nid, max_nid = -1, max_group_nid = -1;
1235 unsigned long max_faults = 0, max_group_faults = 0;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001236
Hugh Dickins2832bc12012-12-19 17:42:16 -08001237 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001238 if (p->numa_scan_seq == seq)
1239 return;
1240 p->numa_scan_seq = seq;
Mel Gorman3a7053b2013-10-07 11:29:00 +01001241 p->numa_migrate_seq++;
Mel Gorman598f0ec2013-10-07 11:28:55 +01001242 p->numa_scan_period_max = task_scan_max(p);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001243
Mel Gorman688b7582013-10-07 11:28:58 +01001244 /* Find the node with the highest number of faults */
1245 for_each_online_node(nid) {
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001246 unsigned long faults = 0, group_faults = 0;
Mel Gormanac8e8952013-10-07 11:29:03 +01001247 int priv, i;
Mel Gorman745d6142013-10-07 11:28:59 +01001248
Mel Gormanac8e8952013-10-07 11:29:03 +01001249 for (priv = 0; priv < 2; priv++) {
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001250 long diff;
1251
Mel Gormanac8e8952013-10-07 11:29:03 +01001252 i = task_faults_idx(nid, priv);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001253 diff = -p->numa_faults[i];
Mel Gorman745d6142013-10-07 11:28:59 +01001254
Mel Gormanac8e8952013-10-07 11:29:03 +01001255 /* Decay existing window, copy faults since last scan */
1256 p->numa_faults[i] >>= 1;
1257 p->numa_faults[i] += p->numa_faults_buffer[i];
1258 p->numa_faults_buffer[i] = 0;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001259
1260 faults += p->numa_faults[i];
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001261 diff += p->numa_faults[i];
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001262 p->total_numa_faults += diff;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001263 if (p->numa_group) {
1264 /* safe because we can only change our own group */
1265 atomic_long_add(diff, &p->numa_group->faults[i]);
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001266 atomic_long_add(diff, &p->numa_group->total_faults);
1267 group_faults += atomic_long_read(&p->numa_group->faults[i]);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001268 }
Mel Gormanac8e8952013-10-07 11:29:03 +01001269 }
1270
Mel Gorman688b7582013-10-07 11:28:58 +01001271 if (faults > max_faults) {
1272 max_faults = faults;
1273 max_nid = nid;
1274 }
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001275
1276 if (group_faults > max_group_faults) {
1277 max_group_faults = group_faults;
1278 max_group_nid = nid;
1279 }
1280 }
1281
1282 /*
1283 * If the preferred task and group nids are different,
1284 * iterate over the nodes again to find the best place.
1285 */
1286 if (p->numa_group && max_nid != max_group_nid) {
1287 unsigned long weight, max_weight = 0;
1288
1289 for_each_online_node(nid) {
1290 weight = task_weight(p, nid) + group_weight(p, nid);
1291 if (weight > max_weight) {
1292 max_weight = weight;
1293 max_nid = nid;
1294 }
1295 }
Mel Gorman688b7582013-10-07 11:28:58 +01001296 }
1297
Mel Gorman6b9a7462013-10-07 11:29:11 +01001298 /* Preferred node as the node with the most faults */
Mel Gorman3a7053b2013-10-07 11:29:00 +01001299 if (max_faults && max_nid != p->numa_preferred_nid) {
Mel Gormane6628d52013-10-07 11:29:02 +01001300 /* Update the preferred nid and migrate task if possible */
Mel Gorman688b7582013-10-07 11:28:58 +01001301 p->numa_preferred_nid = max_nid;
Rik van Riel6fe6b2d2013-10-07 11:29:08 +01001302 p->numa_migrate_seq = 1;
Mel Gorman6b9a7462013-10-07 11:29:11 +01001303 numa_migrate_preferred(p);
Mel Gorman3a7053b2013-10-07 11:29:00 +01001304 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001305}
1306
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001307static inline int get_numa_group(struct numa_group *grp)
1308{
1309 return atomic_inc_not_zero(&grp->refcount);
1310}
1311
1312static inline void put_numa_group(struct numa_group *grp)
1313{
1314 if (atomic_dec_and_test(&grp->refcount))
1315 kfree_rcu(grp, rcu);
1316}
1317
1318static void double_lock(spinlock_t *l1, spinlock_t *l2)
1319{
1320 if (l1 > l2)
1321 swap(l1, l2);
1322
1323 spin_lock(l1);
1324 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1325}
1326
1327static void task_numa_group(struct task_struct *p, int cpupid)
1328{
1329 struct numa_group *grp, *my_grp;
1330 struct task_struct *tsk;
1331 bool join = false;
1332 int cpu = cpupid_to_cpu(cpupid);
1333 int i;
1334
1335 if (unlikely(!p->numa_group)) {
1336 unsigned int size = sizeof(struct numa_group) +
1337 2*nr_node_ids*sizeof(atomic_long_t);
1338
1339 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1340 if (!grp)
1341 return;
1342
1343 atomic_set(&grp->refcount, 1);
1344 spin_lock_init(&grp->lock);
1345 INIT_LIST_HEAD(&grp->task_list);
Mel Gormane29cf082013-10-07 11:29:22 +01001346 grp->gid = p->pid;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001347
1348 for (i = 0; i < 2*nr_node_ids; i++)
1349 atomic_long_set(&grp->faults[i], p->numa_faults[i]);
1350
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001351 atomic_long_set(&grp->total_faults, p->total_numa_faults);
1352
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001353 list_add(&p->numa_entry, &grp->task_list);
1354 grp->nr_tasks++;
1355 rcu_assign_pointer(p->numa_group, grp);
1356 }
1357
1358 rcu_read_lock();
1359 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1360
1361 if (!cpupid_match_pid(tsk, cpupid))
1362 goto unlock;
1363
1364 grp = rcu_dereference(tsk->numa_group);
1365 if (!grp)
1366 goto unlock;
1367
1368 my_grp = p->numa_group;
1369 if (grp == my_grp)
1370 goto unlock;
1371
1372 /*
1373 * Only join the other group if its bigger; if we're the bigger group,
1374 * the other task will join us.
1375 */
1376 if (my_grp->nr_tasks > grp->nr_tasks)
1377 goto unlock;
1378
1379 /*
1380 * Tie-break on the grp address.
1381 */
1382 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1383 goto unlock;
1384
1385 if (!get_numa_group(grp))
1386 goto unlock;
1387
1388 join = true;
1389
1390unlock:
1391 rcu_read_unlock();
1392
1393 if (!join)
1394 return;
1395
1396 for (i = 0; i < 2*nr_node_ids; i++) {
1397 atomic_long_sub(p->numa_faults[i], &my_grp->faults[i]);
1398 atomic_long_add(p->numa_faults[i], &grp->faults[i]);
1399 }
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001400 atomic_long_sub(p->total_numa_faults, &my_grp->total_faults);
1401 atomic_long_add(p->total_numa_faults, &grp->total_faults);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001402
1403 double_lock(&my_grp->lock, &grp->lock);
1404
1405 list_move(&p->numa_entry, &grp->task_list);
1406 my_grp->nr_tasks--;
1407 grp->nr_tasks++;
1408
1409 spin_unlock(&my_grp->lock);
1410 spin_unlock(&grp->lock);
1411
1412 rcu_assign_pointer(p->numa_group, grp);
1413
1414 put_numa_group(my_grp);
1415}
1416
1417void task_numa_free(struct task_struct *p)
1418{
1419 struct numa_group *grp = p->numa_group;
1420 int i;
1421
1422 if (grp) {
1423 for (i = 0; i < 2*nr_node_ids; i++)
1424 atomic_long_sub(p->numa_faults[i], &grp->faults[i]);
1425
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001426 atomic_long_sub(p->total_numa_faults, &grp->total_faults);
1427
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001428 spin_lock(&grp->lock);
1429 list_del(&p->numa_entry);
1430 grp->nr_tasks--;
1431 spin_unlock(&grp->lock);
1432 rcu_assign_pointer(p->numa_group, NULL);
1433 put_numa_group(grp);
1434 }
1435
1436 kfree(p->numa_faults);
1437}
1438
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001439/*
1440 * Got a PROT_NONE fault for a page on @node.
1441 */
Peter Zijlstra6688cc02013-10-07 11:29:24 +01001442void task_numa_fault(int last_cpupid, int node, int pages, int flags)
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001443{
1444 struct task_struct *p = current;
Peter Zijlstra6688cc02013-10-07 11:29:24 +01001445 bool migrated = flags & TNF_MIGRATED;
Mel Gormanac8e8952013-10-07 11:29:03 +01001446 int priv;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001447
Dave Kleikamp10e84b92013-07-31 13:53:35 -07001448 if (!numabalancing_enabled)
Mel Gorman1a687c22012-11-22 11:16:36 +00001449 return;
1450
Mel Gorman9ff1d9f2013-10-07 11:29:04 +01001451 /* for example, ksmd faulting in a user's mm */
1452 if (!p->mm)
1453 return;
1454
Mel Gormanf809ca92013-10-07 11:28:57 +01001455 /* Allocate buffer to track faults on a per-node basis */
1456 if (unlikely(!p->numa_faults)) {
Mel Gormanac8e8952013-10-07 11:29:03 +01001457 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
Mel Gormanf809ca92013-10-07 11:28:57 +01001458
Mel Gorman745d6142013-10-07 11:28:59 +01001459 /* numa_faults and numa_faults_buffer share the allocation */
1460 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
Mel Gormanf809ca92013-10-07 11:28:57 +01001461 if (!p->numa_faults)
1462 return;
Mel Gorman745d6142013-10-07 11:28:59 +01001463
1464 BUG_ON(p->numa_faults_buffer);
Mel Gormanac8e8952013-10-07 11:29:03 +01001465 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001466 p->total_numa_faults = 0;
Mel Gormanf809ca92013-10-07 11:28:57 +01001467 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001468
Mel Gormanfb003b82012-11-15 09:01:14 +00001469 /*
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001470 * First accesses are treated as private, otherwise consider accesses
1471 * to be private if the accessing pid has not changed
1472 */
1473 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1474 priv = 1;
1475 } else {
1476 priv = cpupid_match_pid(p, last_cpupid);
Peter Zijlstra6688cc02013-10-07 11:29:24 +01001477 if (!priv && !(flags & TNF_NO_GROUP))
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001478 task_numa_group(p, last_cpupid);
1479 }
1480
1481 /*
Mel Gormanb8593bf2012-11-21 01:18:23 +00001482 * If pages are properly placed (did not migrate) then scan slower.
1483 * This is reset periodically in case of phase changes
Mel Gormanfb003b82012-11-15 09:01:14 +00001484 */
Mel Gorman598f0ec2013-10-07 11:28:55 +01001485 if (!migrated) {
1486 /* Initialise if necessary */
1487 if (!p->numa_scan_period_max)
1488 p->numa_scan_period_max = task_scan_max(p);
1489
1490 p->numa_scan_period = min(p->numa_scan_period_max,
1491 p->numa_scan_period + 10);
1492 }
Mel Gormanfb003b82012-11-15 09:01:14 +00001493
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001494 task_numa_placement(p);
Mel Gormanf809ca92013-10-07 11:28:57 +01001495
Mel Gorman6b9a7462013-10-07 11:29:11 +01001496 /* Retry task to preferred node migration if it previously failed */
1497 if (p->numa_migrate_retry && time_after(jiffies, p->numa_migrate_retry))
1498 numa_migrate_preferred(p);
1499
Mel Gormanac8e8952013-10-07 11:29:03 +01001500 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001501}
1502
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001503static void reset_ptenuma_scan(struct task_struct *p)
1504{
1505 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1506 p->mm->numa_scan_offset = 0;
1507}
1508
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001509/*
1510 * The expensive part of numa migration is done from task_work context.
1511 * Triggered from task_tick_numa().
1512 */
1513void task_numa_work(struct callback_head *work)
1514{
1515 unsigned long migrate, next_scan, now = jiffies;
1516 struct task_struct *p = current;
1517 struct mm_struct *mm = p->mm;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001518 struct vm_area_struct *vma;
Mel Gorman9f406042012-11-14 18:34:32 +00001519 unsigned long start, end;
Mel Gorman598f0ec2013-10-07 11:28:55 +01001520 unsigned long nr_pte_updates = 0;
Mel Gorman9f406042012-11-14 18:34:32 +00001521 long pages;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001522
1523 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1524
1525 work->next = work; /* protect against double add */
1526 /*
1527 * Who cares about NUMA placement when they're dying.
1528 *
1529 * NOTE: make sure not to dereference p->mm before this check,
1530 * exit_task_work() happens _after_ exit_mm() so we could be called
1531 * without p->mm even though we still had it when we enqueued this
1532 * work.
1533 */
1534 if (p->flags & PF_EXITING)
1535 return;
1536
Mel Gorman7e8d16b2013-10-07 11:28:54 +01001537 if (!mm->numa_next_reset || !mm->numa_next_scan) {
1538 mm->numa_next_scan = now +
1539 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1540 mm->numa_next_reset = now +
1541 msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1542 }
1543
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001544 /*
Mel Gormanb8593bf2012-11-21 01:18:23 +00001545 * Reset the scan period if enough time has gone by. Objective is that
1546 * scanning will be reduced if pages are properly placed. As tasks
1547 * can enter different phases this needs to be re-examined. Lacking
1548 * proper tracking of reference behaviour, this blunt hammer is used.
1549 */
1550 migrate = mm->numa_next_reset;
1551 if (time_after(now, migrate)) {
Mel Gorman598f0ec2013-10-07 11:28:55 +01001552 p->numa_scan_period = task_scan_min(p);
Mel Gormanb8593bf2012-11-21 01:18:23 +00001553 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1554 xchg(&mm->numa_next_reset, next_scan);
1555 }
1556
1557 /*
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001558 * Enforce maximal scan/migration frequency..
1559 */
1560 migrate = mm->numa_next_scan;
1561 if (time_before(now, migrate))
1562 return;
1563
Mel Gorman598f0ec2013-10-07 11:28:55 +01001564 if (p->numa_scan_period == 0) {
1565 p->numa_scan_period_max = task_scan_max(p);
1566 p->numa_scan_period = task_scan_min(p);
1567 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001568
Mel Gormanfb003b82012-11-15 09:01:14 +00001569 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001570 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1571 return;
1572
Mel Gormane14808b2012-11-19 10:59:15 +00001573 /*
Peter Zijlstra19a78d12013-10-07 11:28:51 +01001574 * Delay this task enough that another task of this mm will likely win
1575 * the next time around.
1576 */
1577 p->node_stamp += 2 * TICK_NSEC;
1578
Mel Gorman9f406042012-11-14 18:34:32 +00001579 start = mm->numa_scan_offset;
1580 pages = sysctl_numa_balancing_scan_size;
1581 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1582 if (!pages)
1583 return;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001584
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001585 down_read(&mm->mmap_sem);
Mel Gorman9f406042012-11-14 18:34:32 +00001586 vma = find_vma(mm, start);
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001587 if (!vma) {
1588 reset_ptenuma_scan(p);
Mel Gorman9f406042012-11-14 18:34:32 +00001589 start = 0;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001590 vma = mm->mmap;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001591 }
Mel Gorman9f406042012-11-14 18:34:32 +00001592 for (; vma; vma = vma->vm_next) {
Mel Gormanfc3147242013-10-07 11:29:09 +01001593 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001594 continue;
1595
Mel Gorman4591ce4f2013-10-07 11:29:13 +01001596 /*
1597 * Shared library pages mapped by multiple processes are not
1598 * migrated as it is expected they are cache replicated. Avoid
1599 * hinting faults in read-only file-backed mappings or the vdso
1600 * as migrating the pages will be of marginal benefit.
1601 */
1602 if (!vma->vm_mm ||
1603 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1604 continue;
1605
Mel Gorman9f406042012-11-14 18:34:32 +00001606 do {
1607 start = max(start, vma->vm_start);
1608 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1609 end = min(end, vma->vm_end);
Mel Gorman598f0ec2013-10-07 11:28:55 +01001610 nr_pte_updates += change_prot_numa(vma, start, end);
1611
1612 /*
1613 * Scan sysctl_numa_balancing_scan_size but ensure that
1614 * at least one PTE is updated so that unused virtual
1615 * address space is quickly skipped.
1616 */
1617 if (nr_pte_updates)
1618 pages -= (end - start) >> PAGE_SHIFT;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001619
Mel Gorman9f406042012-11-14 18:34:32 +00001620 start = end;
1621 if (pages <= 0)
1622 goto out;
1623 } while (end != vma->vm_end);
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001624 }
1625
Mel Gorman9f406042012-11-14 18:34:32 +00001626out:
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001627 /*
Mel Gormanf307cd12013-10-07 11:28:56 +01001628 * If the whole process was scanned without updates then no NUMA
1629 * hinting faults are being recorded and scan rate should be lower.
1630 */
1631 if (mm->numa_scan_offset == 0 && !nr_pte_updates) {
1632 p->numa_scan_period = min(p->numa_scan_period_max,
1633 p->numa_scan_period << 1);
1634
1635 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1636 mm->numa_next_scan = next_scan;
1637 }
1638
1639 /*
Peter Zijlstrac69307d2013-10-07 11:28:41 +01001640 * It is possible to reach the end of the VMA list but the last few
1641 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1642 * would find the !migratable VMA on the next scan but not reset the
1643 * scanner to the start so check it now.
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001644 */
1645 if (vma)
Mel Gorman9f406042012-11-14 18:34:32 +00001646 mm->numa_scan_offset = start;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001647 else
1648 reset_ptenuma_scan(p);
1649 up_read(&mm->mmap_sem);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001650}
1651
1652/*
1653 * Drive the periodic memory faults..
1654 */
1655void task_tick_numa(struct rq *rq, struct task_struct *curr)
1656{
1657 struct callback_head *work = &curr->numa_work;
1658 u64 period, now;
1659
1660 /*
1661 * We don't care about NUMA placement if we don't have memory.
1662 */
1663 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1664 return;
1665
1666 /*
1667 * Using runtime rather than walltime has the dual advantage that
1668 * we (mostly) drive the selection from busy threads and that the
1669 * task needs to have done some actual work before we bother with
1670 * NUMA placement.
1671 */
1672 now = curr->se.sum_exec_runtime;
1673 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1674
1675 if (now - curr->node_stamp > period) {
Peter Zijlstra4b96a292012-10-25 14:16:47 +02001676 if (!curr->node_stamp)
Mel Gorman598f0ec2013-10-07 11:28:55 +01001677 curr->numa_scan_period = task_scan_min(curr);
Peter Zijlstra19a78d12013-10-07 11:28:51 +01001678 curr->node_stamp += period;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001679
1680 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1681 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1682 task_work_add(curr, work, true);
1683 }
1684 }
1685}
1686#else
1687static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1688{
1689}
1690#endif /* CONFIG_NUMA_BALANCING */
1691
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001692static void
1693account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1694{
1695 update_load_add(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +02001696 if (!parent_entity(se))
Peter Zijlstra029632f2011-10-25 10:00:11 +02001697 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
Peter Zijlstra367456c2012-02-20 21:49:09 +01001698#ifdef CONFIG_SMP
1699 if (entity_is_task(se))
Peter Zijlstraeb953082012-04-17 13:38:40 +02001700 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
Peter Zijlstra367456c2012-02-20 21:49:09 +01001701#endif
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001702 cfs_rq->nr_running++;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001703}
1704
1705static void
1706account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1707{
1708 update_load_sub(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +02001709 if (!parent_entity(se))
Peter Zijlstra029632f2011-10-25 10:00:11 +02001710 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
Peter Zijlstra367456c2012-02-20 21:49:09 +01001711 if (entity_is_task(se))
Bharata B Raob87f1722008-09-25 09:53:54 +05301712 list_del_init(&se->group_node);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001713 cfs_rq->nr_running--;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001714}
1715
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001716#ifdef CONFIG_FAIR_GROUP_SCHED
1717# ifdef CONFIG_SMP
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001718static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1719{
1720 long tg_weight;
1721
1722 /*
1723 * Use this CPU's actual weight instead of the last load_contribution
1724 * to gain a more accurate current total weight. See
1725 * update_cfs_rq_load_contribution().
1726 */
Alex Shibf5b9862013-06-20 10:18:54 +08001727 tg_weight = atomic_long_read(&tg->load_avg);
Paul Turner82958362012-10-04 13:18:31 +02001728 tg_weight -= cfs_rq->tg_load_contrib;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001729 tg_weight += cfs_rq->load.weight;
1730
1731 return tg_weight;
1732}
1733
Paul Turner6d5ab292011-01-21 20:45:01 -08001734static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001735{
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001736 long tg_weight, load, shares;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001737
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001738 tg_weight = calc_tg_weight(tg, cfs_rq);
Paul Turner6d5ab292011-01-21 20:45:01 -08001739 load = cfs_rq->load.weight;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001740
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001741 shares = (tg->shares * load);
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001742 if (tg_weight)
1743 shares /= tg_weight;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001744
1745 if (shares < MIN_SHARES)
1746 shares = MIN_SHARES;
1747 if (shares > tg->shares)
1748 shares = tg->shares;
1749
1750 return shares;
1751}
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001752# else /* CONFIG_SMP */
Paul Turner6d5ab292011-01-21 20:45:01 -08001753static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001754{
1755 return tg->shares;
1756}
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001757# endif /* CONFIG_SMP */
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001758static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1759 unsigned long weight)
1760{
Paul Turner19e5eeb2010-12-15 19:10:18 -08001761 if (se->on_rq) {
1762 /* commit outstanding execution time */
1763 if (cfs_rq->curr == se)
1764 update_curr(cfs_rq);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001765 account_entity_dequeue(cfs_rq, se);
Paul Turner19e5eeb2010-12-15 19:10:18 -08001766 }
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001767
1768 update_load_set(&se->load, weight);
1769
1770 if (se->on_rq)
1771 account_entity_enqueue(cfs_rq, se);
1772}
1773
Paul Turner82958362012-10-04 13:18:31 +02001774static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1775
Paul Turner6d5ab292011-01-21 20:45:01 -08001776static void update_cfs_shares(struct cfs_rq *cfs_rq)
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001777{
1778 struct task_group *tg;
1779 struct sched_entity *se;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001780 long shares;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001781
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001782 tg = cfs_rq->tg;
1783 se = tg->se[cpu_of(rq_of(cfs_rq))];
Paul Turner64660c82011-07-21 09:43:36 -07001784 if (!se || throttled_hierarchy(cfs_rq))
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001785 return;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001786#ifndef CONFIG_SMP
1787 if (likely(se->load.weight == tg->shares))
1788 return;
1789#endif
Paul Turner6d5ab292011-01-21 20:45:01 -08001790 shares = calc_cfs_shares(cfs_rq, tg);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001791
1792 reweight_entity(cfs_rq_of(se), se, shares);
1793}
1794#else /* CONFIG_FAIR_GROUP_SCHED */
Paul Turner6d5ab292011-01-21 20:45:01 -08001795static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001796{
1797}
1798#endif /* CONFIG_FAIR_GROUP_SCHED */
1799
Alex Shi141965c2013-06-26 13:05:39 +08001800#ifdef CONFIG_SMP
Paul Turner9d85f212012-10-04 13:18:29 +02001801/*
Paul Turner5b51f2f2012-10-04 13:18:32 +02001802 * We choose a half-life close to 1 scheduling period.
1803 * Note: The tables below are dependent on this value.
1804 */
1805#define LOAD_AVG_PERIOD 32
1806#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1807#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1808
1809/* Precomputed fixed inverse multiplies for multiplication by y^n */
1810static const u32 runnable_avg_yN_inv[] = {
1811 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1812 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1813 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1814 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1815 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1816 0x85aac367, 0x82cd8698,
1817};
1818
1819/*
1820 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1821 * over-estimates when re-combining.
1822 */
1823static const u32 runnable_avg_yN_sum[] = {
1824 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1825 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1826 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1827};
1828
1829/*
Paul Turner9d85f212012-10-04 13:18:29 +02001830 * Approximate:
1831 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1832 */
1833static __always_inline u64 decay_load(u64 val, u64 n)
1834{
Paul Turner5b51f2f2012-10-04 13:18:32 +02001835 unsigned int local_n;
1836
1837 if (!n)
1838 return val;
1839 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1840 return 0;
1841
1842 /* after bounds checking we can collapse to 32-bit */
1843 local_n = n;
1844
1845 /*
1846 * As y^PERIOD = 1/2, we can combine
1847 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1848 * With a look-up table which covers k^n (n<PERIOD)
1849 *
1850 * To achieve constant time decay_load.
1851 */
1852 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1853 val >>= local_n / LOAD_AVG_PERIOD;
1854 local_n %= LOAD_AVG_PERIOD;
Paul Turner9d85f212012-10-04 13:18:29 +02001855 }
1856
Paul Turner5b51f2f2012-10-04 13:18:32 +02001857 val *= runnable_avg_yN_inv[local_n];
1858 /* We don't use SRR here since we always want to round down. */
1859 return val >> 32;
1860}
1861
1862/*
1863 * For updates fully spanning n periods, the contribution to runnable
1864 * average will be: \Sum 1024*y^n
1865 *
1866 * We can compute this reasonably efficiently by combining:
1867 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1868 */
1869static u32 __compute_runnable_contrib(u64 n)
1870{
1871 u32 contrib = 0;
1872
1873 if (likely(n <= LOAD_AVG_PERIOD))
1874 return runnable_avg_yN_sum[n];
1875 else if (unlikely(n >= LOAD_AVG_MAX_N))
1876 return LOAD_AVG_MAX;
1877
1878 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1879 do {
1880 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1881 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1882
1883 n -= LOAD_AVG_PERIOD;
1884 } while (n > LOAD_AVG_PERIOD);
1885
1886 contrib = decay_load(contrib, n);
1887 return contrib + runnable_avg_yN_sum[n];
Paul Turner9d85f212012-10-04 13:18:29 +02001888}
1889
1890/*
1891 * We can represent the historical contribution to runnable average as the
1892 * coefficients of a geometric series. To do this we sub-divide our runnable
1893 * history into segments of approximately 1ms (1024us); label the segment that
1894 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1895 *
1896 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1897 * p0 p1 p2
1898 * (now) (~1ms ago) (~2ms ago)
1899 *
1900 * Let u_i denote the fraction of p_i that the entity was runnable.
1901 *
1902 * We then designate the fractions u_i as our co-efficients, yielding the
1903 * following representation of historical load:
1904 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1905 *
1906 * We choose y based on the with of a reasonably scheduling period, fixing:
1907 * y^32 = 0.5
1908 *
1909 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1910 * approximately half as much as the contribution to load within the last ms
1911 * (u_0).
1912 *
1913 * When a period "rolls over" and we have new u_0`, multiplying the previous
1914 * sum again by y is sufficient to update:
1915 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1916 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1917 */
1918static __always_inline int __update_entity_runnable_avg(u64 now,
1919 struct sched_avg *sa,
1920 int runnable)
1921{
Paul Turner5b51f2f2012-10-04 13:18:32 +02001922 u64 delta, periods;
1923 u32 runnable_contrib;
Paul Turner9d85f212012-10-04 13:18:29 +02001924 int delta_w, decayed = 0;
1925
1926 delta = now - sa->last_runnable_update;
1927 /*
1928 * This should only happen when time goes backwards, which it
1929 * unfortunately does during sched clock init when we swap over to TSC.
1930 */
1931 if ((s64)delta < 0) {
1932 sa->last_runnable_update = now;
1933 return 0;
1934 }
1935
1936 /*
1937 * Use 1024ns as the unit of measurement since it's a reasonable
1938 * approximation of 1us and fast to compute.
1939 */
1940 delta >>= 10;
1941 if (!delta)
1942 return 0;
1943 sa->last_runnable_update = now;
1944
1945 /* delta_w is the amount already accumulated against our next period */
1946 delta_w = sa->runnable_avg_period % 1024;
1947 if (delta + delta_w >= 1024) {
1948 /* period roll-over */
1949 decayed = 1;
1950
1951 /*
1952 * Now that we know we're crossing a period boundary, figure
1953 * out how much from delta we need to complete the current
1954 * period and accrue it.
1955 */
1956 delta_w = 1024 - delta_w;
Paul Turner5b51f2f2012-10-04 13:18:32 +02001957 if (runnable)
1958 sa->runnable_avg_sum += delta_w;
1959 sa->runnable_avg_period += delta_w;
Paul Turner9d85f212012-10-04 13:18:29 +02001960
Paul Turner5b51f2f2012-10-04 13:18:32 +02001961 delta -= delta_w;
Paul Turner9d85f212012-10-04 13:18:29 +02001962
Paul Turner5b51f2f2012-10-04 13:18:32 +02001963 /* Figure out how many additional periods this update spans */
1964 periods = delta / 1024;
1965 delta %= 1024;
1966
1967 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1968 periods + 1);
1969 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1970 periods + 1);
1971
1972 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
1973 runnable_contrib = __compute_runnable_contrib(periods);
1974 if (runnable)
1975 sa->runnable_avg_sum += runnable_contrib;
1976 sa->runnable_avg_period += runnable_contrib;
Paul Turner9d85f212012-10-04 13:18:29 +02001977 }
1978
1979 /* Remainder of delta accrued against u_0` */
1980 if (runnable)
1981 sa->runnable_avg_sum += delta;
1982 sa->runnable_avg_period += delta;
1983
1984 return decayed;
1985}
1986
Paul Turner9ee474f2012-10-04 13:18:30 +02001987/* Synchronize an entity's decay with its parenting cfs_rq.*/
Paul Turneraff3e492012-10-04 13:18:30 +02001988static inline u64 __synchronize_entity_decay(struct sched_entity *se)
Paul Turner9ee474f2012-10-04 13:18:30 +02001989{
1990 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1991 u64 decays = atomic64_read(&cfs_rq->decay_counter);
1992
1993 decays -= se->avg.decay_count;
1994 if (!decays)
Paul Turneraff3e492012-10-04 13:18:30 +02001995 return 0;
Paul Turner9ee474f2012-10-04 13:18:30 +02001996
1997 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
1998 se->avg.decay_count = 0;
Paul Turneraff3e492012-10-04 13:18:30 +02001999
2000 return decays;
Paul Turner9ee474f2012-10-04 13:18:30 +02002001}
2002
Paul Turnerc566e8e2012-10-04 13:18:30 +02002003#ifdef CONFIG_FAIR_GROUP_SCHED
2004static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2005 int force_update)
2006{
2007 struct task_group *tg = cfs_rq->tg;
Alex Shibf5b9862013-06-20 10:18:54 +08002008 long tg_contrib;
Paul Turnerc566e8e2012-10-04 13:18:30 +02002009
2010 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2011 tg_contrib -= cfs_rq->tg_load_contrib;
2012
Alex Shibf5b9862013-06-20 10:18:54 +08002013 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2014 atomic_long_add(tg_contrib, &tg->load_avg);
Paul Turnerc566e8e2012-10-04 13:18:30 +02002015 cfs_rq->tg_load_contrib += tg_contrib;
2016 }
2017}
Paul Turner8165e142012-10-04 13:18:31 +02002018
Paul Turnerbb17f652012-10-04 13:18:31 +02002019/*
2020 * Aggregate cfs_rq runnable averages into an equivalent task_group
2021 * representation for computing load contributions.
2022 */
2023static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2024 struct cfs_rq *cfs_rq)
2025{
2026 struct task_group *tg = cfs_rq->tg;
2027 long contrib;
2028
2029 /* The fraction of a cpu used by this cfs_rq */
2030 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
2031 sa->runnable_avg_period + 1);
2032 contrib -= cfs_rq->tg_runnable_contrib;
2033
2034 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2035 atomic_add(contrib, &tg->runnable_avg);
2036 cfs_rq->tg_runnable_contrib += contrib;
2037 }
2038}
2039
Paul Turner8165e142012-10-04 13:18:31 +02002040static inline void __update_group_entity_contrib(struct sched_entity *se)
2041{
2042 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2043 struct task_group *tg = cfs_rq->tg;
Paul Turnerbb17f652012-10-04 13:18:31 +02002044 int runnable_avg;
2045
Paul Turner8165e142012-10-04 13:18:31 +02002046 u64 contrib;
2047
2048 contrib = cfs_rq->tg_load_contrib * tg->shares;
Alex Shibf5b9862013-06-20 10:18:54 +08002049 se->avg.load_avg_contrib = div_u64(contrib,
2050 atomic_long_read(&tg->load_avg) + 1);
Paul Turnerbb17f652012-10-04 13:18:31 +02002051
2052 /*
2053 * For group entities we need to compute a correction term in the case
2054 * that they are consuming <1 cpu so that we would contribute the same
2055 * load as a task of equal weight.
2056 *
2057 * Explicitly co-ordinating this measurement would be expensive, but
2058 * fortunately the sum of each cpus contribution forms a usable
2059 * lower-bound on the true value.
2060 *
2061 * Consider the aggregate of 2 contributions. Either they are disjoint
2062 * (and the sum represents true value) or they are disjoint and we are
2063 * understating by the aggregate of their overlap.
2064 *
2065 * Extending this to N cpus, for a given overlap, the maximum amount we
2066 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2067 * cpus that overlap for this interval and w_i is the interval width.
2068 *
2069 * On a small machine; the first term is well-bounded which bounds the
2070 * total error since w_i is a subset of the period. Whereas on a
2071 * larger machine, while this first term can be larger, if w_i is the
2072 * of consequential size guaranteed to see n_i*w_i quickly converge to
2073 * our upper bound of 1-cpu.
2074 */
2075 runnable_avg = atomic_read(&tg->runnable_avg);
2076 if (runnable_avg < NICE_0_LOAD) {
2077 se->avg.load_avg_contrib *= runnable_avg;
2078 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2079 }
Paul Turner8165e142012-10-04 13:18:31 +02002080}
Paul Turnerc566e8e2012-10-04 13:18:30 +02002081#else
2082static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2083 int force_update) {}
Paul Turnerbb17f652012-10-04 13:18:31 +02002084static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2085 struct cfs_rq *cfs_rq) {}
Paul Turner8165e142012-10-04 13:18:31 +02002086static inline void __update_group_entity_contrib(struct sched_entity *se) {}
Paul Turnerc566e8e2012-10-04 13:18:30 +02002087#endif
2088
Paul Turner8165e142012-10-04 13:18:31 +02002089static inline void __update_task_entity_contrib(struct sched_entity *se)
2090{
2091 u32 contrib;
2092
2093 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2094 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2095 contrib /= (se->avg.runnable_avg_period + 1);
2096 se->avg.load_avg_contrib = scale_load(contrib);
2097}
2098
Paul Turner2dac7542012-10-04 13:18:30 +02002099/* Compute the current contribution to load_avg by se, return any delta */
2100static long __update_entity_load_avg_contrib(struct sched_entity *se)
2101{
2102 long old_contrib = se->avg.load_avg_contrib;
2103
Paul Turner8165e142012-10-04 13:18:31 +02002104 if (entity_is_task(se)) {
2105 __update_task_entity_contrib(se);
2106 } else {
Paul Turnerbb17f652012-10-04 13:18:31 +02002107 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
Paul Turner8165e142012-10-04 13:18:31 +02002108 __update_group_entity_contrib(se);
2109 }
Paul Turner2dac7542012-10-04 13:18:30 +02002110
2111 return se->avg.load_avg_contrib - old_contrib;
2112}
2113
Paul Turner9ee474f2012-10-04 13:18:30 +02002114static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2115 long load_contrib)
2116{
2117 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2118 cfs_rq->blocked_load_avg -= load_contrib;
2119 else
2120 cfs_rq->blocked_load_avg = 0;
2121}
2122
Paul Turnerf1b17282012-10-04 13:18:31 +02002123static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2124
Paul Turner9d85f212012-10-04 13:18:29 +02002125/* Update a sched_entity's runnable average */
Paul Turner9ee474f2012-10-04 13:18:30 +02002126static inline void update_entity_load_avg(struct sched_entity *se,
2127 int update_cfs_rq)
Paul Turner9d85f212012-10-04 13:18:29 +02002128{
Paul Turner2dac7542012-10-04 13:18:30 +02002129 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2130 long contrib_delta;
Paul Turnerf1b17282012-10-04 13:18:31 +02002131 u64 now;
Paul Turner2dac7542012-10-04 13:18:30 +02002132
Paul Turnerf1b17282012-10-04 13:18:31 +02002133 /*
2134 * For a group entity we need to use their owned cfs_rq_clock_task() in
2135 * case they are the parent of a throttled hierarchy.
2136 */
2137 if (entity_is_task(se))
2138 now = cfs_rq_clock_task(cfs_rq);
2139 else
2140 now = cfs_rq_clock_task(group_cfs_rq(se));
2141
2142 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
Paul Turner2dac7542012-10-04 13:18:30 +02002143 return;
2144
2145 contrib_delta = __update_entity_load_avg_contrib(se);
Paul Turner9ee474f2012-10-04 13:18:30 +02002146
2147 if (!update_cfs_rq)
2148 return;
2149
Paul Turner2dac7542012-10-04 13:18:30 +02002150 if (se->on_rq)
2151 cfs_rq->runnable_load_avg += contrib_delta;
Paul Turner9ee474f2012-10-04 13:18:30 +02002152 else
2153 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2154}
2155
2156/*
2157 * Decay the load contributed by all blocked children and account this so that
2158 * their contribution may appropriately discounted when they wake up.
2159 */
Paul Turneraff3e492012-10-04 13:18:30 +02002160static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
Paul Turner9ee474f2012-10-04 13:18:30 +02002161{
Paul Turnerf1b17282012-10-04 13:18:31 +02002162 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
Paul Turner9ee474f2012-10-04 13:18:30 +02002163 u64 decays;
2164
2165 decays = now - cfs_rq->last_decay;
Paul Turneraff3e492012-10-04 13:18:30 +02002166 if (!decays && !force_update)
Paul Turner9ee474f2012-10-04 13:18:30 +02002167 return;
2168
Alex Shi25099402013-06-20 10:18:55 +08002169 if (atomic_long_read(&cfs_rq->removed_load)) {
2170 unsigned long removed_load;
2171 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
Paul Turneraff3e492012-10-04 13:18:30 +02002172 subtract_blocked_load_contrib(cfs_rq, removed_load);
2173 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002174
Paul Turneraff3e492012-10-04 13:18:30 +02002175 if (decays) {
2176 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2177 decays);
2178 atomic64_add(decays, &cfs_rq->decay_counter);
2179 cfs_rq->last_decay = now;
2180 }
Paul Turnerc566e8e2012-10-04 13:18:30 +02002181
2182 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
Paul Turner9d85f212012-10-04 13:18:29 +02002183}
Ben Segall18bf2802012-10-04 12:51:20 +02002184
2185static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2186{
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002187 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
Paul Turnerbb17f652012-10-04 13:18:31 +02002188 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
Ben Segall18bf2802012-10-04 12:51:20 +02002189}
Paul Turner2dac7542012-10-04 13:18:30 +02002190
2191/* Add the load generated by se into cfs_rq's child load-average */
2192static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002193 struct sched_entity *se,
2194 int wakeup)
Paul Turner2dac7542012-10-04 13:18:30 +02002195{
Paul Turneraff3e492012-10-04 13:18:30 +02002196 /*
2197 * We track migrations using entity decay_count <= 0, on a wake-up
2198 * migration we use a negative decay count to track the remote decays
2199 * accumulated while sleeping.
Alex Shia75cdaa2013-06-20 10:18:47 +08002200 *
2201 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2202 * are seen by enqueue_entity_load_avg() as a migration with an already
2203 * constructed load_avg_contrib.
Paul Turneraff3e492012-10-04 13:18:30 +02002204 */
2205 if (unlikely(se->avg.decay_count <= 0)) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002206 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
Paul Turneraff3e492012-10-04 13:18:30 +02002207 if (se->avg.decay_count) {
2208 /*
2209 * In a wake-up migration we have to approximate the
2210 * time sleeping. This is because we can't synchronize
2211 * clock_task between the two cpus, and it is not
2212 * guaranteed to be read-safe. Instead, we can
2213 * approximate this using our carried decays, which are
2214 * explicitly atomically readable.
2215 */
2216 se->avg.last_runnable_update -= (-se->avg.decay_count)
2217 << 20;
2218 update_entity_load_avg(se, 0);
2219 /* Indicate that we're now synchronized and on-rq */
2220 se->avg.decay_count = 0;
2221 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002222 wakeup = 0;
2223 } else {
Alex Shi282cf492013-06-20 10:18:48 +08002224 /*
2225 * Task re-woke on same cpu (or else migrate_task_rq_fair()
2226 * would have made count negative); we must be careful to avoid
2227 * double-accounting blocked time after synchronizing decays.
2228 */
2229 se->avg.last_runnable_update += __synchronize_entity_decay(se)
2230 << 20;
Paul Turner9ee474f2012-10-04 13:18:30 +02002231 }
2232
Paul Turneraff3e492012-10-04 13:18:30 +02002233 /* migrated tasks did not contribute to our blocked load */
2234 if (wakeup) {
Paul Turner9ee474f2012-10-04 13:18:30 +02002235 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
Paul Turneraff3e492012-10-04 13:18:30 +02002236 update_entity_load_avg(se, 0);
2237 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002238
Paul Turner2dac7542012-10-04 13:18:30 +02002239 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
Paul Turneraff3e492012-10-04 13:18:30 +02002240 /* we force update consideration on load-balancer moves */
2241 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
Paul Turner2dac7542012-10-04 13:18:30 +02002242}
2243
Paul Turner9ee474f2012-10-04 13:18:30 +02002244/*
2245 * Remove se's load from this cfs_rq child load-average, if the entity is
2246 * transitioning to a blocked state we track its projected decay using
2247 * blocked_load_avg.
2248 */
Paul Turner2dac7542012-10-04 13:18:30 +02002249static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002250 struct sched_entity *se,
2251 int sleep)
Paul Turner2dac7542012-10-04 13:18:30 +02002252{
Paul Turner9ee474f2012-10-04 13:18:30 +02002253 update_entity_load_avg(se, 1);
Paul Turneraff3e492012-10-04 13:18:30 +02002254 /* we force update consideration on load-balancer moves */
2255 update_cfs_rq_blocked_load(cfs_rq, !sleep);
Paul Turner9ee474f2012-10-04 13:18:30 +02002256
Paul Turner2dac7542012-10-04 13:18:30 +02002257 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
Paul Turner9ee474f2012-10-04 13:18:30 +02002258 if (sleep) {
2259 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2260 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2261 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
Paul Turner2dac7542012-10-04 13:18:30 +02002262}
Vincent Guittot642dbc32013-04-18 18:34:26 +02002263
2264/*
2265 * Update the rq's load with the elapsed running time before entering
2266 * idle. if the last scheduled task is not a CFS task, idle_enter will
2267 * be the only way to update the runnable statistic.
2268 */
2269void idle_enter_fair(struct rq *this_rq)
2270{
2271 update_rq_runnable_avg(this_rq, 1);
2272}
2273
2274/*
2275 * Update the rq's load with the elapsed idle time before a task is
2276 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2277 * be the only way to update the runnable statistic.
2278 */
2279void idle_exit_fair(struct rq *this_rq)
2280{
2281 update_rq_runnable_avg(this_rq, 0);
2282}
2283
Paul Turner9d85f212012-10-04 13:18:29 +02002284#else
Paul Turner9ee474f2012-10-04 13:18:30 +02002285static inline void update_entity_load_avg(struct sched_entity *se,
2286 int update_cfs_rq) {}
Ben Segall18bf2802012-10-04 12:51:20 +02002287static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
Paul Turner2dac7542012-10-04 13:18:30 +02002288static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002289 struct sched_entity *se,
2290 int wakeup) {}
Paul Turner2dac7542012-10-04 13:18:30 +02002291static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002292 struct sched_entity *se,
2293 int sleep) {}
Paul Turneraff3e492012-10-04 13:18:30 +02002294static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2295 int force_update) {}
Paul Turner9d85f212012-10-04 13:18:29 +02002296#endif
2297
Ingo Molnar2396af62007-08-09 11:16:48 +02002298static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002299{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002300#ifdef CONFIG_SCHEDSTATS
Peter Zijlstrae4143142009-07-23 20:13:26 +02002301 struct task_struct *tsk = NULL;
2302
2303 if (entity_is_task(se))
2304 tsk = task_of(se);
2305
Lucas De Marchi41acab82010-03-10 23:37:45 -03002306 if (se->statistics.sleep_start) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002307 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002308
2309 if ((s64)delta < 0)
2310 delta = 0;
2311
Lucas De Marchi41acab82010-03-10 23:37:45 -03002312 if (unlikely(delta > se->statistics.sleep_max))
2313 se->statistics.sleep_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002314
Peter Zijlstra8c79a042012-01-30 14:51:37 +01002315 se->statistics.sleep_start = 0;
Lucas De Marchi41acab82010-03-10 23:37:45 -03002316 se->statistics.sum_sleep_runtime += delta;
Arjan van de Ven97455122008-01-25 21:08:34 +01002317
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002318 if (tsk) {
Peter Zijlstrae4143142009-07-23 20:13:26 +02002319 account_scheduler_latency(tsk, delta >> 10, 1);
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002320 trace_sched_stat_sleep(tsk, delta);
2321 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002322 }
Lucas De Marchi41acab82010-03-10 23:37:45 -03002323 if (se->statistics.block_start) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002324 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002325
2326 if ((s64)delta < 0)
2327 delta = 0;
2328
Lucas De Marchi41acab82010-03-10 23:37:45 -03002329 if (unlikely(delta > se->statistics.block_max))
2330 se->statistics.block_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002331
Peter Zijlstra8c79a042012-01-30 14:51:37 +01002332 se->statistics.block_start = 0;
Lucas De Marchi41acab82010-03-10 23:37:45 -03002333 se->statistics.sum_sleep_runtime += delta;
Ingo Molnar30084fb2007-10-02 14:13:08 +02002334
Peter Zijlstrae4143142009-07-23 20:13:26 +02002335 if (tsk) {
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -07002336 if (tsk->in_iowait) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03002337 se->statistics.iowait_sum += delta;
2338 se->statistics.iowait_count++;
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002339 trace_sched_stat_iowait(tsk, delta);
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -07002340 }
2341
Andrew Vaginb781a602011-11-28 12:03:35 +03002342 trace_sched_stat_blocked(tsk, delta);
2343
Peter Zijlstrae4143142009-07-23 20:13:26 +02002344 /*
2345 * Blocking time is in units of nanosecs, so shift by
2346 * 20 to get a milliseconds-range estimation of the
2347 * amount of time that the task spent sleeping:
2348 */
2349 if (unlikely(prof_on == SLEEP_PROFILING)) {
2350 profile_hits(SLEEP_PROFILING,
2351 (void *)get_wchan(tsk),
2352 delta >> 20);
2353 }
2354 account_scheduler_latency(tsk, delta >> 10, 0);
Ingo Molnar30084fb2007-10-02 14:13:08 +02002355 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002356 }
2357#endif
2358}
2359
Peter Zijlstraddc97292007-10-15 17:00:10 +02002360static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2361{
2362#ifdef CONFIG_SCHED_DEBUG
2363 s64 d = se->vruntime - cfs_rq->min_vruntime;
2364
2365 if (d < 0)
2366 d = -d;
2367
2368 if (d > 3*sysctl_sched_latency)
2369 schedstat_inc(cfs_rq, nr_spread_over);
2370#endif
2371}
2372
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002373static void
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002374place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2375{
Peter Zijlstra1af5f732008-10-24 11:06:13 +02002376 u64 vruntime = cfs_rq->min_vruntime;
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +02002377
Peter Zijlstra2cb86002007-11-09 22:39:37 +01002378 /*
2379 * The 'current' period is already promised to the current tasks,
2380 * however the extra weight of the new task will slow them down a
2381 * little, place the new task so that it fits in the slot that
2382 * stays open at the end.
2383 */
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +02002384 if (initial && sched_feat(START_DEBIT))
Peter Zijlstraf9c0b092008-10-17 19:27:04 +02002385 vruntime += sched_vslice(cfs_rq, se);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002386
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002387 /* sleeps up to a single latency don't count. */
Mike Galbraith5ca98802010-03-11 17:17:17 +01002388 if (!initial) {
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002389 unsigned long thresh = sysctl_sched_latency;
Peter Zijlstraa7be37a2008-06-27 13:41:11 +02002390
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002391 /*
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002392 * Halve their sleep time's effect, to allow
2393 * for a gentler effect of sleepers:
2394 */
2395 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2396 thresh >>= 1;
Ingo Molnar51e03042009-09-16 08:54:45 +02002397
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002398 vruntime -= thresh;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002399 }
2400
Mike Galbraithb5d9d732009-09-08 11:12:28 +02002401 /* ensure we never gain time by being placed backwards. */
Viresh Kumar16c8f1c2012-11-08 13:33:46 +05302402 se->vruntime = max_vruntime(se->vruntime, vruntime);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002403}
2404
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002405static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2406
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002407static void
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002408enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002409{
2410 /*
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002411 * Update the normalized vruntime before updating min_vruntime
Kamalesh Babulal0fc576d2013-06-27 11:24:18 +05302412 * through calling update_curr().
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002413 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002414 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002415 se->vruntime += cfs_rq->min_vruntime;
2416
2417 /*
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002418 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002419 */
Ingo Molnarb7cc0892007-08-09 11:16:47 +02002420 update_curr(cfs_rq);
Paul Turnerf269ae02012-10-04 13:18:31 +02002421 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002422 account_entity_enqueue(cfs_rq, se);
2423 update_cfs_shares(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002424
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002425 if (flags & ENQUEUE_WAKEUP) {
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002426 place_entity(cfs_rq, se, 0);
Ingo Molnar2396af62007-08-09 11:16:48 +02002427 enqueue_sleeper(cfs_rq, se);
Ingo Molnare9acbff2007-10-15 17:00:04 +02002428 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002429
Ingo Molnard2417e52007-08-09 11:16:47 +02002430 update_stats_enqueue(cfs_rq, se);
Peter Zijlstraddc97292007-10-15 17:00:10 +02002431 check_spread(cfs_rq, se);
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002432 if (se != cfs_rq->curr)
2433 __enqueue_entity(cfs_rq, se);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002434 se->on_rq = 1;
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -08002435
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002436 if (cfs_rq->nr_running == 1) {
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -08002437 list_add_leaf_cfs_rq(cfs_rq);
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002438 check_enqueue_throttle(cfs_rq);
2439 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002440}
2441
Rik van Riel2c13c9192011-02-01 09:48:37 -05002442static void __clear_buddies_last(struct sched_entity *se)
Peter Zijlstra2002c692008-11-11 11:52:33 +01002443{
Rik van Riel2c13c9192011-02-01 09:48:37 -05002444 for_each_sched_entity(se) {
2445 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2446 if (cfs_rq->last == se)
2447 cfs_rq->last = NULL;
2448 else
2449 break;
2450 }
2451}
Peter Zijlstra2002c692008-11-11 11:52:33 +01002452
Rik van Riel2c13c9192011-02-01 09:48:37 -05002453static void __clear_buddies_next(struct sched_entity *se)
2454{
2455 for_each_sched_entity(se) {
2456 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2457 if (cfs_rq->next == se)
2458 cfs_rq->next = NULL;
2459 else
2460 break;
2461 }
Peter Zijlstra2002c692008-11-11 11:52:33 +01002462}
2463
Rik van Rielac53db52011-02-01 09:51:03 -05002464static void __clear_buddies_skip(struct sched_entity *se)
2465{
2466 for_each_sched_entity(se) {
2467 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2468 if (cfs_rq->skip == se)
2469 cfs_rq->skip = NULL;
2470 else
2471 break;
2472 }
2473}
2474
Peter Zijlstraa571bbe2009-01-28 14:51:40 +01002475static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2476{
Rik van Riel2c13c9192011-02-01 09:48:37 -05002477 if (cfs_rq->last == se)
2478 __clear_buddies_last(se);
2479
2480 if (cfs_rq->next == se)
2481 __clear_buddies_next(se);
Rik van Rielac53db52011-02-01 09:51:03 -05002482
2483 if (cfs_rq->skip == se)
2484 __clear_buddies_skip(se);
Peter Zijlstraa571bbe2009-01-28 14:51:40 +01002485}
2486
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07002487static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
Paul Turnerd8b49862011-07-21 09:43:41 -07002488
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002489static void
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002490dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002491{
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002492 /*
2493 * Update run-time statistics of the 'current'.
2494 */
2495 update_curr(cfs_rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002496 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002497
Ingo Molnar19b6a2e2007-08-09 11:16:48 +02002498 update_stats_dequeue(cfs_rq, se);
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002499 if (flags & DEQUEUE_SLEEP) {
Peter Zijlstra67e9fb22007-10-15 17:00:10 +02002500#ifdef CONFIG_SCHEDSTATS
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002501 if (entity_is_task(se)) {
2502 struct task_struct *tsk = task_of(se);
2503
2504 if (tsk->state & TASK_INTERRUPTIBLE)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002505 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002506 if (tsk->state & TASK_UNINTERRUPTIBLE)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002507 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002508 }
Dmitry Adamushkodb36cc72007-10-15 17:00:06 +02002509#endif
Peter Zijlstra67e9fb22007-10-15 17:00:10 +02002510 }
2511
Peter Zijlstra2002c692008-11-11 11:52:33 +01002512 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +01002513
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002514 if (se != cfs_rq->curr)
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002515 __dequeue_entity(cfs_rq, se);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002516 se->on_rq = 0;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002517 account_entity_dequeue(cfs_rq, se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002518
2519 /*
2520 * Normalize the entity after updating the min_vruntime because the
2521 * update can refer to the ->curr item and we need to reflect this
2522 * movement in our normalized position.
2523 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002524 if (!(flags & DEQUEUE_SLEEP))
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002525 se->vruntime -= cfs_rq->min_vruntime;
Peter Zijlstra1e876232011-05-17 16:21:10 -07002526
Paul Turnerd8b49862011-07-21 09:43:41 -07002527 /* return excess runtime on last dequeue */
2528 return_cfs_rq_runtime(cfs_rq);
2529
Peter Zijlstra1e876232011-05-17 16:21:10 -07002530 update_min_vruntime(cfs_rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002531 update_cfs_shares(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002532}
2533
2534/*
2535 * Preempt the current task with a newly woken task if needed:
2536 */
Peter Zijlstra7c92e542007-09-05 14:32:49 +02002537static void
Ingo Molnar2e09bf52007-10-15 17:00:05 +02002538check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002539{
Peter Zijlstra11697832007-09-05 14:32:49 +02002540 unsigned long ideal_runtime, delta_exec;
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002541 struct sched_entity *se;
2542 s64 delta;
Peter Zijlstra11697832007-09-05 14:32:49 +02002543
Peter Zijlstra6d0f0eb2007-10-15 17:00:05 +02002544 ideal_runtime = sched_slice(cfs_rq, curr);
Peter Zijlstra11697832007-09-05 14:32:49 +02002545 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +01002546 if (delta_exec > ideal_runtime) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002547 resched_task(rq_of(cfs_rq)->curr);
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +01002548 /*
2549 * The current task ran long enough, ensure it doesn't get
2550 * re-elected due to buddy favours.
2551 */
2552 clear_buddies(cfs_rq, curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +02002553 return;
2554 }
2555
2556 /*
2557 * Ensure that a task that missed wakeup preemption by a
2558 * narrow margin doesn't have to wait for a full slice.
2559 * This also mitigates buddy induced latencies under load.
2560 */
Mike Galbraithf685cea2009-10-23 23:09:22 +02002561 if (delta_exec < sysctl_sched_min_granularity)
2562 return;
2563
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002564 se = __pick_first_entity(cfs_rq);
2565 delta = curr->vruntime - se->vruntime;
Mike Galbraithf685cea2009-10-23 23:09:22 +02002566
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002567 if (delta < 0)
2568 return;
Mike Galbraithd7d82942011-01-05 05:41:17 +01002569
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002570 if (delta > ideal_runtime)
2571 resched_task(rq_of(cfs_rq)->curr);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002572}
2573
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002574static void
Ingo Molnar8494f412007-08-09 11:16:48 +02002575set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002576{
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002577 /* 'current' is not kept within the tree. */
2578 if (se->on_rq) {
2579 /*
2580 * Any task has to be enqueued before it get to execute on
2581 * a CPU. So account for the time it spent waiting on the
2582 * runqueue.
2583 */
2584 update_stats_wait_end(cfs_rq, se);
2585 __dequeue_entity(cfs_rq, se);
2586 }
2587
Ingo Molnar79303e92007-08-09 11:16:47 +02002588 update_stats_curr_start(cfs_rq, se);
Ingo Molnar429d43b2007-10-15 17:00:03 +02002589 cfs_rq->curr = se;
Ingo Molnareba1ed42007-10-15 17:00:02 +02002590#ifdef CONFIG_SCHEDSTATS
2591 /*
2592 * Track our maximum slice length, if the CPU's load is at
2593 * least twice that of our own weight (i.e. dont track it
2594 * when there are only lesser-weight tasks around):
2595 */
Dmitry Adamushko495eca42007-10-15 17:00:06 +02002596 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03002597 se->statistics.slice_max = max(se->statistics.slice_max,
Ingo Molnareba1ed42007-10-15 17:00:02 +02002598 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2599 }
2600#endif
Peter Zijlstra4a55b452007-09-05 14:32:49 +02002601 se->prev_sum_exec_runtime = se->sum_exec_runtime;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002602}
2603
Peter Zijlstra3f3a4902008-10-24 11:06:16 +02002604static int
2605wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2606
Rik van Rielac53db52011-02-01 09:51:03 -05002607/*
2608 * Pick the next process, keeping these things in mind, in this order:
2609 * 1) keep things fair between processes/task groups
2610 * 2) pick the "next" process, since someone really wants that to run
2611 * 3) pick the "last" process, for cache locality
2612 * 4) do not run the "skip" process, if something else is available
2613 */
Peter Zijlstraf4b67552008-11-04 21:25:07 +01002614static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002615{
Rik van Rielac53db52011-02-01 09:51:03 -05002616 struct sched_entity *se = __pick_first_entity(cfs_rq);
Mike Galbraithf685cea2009-10-23 23:09:22 +02002617 struct sched_entity *left = se;
Peter Zijlstraf4b67552008-11-04 21:25:07 +01002618
Rik van Rielac53db52011-02-01 09:51:03 -05002619 /*
2620 * Avoid running the skip buddy, if running something else can
2621 * be done without getting too unfair.
2622 */
2623 if (cfs_rq->skip == se) {
2624 struct sched_entity *second = __pick_next_entity(se);
2625 if (second && wakeup_preempt_entity(second, left) < 1)
2626 se = second;
2627 }
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002628
Mike Galbraithf685cea2009-10-23 23:09:22 +02002629 /*
2630 * Prefer last buddy, try to return the CPU to a preempted task.
2631 */
2632 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2633 se = cfs_rq->last;
2634
Rik van Rielac53db52011-02-01 09:51:03 -05002635 /*
2636 * Someone really wants this to run. If it's not unfair, run it.
2637 */
2638 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2639 se = cfs_rq->next;
2640
Mike Galbraithf685cea2009-10-23 23:09:22 +02002641 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +01002642
2643 return se;
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002644}
2645
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002646static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2647
Ingo Molnarab6cde22007-08-09 11:16:48 +02002648static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002649{
2650 /*
2651 * If still on the runqueue then deactivate_task()
2652 * was not called and update_curr() has to be done:
2653 */
2654 if (prev->on_rq)
Ingo Molnarb7cc0892007-08-09 11:16:47 +02002655 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002656
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002657 /* throttle cfs_rqs exceeding runtime */
2658 check_cfs_rq_runtime(cfs_rq);
2659
Peter Zijlstraddc97292007-10-15 17:00:10 +02002660 check_spread(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002661 if (prev->on_rq) {
Ingo Molnar5870db52007-08-09 11:16:47 +02002662 update_stats_wait_start(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002663 /* Put 'current' back into the tree. */
2664 __enqueue_entity(cfs_rq, prev);
Paul Turner9d85f212012-10-04 13:18:29 +02002665 /* in !on_rq case, update occurred at dequeue */
Paul Turner9ee474f2012-10-04 13:18:30 +02002666 update_entity_load_avg(prev, 1);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002667 }
Ingo Molnar429d43b2007-10-15 17:00:03 +02002668 cfs_rq->curr = NULL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002669}
2670
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002671static void
2672entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002673{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002674 /*
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002675 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002676 */
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002677 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002678
Paul Turner43365bd2010-12-15 19:10:17 -08002679 /*
Paul Turner9d85f212012-10-04 13:18:29 +02002680 * Ensure that runnable average is periodically updated.
2681 */
Paul Turner9ee474f2012-10-04 13:18:30 +02002682 update_entity_load_avg(curr, 1);
Paul Turneraff3e492012-10-04 13:18:30 +02002683 update_cfs_rq_blocked_load(cfs_rq, 1);
Peter Zijlstrabf0bd942013-07-26 23:48:42 +02002684 update_cfs_shares(cfs_rq);
Paul Turner9d85f212012-10-04 13:18:29 +02002685
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002686#ifdef CONFIG_SCHED_HRTICK
2687 /*
2688 * queued ticks are scheduled to match the slice, so don't bother
2689 * validating it and just reschedule.
2690 */
Harvey Harrison983ed7a2008-04-24 18:17:55 -07002691 if (queued) {
2692 resched_task(rq_of(cfs_rq)->curr);
2693 return;
2694 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002695 /*
2696 * don't let the period tick interfere with the hrtick preemption
2697 */
2698 if (!sched_feat(DOUBLE_TICK) &&
2699 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2700 return;
2701#endif
2702
Yong Zhang2c2efae2011-07-29 16:20:33 +08002703 if (cfs_rq->nr_running > 1)
Ingo Molnar2e09bf52007-10-15 17:00:05 +02002704 check_preempt_tick(cfs_rq, curr);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002705}
2706
Paul Turnerab84d312011-07-21 09:43:28 -07002707
2708/**************************************************
2709 * CFS bandwidth control machinery
2710 */
2711
2712#ifdef CONFIG_CFS_BANDWIDTH
Peter Zijlstra029632f2011-10-25 10:00:11 +02002713
2714#ifdef HAVE_JUMP_LABEL
Ingo Molnarc5905af2012-02-24 08:31:31 +01002715static struct static_key __cfs_bandwidth_used;
Peter Zijlstra029632f2011-10-25 10:00:11 +02002716
2717static inline bool cfs_bandwidth_used(void)
2718{
Ingo Molnarc5905af2012-02-24 08:31:31 +01002719 return static_key_false(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002720}
2721
2722void account_cfs_bandwidth_used(int enabled, int was_enabled)
2723{
2724 /* only need to count groups transitioning between enabled/!enabled */
2725 if (enabled && !was_enabled)
Ingo Molnarc5905af2012-02-24 08:31:31 +01002726 static_key_slow_inc(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002727 else if (!enabled && was_enabled)
Ingo Molnarc5905af2012-02-24 08:31:31 +01002728 static_key_slow_dec(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002729}
2730#else /* HAVE_JUMP_LABEL */
2731static bool cfs_bandwidth_used(void)
2732{
2733 return true;
2734}
2735
2736void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2737#endif /* HAVE_JUMP_LABEL */
2738
Paul Turnerab84d312011-07-21 09:43:28 -07002739/*
2740 * default period for cfs group bandwidth.
2741 * default: 0.1s, units: nanoseconds
2742 */
2743static inline u64 default_cfs_period(void)
2744{
2745 return 100000000ULL;
2746}
Paul Turnerec12cb72011-07-21 09:43:30 -07002747
2748static inline u64 sched_cfs_bandwidth_slice(void)
2749{
2750 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2751}
2752
Paul Turnera9cf55b2011-07-21 09:43:32 -07002753/*
2754 * Replenish runtime according to assigned quota and update expiration time.
2755 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2756 * additional synchronization around rq->lock.
2757 *
2758 * requires cfs_b->lock
2759 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02002760void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
Paul Turnera9cf55b2011-07-21 09:43:32 -07002761{
2762 u64 now;
2763
2764 if (cfs_b->quota == RUNTIME_INF)
2765 return;
2766
2767 now = sched_clock_cpu(smp_processor_id());
2768 cfs_b->runtime = cfs_b->quota;
2769 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2770}
2771
Peter Zijlstra029632f2011-10-25 10:00:11 +02002772static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2773{
2774 return &tg->cfs_bandwidth;
2775}
2776
Paul Turnerf1b17282012-10-04 13:18:31 +02002777/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2778static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2779{
2780 if (unlikely(cfs_rq->throttle_count))
2781 return cfs_rq->throttled_clock_task;
2782
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002783 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
Paul Turnerf1b17282012-10-04 13:18:31 +02002784}
2785
Paul Turner85dac902011-07-21 09:43:33 -07002786/* returns 0 on failure to allocate runtime */
2787static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
Paul Turnerec12cb72011-07-21 09:43:30 -07002788{
2789 struct task_group *tg = cfs_rq->tg;
2790 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002791 u64 amount = 0, min_amount, expires;
Paul Turnerec12cb72011-07-21 09:43:30 -07002792
2793 /* note: this is a positive sum as runtime_remaining <= 0 */
2794 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2795
2796 raw_spin_lock(&cfs_b->lock);
2797 if (cfs_b->quota == RUNTIME_INF)
2798 amount = min_amount;
Paul Turner58088ad2011-07-21 09:43:31 -07002799 else {
Paul Turnera9cf55b2011-07-21 09:43:32 -07002800 /*
2801 * If the bandwidth pool has become inactive, then at least one
2802 * period must have elapsed since the last consumption.
2803 * Refresh the global state and ensure bandwidth timer becomes
2804 * active.
2805 */
2806 if (!cfs_b->timer_active) {
2807 __refill_cfs_bandwidth_runtime(cfs_b);
Paul Turner58088ad2011-07-21 09:43:31 -07002808 __start_cfs_bandwidth(cfs_b);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002809 }
Paul Turner58088ad2011-07-21 09:43:31 -07002810
2811 if (cfs_b->runtime > 0) {
2812 amount = min(cfs_b->runtime, min_amount);
2813 cfs_b->runtime -= amount;
2814 cfs_b->idle = 0;
2815 }
Paul Turnerec12cb72011-07-21 09:43:30 -07002816 }
Paul Turnera9cf55b2011-07-21 09:43:32 -07002817 expires = cfs_b->runtime_expires;
Paul Turnerec12cb72011-07-21 09:43:30 -07002818 raw_spin_unlock(&cfs_b->lock);
2819
2820 cfs_rq->runtime_remaining += amount;
Paul Turnera9cf55b2011-07-21 09:43:32 -07002821 /*
2822 * we may have advanced our local expiration to account for allowed
2823 * spread between our sched_clock and the one on which runtime was
2824 * issued.
2825 */
2826 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2827 cfs_rq->runtime_expires = expires;
Paul Turner85dac902011-07-21 09:43:33 -07002828
2829 return cfs_rq->runtime_remaining > 0;
Paul Turnera9cf55b2011-07-21 09:43:32 -07002830}
2831
2832/*
2833 * Note: This depends on the synchronization provided by sched_clock and the
2834 * fact that rq->clock snapshots this value.
2835 */
2836static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2837{
2838 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002839
2840 /* if the deadline is ahead of our clock, nothing to do */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002841 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
Paul Turnera9cf55b2011-07-21 09:43:32 -07002842 return;
2843
2844 if (cfs_rq->runtime_remaining < 0)
2845 return;
2846
2847 /*
2848 * If the local deadline has passed we have to consider the
2849 * possibility that our sched_clock is 'fast' and the global deadline
2850 * has not truly expired.
2851 *
2852 * Fortunately we can check determine whether this the case by checking
2853 * whether the global deadline has advanced.
2854 */
2855
2856 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2857 /* extend local deadline, drift is bounded above by 2 ticks */
2858 cfs_rq->runtime_expires += TICK_NSEC;
2859 } else {
2860 /* global deadline is ahead, expiration has passed */
2861 cfs_rq->runtime_remaining = 0;
2862 }
Paul Turnerec12cb72011-07-21 09:43:30 -07002863}
2864
2865static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2866 unsigned long delta_exec)
2867{
Paul Turnera9cf55b2011-07-21 09:43:32 -07002868 /* dock delta_exec before expiring quota (as it could span periods) */
Paul Turnerec12cb72011-07-21 09:43:30 -07002869 cfs_rq->runtime_remaining -= delta_exec;
Paul Turnera9cf55b2011-07-21 09:43:32 -07002870 expire_cfs_rq_runtime(cfs_rq);
2871
2872 if (likely(cfs_rq->runtime_remaining > 0))
Paul Turnerec12cb72011-07-21 09:43:30 -07002873 return;
2874
Paul Turner85dac902011-07-21 09:43:33 -07002875 /*
2876 * if we're unable to extend our runtime we resched so that the active
2877 * hierarchy can be throttled
2878 */
2879 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2880 resched_task(rq_of(cfs_rq)->curr);
Paul Turnerec12cb72011-07-21 09:43:30 -07002881}
2882
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07002883static __always_inline
2884void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
Paul Turnerec12cb72011-07-21 09:43:30 -07002885{
Paul Turner56f570e2011-11-07 20:26:33 -08002886 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
Paul Turnerec12cb72011-07-21 09:43:30 -07002887 return;
2888
2889 __account_cfs_rq_runtime(cfs_rq, delta_exec);
2890}
2891
Paul Turner85dac902011-07-21 09:43:33 -07002892static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2893{
Paul Turner56f570e2011-11-07 20:26:33 -08002894 return cfs_bandwidth_used() && cfs_rq->throttled;
Paul Turner85dac902011-07-21 09:43:33 -07002895}
2896
Paul Turner64660c82011-07-21 09:43:36 -07002897/* check whether cfs_rq, or any parent, is throttled */
2898static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2899{
Paul Turner56f570e2011-11-07 20:26:33 -08002900 return cfs_bandwidth_used() && cfs_rq->throttle_count;
Paul Turner64660c82011-07-21 09:43:36 -07002901}
2902
2903/*
2904 * Ensure that neither of the group entities corresponding to src_cpu or
2905 * dest_cpu are members of a throttled hierarchy when performing group
2906 * load-balance operations.
2907 */
2908static inline int throttled_lb_pair(struct task_group *tg,
2909 int src_cpu, int dest_cpu)
2910{
2911 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2912
2913 src_cfs_rq = tg->cfs_rq[src_cpu];
2914 dest_cfs_rq = tg->cfs_rq[dest_cpu];
2915
2916 return throttled_hierarchy(src_cfs_rq) ||
2917 throttled_hierarchy(dest_cfs_rq);
2918}
2919
2920/* updated child weight may affect parent so we have to do this bottom up */
2921static int tg_unthrottle_up(struct task_group *tg, void *data)
2922{
2923 struct rq *rq = data;
2924 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2925
2926 cfs_rq->throttle_count--;
2927#ifdef CONFIG_SMP
2928 if (!cfs_rq->throttle_count) {
Paul Turnerf1b17282012-10-04 13:18:31 +02002929 /* adjust cfs_rq_clock_task() */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002930 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
Paul Turnerf1b17282012-10-04 13:18:31 +02002931 cfs_rq->throttled_clock_task;
Paul Turner64660c82011-07-21 09:43:36 -07002932 }
2933#endif
2934
2935 return 0;
2936}
2937
2938static int tg_throttle_down(struct task_group *tg, void *data)
2939{
2940 struct rq *rq = data;
2941 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2942
Paul Turner82958362012-10-04 13:18:31 +02002943 /* group is entering throttled state, stop time */
2944 if (!cfs_rq->throttle_count)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002945 cfs_rq->throttled_clock_task = rq_clock_task(rq);
Paul Turner64660c82011-07-21 09:43:36 -07002946 cfs_rq->throttle_count++;
2947
2948 return 0;
2949}
2950
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002951static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
Paul Turner85dac902011-07-21 09:43:33 -07002952{
2953 struct rq *rq = rq_of(cfs_rq);
2954 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2955 struct sched_entity *se;
2956 long task_delta, dequeue = 1;
2957
2958 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2959
Paul Turnerf1b17282012-10-04 13:18:31 +02002960 /* freeze hierarchy runnable averages while throttled */
Paul Turner64660c82011-07-21 09:43:36 -07002961 rcu_read_lock();
2962 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2963 rcu_read_unlock();
Paul Turner85dac902011-07-21 09:43:33 -07002964
2965 task_delta = cfs_rq->h_nr_running;
2966 for_each_sched_entity(se) {
2967 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2968 /* throttled entity or throttle-on-deactivate */
2969 if (!se->on_rq)
2970 break;
2971
2972 if (dequeue)
2973 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2974 qcfs_rq->h_nr_running -= task_delta;
2975
2976 if (qcfs_rq->load.weight)
2977 dequeue = 0;
2978 }
2979
2980 if (!se)
2981 rq->nr_running -= task_delta;
2982
2983 cfs_rq->throttled = 1;
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002984 cfs_rq->throttled_clock = rq_clock(rq);
Paul Turner85dac902011-07-21 09:43:33 -07002985 raw_spin_lock(&cfs_b->lock);
2986 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
2987 raw_spin_unlock(&cfs_b->lock);
2988}
2989
Peter Zijlstra029632f2011-10-25 10:00:11 +02002990void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
Paul Turner671fd9d2011-07-21 09:43:34 -07002991{
2992 struct rq *rq = rq_of(cfs_rq);
2993 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2994 struct sched_entity *se;
2995 int enqueue = 1;
2996 long task_delta;
2997
Michael Wang22b958d2013-06-04 14:23:39 +08002998 se = cfs_rq->tg->se[cpu_of(rq)];
Paul Turner671fd9d2011-07-21 09:43:34 -07002999
3000 cfs_rq->throttled = 0;
Frederic Weisbecker1a55af22013-04-12 01:51:01 +02003001
3002 update_rq_clock(rq);
3003
Paul Turner671fd9d2011-07-21 09:43:34 -07003004 raw_spin_lock(&cfs_b->lock);
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003005 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
Paul Turner671fd9d2011-07-21 09:43:34 -07003006 list_del_rcu(&cfs_rq->throttled_list);
3007 raw_spin_unlock(&cfs_b->lock);
3008
Paul Turner64660c82011-07-21 09:43:36 -07003009 /* update hierarchical throttle state */
3010 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3011
Paul Turner671fd9d2011-07-21 09:43:34 -07003012 if (!cfs_rq->load.weight)
3013 return;
3014
3015 task_delta = cfs_rq->h_nr_running;
3016 for_each_sched_entity(se) {
3017 if (se->on_rq)
3018 enqueue = 0;
3019
3020 cfs_rq = cfs_rq_of(se);
3021 if (enqueue)
3022 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3023 cfs_rq->h_nr_running += task_delta;
3024
3025 if (cfs_rq_throttled(cfs_rq))
3026 break;
3027 }
3028
3029 if (!se)
3030 rq->nr_running += task_delta;
3031
3032 /* determine whether we need to wake up potentially idle cpu */
3033 if (rq->curr == rq->idle && rq->cfs.nr_running)
3034 resched_task(rq->curr);
3035}
3036
3037static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3038 u64 remaining, u64 expires)
3039{
3040 struct cfs_rq *cfs_rq;
3041 u64 runtime = remaining;
3042
3043 rcu_read_lock();
3044 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3045 throttled_list) {
3046 struct rq *rq = rq_of(cfs_rq);
3047
3048 raw_spin_lock(&rq->lock);
3049 if (!cfs_rq_throttled(cfs_rq))
3050 goto next;
3051
3052 runtime = -cfs_rq->runtime_remaining + 1;
3053 if (runtime > remaining)
3054 runtime = remaining;
3055 remaining -= runtime;
3056
3057 cfs_rq->runtime_remaining += runtime;
3058 cfs_rq->runtime_expires = expires;
3059
3060 /* we check whether we're throttled above */
3061 if (cfs_rq->runtime_remaining > 0)
3062 unthrottle_cfs_rq(cfs_rq);
3063
3064next:
3065 raw_spin_unlock(&rq->lock);
3066
3067 if (!remaining)
3068 break;
3069 }
3070 rcu_read_unlock();
3071
3072 return remaining;
3073}
3074
Paul Turner58088ad2011-07-21 09:43:31 -07003075/*
3076 * Responsible for refilling a task_group's bandwidth and unthrottling its
3077 * cfs_rqs as appropriate. If there has been no activity within the last
3078 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3079 * used to track this state.
3080 */
3081static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3082{
Paul Turner671fd9d2011-07-21 09:43:34 -07003083 u64 runtime, runtime_expires;
3084 int idle = 1, throttled;
Paul Turner58088ad2011-07-21 09:43:31 -07003085
3086 raw_spin_lock(&cfs_b->lock);
3087 /* no need to continue the timer with no bandwidth constraint */
3088 if (cfs_b->quota == RUNTIME_INF)
3089 goto out_unlock;
3090
Paul Turner671fd9d2011-07-21 09:43:34 -07003091 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3092 /* idle depends on !throttled (for the case of a large deficit) */
3093 idle = cfs_b->idle && !throttled;
Nikhil Raoe8da1b12011-07-21 09:43:40 -07003094 cfs_b->nr_periods += overrun;
Paul Turner671fd9d2011-07-21 09:43:34 -07003095
Paul Turnera9cf55b2011-07-21 09:43:32 -07003096 /* if we're going inactive then everything else can be deferred */
3097 if (idle)
3098 goto out_unlock;
3099
3100 __refill_cfs_bandwidth_runtime(cfs_b);
3101
Paul Turner671fd9d2011-07-21 09:43:34 -07003102 if (!throttled) {
3103 /* mark as potentially idle for the upcoming period */
3104 cfs_b->idle = 1;
3105 goto out_unlock;
3106 }
Paul Turner58088ad2011-07-21 09:43:31 -07003107
Nikhil Raoe8da1b12011-07-21 09:43:40 -07003108 /* account preceding periods in which throttling occurred */
3109 cfs_b->nr_throttled += overrun;
3110
Paul Turner671fd9d2011-07-21 09:43:34 -07003111 /*
3112 * There are throttled entities so we must first use the new bandwidth
3113 * to unthrottle them before making it generally available. This
3114 * ensures that all existing debts will be paid before a new cfs_rq is
3115 * allowed to run.
3116 */
3117 runtime = cfs_b->runtime;
3118 runtime_expires = cfs_b->runtime_expires;
3119 cfs_b->runtime = 0;
3120
3121 /*
3122 * This check is repeated as we are holding onto the new bandwidth
3123 * while we unthrottle. This can potentially race with an unthrottled
3124 * group trying to acquire new bandwidth from the global pool.
3125 */
3126 while (throttled && runtime > 0) {
3127 raw_spin_unlock(&cfs_b->lock);
3128 /* we can't nest cfs_b->lock while distributing bandwidth */
3129 runtime = distribute_cfs_runtime(cfs_b, runtime,
3130 runtime_expires);
3131 raw_spin_lock(&cfs_b->lock);
3132
3133 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3134 }
3135
3136 /* return (any) remaining runtime */
3137 cfs_b->runtime = runtime;
3138 /*
3139 * While we are ensured activity in the period following an
3140 * unthrottle, this also covers the case in which the new bandwidth is
3141 * insufficient to cover the existing bandwidth deficit. (Forcing the
3142 * timer to remain active while there are any throttled entities.)
3143 */
3144 cfs_b->idle = 0;
Paul Turner58088ad2011-07-21 09:43:31 -07003145out_unlock:
3146 if (idle)
3147 cfs_b->timer_active = 0;
3148 raw_spin_unlock(&cfs_b->lock);
3149
3150 return idle;
3151}
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003152
Paul Turnerd8b49862011-07-21 09:43:41 -07003153/* a cfs_rq won't donate quota below this amount */
3154static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3155/* minimum remaining period time to redistribute slack quota */
3156static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3157/* how long we wait to gather additional slack before distributing */
3158static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3159
3160/* are we near the end of the current quota period? */
3161static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3162{
3163 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3164 u64 remaining;
3165
3166 /* if the call-back is running a quota refresh is already occurring */
3167 if (hrtimer_callback_running(refresh_timer))
3168 return 1;
3169
3170 /* is a quota refresh about to occur? */
3171 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3172 if (remaining < min_expire)
3173 return 1;
3174
3175 return 0;
3176}
3177
3178static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3179{
3180 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3181
3182 /* if there's a quota refresh soon don't bother with slack */
3183 if (runtime_refresh_within(cfs_b, min_left))
3184 return;
3185
3186 start_bandwidth_timer(&cfs_b->slack_timer,
3187 ns_to_ktime(cfs_bandwidth_slack_period));
3188}
3189
3190/* we know any runtime found here is valid as update_curr() precedes return */
3191static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3192{
3193 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3194 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3195
3196 if (slack_runtime <= 0)
3197 return;
3198
3199 raw_spin_lock(&cfs_b->lock);
3200 if (cfs_b->quota != RUNTIME_INF &&
3201 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3202 cfs_b->runtime += slack_runtime;
3203
3204 /* we are under rq->lock, defer unthrottling using a timer */
3205 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3206 !list_empty(&cfs_b->throttled_cfs_rq))
3207 start_cfs_slack_bandwidth(cfs_b);
3208 }
3209 raw_spin_unlock(&cfs_b->lock);
3210
3211 /* even if it's not valid for return we don't want to try again */
3212 cfs_rq->runtime_remaining -= slack_runtime;
3213}
3214
3215static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3216{
Paul Turner56f570e2011-11-07 20:26:33 -08003217 if (!cfs_bandwidth_used())
3218 return;
3219
Paul Turnerfccfdc62011-11-07 20:26:34 -08003220 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
Paul Turnerd8b49862011-07-21 09:43:41 -07003221 return;
3222
3223 __return_cfs_rq_runtime(cfs_rq);
3224}
3225
3226/*
3227 * This is done with a timer (instead of inline with bandwidth return) since
3228 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3229 */
3230static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3231{
3232 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3233 u64 expires;
3234
3235 /* confirm we're still not at a refresh boundary */
3236 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
3237 return;
3238
3239 raw_spin_lock(&cfs_b->lock);
3240 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3241 runtime = cfs_b->runtime;
3242 cfs_b->runtime = 0;
3243 }
3244 expires = cfs_b->runtime_expires;
3245 raw_spin_unlock(&cfs_b->lock);
3246
3247 if (!runtime)
3248 return;
3249
3250 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3251
3252 raw_spin_lock(&cfs_b->lock);
3253 if (expires == cfs_b->runtime_expires)
3254 cfs_b->runtime = runtime;
3255 raw_spin_unlock(&cfs_b->lock);
3256}
3257
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003258/*
3259 * When a group wakes up we want to make sure that its quota is not already
3260 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3261 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3262 */
3263static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3264{
Paul Turner56f570e2011-11-07 20:26:33 -08003265 if (!cfs_bandwidth_used())
3266 return;
3267
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003268 /* an active group must be handled by the update_curr()->put() path */
3269 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3270 return;
3271
3272 /* ensure the group is not already throttled */
3273 if (cfs_rq_throttled(cfs_rq))
3274 return;
3275
3276 /* update runtime allocation */
3277 account_cfs_rq_runtime(cfs_rq, 0);
3278 if (cfs_rq->runtime_remaining <= 0)
3279 throttle_cfs_rq(cfs_rq);
3280}
3281
3282/* conditionally throttle active cfs_rq's from put_prev_entity() */
3283static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3284{
Paul Turner56f570e2011-11-07 20:26:33 -08003285 if (!cfs_bandwidth_used())
3286 return;
3287
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003288 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3289 return;
3290
3291 /*
3292 * it's possible for a throttled entity to be forced into a running
3293 * state (e.g. set_curr_task), in this case we're finished.
3294 */
3295 if (cfs_rq_throttled(cfs_rq))
3296 return;
3297
3298 throttle_cfs_rq(cfs_rq);
3299}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003300
Peter Zijlstra029632f2011-10-25 10:00:11 +02003301static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3302{
3303 struct cfs_bandwidth *cfs_b =
3304 container_of(timer, struct cfs_bandwidth, slack_timer);
3305 do_sched_cfs_slack_timer(cfs_b);
3306
3307 return HRTIMER_NORESTART;
3308}
3309
3310static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3311{
3312 struct cfs_bandwidth *cfs_b =
3313 container_of(timer, struct cfs_bandwidth, period_timer);
3314 ktime_t now;
3315 int overrun;
3316 int idle = 0;
3317
3318 for (;;) {
3319 now = hrtimer_cb_get_time(timer);
3320 overrun = hrtimer_forward(timer, now, cfs_b->period);
3321
3322 if (!overrun)
3323 break;
3324
3325 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3326 }
3327
3328 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3329}
3330
3331void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3332{
3333 raw_spin_lock_init(&cfs_b->lock);
3334 cfs_b->runtime = 0;
3335 cfs_b->quota = RUNTIME_INF;
3336 cfs_b->period = ns_to_ktime(default_cfs_period());
3337
3338 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3339 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3340 cfs_b->period_timer.function = sched_cfs_period_timer;
3341 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3342 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3343}
3344
3345static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3346{
3347 cfs_rq->runtime_enabled = 0;
3348 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3349}
3350
3351/* requires cfs_b->lock, may release to reprogram timer */
3352void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3353{
3354 /*
3355 * The timer may be active because we're trying to set a new bandwidth
3356 * period or because we're racing with the tear-down path
3357 * (timer_active==0 becomes visible before the hrtimer call-back
3358 * terminates). In either case we ensure that it's re-programmed
3359 */
3360 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
3361 raw_spin_unlock(&cfs_b->lock);
3362 /* ensure cfs_b->lock is available while we wait */
3363 hrtimer_cancel(&cfs_b->period_timer);
3364
3365 raw_spin_lock(&cfs_b->lock);
3366 /* if someone else restarted the timer then we're done */
3367 if (cfs_b->timer_active)
3368 return;
3369 }
3370
3371 cfs_b->timer_active = 1;
3372 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3373}
3374
3375static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3376{
3377 hrtimer_cancel(&cfs_b->period_timer);
3378 hrtimer_cancel(&cfs_b->slack_timer);
3379}
3380
Arnd Bergmann38dc3342013-01-25 14:14:22 +00003381static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
Peter Zijlstra029632f2011-10-25 10:00:11 +02003382{
3383 struct cfs_rq *cfs_rq;
3384
3385 for_each_leaf_cfs_rq(rq, cfs_rq) {
3386 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3387
3388 if (!cfs_rq->runtime_enabled)
3389 continue;
3390
3391 /*
3392 * clock_task is not advancing so we just need to make sure
3393 * there's some valid quota amount
3394 */
3395 cfs_rq->runtime_remaining = cfs_b->quota;
3396 if (cfs_rq_throttled(cfs_rq))
3397 unthrottle_cfs_rq(cfs_rq);
3398 }
3399}
3400
3401#else /* CONFIG_CFS_BANDWIDTH */
Paul Turnerf1b17282012-10-04 13:18:31 +02003402static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3403{
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003404 return rq_clock_task(rq_of(cfs_rq));
Paul Turnerf1b17282012-10-04 13:18:31 +02003405}
3406
3407static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3408 unsigned long delta_exec) {}
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003409static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3410static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07003411static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
Paul Turner85dac902011-07-21 09:43:33 -07003412
3413static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3414{
3415 return 0;
3416}
Paul Turner64660c82011-07-21 09:43:36 -07003417
3418static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3419{
3420 return 0;
3421}
3422
3423static inline int throttled_lb_pair(struct task_group *tg,
3424 int src_cpu, int dest_cpu)
3425{
3426 return 0;
3427}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003428
3429void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3430
3431#ifdef CONFIG_FAIR_GROUP_SCHED
3432static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
Paul Turnerab84d312011-07-21 09:43:28 -07003433#endif
3434
Peter Zijlstra029632f2011-10-25 10:00:11 +02003435static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3436{
3437 return NULL;
3438}
3439static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
Peter Boonstoppela4c96ae2012-08-09 15:34:47 -07003440static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003441
3442#endif /* CONFIG_CFS_BANDWIDTH */
3443
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003444/**************************************************
3445 * CFS operations on tasks:
3446 */
3447
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003448#ifdef CONFIG_SCHED_HRTICK
3449static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3450{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003451 struct sched_entity *se = &p->se;
3452 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3453
3454 WARN_ON(task_rq(p) != rq);
3455
Mike Galbraithb39e66e2011-11-22 15:20:07 +01003456 if (cfs_rq->nr_running > 1) {
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003457 u64 slice = sched_slice(cfs_rq, se);
3458 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3459 s64 delta = slice - ran;
3460
3461 if (delta < 0) {
3462 if (rq->curr == p)
3463 resched_task(p);
3464 return;
3465 }
3466
3467 /*
3468 * Don't schedule slices shorter than 10000ns, that just
3469 * doesn't make sense. Rely on vruntime for fairness.
3470 */
Peter Zijlstra31656512008-07-18 18:01:23 +02003471 if (rq->curr != p)
Peter Zijlstra157124c2008-07-28 11:53:11 +02003472 delta = max_t(s64, 10000LL, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003473
Peter Zijlstra31656512008-07-18 18:01:23 +02003474 hrtick_start(rq, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003475 }
3476}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003477
3478/*
3479 * called from enqueue/dequeue and updates the hrtick when the
3480 * current task is from our class and nr_running is low enough
3481 * to matter.
3482 */
3483static void hrtick_update(struct rq *rq)
3484{
3485 struct task_struct *curr = rq->curr;
3486
Mike Galbraithb39e66e2011-11-22 15:20:07 +01003487 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003488 return;
3489
3490 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3491 hrtick_start_fair(rq, curr);
3492}
Dhaval Giani55e12e52008-06-24 23:39:43 +05303493#else /* !CONFIG_SCHED_HRTICK */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003494static inline void
3495hrtick_start_fair(struct rq *rq, struct task_struct *p)
3496{
3497}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003498
3499static inline void hrtick_update(struct rq *rq)
3500{
3501}
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003502#endif
3503
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003504/*
3505 * The enqueue_task method is called before nr_running is
3506 * increased. Here we update the fair scheduling stats and
3507 * then put the task into the rbtree:
3508 */
Thomas Gleixnerea87bb72010-01-20 20:58:57 +00003509static void
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003510enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003511{
3512 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003513 struct sched_entity *se = &p->se;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003514
3515 for_each_sched_entity(se) {
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003516 if (se->on_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003517 break;
3518 cfs_rq = cfs_rq_of(se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003519 enqueue_entity(cfs_rq, se, flags);
Paul Turner85dac902011-07-21 09:43:33 -07003520
3521 /*
3522 * end evaluation on encountering a throttled cfs_rq
3523 *
3524 * note: in the case of encountering a throttled cfs_rq we will
3525 * post the final h_nr_running increment below.
3526 */
3527 if (cfs_rq_throttled(cfs_rq))
3528 break;
Paul Turner953bfcd2011-07-21 09:43:27 -07003529 cfs_rq->h_nr_running++;
Paul Turner85dac902011-07-21 09:43:33 -07003530
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003531 flags = ENQUEUE_WAKEUP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003532 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003533
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003534 for_each_sched_entity(se) {
Lin Ming0f317142011-07-22 09:14:31 +08003535 cfs_rq = cfs_rq_of(se);
Paul Turner953bfcd2011-07-21 09:43:27 -07003536 cfs_rq->h_nr_running++;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003537
Paul Turner85dac902011-07-21 09:43:33 -07003538 if (cfs_rq_throttled(cfs_rq))
3539 break;
3540
Linus Torvalds17bc14b2012-12-14 07:20:43 -08003541 update_cfs_shares(cfs_rq);
Paul Turner9ee474f2012-10-04 13:18:30 +02003542 update_entity_load_avg(se, 1);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003543 }
3544
Ben Segall18bf2802012-10-04 12:51:20 +02003545 if (!se) {
3546 update_rq_runnable_avg(rq, rq->nr_running);
Paul Turner85dac902011-07-21 09:43:33 -07003547 inc_nr_running(rq);
Ben Segall18bf2802012-10-04 12:51:20 +02003548 }
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003549 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003550}
3551
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003552static void set_next_buddy(struct sched_entity *se);
3553
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003554/*
3555 * The dequeue_task method is called before nr_running is
3556 * decreased. We remove the task from the rbtree and
3557 * update the fair scheduling stats:
3558 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003559static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003560{
3561 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003562 struct sched_entity *se = &p->se;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003563 int task_sleep = flags & DEQUEUE_SLEEP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003564
3565 for_each_sched_entity(se) {
3566 cfs_rq = cfs_rq_of(se);
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003567 dequeue_entity(cfs_rq, se, flags);
Paul Turner85dac902011-07-21 09:43:33 -07003568
3569 /*
3570 * end evaluation on encountering a throttled cfs_rq
3571 *
3572 * note: in the case of encountering a throttled cfs_rq we will
3573 * post the final h_nr_running decrement below.
3574 */
3575 if (cfs_rq_throttled(cfs_rq))
3576 break;
Paul Turner953bfcd2011-07-21 09:43:27 -07003577 cfs_rq->h_nr_running--;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003578
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003579 /* Don't dequeue parent if it has other entities besides us */
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003580 if (cfs_rq->load.weight) {
3581 /*
3582 * Bias pick_next to pick a task from this cfs_rq, as
3583 * p is sleeping when it is within its sched_slice.
3584 */
3585 if (task_sleep && parent_entity(se))
3586 set_next_buddy(parent_entity(se));
Paul Turner9598c822011-07-06 22:30:37 -07003587
3588 /* avoid re-evaluating load for this entity */
3589 se = parent_entity(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003590 break;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003591 }
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003592 flags |= DEQUEUE_SLEEP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003593 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003594
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003595 for_each_sched_entity(se) {
Lin Ming0f317142011-07-22 09:14:31 +08003596 cfs_rq = cfs_rq_of(se);
Paul Turner953bfcd2011-07-21 09:43:27 -07003597 cfs_rq->h_nr_running--;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003598
Paul Turner85dac902011-07-21 09:43:33 -07003599 if (cfs_rq_throttled(cfs_rq))
3600 break;
3601
Linus Torvalds17bc14b2012-12-14 07:20:43 -08003602 update_cfs_shares(cfs_rq);
Paul Turner9ee474f2012-10-04 13:18:30 +02003603 update_entity_load_avg(se, 1);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003604 }
3605
Ben Segall18bf2802012-10-04 12:51:20 +02003606 if (!se) {
Paul Turner85dac902011-07-21 09:43:33 -07003607 dec_nr_running(rq);
Ben Segall18bf2802012-10-04 12:51:20 +02003608 update_rq_runnable_avg(rq, 1);
3609 }
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003610 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003611}
3612
Gregory Haskinse7693a32008-01-25 21:08:09 +01003613#ifdef CONFIG_SMP
Peter Zijlstra029632f2011-10-25 10:00:11 +02003614/* Used instead of source_load when we know the type == 0 */
3615static unsigned long weighted_cpuload(const int cpu)
3616{
Alex Shib92486c2013-06-20 10:18:50 +08003617 return cpu_rq(cpu)->cfs.runnable_load_avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003618}
3619
3620/*
3621 * Return a low guess at the load of a migration-source cpu weighted
3622 * according to the scheduling class and "nice" value.
3623 *
3624 * We want to under-estimate the load of migration sources, to
3625 * balance conservatively.
3626 */
3627static unsigned long source_load(int cpu, int type)
3628{
3629 struct rq *rq = cpu_rq(cpu);
3630 unsigned long total = weighted_cpuload(cpu);
3631
3632 if (type == 0 || !sched_feat(LB_BIAS))
3633 return total;
3634
3635 return min(rq->cpu_load[type-1], total);
3636}
3637
3638/*
3639 * Return a high guess at the load of a migration-target cpu weighted
3640 * according to the scheduling class and "nice" value.
3641 */
3642static unsigned long target_load(int cpu, int type)
3643{
3644 struct rq *rq = cpu_rq(cpu);
3645 unsigned long total = weighted_cpuload(cpu);
3646
3647 if (type == 0 || !sched_feat(LB_BIAS))
3648 return total;
3649
3650 return max(rq->cpu_load[type-1], total);
3651}
3652
3653static unsigned long power_of(int cpu)
3654{
3655 return cpu_rq(cpu)->cpu_power;
3656}
3657
3658static unsigned long cpu_avg_load_per_task(int cpu)
3659{
3660 struct rq *rq = cpu_rq(cpu);
3661 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
Alex Shib92486c2013-06-20 10:18:50 +08003662 unsigned long load_avg = rq->cfs.runnable_load_avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003663
3664 if (nr_running)
Alex Shib92486c2013-06-20 10:18:50 +08003665 return load_avg / nr_running;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003666
3667 return 0;
3668}
3669
Michael Wang62470412013-07-04 12:55:51 +08003670static void record_wakee(struct task_struct *p)
3671{
3672 /*
3673 * Rough decay (wiping) for cost saving, don't worry
3674 * about the boundary, really active task won't care
3675 * about the loss.
3676 */
3677 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3678 current->wakee_flips = 0;
3679 current->wakee_flip_decay_ts = jiffies;
3680 }
3681
3682 if (current->last_wakee != p) {
3683 current->last_wakee = p;
3684 current->wakee_flips++;
3685 }
3686}
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003687
Peter Zijlstra74f8e4b2011-04-05 17:23:47 +02003688static void task_waking_fair(struct task_struct *p)
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003689{
3690 struct sched_entity *se = &p->se;
3691 struct cfs_rq *cfs_rq = cfs_rq_of(se);
Peter Zijlstra3fe16982011-04-05 17:23:48 +02003692 u64 min_vruntime;
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003693
Peter Zijlstra3fe16982011-04-05 17:23:48 +02003694#ifndef CONFIG_64BIT
3695 u64 min_vruntime_copy;
Peter Zijlstra74f8e4b2011-04-05 17:23:47 +02003696
Peter Zijlstra3fe16982011-04-05 17:23:48 +02003697 do {
3698 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3699 smp_rmb();
3700 min_vruntime = cfs_rq->min_vruntime;
3701 } while (min_vruntime != min_vruntime_copy);
3702#else
3703 min_vruntime = cfs_rq->min_vruntime;
3704#endif
3705
3706 se->vruntime -= min_vruntime;
Michael Wang62470412013-07-04 12:55:51 +08003707 record_wakee(p);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003708}
3709
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003710#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02003711/*
3712 * effective_load() calculates the load change as seen from the root_task_group
3713 *
3714 * Adding load to a group doesn't make a group heavier, but can cause movement
3715 * of group shares between cpus. Assuming the shares were perfectly aligned one
3716 * can calculate the shift in shares.
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003717 *
3718 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3719 * on this @cpu and results in a total addition (subtraction) of @wg to the
3720 * total group weight.
3721 *
3722 * Given a runqueue weight distribution (rw_i) we can compute a shares
3723 * distribution (s_i) using:
3724 *
3725 * s_i = rw_i / \Sum rw_j (1)
3726 *
3727 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3728 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3729 * shares distribution (s_i):
3730 *
3731 * rw_i = { 2, 4, 1, 0 }
3732 * s_i = { 2/7, 4/7, 1/7, 0 }
3733 *
3734 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3735 * task used to run on and the CPU the waker is running on), we need to
3736 * compute the effect of waking a task on either CPU and, in case of a sync
3737 * wakeup, compute the effect of the current task going to sleep.
3738 *
3739 * So for a change of @wl to the local @cpu with an overall group weight change
3740 * of @wl we can compute the new shares distribution (s'_i) using:
3741 *
3742 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3743 *
3744 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3745 * differences in waking a task to CPU 0. The additional task changes the
3746 * weight and shares distributions like:
3747 *
3748 * rw'_i = { 3, 4, 1, 0 }
3749 * s'_i = { 3/8, 4/8, 1/8, 0 }
3750 *
3751 * We can then compute the difference in effective weight by using:
3752 *
3753 * dw_i = S * (s'_i - s_i) (3)
3754 *
3755 * Where 'S' is the group weight as seen by its parent.
3756 *
3757 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3758 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3759 * 4/7) times the weight of the group.
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02003760 */
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003761static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003762{
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003763 struct sched_entity *se = tg->se[cpu];
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02003764
Mel Gorman58d081b2013-10-07 11:29:10 +01003765 if (!tg->parent || !wl) /* the trivial, non-cgroup case */
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02003766 return wl;
3767
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003768 for_each_sched_entity(se) {
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003769 long w, W;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003770
Paul Turner977dda72011-01-14 17:57:50 -08003771 tg = se->my_q->tg;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003772
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003773 /*
3774 * W = @wg + \Sum rw_j
3775 */
3776 W = wg + calc_tg_weight(tg, se->my_q);
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003777
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003778 /*
3779 * w = rw_i + @wl
3780 */
3781 w = se->my_q->load.weight + wl;
Peter Zijlstra940959e2008-09-23 15:33:42 +02003782
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003783 /*
3784 * wl = S * s'_i; see (2)
3785 */
3786 if (W > 0 && w < W)
3787 wl = (w * tg->shares) / W;
Paul Turner977dda72011-01-14 17:57:50 -08003788 else
3789 wl = tg->shares;
Peter Zijlstra940959e2008-09-23 15:33:42 +02003790
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003791 /*
3792 * Per the above, wl is the new se->load.weight value; since
3793 * those are clipped to [MIN_SHARES, ...) do so now. See
3794 * calc_cfs_shares().
3795 */
Paul Turner977dda72011-01-14 17:57:50 -08003796 if (wl < MIN_SHARES)
3797 wl = MIN_SHARES;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003798
3799 /*
3800 * wl = dw_i = S * (s'_i - s_i); see (3)
3801 */
Paul Turner977dda72011-01-14 17:57:50 -08003802 wl -= se->load.weight;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003803
3804 /*
3805 * Recursively apply this logic to all parent groups to compute
3806 * the final effective load change on the root group. Since
3807 * only the @tg group gets extra weight, all parent groups can
3808 * only redistribute existing shares. @wl is the shift in shares
3809 * resulting from this level per the above.
3810 */
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003811 wg = 0;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003812 }
3813
3814 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003815}
3816#else
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003817
Mel Gorman58d081b2013-10-07 11:29:10 +01003818static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003819{
Peter Zijlstra83378262008-06-27 13:41:37 +02003820 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003821}
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003822
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003823#endif
3824
Michael Wang62470412013-07-04 12:55:51 +08003825static int wake_wide(struct task_struct *p)
3826{
Peter Zijlstra7d9ffa82013-07-04 12:56:46 +08003827 int factor = this_cpu_read(sd_llc_size);
Michael Wang62470412013-07-04 12:55:51 +08003828
3829 /*
3830 * Yeah, it's the switching-frequency, could means many wakee or
3831 * rapidly switch, use factor here will just help to automatically
3832 * adjust the loose-degree, so bigger node will lead to more pull.
3833 */
3834 if (p->wakee_flips > factor) {
3835 /*
3836 * wakee is somewhat hot, it needs certain amount of cpu
3837 * resource, so if waker is far more hot, prefer to leave
3838 * it alone.
3839 */
3840 if (current->wakee_flips > (factor * p->wakee_flips))
3841 return 1;
3842 }
3843
3844 return 0;
3845}
3846
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003847static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003848{
Paul Turnere37b6a72011-01-21 20:44:59 -08003849 s64 this_load, load;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003850 int idx, this_cpu, prev_cpu;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003851 unsigned long tl_per_task;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003852 struct task_group *tg;
Peter Zijlstra83378262008-06-27 13:41:37 +02003853 unsigned long weight;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02003854 int balanced;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003855
Michael Wang62470412013-07-04 12:55:51 +08003856 /*
3857 * If we wake multiple tasks be careful to not bounce
3858 * ourselves around too much.
3859 */
3860 if (wake_wide(p))
3861 return 0;
3862
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003863 idx = sd->wake_idx;
3864 this_cpu = smp_processor_id();
3865 prev_cpu = task_cpu(p);
3866 load = source_load(prev_cpu, idx);
3867 this_load = target_load(this_cpu, idx);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003868
3869 /*
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003870 * If sync wakeup then subtract the (maximum possible)
3871 * effect of the currently running task from the load
3872 * of the current CPU:
3873 */
Peter Zijlstra83378262008-06-27 13:41:37 +02003874 if (sync) {
3875 tg = task_group(current);
3876 weight = current->se.load.weight;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003877
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003878 this_load += effective_load(tg, this_cpu, -weight, -weight);
Peter Zijlstra83378262008-06-27 13:41:37 +02003879 load += effective_load(tg, prev_cpu, 0, -weight);
3880 }
3881
3882 tg = task_group(p);
3883 weight = p->se.load.weight;
3884
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02003885 /*
3886 * In low-load situations, where prev_cpu is idle and this_cpu is idle
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003887 * due to the sync cause above having dropped this_load to 0, we'll
3888 * always have an imbalance, but there's really nothing you can do
3889 * about that, so that's good too.
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02003890 *
3891 * Otherwise check if either cpus are near enough in load to allow this
3892 * task to be woken on this_cpu.
3893 */
Paul Turnere37b6a72011-01-21 20:44:59 -08003894 if (this_load > 0) {
3895 s64 this_eff_load, prev_eff_load;
Peter Zijlstrae51fd5e2010-05-31 12:37:30 +02003896
3897 this_eff_load = 100;
3898 this_eff_load *= power_of(prev_cpu);
3899 this_eff_load *= this_load +
3900 effective_load(tg, this_cpu, weight, weight);
3901
3902 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3903 prev_eff_load *= power_of(this_cpu);
3904 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3905
3906 balanced = this_eff_load <= prev_eff_load;
3907 } else
3908 balanced = true;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02003909
3910 /*
3911 * If the currently running task will sleep within
3912 * a reasonable amount of time then attract this newly
3913 * woken task:
3914 */
Peter Zijlstra2fb76352008-10-08 09:16:04 +02003915 if (sync && balanced)
3916 return 1;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02003917
Lucas De Marchi41acab82010-03-10 23:37:45 -03003918 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
Mike Galbraithb3137bc2008-05-29 11:11:41 +02003919 tl_per_task = cpu_avg_load_per_task(this_cpu);
3920
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003921 if (balanced ||
3922 (this_load <= load &&
3923 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003924 /*
3925 * This domain has SD_WAKE_AFFINE and
3926 * p is cache cold in this domain, and
3927 * there is no bad imbalance.
3928 */
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003929 schedstat_inc(sd, ttwu_move_affine);
Lucas De Marchi41acab82010-03-10 23:37:45 -03003930 schedstat_inc(p, se.statistics.nr_wakeups_affine);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003931
3932 return 1;
3933 }
3934 return 0;
3935}
3936
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003937/*
3938 * find_idlest_group finds and returns the least busy CPU group within the
3939 * domain.
3940 */
3941static struct sched_group *
Peter Zijlstra78e7ed52009-09-03 13:16:51 +02003942find_idlest_group(struct sched_domain *sd, struct task_struct *p,
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02003943 int this_cpu, int load_idx)
Gregory Haskinse7693a32008-01-25 21:08:09 +01003944{
Andi Kleenb3bd3de2010-08-10 14:17:51 -07003945 struct sched_group *idlest = NULL, *group = sd->groups;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003946 unsigned long min_load = ULONG_MAX, this_load = 0;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003947 int imbalance = 100 + (sd->imbalance_pct-100)/2;
Gregory Haskinse7693a32008-01-25 21:08:09 +01003948
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003949 do {
3950 unsigned long load, avg_load;
3951 int local_group;
3952 int i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01003953
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003954 /* Skip over this group if it has no CPUs allowed */
3955 if (!cpumask_intersects(sched_group_cpus(group),
Peter Zijlstrafa17b502011-06-16 12:23:22 +02003956 tsk_cpus_allowed(p)))
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003957 continue;
3958
3959 local_group = cpumask_test_cpu(this_cpu,
3960 sched_group_cpus(group));
3961
3962 /* Tally up the load of all CPUs in the group */
3963 avg_load = 0;
3964
3965 for_each_cpu(i, sched_group_cpus(group)) {
3966 /* Bias balancing toward cpus of our domain */
3967 if (local_group)
3968 load = source_load(i, load_idx);
3969 else
3970 load = target_load(i, load_idx);
3971
3972 avg_load += load;
3973 }
3974
3975 /* Adjust by relative CPU power of the group */
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02003976 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003977
3978 if (local_group) {
3979 this_load = avg_load;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003980 } else if (avg_load < min_load) {
3981 min_load = avg_load;
3982 idlest = group;
3983 }
3984 } while (group = group->next, group != sd->groups);
3985
3986 if (!idlest || 100*this_load < imbalance*min_load)
3987 return NULL;
3988 return idlest;
3989}
3990
3991/*
3992 * find_idlest_cpu - find the idlest cpu among the cpus in group.
3993 */
3994static int
3995find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
3996{
3997 unsigned long load, min_load = ULONG_MAX;
3998 int idlest = -1;
3999 int i;
4000
4001 /* Traverse only the allowed CPUs */
Peter Zijlstrafa17b502011-06-16 12:23:22 +02004002 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004003 load = weighted_cpuload(i);
4004
4005 if (load < min_load || (load == min_load && i == this_cpu)) {
4006 min_load = load;
4007 idlest = i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004008 }
4009 }
4010
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004011 return idlest;
4012}
Gregory Haskinse7693a32008-01-25 21:08:09 +01004013
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004014/*
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004015 * Try and locate an idle CPU in the sched_domain.
4016 */
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004017static int select_idle_sibling(struct task_struct *p, int target)
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004018{
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004019 struct sched_domain *sd;
Linus Torvalds37407ea2012-09-16 12:29:43 -07004020 struct sched_group *sg;
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004021 int i = task_cpu(p);
4022
4023 if (idle_cpu(target))
4024 return target;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004025
4026 /*
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004027 * If the prevous cpu is cache affine and idle, don't be stupid.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004028 */
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004029 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4030 return i;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004031
4032 /*
Linus Torvalds37407ea2012-09-16 12:29:43 -07004033 * Otherwise, iterate the domains and find an elegible idle cpu.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004034 */
Peter Zijlstra518cd622011-12-07 15:07:31 +01004035 sd = rcu_dereference(per_cpu(sd_llc, target));
Suresh Siddha77e81362011-11-17 11:08:23 -08004036 for_each_lower_domain(sd) {
Linus Torvalds37407ea2012-09-16 12:29:43 -07004037 sg = sd->groups;
4038 do {
4039 if (!cpumask_intersects(sched_group_cpus(sg),
4040 tsk_cpus_allowed(p)))
4041 goto next;
Mike Galbraith970e1782012-06-12 05:18:32 +02004042
Linus Torvalds37407ea2012-09-16 12:29:43 -07004043 for_each_cpu(i, sched_group_cpus(sg)) {
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004044 if (i == target || !idle_cpu(i))
Linus Torvalds37407ea2012-09-16 12:29:43 -07004045 goto next;
4046 }
4047
4048 target = cpumask_first_and(sched_group_cpus(sg),
4049 tsk_cpus_allowed(p));
4050 goto done;
4051next:
4052 sg = sg->next;
4053 } while (sg != sd->groups);
4054 }
4055done:
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004056 return target;
4057}
4058
4059/*
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004060 * sched_balance_self: balance the current task (running on cpu) in domains
4061 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
4062 * SD_BALANCE_EXEC.
4063 *
4064 * Balance, ie. select the least loaded group.
4065 *
4066 * Returns the target CPU number, or the same CPU if no balancing is needed.
4067 *
4068 * preempt must be disabled.
4069 */
Peter Zijlstra0017d732010-03-24 18:34:10 +01004070static int
Peter Zijlstraac66f542013-10-07 11:29:16 +01004071select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004072{
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02004073 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004074 int cpu = smp_processor_id();
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004075 int new_cpu = cpu;
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004076 int want_affine = 0;
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004077 int sync = wake_flags & WF_SYNC;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004078
Peter Zijlstra29baa742012-04-23 12:11:21 +02004079 if (p->nr_cpus_allowed == 1)
Mike Galbraith76854c72011-11-22 15:18:24 +01004080 return prev_cpu;
4081
Peter Zijlstra0763a662009-09-14 19:37:39 +02004082 if (sd_flag & SD_BALANCE_WAKE) {
Peter Zijlstrafa17b502011-06-16 12:23:22 +02004083 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004084 want_affine = 1;
4085 new_cpu = prev_cpu;
4086 }
Gregory Haskinse7693a32008-01-25 21:08:09 +01004087
Peter Zijlstradce840a2011-04-07 14:09:50 +02004088 rcu_read_lock();
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004089 for_each_domain(cpu, tmp) {
Peter Zijlstrae4f42882009-12-16 18:04:34 +01004090 if (!(tmp->flags & SD_LOAD_BALANCE))
4091 continue;
4092
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004093 /*
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004094 * If both cpu and prev_cpu are part of this domain,
4095 * cpu is a valid SD_WAKE_AFFINE target.
Peter Zijlstrafe3bcfe2009-11-12 15:55:29 +01004096 */
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004097 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4098 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4099 affine_sd = tmp;
Alex Shif03542a2012-07-26 08:55:34 +08004100 break;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004101 }
4102
Alex Shif03542a2012-07-26 08:55:34 +08004103 if (tmp->flags & sd_flag)
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02004104 sd = tmp;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004105 }
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004106
Mike Galbraith8b911ac2010-03-11 17:17:16 +01004107 if (affine_sd) {
Alex Shif03542a2012-07-26 08:55:34 +08004108 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
Peter Zijlstradce840a2011-04-07 14:09:50 +02004109 prev_cpu = cpu;
4110
4111 new_cpu = select_idle_sibling(p, prev_cpu);
4112 goto unlock;
Mike Galbraith8b911ac2010-03-11 17:17:16 +01004113 }
Peter Zijlstra3b640892009-09-16 13:44:33 +02004114
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004115 while (sd) {
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004116 int load_idx = sd->forkexec_idx;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004117 struct sched_group *group;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004118 int weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004119
Peter Zijlstra0763a662009-09-14 19:37:39 +02004120 if (!(sd->flags & sd_flag)) {
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004121 sd = sd->child;
4122 continue;
4123 }
4124
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004125 if (sd_flag & SD_BALANCE_WAKE)
4126 load_idx = sd->wake_idx;
4127
4128 group = find_idlest_group(sd, p, cpu, load_idx);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004129 if (!group) {
4130 sd = sd->child;
4131 continue;
4132 }
4133
Peter Zijlstrad7c33c42009-09-11 12:45:38 +02004134 new_cpu = find_idlest_cpu(group, p, cpu);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004135 if (new_cpu == -1 || new_cpu == cpu) {
4136 /* Now try balancing at a lower domain level of cpu */
4137 sd = sd->child;
4138 continue;
4139 }
4140
4141 /* Now try balancing at a lower domain level of new_cpu */
4142 cpu = new_cpu;
Peter Zijlstra669c55e2010-04-16 14:59:29 +02004143 weight = sd->span_weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004144 sd = NULL;
4145 for_each_domain(cpu, tmp) {
Peter Zijlstra669c55e2010-04-16 14:59:29 +02004146 if (weight <= tmp->span_weight)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004147 break;
Peter Zijlstra0763a662009-09-14 19:37:39 +02004148 if (tmp->flags & sd_flag)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004149 sd = tmp;
4150 }
4151 /* while loop will break here if sd == NULL */
Gregory Haskinse7693a32008-01-25 21:08:09 +01004152 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02004153unlock:
4154 rcu_read_unlock();
Gregory Haskinse7693a32008-01-25 21:08:09 +01004155
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004156 return new_cpu;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004157}
Paul Turner0a74bef2012-10-04 13:18:30 +02004158
4159/*
4160 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4161 * cfs_rq_of(p) references at time of call are still valid and identify the
4162 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4163 * other assumptions, including the state of rq->lock, should be made.
4164 */
4165static void
4166migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4167{
Paul Turneraff3e492012-10-04 13:18:30 +02004168 struct sched_entity *se = &p->se;
4169 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4170
4171 /*
4172 * Load tracking: accumulate removed load so that it can be processed
4173 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4174 * to blocked load iff they have a positive decay-count. It can never
4175 * be negative here since on-rq tasks have decay-count == 0.
4176 */
4177 if (se->avg.decay_count) {
4178 se->avg.decay_count = -__synchronize_entity_decay(se);
Alex Shi25099402013-06-20 10:18:55 +08004179 atomic_long_add(se->avg.load_avg_contrib,
4180 &cfs_rq->removed_load);
Paul Turneraff3e492012-10-04 13:18:30 +02004181 }
Paul Turner0a74bef2012-10-04 13:18:30 +02004182}
Gregory Haskinse7693a32008-01-25 21:08:09 +01004183#endif /* CONFIG_SMP */
4184
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004185static unsigned long
4186wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004187{
4188 unsigned long gran = sysctl_sched_wakeup_granularity;
4189
4190 /*
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004191 * Since its curr running now, convert the gran from real-time
4192 * to virtual-time in his units.
Mike Galbraith13814d42010-03-11 17:17:04 +01004193 *
4194 * By using 'se' instead of 'curr' we penalize light tasks, so
4195 * they get preempted easier. That is, if 'se' < 'curr' then
4196 * the resulting gran will be larger, therefore penalizing the
4197 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4198 * be smaller, again penalizing the lighter task.
4199 *
4200 * This is especially important for buddies when the leftmost
4201 * task is higher priority than the buddy.
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004202 */
Shaohua Lif4ad9bd2011-04-08 12:53:09 +08004203 return calc_delta_fair(gran, se);
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004204}
4205
4206/*
Peter Zijlstra464b7522008-10-24 11:06:15 +02004207 * Should 'se' preempt 'curr'.
4208 *
4209 * |s1
4210 * |s2
4211 * |s3
4212 * g
4213 * |<--->|c
4214 *
4215 * w(c, s1) = -1
4216 * w(c, s2) = 0
4217 * w(c, s3) = 1
4218 *
4219 */
4220static int
4221wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4222{
4223 s64 gran, vdiff = curr->vruntime - se->vruntime;
4224
4225 if (vdiff <= 0)
4226 return -1;
4227
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004228 gran = wakeup_gran(curr, se);
Peter Zijlstra464b7522008-10-24 11:06:15 +02004229 if (vdiff > gran)
4230 return 1;
4231
4232 return 0;
4233}
4234
Peter Zijlstra02479092008-11-04 21:25:10 +01004235static void set_last_buddy(struct sched_entity *se)
4236{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004237 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4238 return;
4239
4240 for_each_sched_entity(se)
4241 cfs_rq_of(se)->last = se;
Peter Zijlstra02479092008-11-04 21:25:10 +01004242}
4243
4244static void set_next_buddy(struct sched_entity *se)
4245{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004246 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4247 return;
4248
4249 for_each_sched_entity(se)
4250 cfs_rq_of(se)->next = se;
Peter Zijlstra02479092008-11-04 21:25:10 +01004251}
4252
Rik van Rielac53db52011-02-01 09:51:03 -05004253static void set_skip_buddy(struct sched_entity *se)
4254{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004255 for_each_sched_entity(se)
4256 cfs_rq_of(se)->skip = se;
Rik van Rielac53db52011-02-01 09:51:03 -05004257}
4258
Peter Zijlstra464b7522008-10-24 11:06:15 +02004259/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004260 * Preempt the current task with a newly woken task if needed:
4261 */
Peter Zijlstra5a9b86f2009-09-16 13:47:58 +02004262static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004263{
4264 struct task_struct *curr = rq->curr;
Srivatsa Vaddagiri8651a862007-10-15 17:00:12 +02004265 struct sched_entity *se = &curr->se, *pse = &p->se;
Mike Galbraith03e89e42008-12-16 08:45:30 +01004266 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +02004267 int scale = cfs_rq->nr_running >= sched_nr_latency;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004268 int next_buddy_marked = 0;
Mike Galbraith03e89e42008-12-16 08:45:30 +01004269
Ingo Molnar4ae7d5c2008-03-19 01:42:00 +01004270 if (unlikely(se == pse))
4271 return;
4272
Paul Turner5238cdd2011-07-21 09:43:37 -07004273 /*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004274 * This is possible from callers such as move_task(), in which we
Paul Turner5238cdd2011-07-21 09:43:37 -07004275 * unconditionally check_prempt_curr() after an enqueue (which may have
4276 * lead to a throttle). This both saves work and prevents false
4277 * next-buddy nomination below.
4278 */
4279 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4280 return;
4281
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004282 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
Mike Galbraith3cb63d52009-09-11 12:01:17 +02004283 set_next_buddy(pse);
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004284 next_buddy_marked = 1;
4285 }
Peter Zijlstra57fdc262008-09-23 15:33:45 +02004286
Bharata B Raoaec0a512008-08-28 14:42:49 +05304287 /*
4288 * We can come here with TIF_NEED_RESCHED already set from new task
4289 * wake up path.
Paul Turner5238cdd2011-07-21 09:43:37 -07004290 *
4291 * Note: this also catches the edge-case of curr being in a throttled
4292 * group (e.g. via set_curr_task), since update_curr() (in the
4293 * enqueue of curr) will have resulted in resched being set. This
4294 * prevents us from potentially nominating it as a false LAST_BUDDY
4295 * below.
Bharata B Raoaec0a512008-08-28 14:42:49 +05304296 */
4297 if (test_tsk_need_resched(curr))
4298 return;
4299
Darren Harta2f5c9a2011-02-22 13:04:33 -08004300 /* Idle tasks are by definition preempted by non-idle tasks. */
4301 if (unlikely(curr->policy == SCHED_IDLE) &&
4302 likely(p->policy != SCHED_IDLE))
4303 goto preempt;
4304
Ingo Molnar91c234b2007-10-15 17:00:18 +02004305 /*
Darren Harta2f5c9a2011-02-22 13:04:33 -08004306 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4307 * is driven by the tick):
Ingo Molnar91c234b2007-10-15 17:00:18 +02004308 */
Ingo Molnar8ed92e52012-10-14 14:28:50 +02004309 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
Ingo Molnar91c234b2007-10-15 17:00:18 +02004310 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004311
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004312 find_matching_se(&se, &pse);
Paul Turner9bbd7372011-07-05 19:07:21 -07004313 update_curr(cfs_rq_of(se));
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004314 BUG_ON(!pse);
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004315 if (wakeup_preempt_entity(se, pse) == 1) {
4316 /*
4317 * Bias pick_next to pick the sched entity that is
4318 * triggering this preemption.
4319 */
4320 if (!next_buddy_marked)
4321 set_next_buddy(pse);
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004322 goto preempt;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004323 }
Jupyung Leea65ac742009-11-17 18:51:40 +09004324
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004325 return;
4326
4327preempt:
4328 resched_task(curr);
4329 /*
4330 * Only set the backward buddy when the current task is still
4331 * on the rq. This can happen when a wakeup gets interleaved
4332 * with schedule on the ->pre_schedule() or idle_balance()
4333 * point, either of which can * drop the rq lock.
4334 *
4335 * Also, during early boot the idle thread is in the fair class,
4336 * for obvious reasons its a bad idea to schedule back to it.
4337 */
4338 if (unlikely(!se->on_rq || curr == rq->idle))
4339 return;
4340
4341 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4342 set_last_buddy(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004343}
4344
Ingo Molnarfb8d4722007-08-09 11:16:48 +02004345static struct task_struct *pick_next_task_fair(struct rq *rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004346{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004347 struct task_struct *p;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004348 struct cfs_rq *cfs_rq = &rq->cfs;
4349 struct sched_entity *se;
4350
Tim Blechmann36ace272009-11-24 11:55:45 +01004351 if (!cfs_rq->nr_running)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004352 return NULL;
4353
4354 do {
Ingo Molnar9948f4b2007-08-09 11:16:48 +02004355 se = pick_next_entity(cfs_rq);
Peter Zijlstraf4b67552008-11-04 21:25:07 +01004356 set_next_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004357 cfs_rq = group_cfs_rq(se);
4358 } while (cfs_rq);
4359
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004360 p = task_of(se);
Mike Galbraithb39e66e2011-11-22 15:20:07 +01004361 if (hrtick_enabled(rq))
4362 hrtick_start_fair(rq, p);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004363
4364 return p;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004365}
4366
4367/*
4368 * Account for a descheduled task:
4369 */
Ingo Molnar31ee5292007-08-09 11:16:49 +02004370static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004371{
4372 struct sched_entity *se = &prev->se;
4373 struct cfs_rq *cfs_rq;
4374
4375 for_each_sched_entity(se) {
4376 cfs_rq = cfs_rq_of(se);
Ingo Molnarab6cde22007-08-09 11:16:48 +02004377 put_prev_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004378 }
4379}
4380
Rik van Rielac53db52011-02-01 09:51:03 -05004381/*
4382 * sched_yield() is very simple
4383 *
4384 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4385 */
4386static void yield_task_fair(struct rq *rq)
4387{
4388 struct task_struct *curr = rq->curr;
4389 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4390 struct sched_entity *se = &curr->se;
4391
4392 /*
4393 * Are we the only task in the tree?
4394 */
4395 if (unlikely(rq->nr_running == 1))
4396 return;
4397
4398 clear_buddies(cfs_rq, se);
4399
4400 if (curr->policy != SCHED_BATCH) {
4401 update_rq_clock(rq);
4402 /*
4403 * Update run-time statistics of the 'current'.
4404 */
4405 update_curr(cfs_rq);
Mike Galbraith916671c2011-11-22 15:21:26 +01004406 /*
4407 * Tell update_rq_clock() that we've just updated,
4408 * so we don't do microscopic update in schedule()
4409 * and double the fastpath cost.
4410 */
4411 rq->skip_clock_update = 1;
Rik van Rielac53db52011-02-01 09:51:03 -05004412 }
4413
4414 set_skip_buddy(se);
4415}
4416
Mike Galbraithd95f4122011-02-01 09:50:51 -05004417static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4418{
4419 struct sched_entity *se = &p->se;
4420
Paul Turner5238cdd2011-07-21 09:43:37 -07004421 /* throttled hierarchies are not runnable */
4422 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
Mike Galbraithd95f4122011-02-01 09:50:51 -05004423 return false;
4424
4425 /* Tell the scheduler that we'd really like pse to run next. */
4426 set_next_buddy(se);
4427
Mike Galbraithd95f4122011-02-01 09:50:51 -05004428 yield_task_fair(rq);
4429
4430 return true;
4431}
4432
Peter Williams681f3e62007-10-24 18:23:51 +02004433#ifdef CONFIG_SMP
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004434/**************************************************
Peter Zijlstrae9c84cb2012-07-03 13:53:26 +02004435 * Fair scheduling class load-balancing methods.
4436 *
4437 * BASICS
4438 *
4439 * The purpose of load-balancing is to achieve the same basic fairness the
4440 * per-cpu scheduler provides, namely provide a proportional amount of compute
4441 * time to each task. This is expressed in the following equation:
4442 *
4443 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4444 *
4445 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4446 * W_i,0 is defined as:
4447 *
4448 * W_i,0 = \Sum_j w_i,j (2)
4449 *
4450 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4451 * is derived from the nice value as per prio_to_weight[].
4452 *
4453 * The weight average is an exponential decay average of the instantaneous
4454 * weight:
4455 *
4456 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4457 *
4458 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4459 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4460 * can also include other factors [XXX].
4461 *
4462 * To achieve this balance we define a measure of imbalance which follows
4463 * directly from (1):
4464 *
4465 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4466 *
4467 * We them move tasks around to minimize the imbalance. In the continuous
4468 * function space it is obvious this converges, in the discrete case we get
4469 * a few fun cases generally called infeasible weight scenarios.
4470 *
4471 * [XXX expand on:
4472 * - infeasible weights;
4473 * - local vs global optima in the discrete case. ]
4474 *
4475 *
4476 * SCHED DOMAINS
4477 *
4478 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4479 * for all i,j solution, we create a tree of cpus that follows the hardware
4480 * topology where each level pairs two lower groups (or better). This results
4481 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4482 * tree to only the first of the previous level and we decrease the frequency
4483 * of load-balance at each level inv. proportional to the number of cpus in
4484 * the groups.
4485 *
4486 * This yields:
4487 *
4488 * log_2 n 1 n
4489 * \Sum { --- * --- * 2^i } = O(n) (5)
4490 * i = 0 2^i 2^i
4491 * `- size of each group
4492 * | | `- number of cpus doing load-balance
4493 * | `- freq
4494 * `- sum over all levels
4495 *
4496 * Coupled with a limit on how many tasks we can migrate every balance pass,
4497 * this makes (5) the runtime complexity of the balancer.
4498 *
4499 * An important property here is that each CPU is still (indirectly) connected
4500 * to every other cpu in at most O(log n) steps:
4501 *
4502 * The adjacency matrix of the resulting graph is given by:
4503 *
4504 * log_2 n
4505 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4506 * k = 0
4507 *
4508 * And you'll find that:
4509 *
4510 * A^(log_2 n)_i,j != 0 for all i,j (7)
4511 *
4512 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4513 * The task movement gives a factor of O(m), giving a convergence complexity
4514 * of:
4515 *
4516 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4517 *
4518 *
4519 * WORK CONSERVING
4520 *
4521 * In order to avoid CPUs going idle while there's still work to do, new idle
4522 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4523 * tree itself instead of relying on other CPUs to bring it work.
4524 *
4525 * This adds some complexity to both (5) and (8) but it reduces the total idle
4526 * time.
4527 *
4528 * [XXX more?]
4529 *
4530 *
4531 * CGROUPS
4532 *
4533 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4534 *
4535 * s_k,i
4536 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4537 * S_k
4538 *
4539 * Where
4540 *
4541 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4542 *
4543 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4544 *
4545 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4546 * property.
4547 *
4548 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4549 * rewrite all of this once again.]
4550 */
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004551
Hiroshi Shimamotoed387b72012-01-31 11:40:32 +09004552static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4553
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004554#define LBF_ALL_PINNED 0x01
Peter Zijlstra367456c2012-02-20 21:49:09 +01004555#define LBF_NEED_BREAK 0x02
Peter Zijlstra62633222013-08-19 12:41:09 +02004556#define LBF_DST_PINNED 0x04
4557#define LBF_SOME_PINNED 0x08
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004558
4559struct lb_env {
4560 struct sched_domain *sd;
4561
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004562 struct rq *src_rq;
Prashanth Nageshappa85c1e7d2012-06-19 17:47:34 +05304563 int src_cpu;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004564
4565 int dst_cpu;
4566 struct rq *dst_rq;
4567
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304568 struct cpumask *dst_grpmask;
4569 int new_dst_cpu;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004570 enum cpu_idle_type idle;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004571 long imbalance;
Michael Wangb9403132012-07-12 16:10:13 +08004572 /* The set of CPUs under consideration for load-balancing */
4573 struct cpumask *cpus;
4574
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004575 unsigned int flags;
Peter Zijlstra367456c2012-02-20 21:49:09 +01004576
4577 unsigned int loop;
4578 unsigned int loop_break;
4579 unsigned int loop_max;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004580};
4581
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004582/*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004583 * move_task - move a task from one runqueue to another runqueue.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004584 * Both runqueues must be locked.
4585 */
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004586static void move_task(struct task_struct *p, struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004587{
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004588 deactivate_task(env->src_rq, p, 0);
4589 set_task_cpu(p, env->dst_cpu);
4590 activate_task(env->dst_rq, p, 0);
4591 check_preempt_curr(env->dst_rq, p, 0);
Rik van Riel6fe6b2d2013-10-07 11:29:08 +01004592#ifdef CONFIG_NUMA_BALANCING
4593 if (p->numa_preferred_nid != -1) {
4594 int src_nid = cpu_to_node(env->src_cpu);
4595 int dst_nid = cpu_to_node(env->dst_cpu);
4596
4597 /*
4598 * If the load balancer has moved the task then limit
4599 * migrations from taking place in the short term in
4600 * case this is a short-lived migration.
4601 */
4602 if (src_nid != dst_nid && dst_nid != p->numa_preferred_nid)
4603 p->numa_migrate_seq = 0;
4604 }
4605#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004606}
4607
4608/*
Peter Zijlstra029632f2011-10-25 10:00:11 +02004609 * Is this task likely cache-hot:
4610 */
4611static int
4612task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4613{
4614 s64 delta;
4615
4616 if (p->sched_class != &fair_sched_class)
4617 return 0;
4618
4619 if (unlikely(p->policy == SCHED_IDLE))
4620 return 0;
4621
4622 /*
4623 * Buddy candidates are cache hot:
4624 */
4625 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4626 (&p->se == cfs_rq_of(&p->se)->next ||
4627 &p->se == cfs_rq_of(&p->se)->last))
4628 return 1;
4629
4630 if (sysctl_sched_migration_cost == -1)
4631 return 1;
4632 if (sysctl_sched_migration_cost == 0)
4633 return 0;
4634
4635 delta = now - p->se.exec_start;
4636
4637 return delta < (s64)sysctl_sched_migration_cost;
4638}
4639
Mel Gorman3a7053b2013-10-07 11:29:00 +01004640#ifdef CONFIG_NUMA_BALANCING
4641/* Returns true if the destination node has incurred more faults */
4642static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4643{
4644 int src_nid, dst_nid;
4645
4646 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4647 !(env->sd->flags & SD_NUMA)) {
4648 return false;
4649 }
4650
4651 src_nid = cpu_to_node(env->src_cpu);
4652 dst_nid = cpu_to_node(env->dst_cpu);
4653
Mel Gorman83e1d2c2013-10-07 11:29:27 +01004654 if (src_nid == dst_nid)
Mel Gorman3a7053b2013-10-07 11:29:00 +01004655 return false;
4656
Mel Gorman83e1d2c2013-10-07 11:29:27 +01004657 /* Always encourage migration to the preferred node. */
4658 if (dst_nid == p->numa_preferred_nid)
4659 return true;
4660
4661 /* After the task has settled, check if the new node is better. */
4662 if (p->numa_migrate_seq >= sysctl_numa_balancing_settle_count &&
4663 task_weight(p, dst_nid) + group_weight(p, dst_nid) >
4664 task_weight(p, src_nid) + group_weight(p, src_nid))
Mel Gorman3a7053b2013-10-07 11:29:00 +01004665 return true;
4666
4667 return false;
4668}
Mel Gorman7a0f3082013-10-07 11:29:01 +01004669
4670
4671static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4672{
4673 int src_nid, dst_nid;
4674
4675 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4676 return false;
4677
4678 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4679 return false;
4680
4681 src_nid = cpu_to_node(env->src_cpu);
4682 dst_nid = cpu_to_node(env->dst_cpu);
4683
Mel Gorman83e1d2c2013-10-07 11:29:27 +01004684 if (src_nid == dst_nid)
Mel Gorman7a0f3082013-10-07 11:29:01 +01004685 return false;
4686
Mel Gorman83e1d2c2013-10-07 11:29:27 +01004687 /* Migrating away from the preferred node is always bad. */
4688 if (src_nid == p->numa_preferred_nid)
4689 return true;
4690
4691 /* After the task has settled, check if the new node is worse. */
4692 if (p->numa_migrate_seq >= sysctl_numa_balancing_settle_count &&
4693 task_weight(p, dst_nid) + group_weight(p, dst_nid) <
4694 task_weight(p, src_nid) + group_weight(p, src_nid))
Mel Gorman7a0f3082013-10-07 11:29:01 +01004695 return true;
4696
4697 return false;
4698}
4699
Mel Gorman3a7053b2013-10-07 11:29:00 +01004700#else
4701static inline bool migrate_improves_locality(struct task_struct *p,
4702 struct lb_env *env)
4703{
4704 return false;
4705}
Mel Gorman7a0f3082013-10-07 11:29:01 +01004706
4707static inline bool migrate_degrades_locality(struct task_struct *p,
4708 struct lb_env *env)
4709{
4710 return false;
4711}
Mel Gorman3a7053b2013-10-07 11:29:00 +01004712#endif
4713
Peter Zijlstra029632f2011-10-25 10:00:11 +02004714/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004715 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4716 */
4717static
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004718int can_migrate_task(struct task_struct *p, struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004719{
4720 int tsk_cache_hot = 0;
4721 /*
4722 * We do not migrate tasks that are:
Joonsoo Kimd3198082013-04-23 17:27:40 +09004723 * 1) throttled_lb_pair, or
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004724 * 2) cannot be migrated to this CPU due to cpus_allowed, or
Joonsoo Kimd3198082013-04-23 17:27:40 +09004725 * 3) running (obviously), or
4726 * 4) are cache-hot on their current CPU.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004727 */
Joonsoo Kimd3198082013-04-23 17:27:40 +09004728 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4729 return 0;
4730
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004731 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004732 int cpu;
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304733
Lucas De Marchi41acab82010-03-10 23:37:45 -03004734 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304735
Peter Zijlstra62633222013-08-19 12:41:09 +02004736 env->flags |= LBF_SOME_PINNED;
4737
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304738 /*
4739 * Remember if this task can be migrated to any other cpu in
4740 * our sched_group. We may want to revisit it if we couldn't
4741 * meet load balance goals by pulling other tasks on src_cpu.
4742 *
4743 * Also avoid computing new_dst_cpu if we have already computed
4744 * one in current iteration.
4745 */
Peter Zijlstra62633222013-08-19 12:41:09 +02004746 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304747 return 0;
4748
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004749 /* Prevent to re-select dst_cpu via env's cpus */
4750 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4751 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
Peter Zijlstra62633222013-08-19 12:41:09 +02004752 env->flags |= LBF_DST_PINNED;
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004753 env->new_dst_cpu = cpu;
4754 break;
4755 }
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304756 }
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004757
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004758 return 0;
4759 }
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304760
4761 /* Record that we found atleast one task that could run on dst_cpu */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004762 env->flags &= ~LBF_ALL_PINNED;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004763
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004764 if (task_running(env->src_rq, p)) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03004765 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004766 return 0;
4767 }
4768
4769 /*
4770 * Aggressive migration if:
Mel Gorman3a7053b2013-10-07 11:29:00 +01004771 * 1) destination numa is preferred
4772 * 2) task is cache cold, or
4773 * 3) too many balance attempts have failed.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004774 */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02004775 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
Mel Gorman7a0f3082013-10-07 11:29:01 +01004776 if (!tsk_cache_hot)
4777 tsk_cache_hot = migrate_degrades_locality(p, env);
Mel Gorman3a7053b2013-10-07 11:29:00 +01004778
4779 if (migrate_improves_locality(p, env)) {
4780#ifdef CONFIG_SCHEDSTATS
4781 if (tsk_cache_hot) {
4782 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4783 schedstat_inc(p, se.statistics.nr_forced_migrations);
4784 }
4785#endif
4786 return 1;
4787 }
4788
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004789 if (!tsk_cache_hot ||
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004790 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
Zhang Hang4e2dcb72013-04-10 14:04:55 +08004791
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004792 if (tsk_cache_hot) {
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004793 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
Lucas De Marchi41acab82010-03-10 23:37:45 -03004794 schedstat_inc(p, se.statistics.nr_forced_migrations);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004795 }
Zhang Hang4e2dcb72013-04-10 14:04:55 +08004796
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004797 return 1;
4798 }
4799
Zhang Hang4e2dcb72013-04-10 14:04:55 +08004800 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4801 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004802}
4803
Peter Zijlstra897c3952009-12-17 17:45:42 +01004804/*
4805 * move_one_task tries to move exactly one task from busiest to this_rq, as
4806 * part of active balancing operations within "domain".
4807 * Returns 1 if successful and 0 otherwise.
4808 *
4809 * Called with both runqueues locked.
4810 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004811static int move_one_task(struct lb_env *env)
Peter Zijlstra897c3952009-12-17 17:45:42 +01004812{
4813 struct task_struct *p, *n;
Peter Zijlstra897c3952009-12-17 17:45:42 +01004814
Peter Zijlstra367456c2012-02-20 21:49:09 +01004815 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
Peter Zijlstra367456c2012-02-20 21:49:09 +01004816 if (!can_migrate_task(p, env))
4817 continue;
Peter Zijlstra897c3952009-12-17 17:45:42 +01004818
Peter Zijlstra367456c2012-02-20 21:49:09 +01004819 move_task(p, env);
4820 /*
4821 * Right now, this is only the second place move_task()
4822 * is called, so we can safely collect move_task()
4823 * stats here rather than inside move_task().
4824 */
4825 schedstat_inc(env->sd, lb_gained[env->idle]);
4826 return 1;
Peter Zijlstra897c3952009-12-17 17:45:42 +01004827 }
Peter Zijlstra897c3952009-12-17 17:45:42 +01004828 return 0;
4829}
4830
Peter Zijlstraeb953082012-04-17 13:38:40 +02004831static const unsigned int sched_nr_migrate_break = 32;
4832
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004833/*
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004834 * move_tasks tries to move up to imbalance weighted load from busiest to
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004835 * this_rq, as part of a balancing operation within domain "sd".
4836 * Returns 1 if successful and 0 otherwise.
4837 *
4838 * Called with both runqueues locked.
4839 */
4840static int move_tasks(struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004841{
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004842 struct list_head *tasks = &env->src_rq->cfs_tasks;
4843 struct task_struct *p;
Peter Zijlstra367456c2012-02-20 21:49:09 +01004844 unsigned long load;
4845 int pulled = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004846
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004847 if (env->imbalance <= 0)
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004848 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004849
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004850 while (!list_empty(tasks)) {
4851 p = list_first_entry(tasks, struct task_struct, se.group_node);
4852
Peter Zijlstra367456c2012-02-20 21:49:09 +01004853 env->loop++;
4854 /* We've more or less seen every task there is, call it quits */
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004855 if (env->loop > env->loop_max)
Peter Zijlstra367456c2012-02-20 21:49:09 +01004856 break;
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004857
4858 /* take a breather every nr_migrate tasks */
Peter Zijlstra367456c2012-02-20 21:49:09 +01004859 if (env->loop > env->loop_break) {
Peter Zijlstraeb953082012-04-17 13:38:40 +02004860 env->loop_break += sched_nr_migrate_break;
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004861 env->flags |= LBF_NEED_BREAK;
Peter Zijlstraee00e662009-12-17 17:25:20 +01004862 break;
Peter Zijlstraa195f002011-09-22 15:30:18 +02004863 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004864
Joonsoo Kimd3198082013-04-23 17:27:40 +09004865 if (!can_migrate_task(p, env))
Peter Zijlstra367456c2012-02-20 21:49:09 +01004866 goto next;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004867
Peter Zijlstra367456c2012-02-20 21:49:09 +01004868 load = task_h_load(p);
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004869
Peter Zijlstraeb953082012-04-17 13:38:40 +02004870 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
Peter Zijlstra367456c2012-02-20 21:49:09 +01004871 goto next;
4872
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004873 if ((load / 2) > env->imbalance)
Peter Zijlstra367456c2012-02-20 21:49:09 +01004874 goto next;
4875
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004876 move_task(p, env);
Peter Zijlstraee00e662009-12-17 17:25:20 +01004877 pulled++;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004878 env->imbalance -= load;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004879
4880#ifdef CONFIG_PREEMPT
Peter Zijlstraee00e662009-12-17 17:25:20 +01004881 /*
4882 * NEWIDLE balancing is a source of latency, so preemptible
4883 * kernels will stop after the first task is pulled to minimize
4884 * the critical section.
4885 */
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004886 if (env->idle == CPU_NEWLY_IDLE)
Peter Zijlstraee00e662009-12-17 17:25:20 +01004887 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004888#endif
4889
Peter Zijlstraee00e662009-12-17 17:25:20 +01004890 /*
4891 * We only want to steal up to the prescribed amount of
4892 * weighted load.
4893 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004894 if (env->imbalance <= 0)
Peter Zijlstraee00e662009-12-17 17:25:20 +01004895 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004896
Peter Zijlstra367456c2012-02-20 21:49:09 +01004897 continue;
4898next:
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004899 list_move_tail(&p->se.group_node, tasks);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004900 }
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004901
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004902 /*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004903 * Right now, this is one of only two places move_task() is called,
4904 * so we can safely collect move_task() stats here rather than
4905 * inside move_task().
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004906 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004907 schedstat_add(env->sd, lb_gained[env->idle], pulled);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004908
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004909 return pulled;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004910}
4911
Peter Zijlstra230059de2009-12-17 17:47:12 +01004912#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004913/*
4914 * update tg->load_weight by folding this cpu's load_avg
4915 */
Paul Turner48a16752012-10-04 13:18:31 +02004916static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004917{
Paul Turner48a16752012-10-04 13:18:31 +02004918 struct sched_entity *se = tg->se[cpu];
4919 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004920
Paul Turner48a16752012-10-04 13:18:31 +02004921 /* throttled entities do not contribute to load */
4922 if (throttled_hierarchy(cfs_rq))
4923 return;
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004924
Paul Turneraff3e492012-10-04 13:18:30 +02004925 update_cfs_rq_blocked_load(cfs_rq, 1);
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004926
Paul Turner82958362012-10-04 13:18:31 +02004927 if (se) {
4928 update_entity_load_avg(se, 1);
4929 /*
4930 * We pivot on our runnable average having decayed to zero for
4931 * list removal. This generally implies that all our children
4932 * have also been removed (modulo rounding error or bandwidth
4933 * control); however, such cases are rare and we can fix these
4934 * at enqueue.
4935 *
4936 * TODO: fix up out-of-order children on enqueue.
4937 */
4938 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
4939 list_del_leaf_cfs_rq(cfs_rq);
4940 } else {
Paul Turner48a16752012-10-04 13:18:31 +02004941 struct rq *rq = rq_of(cfs_rq);
Paul Turner82958362012-10-04 13:18:31 +02004942 update_rq_runnable_avg(rq, rq->nr_running);
4943 }
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004944}
4945
Paul Turner48a16752012-10-04 13:18:31 +02004946static void update_blocked_averages(int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004947{
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004948 struct rq *rq = cpu_rq(cpu);
Paul Turner48a16752012-10-04 13:18:31 +02004949 struct cfs_rq *cfs_rq;
4950 unsigned long flags;
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004951
Paul Turner48a16752012-10-04 13:18:31 +02004952 raw_spin_lock_irqsave(&rq->lock, flags);
4953 update_rq_clock(rq);
Peter Zijlstra9763b672011-07-13 13:09:25 +02004954 /*
4955 * Iterates the task_group tree in a bottom up fashion, see
4956 * list_add_leaf_cfs_rq() for details.
4957 */
Paul Turner64660c82011-07-21 09:43:36 -07004958 for_each_leaf_cfs_rq(rq, cfs_rq) {
Paul Turner48a16752012-10-04 13:18:31 +02004959 /*
4960 * Note: We may want to consider periodically releasing
4961 * rq->lock about these updates so that creating many task
4962 * groups does not result in continually extending hold time.
4963 */
4964 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
Paul Turner64660c82011-07-21 09:43:36 -07004965 }
Paul Turner48a16752012-10-04 13:18:31 +02004966
4967 raw_spin_unlock_irqrestore(&rq->lock, flags);
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004968}
4969
Peter Zijlstra9763b672011-07-13 13:09:25 +02004970/*
Vladimir Davydov68520792013-07-15 17:49:19 +04004971 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
Peter Zijlstra9763b672011-07-13 13:09:25 +02004972 * This needs to be done in a top-down fashion because the load of a child
4973 * group is a fraction of its parents load.
4974 */
Vladimir Davydov68520792013-07-15 17:49:19 +04004975static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
Peter Zijlstra9763b672011-07-13 13:09:25 +02004976{
Vladimir Davydov68520792013-07-15 17:49:19 +04004977 struct rq *rq = rq_of(cfs_rq);
4978 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
Peter Zijlstraa35b6462012-08-08 21:46:40 +02004979 unsigned long now = jiffies;
Vladimir Davydov68520792013-07-15 17:49:19 +04004980 unsigned long load;
Peter Zijlstraa35b6462012-08-08 21:46:40 +02004981
Vladimir Davydov68520792013-07-15 17:49:19 +04004982 if (cfs_rq->last_h_load_update == now)
Peter Zijlstraa35b6462012-08-08 21:46:40 +02004983 return;
4984
Vladimir Davydov68520792013-07-15 17:49:19 +04004985 cfs_rq->h_load_next = NULL;
4986 for_each_sched_entity(se) {
4987 cfs_rq = cfs_rq_of(se);
4988 cfs_rq->h_load_next = se;
4989 if (cfs_rq->last_h_load_update == now)
4990 break;
4991 }
Peter Zijlstraa35b6462012-08-08 21:46:40 +02004992
Vladimir Davydov68520792013-07-15 17:49:19 +04004993 if (!se) {
Vladimir Davydov7e3115e2013-09-14 19:39:46 +04004994 cfs_rq->h_load = cfs_rq->runnable_load_avg;
Vladimir Davydov68520792013-07-15 17:49:19 +04004995 cfs_rq->last_h_load_update = now;
4996 }
4997
4998 while ((se = cfs_rq->h_load_next) != NULL) {
4999 load = cfs_rq->h_load;
5000 load = div64_ul(load * se->avg.load_avg_contrib,
5001 cfs_rq->runnable_load_avg + 1);
5002 cfs_rq = group_cfs_rq(se);
5003 cfs_rq->h_load = load;
5004 cfs_rq->last_h_load_update = now;
5005 }
Peter Zijlstra9763b672011-07-13 13:09:25 +02005006}
5007
Peter Zijlstra367456c2012-02-20 21:49:09 +01005008static unsigned long task_h_load(struct task_struct *p)
Peter Zijlstra230059de2009-12-17 17:47:12 +01005009{
Peter Zijlstra367456c2012-02-20 21:49:09 +01005010 struct cfs_rq *cfs_rq = task_cfs_rq(p);
Peter Zijlstra230059de2009-12-17 17:47:12 +01005011
Vladimir Davydov68520792013-07-15 17:49:19 +04005012 update_cfs_rq_h_load(cfs_rq);
Alex Shia003a252013-06-20 10:18:51 +08005013 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5014 cfs_rq->runnable_load_avg + 1);
Peter Zijlstra230059de2009-12-17 17:47:12 +01005015}
5016#else
Paul Turner48a16752012-10-04 13:18:31 +02005017static inline void update_blocked_averages(int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005018{
5019}
5020
Peter Zijlstra367456c2012-02-20 21:49:09 +01005021static unsigned long task_h_load(struct task_struct *p)
5022{
Alex Shia003a252013-06-20 10:18:51 +08005023 return p->se.avg.load_avg_contrib;
Peter Zijlstra230059de2009-12-17 17:47:12 +01005024}
5025#endif
5026
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005027/********** Helpers for find_busiest_group ************************/
5028/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005029 * sg_lb_stats - stats of a sched_group required for load_balancing
5030 */
5031struct sg_lb_stats {
5032 unsigned long avg_load; /*Avg load across the CPUs of the group */
5033 unsigned long group_load; /* Total load over the CPUs of the group */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005034 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005035 unsigned long load_per_task;
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005036 unsigned long group_power;
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005037 unsigned int sum_nr_running; /* Nr tasks running in the group */
5038 unsigned int group_capacity;
5039 unsigned int idle_cpus;
5040 unsigned int group_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005041 int group_imb; /* Is there an imbalance in the group ? */
Nikhil Raofab47622010-10-15 13:12:29 -07005042 int group_has_capacity; /* Is there extra capacity in the group? */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005043};
5044
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005045/*
5046 * sd_lb_stats - Structure to store the statistics of a sched_domain
5047 * during load balancing.
5048 */
5049struct sd_lb_stats {
5050 struct sched_group *busiest; /* Busiest group in this sd */
5051 struct sched_group *local; /* Local group in this sd */
5052 unsigned long total_load; /* Total load of all groups in sd */
5053 unsigned long total_pwr; /* Total power of all groups in sd */
5054 unsigned long avg_load; /* Average load across all groups in sd */
5055
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005056 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005057 struct sg_lb_stats local_stat; /* Statistics of the local group */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005058};
5059
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005060static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5061{
5062 /*
5063 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5064 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5065 * We must however clear busiest_stat::avg_load because
5066 * update_sd_pick_busiest() reads this before assignment.
5067 */
5068 *sds = (struct sd_lb_stats){
5069 .busiest = NULL,
5070 .local = NULL,
5071 .total_load = 0UL,
5072 .total_pwr = 0UL,
5073 .busiest_stat = {
5074 .avg_load = 0UL,
5075 },
5076 };
5077}
5078
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005079/**
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005080 * get_sd_load_idx - Obtain the load index for a given sched domain.
5081 * @sd: The sched_domain whose load_idx is to be obtained.
5082 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
Yacine Belkadie69f6182013-07-12 20:45:47 +02005083 *
5084 * Return: The load index.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005085 */
5086static inline int get_sd_load_idx(struct sched_domain *sd,
5087 enum cpu_idle_type idle)
5088{
5089 int load_idx;
5090
5091 switch (idle) {
5092 case CPU_NOT_IDLE:
5093 load_idx = sd->busy_idx;
5094 break;
5095
5096 case CPU_NEWLY_IDLE:
5097 load_idx = sd->newidle_idx;
5098 break;
5099 default:
5100 load_idx = sd->idle_idx;
5101 break;
5102 }
5103
5104 return load_idx;
5105}
5106
Li Zefan15f803c2013-03-05 16:07:11 +08005107static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005108{
Nikhil Rao1399fa72011-05-18 10:09:39 -07005109 return SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005110}
5111
5112unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5113{
5114 return default_scale_freq_power(sd, cpu);
5115}
5116
Li Zefan15f803c2013-03-05 16:07:11 +08005117static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005118{
Peter Zijlstra669c55e2010-04-16 14:59:29 +02005119 unsigned long weight = sd->span_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005120 unsigned long smt_gain = sd->smt_gain;
5121
5122 smt_gain /= weight;
5123
5124 return smt_gain;
5125}
5126
5127unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5128{
5129 return default_scale_smt_power(sd, cpu);
5130}
5131
Li Zefan15f803c2013-03-05 16:07:11 +08005132static unsigned long scale_rt_power(int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005133{
5134 struct rq *rq = cpu_rq(cpu);
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005135 u64 total, available, age_stamp, avg;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005136
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005137 /*
5138 * Since we're reading these variables without serialization make sure
5139 * we read them once before doing sanity checks on them.
5140 */
5141 age_stamp = ACCESS_ONCE(rq->age_stamp);
5142 avg = ACCESS_ONCE(rq->rt_avg);
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005143
Frederic Weisbecker78becc22013-04-12 01:51:02 +02005144 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005145
5146 if (unlikely(total < avg)) {
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005147 /* Ensures that power won't end up being negative */
5148 available = 0;
5149 } else {
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005150 available = total - avg;
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005151 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005152
Nikhil Rao1399fa72011-05-18 10:09:39 -07005153 if (unlikely((s64)total < SCHED_POWER_SCALE))
5154 total = SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005155
Nikhil Rao1399fa72011-05-18 10:09:39 -07005156 total >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005157
5158 return div_u64(available, total);
5159}
5160
5161static void update_cpu_power(struct sched_domain *sd, int cpu)
5162{
Peter Zijlstra669c55e2010-04-16 14:59:29 +02005163 unsigned long weight = sd->span_weight;
Nikhil Rao1399fa72011-05-18 10:09:39 -07005164 unsigned long power = SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005165 struct sched_group *sdg = sd->groups;
5166
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005167 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5168 if (sched_feat(ARCH_POWER))
5169 power *= arch_scale_smt_power(sd, cpu);
5170 else
5171 power *= default_scale_smt_power(sd, cpu);
5172
Nikhil Rao1399fa72011-05-18 10:09:39 -07005173 power >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005174 }
5175
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005176 sdg->sgp->power_orig = power;
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005177
5178 if (sched_feat(ARCH_POWER))
5179 power *= arch_scale_freq_power(sd, cpu);
5180 else
5181 power *= default_scale_freq_power(sd, cpu);
5182
Nikhil Rao1399fa72011-05-18 10:09:39 -07005183 power >>= SCHED_POWER_SHIFT;
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005184
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005185 power *= scale_rt_power(cpu);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005186 power >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005187
5188 if (!power)
5189 power = 1;
5190
Peter Zijlstrae51fd5e2010-05-31 12:37:30 +02005191 cpu_rq(cpu)->cpu_power = power;
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005192 sdg->sgp->power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005193}
5194
Peter Zijlstra029632f2011-10-25 10:00:11 +02005195void update_group_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005196{
5197 struct sched_domain *child = sd->child;
5198 struct sched_group *group, *sdg = sd->groups;
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005199 unsigned long power, power_orig;
Vincent Guittot4ec44122011-12-12 20:21:08 +01005200 unsigned long interval;
5201
5202 interval = msecs_to_jiffies(sd->balance_interval);
5203 interval = clamp(interval, 1UL, max_load_balance_interval);
5204 sdg->sgp->next_update = jiffies + interval;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005205
5206 if (!child) {
5207 update_cpu_power(sd, cpu);
5208 return;
5209 }
5210
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005211 power_orig = power = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005212
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005213 if (child->flags & SD_OVERLAP) {
5214 /*
5215 * SD_OVERLAP domains cannot assume that child groups
5216 * span the current group.
5217 */
5218
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005219 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5220 struct sched_group *sg = cpu_rq(cpu)->sd->groups;
5221
5222 power_orig += sg->sgp->power_orig;
5223 power += sg->sgp->power;
5224 }
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005225 } else {
5226 /*
5227 * !SD_OVERLAP domains can assume that child groups
5228 * span the current group.
5229 */
5230
5231 group = child->groups;
5232 do {
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005233 power_orig += group->sgp->power_orig;
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005234 power += group->sgp->power;
5235 group = group->next;
5236 } while (group != child->groups);
5237 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005238
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005239 sdg->sgp->power_orig = power_orig;
5240 sdg->sgp->power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005241}
5242
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005243/*
5244 * Try and fix up capacity for tiny siblings, this is needed when
5245 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5246 * which on its own isn't powerful enough.
5247 *
5248 * See update_sd_pick_busiest() and check_asym_packing().
5249 */
5250static inline int
5251fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5252{
5253 /*
Nikhil Rao1399fa72011-05-18 10:09:39 -07005254 * Only siblings can have significantly less than SCHED_POWER_SCALE
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005255 */
Peter Zijlstraa6c75f22011-04-07 14:09:52 +02005256 if (!(sd->flags & SD_SHARE_CPUPOWER))
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005257 return 0;
5258
5259 /*
5260 * If ~90% of the cpu_power is still there, we're good.
5261 */
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005262 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005263 return 1;
5264
5265 return 0;
5266}
5267
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005268/*
5269 * Group imbalance indicates (and tries to solve) the problem where balancing
5270 * groups is inadequate due to tsk_cpus_allowed() constraints.
5271 *
5272 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5273 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5274 * Something like:
5275 *
5276 * { 0 1 2 3 } { 4 5 6 7 }
5277 * * * * *
5278 *
5279 * If we were to balance group-wise we'd place two tasks in the first group and
5280 * two tasks in the second group. Clearly this is undesired as it will overload
5281 * cpu 3 and leave one of the cpus in the second group unused.
5282 *
5283 * The current solution to this issue is detecting the skew in the first group
Peter Zijlstra62633222013-08-19 12:41:09 +02005284 * by noticing the lower domain failed to reach balance and had difficulty
5285 * moving tasks due to affinity constraints.
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005286 *
5287 * When this is so detected; this group becomes a candidate for busiest; see
5288 * update_sd_pick_busiest(). And calculcate_imbalance() and
Peter Zijlstra62633222013-08-19 12:41:09 +02005289 * find_busiest_group() avoid some of the usual balance conditions to allow it
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005290 * to create an effective group imbalance.
5291 *
5292 * This is a somewhat tricky proposition since the next run might not find the
5293 * group imbalance and decide the groups need to be balanced again. A most
5294 * subtle and fragile situation.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005295 */
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005296
Peter Zijlstra62633222013-08-19 12:41:09 +02005297static inline int sg_imbalanced(struct sched_group *group)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005298{
Peter Zijlstra62633222013-08-19 12:41:09 +02005299 return group->sgp->imbalance;
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005300}
5301
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005302/*
5303 * Compute the group capacity.
5304 *
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005305 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5306 * first dividing out the smt factor and computing the actual number of cores
5307 * and limit power unit capacity with that.
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005308 */
5309static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5310{
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005311 unsigned int capacity, smt, cpus;
5312 unsigned int power, power_orig;
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005313
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005314 power = group->sgp->power;
5315 power_orig = group->sgp->power_orig;
5316 cpus = group->group_weight;
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005317
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005318 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5319 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5320 capacity = cpus / smt; /* cores */
5321
5322 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005323 if (!capacity)
5324 capacity = fix_small_capacity(env->sd, group);
5325
5326 return capacity;
5327}
5328
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005329/**
5330 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5331 * @env: The load balancing environment.
5332 * @group: sched_group whose statistics are to be updated.
5333 * @load_idx: Load index of sched_domain of this_cpu for load calc.
5334 * @local_group: Does group contain this_cpu.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005335 * @sgs: variable to hold the statistics for this group.
5336 */
5337static inline void update_sg_lb_stats(struct lb_env *env,
5338 struct sched_group *group, int load_idx,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005339 int local_group, struct sg_lb_stats *sgs)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005340{
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005341 unsigned long nr_running;
5342 unsigned long load;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005343 int i;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005344
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005345 memset(sgs, 0, sizeof(*sgs));
5346
Michael Wangb9403132012-07-12 16:10:13 +08005347 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005348 struct rq *rq = cpu_rq(i);
5349
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02005350 nr_running = rq->nr_running;
5351
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005352 /* Bias balancing toward cpus of our domain */
Peter Zijlstra62633222013-08-19 12:41:09 +02005353 if (local_group)
Peter Zijlstra04f733b2012-05-11 00:12:02 +02005354 load = target_load(i, load_idx);
Peter Zijlstra62633222013-08-19 12:41:09 +02005355 else
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005356 load = source_load(i, load_idx);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005357
5358 sgs->group_load += load;
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02005359 sgs->sum_nr_running += nr_running;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005360 sgs->sum_weighted_load += weighted_cpuload(i);
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005361 if (idle_cpu(i))
5362 sgs->idle_cpus++;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005363 }
5364
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005365 /* Adjust by relative CPU power of the group */
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005366 sgs->group_power = group->sgp->power;
5367 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005368
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005369 if (sgs->sum_nr_running)
Peter Zijlstra38d0f772013-08-15 19:47:56 +02005370 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005371
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005372 sgs->group_weight = group->group_weight;
Nikhil Raofab47622010-10-15 13:12:29 -07005373
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005374 sgs->group_imb = sg_imbalanced(group);
5375 sgs->group_capacity = sg_capacity(env, group);
5376
Nikhil Raofab47622010-10-15 13:12:29 -07005377 if (sgs->group_capacity > sgs->sum_nr_running)
5378 sgs->group_has_capacity = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005379}
5380
5381/**
Michael Neuling532cb4c2010-06-08 14:57:02 +10005382 * update_sd_pick_busiest - return 1 on busiest group
Randy Dunlapcd968912012-06-08 13:18:33 -07005383 * @env: The load balancing environment.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005384 * @sds: sched_domain statistics
5385 * @sg: sched_group candidate to be checked for being the busiest
Michael Neulingb6b12292010-06-10 12:06:21 +10005386 * @sgs: sched_group statistics
Michael Neuling532cb4c2010-06-08 14:57:02 +10005387 *
5388 * Determine if @sg is a busier group than the previously selected
5389 * busiest group.
Yacine Belkadie69f6182013-07-12 20:45:47 +02005390 *
5391 * Return: %true if @sg is a busier group than the previously selected
5392 * busiest group. %false otherwise.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005393 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005394static bool update_sd_pick_busiest(struct lb_env *env,
Michael Neuling532cb4c2010-06-08 14:57:02 +10005395 struct sd_lb_stats *sds,
5396 struct sched_group *sg,
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005397 struct sg_lb_stats *sgs)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005398{
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005399 if (sgs->avg_load <= sds->busiest_stat.avg_load)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005400 return false;
5401
5402 if (sgs->sum_nr_running > sgs->group_capacity)
5403 return true;
5404
5405 if (sgs->group_imb)
5406 return true;
5407
5408 /*
5409 * ASYM_PACKING needs to move all the work to the lowest
5410 * numbered CPUs in the group, therefore mark all groups
5411 * higher than ourself as busy.
5412 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005413 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5414 env->dst_cpu < group_first_cpu(sg)) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10005415 if (!sds->busiest)
5416 return true;
5417
5418 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5419 return true;
5420 }
5421
5422 return false;
5423}
5424
5425/**
Hui Kang461819a2011-10-11 23:00:59 -04005426 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
Randy Dunlapcd968912012-06-08 13:18:33 -07005427 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005428 * @balance: Should we balance.
5429 * @sds: variable to hold the statistics for this sched_domain.
5430 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005431static inline void update_sd_lb_stats(struct lb_env *env,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005432 struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005433{
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005434 struct sched_domain *child = env->sd->child;
5435 struct sched_group *sg = env->sd->groups;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005436 struct sg_lb_stats tmp_sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005437 int load_idx, prefer_sibling = 0;
5438
5439 if (child && child->flags & SD_PREFER_SIBLING)
5440 prefer_sibling = 1;
5441
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005442 load_idx = get_sd_load_idx(env->sd, env->idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005443
5444 do {
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005445 struct sg_lb_stats *sgs = &tmp_sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005446 int local_group;
5447
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005448 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005449 if (local_group) {
5450 sds->local = sg;
5451 sgs = &sds->local_stat;
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005452
5453 if (env->idle != CPU_NEWLY_IDLE ||
5454 time_after_eq(jiffies, sg->sgp->next_update))
5455 update_group_power(env->sd, env->dst_cpu);
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005456 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005457
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005458 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005459
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005460 if (local_group)
5461 goto next_group;
5462
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005463 /*
5464 * In case the child domain prefers tasks go to siblings
Michael Neuling532cb4c2010-06-08 14:57:02 +10005465 * first, lower the sg capacity to one so that we'll try
Nikhil Rao75dd3212010-10-15 13:12:30 -07005466 * and move all the excess tasks away. We lower the capacity
5467 * of a group only if the local group has the capacity to fit
5468 * these excess tasks, i.e. nr_running < group_capacity. The
5469 * extra check prevents the case where you always pull from the
5470 * heaviest group when it is already under-utilized (possible
5471 * with a large weight task outweighs the tasks on the system).
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005472 */
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005473 if (prefer_sibling && sds->local &&
5474 sds->local_stat.group_has_capacity)
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005475 sgs->group_capacity = min(sgs->group_capacity, 1U);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005476
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005477 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10005478 sds->busiest = sg;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005479 sds->busiest_stat = *sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005480 }
5481
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005482next_group:
5483 /* Now, start updating sd_lb_stats */
5484 sds->total_load += sgs->group_load;
5485 sds->total_pwr += sgs->group_power;
5486
Michael Neuling532cb4c2010-06-08 14:57:02 +10005487 sg = sg->next;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005488 } while (sg != env->sd->groups);
Michael Neuling532cb4c2010-06-08 14:57:02 +10005489}
5490
Michael Neuling532cb4c2010-06-08 14:57:02 +10005491/**
5492 * check_asym_packing - Check to see if the group is packed into the
5493 * sched doman.
5494 *
5495 * This is primarily intended to used at the sibling level. Some
5496 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5497 * case of POWER7, it can move to lower SMT modes only when higher
5498 * threads are idle. When in lower SMT modes, the threads will
5499 * perform better since they share less core resources. Hence when we
5500 * have idle threads, we want them to be the higher ones.
5501 *
5502 * This packing function is run on idle threads. It checks to see if
5503 * the busiest CPU in this domain (core in the P7 case) has a higher
5504 * CPU number than the packing function is being run on. Here we are
5505 * assuming lower CPU number will be equivalent to lower a SMT thread
5506 * number.
5507 *
Yacine Belkadie69f6182013-07-12 20:45:47 +02005508 * Return: 1 when packing is required and a task should be moved to
Michael Neulingb6b12292010-06-10 12:06:21 +10005509 * this CPU. The amount of the imbalance is returned in *imbalance.
5510 *
Randy Dunlapcd968912012-06-08 13:18:33 -07005511 * @env: The load balancing environment.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005512 * @sds: Statistics of the sched_domain which is to be packed
Michael Neuling532cb4c2010-06-08 14:57:02 +10005513 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005514static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005515{
5516 int busiest_cpu;
5517
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005518 if (!(env->sd->flags & SD_ASYM_PACKING))
Michael Neuling532cb4c2010-06-08 14:57:02 +10005519 return 0;
5520
5521 if (!sds->busiest)
5522 return 0;
5523
5524 busiest_cpu = group_first_cpu(sds->busiest);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005525 if (env->dst_cpu > busiest_cpu)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005526 return 0;
5527
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005528 env->imbalance = DIV_ROUND_CLOSEST(
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005529 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5530 SCHED_POWER_SCALE);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005531
Michael Neuling532cb4c2010-06-08 14:57:02 +10005532 return 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005533}
5534
5535/**
5536 * fix_small_imbalance - Calculate the minor imbalance that exists
5537 * amongst the groups of a sched_domain, during
5538 * load balancing.
Randy Dunlapcd968912012-06-08 13:18:33 -07005539 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005540 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005541 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005542static inline
5543void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005544{
5545 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5546 unsigned int imbn = 2;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005547 unsigned long scaled_busy_load_per_task;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005548 struct sg_lb_stats *local, *busiest;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005549
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005550 local = &sds->local_stat;
5551 busiest = &sds->busiest_stat;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005552
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005553 if (!local->sum_nr_running)
5554 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5555 else if (busiest->load_per_task > local->load_per_task)
5556 imbn = 1;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005557
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005558 scaled_busy_load_per_task =
5559 (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005560 busiest->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005561
Vladimir Davydov3029ede2013-09-15 17:49:14 +04005562 if (busiest->avg_load + scaled_busy_load_per_task >=
5563 local->avg_load + (scaled_busy_load_per_task * imbn)) {
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005564 env->imbalance = busiest->load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005565 return;
5566 }
5567
5568 /*
5569 * OK, we don't have enough imbalance to justify moving tasks,
5570 * however we may be able to increase total CPU power used by
5571 * moving them.
5572 */
5573
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005574 pwr_now += busiest->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005575 min(busiest->load_per_task, busiest->avg_load);
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005576 pwr_now += local->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005577 min(local->load_per_task, local->avg_load);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005578 pwr_now /= SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005579
5580 /* Amount of load we'd subtract */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005581 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005582 busiest->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005583 if (busiest->avg_load > tmp) {
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005584 pwr_move += busiest->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005585 min(busiest->load_per_task,
5586 busiest->avg_load - tmp);
5587 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005588
5589 /* Amount of load we'd add */
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005590 if (busiest->avg_load * busiest->group_power <
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005591 busiest->load_per_task * SCHED_POWER_SCALE) {
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005592 tmp = (busiest->avg_load * busiest->group_power) /
5593 local->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005594 } else {
5595 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005596 local->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005597 }
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005598 pwr_move += local->group_power *
5599 min(local->load_per_task, local->avg_load + tmp);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005600 pwr_move /= SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005601
5602 /* Move if we gain throughput */
5603 if (pwr_move > pwr_now)
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005604 env->imbalance = busiest->load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005605}
5606
5607/**
5608 * calculate_imbalance - Calculate the amount of imbalance present within the
5609 * groups of a given sched_domain during load balance.
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005610 * @env: load balance environment
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005611 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005612 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005613static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005614{
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005615 unsigned long max_pull, load_above_capacity = ~0UL;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005616 struct sg_lb_stats *local, *busiest;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005617
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005618 local = &sds->local_stat;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005619 busiest = &sds->busiest_stat;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005620
5621 if (busiest->group_imb) {
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005622 /*
5623 * In the group_imb case we cannot rely on group-wide averages
5624 * to ensure cpu-load equilibrium, look at wider averages. XXX
5625 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005626 busiest->load_per_task =
5627 min(busiest->load_per_task, sds->avg_load);
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005628 }
5629
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005630 /*
5631 * In the presence of smp nice balancing, certain scenarios can have
5632 * max load less than avg load(as we skip the groups at or below
5633 * its cpu_power, while calculating max_load..)
5634 */
Vladimir Davydovb1885552013-09-15 17:49:13 +04005635 if (busiest->avg_load <= sds->avg_load ||
5636 local->avg_load >= sds->avg_load) {
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005637 env->imbalance = 0;
5638 return fix_small_imbalance(env, sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005639 }
5640
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005641 if (!busiest->group_imb) {
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005642 /*
5643 * Don't want to pull so many tasks that a group would go idle.
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005644 * Except of course for the group_imb case, since then we might
5645 * have to drop below capacity to reach cpu-load equilibrium.
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005646 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005647 load_above_capacity =
5648 (busiest->sum_nr_running - busiest->group_capacity);
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005649
Nikhil Rao1399fa72011-05-18 10:09:39 -07005650 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005651 load_above_capacity /= busiest->group_power;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005652 }
5653
5654 /*
5655 * We're trying to get all the cpus to the average_load, so we don't
5656 * want to push ourselves above the average load, nor do we wish to
5657 * reduce the max loaded cpu below the average load. At the same time,
5658 * we also don't want to reduce the group load below the group capacity
5659 * (so that we can implement power-savings policies etc). Thus we look
5660 * for the minimum possible imbalance.
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005661 */
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005662 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005663
5664 /* How much load to actually move to equalise the imbalance */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005665 env->imbalance = min(
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005666 max_pull * busiest->group_power,
5667 (sds->avg_load - local->avg_load) * local->group_power
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005668 ) / SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005669
5670 /*
5671 * if *imbalance is less than the average load per runnable task
Lucas De Marchi25985ed2011-03-30 22:57:33 -03005672 * there is no guarantee that any tasks will be moved so we'll have
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005673 * a think about bumping its value to force at least one task to be
5674 * moved
5675 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005676 if (env->imbalance < busiest->load_per_task)
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005677 return fix_small_imbalance(env, sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005678}
Nikhil Raofab47622010-10-15 13:12:29 -07005679
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005680/******* find_busiest_group() helpers end here *********************/
5681
5682/**
5683 * find_busiest_group - Returns the busiest group within the sched_domain
5684 * if there is an imbalance. If there isn't an imbalance, and
5685 * the user has opted for power-savings, it returns a group whose
5686 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5687 * such a group exists.
5688 *
5689 * Also calculates the amount of weighted load which should be moved
5690 * to restore balance.
5691 *
Randy Dunlapcd968912012-06-08 13:18:33 -07005692 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005693 *
Yacine Belkadie69f6182013-07-12 20:45:47 +02005694 * Return: - The busiest group if imbalance exists.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005695 * - If no imbalance and user has opted for power-savings balance,
5696 * return the least loaded group whose CPUs can be
5697 * put to idle by rebalancing its tasks onto our group.
5698 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005699static struct sched_group *find_busiest_group(struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005700{
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005701 struct sg_lb_stats *local, *busiest;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005702 struct sd_lb_stats sds;
5703
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005704 init_sd_lb_stats(&sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005705
5706 /*
5707 * Compute the various statistics relavent for load balancing at
5708 * this level.
5709 */
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005710 update_sd_lb_stats(env, &sds);
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005711 local = &sds.local_stat;
5712 busiest = &sds.busiest_stat;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005713
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005714 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5715 check_asym_packing(env, &sds))
Michael Neuling532cb4c2010-06-08 14:57:02 +10005716 return sds.busiest;
5717
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005718 /* There is no busy sibling group to pull tasks from */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005719 if (!sds.busiest || busiest->sum_nr_running == 0)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005720 goto out_balanced;
5721
Nikhil Rao1399fa72011-05-18 10:09:39 -07005722 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
Ken Chenb0432d82011-04-07 17:23:22 -07005723
Peter Zijlstra866ab432011-02-21 18:56:47 +01005724 /*
5725 * If the busiest group is imbalanced the below checks don't
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005726 * work because they assume all things are equal, which typically
Peter Zijlstra866ab432011-02-21 18:56:47 +01005727 * isn't true due to cpus_allowed constraints and the like.
5728 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005729 if (busiest->group_imb)
Peter Zijlstra866ab432011-02-21 18:56:47 +01005730 goto force_balance;
5731
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005732 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005733 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5734 !busiest->group_has_capacity)
Nikhil Raofab47622010-10-15 13:12:29 -07005735 goto force_balance;
5736
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005737 /*
5738 * If the local group is more busy than the selected busiest group
5739 * don't try and pull any tasks.
5740 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005741 if (local->avg_load >= busiest->avg_load)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005742 goto out_balanced;
5743
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005744 /*
5745 * Don't pull any tasks if this group is already above the domain
5746 * average load.
5747 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005748 if (local->avg_load >= sds.avg_load)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005749 goto out_balanced;
5750
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005751 if (env->idle == CPU_IDLE) {
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005752 /*
5753 * This cpu is idle. If the busiest group load doesn't
5754 * have more tasks than the number of available cpu's and
5755 * there is no imbalance between this and busiest group
5756 * wrt to idle cpu's, it is balanced.
5757 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005758 if ((local->idle_cpus < busiest->idle_cpus) &&
5759 busiest->sum_nr_running <= busiest->group_weight)
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005760 goto out_balanced;
Peter Zijlstrac186faf2011-02-21 18:52:53 +01005761 } else {
5762 /*
5763 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5764 * imbalance_pct to be conservative.
5765 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005766 if (100 * busiest->avg_load <=
5767 env->sd->imbalance_pct * local->avg_load)
Peter Zijlstrac186faf2011-02-21 18:52:53 +01005768 goto out_balanced;
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005769 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005770
Nikhil Raofab47622010-10-15 13:12:29 -07005771force_balance:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005772 /* Looks like there is an imbalance. Compute it */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005773 calculate_imbalance(env, &sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005774 return sds.busiest;
5775
5776out_balanced:
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005777 env->imbalance = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005778 return NULL;
5779}
5780
5781/*
5782 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5783 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005784static struct rq *find_busiest_queue(struct lb_env *env,
Michael Wangb9403132012-07-12 16:10:13 +08005785 struct sched_group *group)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005786{
5787 struct rq *busiest = NULL, *rq;
Joonsoo Kim95a79b82013-08-06 17:36:41 +09005788 unsigned long busiest_load = 0, busiest_power = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005789 int i;
5790
Peter Zijlstra6906a402013-08-19 15:20:21 +02005791 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005792 unsigned long power = power_of(i);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005793 unsigned long capacity = DIV_ROUND_CLOSEST(power,
5794 SCHED_POWER_SCALE);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005795 unsigned long wl;
5796
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005797 if (!capacity)
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005798 capacity = fix_small_capacity(env->sd, group);
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005799
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005800 rq = cpu_rq(i);
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01005801 wl = weighted_cpuload(i);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005802
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01005803 /*
5804 * When comparing with imbalance, use weighted_cpuload()
5805 * which is not scaled with the cpu power.
5806 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005807 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005808 continue;
5809
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01005810 /*
5811 * For the load comparisons with the other cpu's, consider
5812 * the weighted_cpuload() scaled with the cpu power, so that
5813 * the load can be moved away from the cpu that is potentially
5814 * running at a lower capacity.
Joonsoo Kim95a79b82013-08-06 17:36:41 +09005815 *
5816 * Thus we're looking for max(wl_i / power_i), crosswise
5817 * multiplication to rid ourselves of the division works out
5818 * to: wl_i * power_j > wl_j * power_i; where j is our
5819 * previous maximum.
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01005820 */
Joonsoo Kim95a79b82013-08-06 17:36:41 +09005821 if (wl * busiest_power > busiest_load * power) {
5822 busiest_load = wl;
5823 busiest_power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005824 busiest = rq;
5825 }
5826 }
5827
5828 return busiest;
5829}
5830
5831/*
5832 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
5833 * so long as it is large enough.
5834 */
5835#define MAX_PINNED_INTERVAL 512
5836
5837/* Working cpumask for load_balance and load_balance_newidle. */
Joonsoo Kime6252c32013-04-23 17:27:41 +09005838DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005839
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005840static int need_active_balance(struct lb_env *env)
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01005841{
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005842 struct sched_domain *sd = env->sd;
5843
5844 if (env->idle == CPU_NEWLY_IDLE) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10005845
5846 /*
5847 * ASYM_PACKING needs to force migrate tasks from busy but
5848 * higher numbered CPUs in order to pack all tasks in the
5849 * lowest numbered CPUs.
5850 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005851 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005852 return 1;
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01005853 }
5854
5855 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
5856}
5857
Tejun Heo969c7922010-05-06 18:49:21 +02005858static int active_load_balance_cpu_stop(void *data);
5859
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005860static int should_we_balance(struct lb_env *env)
5861{
5862 struct sched_group *sg = env->sd->groups;
5863 struct cpumask *sg_cpus, *sg_mask;
5864 int cpu, balance_cpu = -1;
5865
5866 /*
5867 * In the newly idle case, we will allow all the cpu's
5868 * to do the newly idle load balance.
5869 */
5870 if (env->idle == CPU_NEWLY_IDLE)
5871 return 1;
5872
5873 sg_cpus = sched_group_cpus(sg);
5874 sg_mask = sched_group_mask(sg);
5875 /* Try to find first idle cpu */
5876 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
5877 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
5878 continue;
5879
5880 balance_cpu = cpu;
5881 break;
5882 }
5883
5884 if (balance_cpu == -1)
5885 balance_cpu = group_balance_cpu(sg);
5886
5887 /*
5888 * First idle cpu or the first cpu(busiest) in this sched group
5889 * is eligible for doing load balancing at this and above domains.
5890 */
Joonsoo Kimb0cff9d2013-09-10 15:54:49 +09005891 return balance_cpu == env->dst_cpu;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005892}
5893
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005894/*
5895 * Check this_cpu to ensure it is balanced within domain. Attempt to move
5896 * tasks if there is an imbalance.
5897 */
5898static int load_balance(int this_cpu, struct rq *this_rq,
5899 struct sched_domain *sd, enum cpu_idle_type idle,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005900 int *continue_balancing)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005901{
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305902 int ld_moved, cur_ld_moved, active_balance = 0;
Peter Zijlstra62633222013-08-19 12:41:09 +02005903 struct sched_domain *sd_parent = sd->parent;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005904 struct sched_group *group;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005905 struct rq *busiest;
5906 unsigned long flags;
Joonsoo Kime6252c32013-04-23 17:27:41 +09005907 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005908
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005909 struct lb_env env = {
5910 .sd = sd,
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005911 .dst_cpu = this_cpu,
5912 .dst_rq = this_rq,
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305913 .dst_grpmask = sched_group_cpus(sd->groups),
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005914 .idle = idle,
Peter Zijlstraeb953082012-04-17 13:38:40 +02005915 .loop_break = sched_nr_migrate_break,
Michael Wangb9403132012-07-12 16:10:13 +08005916 .cpus = cpus,
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005917 };
5918
Joonsoo Kimcfc03112013-04-23 17:27:39 +09005919 /*
5920 * For NEWLY_IDLE load_balancing, we don't need to consider
5921 * other cpus in our group
5922 */
Joonsoo Kime02e60c2013-04-23 17:27:42 +09005923 if (idle == CPU_NEWLY_IDLE)
Joonsoo Kimcfc03112013-04-23 17:27:39 +09005924 env.dst_grpmask = NULL;
Joonsoo Kimcfc03112013-04-23 17:27:39 +09005925
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005926 cpumask_copy(cpus, cpu_active_mask);
5927
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005928 schedstat_inc(sd, lb_count[idle]);
5929
5930redo:
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005931 if (!should_we_balance(&env)) {
5932 *continue_balancing = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005933 goto out_balanced;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005934 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005935
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005936 group = find_busiest_group(&env);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005937 if (!group) {
5938 schedstat_inc(sd, lb_nobusyg[idle]);
5939 goto out_balanced;
5940 }
5941
Michael Wangb9403132012-07-12 16:10:13 +08005942 busiest = find_busiest_queue(&env, group);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005943 if (!busiest) {
5944 schedstat_inc(sd, lb_nobusyq[idle]);
5945 goto out_balanced;
5946 }
5947
Michael Wang78feefc2012-08-06 16:41:59 +08005948 BUG_ON(busiest == env.dst_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005949
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005950 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005951
5952 ld_moved = 0;
5953 if (busiest->nr_running > 1) {
5954 /*
5955 * Attempt to move tasks. If find_busiest_group has found
5956 * an imbalance but busiest->nr_running <= 1, the group is
5957 * still unbalanced. ld_moved simply stays zero, so it is
5958 * correctly treated as an imbalance.
5959 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005960 env.flags |= LBF_ALL_PINNED;
Peter Zijlstrac82513e2012-04-26 13:12:27 +02005961 env.src_cpu = busiest->cpu;
5962 env.src_rq = busiest;
5963 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005964
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005965more_balance:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005966 local_irq_save(flags);
Michael Wang78feefc2012-08-06 16:41:59 +08005967 double_rq_lock(env.dst_rq, busiest);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305968
5969 /*
5970 * cur_ld_moved - load moved in current iteration
5971 * ld_moved - cumulative load moved across iterations
5972 */
5973 cur_ld_moved = move_tasks(&env);
5974 ld_moved += cur_ld_moved;
Michael Wang78feefc2012-08-06 16:41:59 +08005975 double_rq_unlock(env.dst_rq, busiest);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005976 local_irq_restore(flags);
5977
5978 /*
5979 * some other cpu did the load balance for us.
5980 */
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305981 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
5982 resched_cpu(env.dst_cpu);
5983
Joonsoo Kimf1cd0852013-04-23 17:27:37 +09005984 if (env.flags & LBF_NEED_BREAK) {
5985 env.flags &= ~LBF_NEED_BREAK;
5986 goto more_balance;
5987 }
5988
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305989 /*
5990 * Revisit (affine) tasks on src_cpu that couldn't be moved to
5991 * us and move them to an alternate dst_cpu in our sched_group
5992 * where they can run. The upper limit on how many times we
5993 * iterate on same src_cpu is dependent on number of cpus in our
5994 * sched_group.
5995 *
5996 * This changes load balance semantics a bit on who can move
5997 * load to a given_cpu. In addition to the given_cpu itself
5998 * (or a ilb_cpu acting on its behalf where given_cpu is
5999 * nohz-idle), we now have balance_cpu in a position to move
6000 * load to given_cpu. In rare situations, this may cause
6001 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6002 * _independently_ and at _same_ time to move some load to
6003 * given_cpu) causing exceess load to be moved to given_cpu.
6004 * This however should not happen so much in practice and
6005 * moreover subsequent load balance cycles should correct the
6006 * excess load moved.
6007 */
Peter Zijlstra62633222013-08-19 12:41:09 +02006008 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306009
Vladimir Davydov7aff2e32013-09-15 21:30:13 +04006010 /* Prevent to re-select dst_cpu via env's cpus */
6011 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6012
Michael Wang78feefc2012-08-06 16:41:59 +08006013 env.dst_rq = cpu_rq(env.new_dst_cpu);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306014 env.dst_cpu = env.new_dst_cpu;
Peter Zijlstra62633222013-08-19 12:41:09 +02006015 env.flags &= ~LBF_DST_PINNED;
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306016 env.loop = 0;
6017 env.loop_break = sched_nr_migrate_break;
Joonsoo Kime02e60c2013-04-23 17:27:42 +09006018
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306019 /*
6020 * Go back to "more_balance" rather than "redo" since we
6021 * need to continue with same src_cpu.
6022 */
6023 goto more_balance;
6024 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006025
Peter Zijlstra62633222013-08-19 12:41:09 +02006026 /*
6027 * We failed to reach balance because of affinity.
6028 */
6029 if (sd_parent) {
6030 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6031
6032 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6033 *group_imbalance = 1;
6034 } else if (*group_imbalance)
6035 *group_imbalance = 0;
6036 }
6037
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006038 /* All tasks on this runqueue were pinned by CPU affinity */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006039 if (unlikely(env.flags & LBF_ALL_PINNED)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006040 cpumask_clear_cpu(cpu_of(busiest), cpus);
Prashanth Nageshappabbf18b12012-06-19 17:52:07 +05306041 if (!cpumask_empty(cpus)) {
6042 env.loop = 0;
6043 env.loop_break = sched_nr_migrate_break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006044 goto redo;
Prashanth Nageshappabbf18b12012-06-19 17:52:07 +05306045 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006046 goto out_balanced;
6047 }
6048 }
6049
6050 if (!ld_moved) {
6051 schedstat_inc(sd, lb_failed[idle]);
Venkatesh Pallipadi58b26c42010-09-10 18:19:17 -07006052 /*
6053 * Increment the failure counter only on periodic balance.
6054 * We do not want newidle balance, which can be very
6055 * frequent, pollute the failure counter causing
6056 * excessive cache_hot migrations and active balances.
6057 */
6058 if (idle != CPU_NEWLY_IDLE)
6059 sd->nr_balance_failed++;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006060
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006061 if (need_active_balance(&env)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006062 raw_spin_lock_irqsave(&busiest->lock, flags);
6063
Tejun Heo969c7922010-05-06 18:49:21 +02006064 /* don't kick the active_load_balance_cpu_stop,
6065 * if the curr task on busiest cpu can't be
6066 * moved to this_cpu
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006067 */
6068 if (!cpumask_test_cpu(this_cpu,
Peter Zijlstrafa17b502011-06-16 12:23:22 +02006069 tsk_cpus_allowed(busiest->curr))) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006070 raw_spin_unlock_irqrestore(&busiest->lock,
6071 flags);
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006072 env.flags |= LBF_ALL_PINNED;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006073 goto out_one_pinned;
6074 }
6075
Tejun Heo969c7922010-05-06 18:49:21 +02006076 /*
6077 * ->active_balance synchronizes accesses to
6078 * ->active_balance_work. Once set, it's cleared
6079 * only after active load balance is finished.
6080 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006081 if (!busiest->active_balance) {
6082 busiest->active_balance = 1;
6083 busiest->push_cpu = this_cpu;
6084 active_balance = 1;
6085 }
6086 raw_spin_unlock_irqrestore(&busiest->lock, flags);
Tejun Heo969c7922010-05-06 18:49:21 +02006087
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006088 if (active_balance) {
Tejun Heo969c7922010-05-06 18:49:21 +02006089 stop_one_cpu_nowait(cpu_of(busiest),
6090 active_load_balance_cpu_stop, busiest,
6091 &busiest->active_balance_work);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006092 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006093
6094 /*
6095 * We've kicked active balancing, reset the failure
6096 * counter.
6097 */
6098 sd->nr_balance_failed = sd->cache_nice_tries+1;
6099 }
6100 } else
6101 sd->nr_balance_failed = 0;
6102
6103 if (likely(!active_balance)) {
6104 /* We were unbalanced, so reset the balancing interval */
6105 sd->balance_interval = sd->min_interval;
6106 } else {
6107 /*
6108 * If we've begun active balancing, start to back off. This
6109 * case may not be covered by the all_pinned logic if there
6110 * is only 1 task on the busy runqueue (because we don't call
6111 * move_tasks).
6112 */
6113 if (sd->balance_interval < sd->max_interval)
6114 sd->balance_interval *= 2;
6115 }
6116
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006117 goto out;
6118
6119out_balanced:
6120 schedstat_inc(sd, lb_balanced[idle]);
6121
6122 sd->nr_balance_failed = 0;
6123
6124out_one_pinned:
6125 /* tune up the balancing interval */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006126 if (((env.flags & LBF_ALL_PINNED) &&
Peter Zijlstra5b54b562011-09-22 15:23:13 +02006127 sd->balance_interval < MAX_PINNED_INTERVAL) ||
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006128 (sd->balance_interval < sd->max_interval))
6129 sd->balance_interval *= 2;
6130
Venkatesh Pallipadi46e49b32011-02-14 14:38:50 -08006131 ld_moved = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006132out:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006133 return ld_moved;
6134}
6135
6136/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006137 * idle_balance is called by schedule() if this_cpu is about to become
6138 * idle. Attempts to pull tasks from other CPUs.
6139 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006140void idle_balance(int this_cpu, struct rq *this_rq)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006141{
6142 struct sched_domain *sd;
6143 int pulled_task = 0;
6144 unsigned long next_balance = jiffies + HZ;
Jason Low9bd721c2013-09-13 11:26:52 -07006145 u64 curr_cost = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006146
Frederic Weisbecker78becc22013-04-12 01:51:02 +02006147 this_rq->idle_stamp = rq_clock(this_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006148
6149 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6150 return;
6151
Peter Zijlstraf492e122009-12-23 15:29:42 +01006152 /*
6153 * Drop the rq->lock, but keep IRQ/preempt disabled.
6154 */
6155 raw_spin_unlock(&this_rq->lock);
6156
Paul Turner48a16752012-10-04 13:18:31 +02006157 update_blocked_averages(this_cpu);
Peter Zijlstradce840a2011-04-07 14:09:50 +02006158 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006159 for_each_domain(this_cpu, sd) {
6160 unsigned long interval;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006161 int continue_balancing = 1;
Jason Low9bd721c2013-09-13 11:26:52 -07006162 u64 t0, domain_cost;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006163
6164 if (!(sd->flags & SD_LOAD_BALANCE))
6165 continue;
6166
Jason Low9bd721c2013-09-13 11:26:52 -07006167 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6168 break;
6169
Peter Zijlstraf492e122009-12-23 15:29:42 +01006170 if (sd->flags & SD_BALANCE_NEWIDLE) {
Jason Low9bd721c2013-09-13 11:26:52 -07006171 t0 = sched_clock_cpu(this_cpu);
6172
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006173 /* If we've pulled tasks over stop searching: */
Peter Zijlstraf492e122009-12-23 15:29:42 +01006174 pulled_task = load_balance(this_cpu, this_rq,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006175 sd, CPU_NEWLY_IDLE,
6176 &continue_balancing);
Jason Low9bd721c2013-09-13 11:26:52 -07006177
6178 domain_cost = sched_clock_cpu(this_cpu) - t0;
6179 if (domain_cost > sd->max_newidle_lb_cost)
6180 sd->max_newidle_lb_cost = domain_cost;
6181
6182 curr_cost += domain_cost;
Peter Zijlstraf492e122009-12-23 15:29:42 +01006183 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006184
6185 interval = msecs_to_jiffies(sd->balance_interval);
6186 if (time_after(next_balance, sd->last_balance + interval))
6187 next_balance = sd->last_balance + interval;
Nikhil Raod5ad1402010-11-17 11:42:04 -08006188 if (pulled_task) {
6189 this_rq->idle_stamp = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006190 break;
Nikhil Raod5ad1402010-11-17 11:42:04 -08006191 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006192 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006193 rcu_read_unlock();
Peter Zijlstraf492e122009-12-23 15:29:42 +01006194
6195 raw_spin_lock(&this_rq->lock);
6196
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006197 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6198 /*
6199 * We are going idle. next_balance may be set based on
6200 * a busy processor. So reset next_balance.
6201 */
6202 this_rq->next_balance = next_balance;
6203 }
Jason Low9bd721c2013-09-13 11:26:52 -07006204
6205 if (curr_cost > this_rq->max_idle_balance_cost)
6206 this_rq->max_idle_balance_cost = curr_cost;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006207}
6208
6209/*
Tejun Heo969c7922010-05-06 18:49:21 +02006210 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6211 * running tasks off the busiest CPU onto idle CPUs. It requires at
6212 * least 1 task to be running on each physical CPU where possible, and
6213 * avoids physical / logical imbalances.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006214 */
Tejun Heo969c7922010-05-06 18:49:21 +02006215static int active_load_balance_cpu_stop(void *data)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006216{
Tejun Heo969c7922010-05-06 18:49:21 +02006217 struct rq *busiest_rq = data;
6218 int busiest_cpu = cpu_of(busiest_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006219 int target_cpu = busiest_rq->push_cpu;
Tejun Heo969c7922010-05-06 18:49:21 +02006220 struct rq *target_rq = cpu_rq(target_cpu);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006221 struct sched_domain *sd;
Tejun Heo969c7922010-05-06 18:49:21 +02006222
6223 raw_spin_lock_irq(&busiest_rq->lock);
6224
6225 /* make sure the requested cpu hasn't gone down in the meantime */
6226 if (unlikely(busiest_cpu != smp_processor_id() ||
6227 !busiest_rq->active_balance))
6228 goto out_unlock;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006229
6230 /* Is there any task to move? */
6231 if (busiest_rq->nr_running <= 1)
Tejun Heo969c7922010-05-06 18:49:21 +02006232 goto out_unlock;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006233
6234 /*
6235 * This condition is "impossible", if it occurs
6236 * we need to fix it. Originally reported by
6237 * Bjorn Helgaas on a 128-cpu setup.
6238 */
6239 BUG_ON(busiest_rq == target_rq);
6240
6241 /* move a task from busiest_rq to target_rq */
6242 double_lock_balance(busiest_rq, target_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006243
6244 /* Search for an sd spanning us and the target CPU. */
Peter Zijlstradce840a2011-04-07 14:09:50 +02006245 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006246 for_each_domain(target_cpu, sd) {
6247 if ((sd->flags & SD_LOAD_BALANCE) &&
6248 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6249 break;
6250 }
6251
6252 if (likely(sd)) {
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006253 struct lb_env env = {
6254 .sd = sd,
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01006255 .dst_cpu = target_cpu,
6256 .dst_rq = target_rq,
6257 .src_cpu = busiest_rq->cpu,
6258 .src_rq = busiest_rq,
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006259 .idle = CPU_IDLE,
6260 };
6261
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006262 schedstat_inc(sd, alb_count);
6263
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006264 if (move_one_task(&env))
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006265 schedstat_inc(sd, alb_pushed);
6266 else
6267 schedstat_inc(sd, alb_failed);
6268 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006269 rcu_read_unlock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006270 double_unlock_balance(busiest_rq, target_rq);
Tejun Heo969c7922010-05-06 18:49:21 +02006271out_unlock:
6272 busiest_rq->active_balance = 0;
6273 raw_spin_unlock_irq(&busiest_rq->lock);
6274 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006275}
6276
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006277#ifdef CONFIG_NO_HZ_COMMON
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006278/*
6279 * idle load balancing details
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006280 * - When one of the busy CPUs notice that there may be an idle rebalancing
6281 * needed, they will kick the idle load balancer, which then does idle
6282 * load balancing for all the idle CPUs.
6283 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006284static struct {
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006285 cpumask_var_t idle_cpus_mask;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006286 atomic_t nr_cpus;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006287 unsigned long next_balance; /* in jiffy units */
6288} nohz ____cacheline_aligned;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006289
Peter Zijlstra8e7fbcb2012-01-09 11:28:35 +01006290static inline int find_new_ilb(int call_cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006291{
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006292 int ilb = cpumask_first(nohz.idle_cpus_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006293
Suresh Siddha786d6dc2011-12-01 17:07:35 -08006294 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6295 return ilb;
6296
6297 return nr_cpu_ids;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006298}
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006299
6300/*
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006301 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6302 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6303 * CPU (if there is one).
6304 */
6305static void nohz_balancer_kick(int cpu)
6306{
6307 int ilb_cpu;
6308
6309 nohz.next_balance++;
6310
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006311 ilb_cpu = find_new_ilb(cpu);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006312
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006313 if (ilb_cpu >= nr_cpu_ids)
6314 return;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006315
Suresh Siddhacd490c52011-12-06 11:26:34 -08006316 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
Suresh Siddha1c792db2011-12-01 17:07:32 -08006317 return;
6318 /*
6319 * Use smp_send_reschedule() instead of resched_cpu().
6320 * This way we generate a sched IPI on the target cpu which
6321 * is idle. And the softirq performing nohz idle load balance
6322 * will be run before returning from the IPI.
6323 */
6324 smp_send_reschedule(ilb_cpu);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006325 return;
6326}
6327
Alex Shic1cc0172012-09-10 15:10:58 +08006328static inline void nohz_balance_exit_idle(int cpu)
Suresh Siddha71325962012-01-19 18:28:57 -08006329{
6330 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6331 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6332 atomic_dec(&nohz.nr_cpus);
6333 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6334 }
6335}
6336
Suresh Siddha69e1e812011-12-01 17:07:33 -08006337static inline void set_cpu_sd_state_busy(void)
6338{
6339 struct sched_domain *sd;
Suresh Siddha69e1e812011-12-01 17:07:33 -08006340
Suresh Siddha69e1e812011-12-01 17:07:33 -08006341 rcu_read_lock();
Nathan Zimmer424c93f2013-05-09 11:24:03 -05006342 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006343
6344 if (!sd || !sd->nohz_idle)
6345 goto unlock;
6346 sd->nohz_idle = 0;
6347
6348 for (; sd; sd = sd->parent)
Suresh Siddha69e1e812011-12-01 17:07:33 -08006349 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006350unlock:
Suresh Siddha69e1e812011-12-01 17:07:33 -08006351 rcu_read_unlock();
6352}
6353
6354void set_cpu_sd_state_idle(void)
6355{
6356 struct sched_domain *sd;
Suresh Siddha69e1e812011-12-01 17:07:33 -08006357
Suresh Siddha69e1e812011-12-01 17:07:33 -08006358 rcu_read_lock();
Nathan Zimmer424c93f2013-05-09 11:24:03 -05006359 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006360
6361 if (!sd || sd->nohz_idle)
6362 goto unlock;
6363 sd->nohz_idle = 1;
6364
6365 for (; sd; sd = sd->parent)
Suresh Siddha69e1e812011-12-01 17:07:33 -08006366 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006367unlock:
Suresh Siddha69e1e812011-12-01 17:07:33 -08006368 rcu_read_unlock();
6369}
6370
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006371/*
Alex Shic1cc0172012-09-10 15:10:58 +08006372 * This routine will record that the cpu is going idle with tick stopped.
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006373 * This info will be used in performing idle load balancing in the future.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006374 */
Alex Shic1cc0172012-09-10 15:10:58 +08006375void nohz_balance_enter_idle(int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006376{
Suresh Siddha71325962012-01-19 18:28:57 -08006377 /*
6378 * If this cpu is going down, then nothing needs to be done.
6379 */
6380 if (!cpu_active(cpu))
6381 return;
6382
Alex Shic1cc0172012-09-10 15:10:58 +08006383 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6384 return;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006385
Alex Shic1cc0172012-09-10 15:10:58 +08006386 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6387 atomic_inc(&nohz.nr_cpus);
6388 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006389}
Suresh Siddha71325962012-01-19 18:28:57 -08006390
Paul Gortmaker0db06282013-06-19 14:53:51 -04006391static int sched_ilb_notifier(struct notifier_block *nfb,
Suresh Siddha71325962012-01-19 18:28:57 -08006392 unsigned long action, void *hcpu)
6393{
6394 switch (action & ~CPU_TASKS_FROZEN) {
6395 case CPU_DYING:
Alex Shic1cc0172012-09-10 15:10:58 +08006396 nohz_balance_exit_idle(smp_processor_id());
Suresh Siddha71325962012-01-19 18:28:57 -08006397 return NOTIFY_OK;
6398 default:
6399 return NOTIFY_DONE;
6400 }
6401}
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006402#endif
6403
6404static DEFINE_SPINLOCK(balancing);
6405
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006406/*
6407 * Scale the max load_balance interval with the number of CPUs in the system.
6408 * This trades load-balance latency on larger machines for less cross talk.
6409 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006410void update_max_interval(void)
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006411{
6412 max_load_balance_interval = HZ*num_online_cpus()/10;
6413}
6414
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006415/*
6416 * It checks each scheduling domain to see if it is due to be balanced,
6417 * and initiates a balancing operation if so.
6418 *
Libinb9b08532013-04-01 19:14:01 +08006419 * Balancing parameters are set up in init_sched_domains.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006420 */
6421static void rebalance_domains(int cpu, enum cpu_idle_type idle)
6422{
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006423 int continue_balancing = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006424 struct rq *rq = cpu_rq(cpu);
6425 unsigned long interval;
Peter Zijlstra04f733b2012-05-11 00:12:02 +02006426 struct sched_domain *sd;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006427 /* Earliest time when we have to do rebalance again */
6428 unsigned long next_balance = jiffies + 60*HZ;
6429 int update_next_balance = 0;
Jason Lowf48627e2013-09-13 11:26:53 -07006430 int need_serialize, need_decay = 0;
6431 u64 max_cost = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006432
Paul Turner48a16752012-10-04 13:18:31 +02006433 update_blocked_averages(cpu);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08006434
Peter Zijlstradce840a2011-04-07 14:09:50 +02006435 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006436 for_each_domain(cpu, sd) {
Jason Lowf48627e2013-09-13 11:26:53 -07006437 /*
6438 * Decay the newidle max times here because this is a regular
6439 * visit to all the domains. Decay ~1% per second.
6440 */
6441 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6442 sd->max_newidle_lb_cost =
6443 (sd->max_newidle_lb_cost * 253) / 256;
6444 sd->next_decay_max_lb_cost = jiffies + HZ;
6445 need_decay = 1;
6446 }
6447 max_cost += sd->max_newidle_lb_cost;
6448
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006449 if (!(sd->flags & SD_LOAD_BALANCE))
6450 continue;
6451
Jason Lowf48627e2013-09-13 11:26:53 -07006452 /*
6453 * Stop the load balance at this level. There is another
6454 * CPU in our sched group which is doing load balancing more
6455 * actively.
6456 */
6457 if (!continue_balancing) {
6458 if (need_decay)
6459 continue;
6460 break;
6461 }
6462
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006463 interval = sd->balance_interval;
6464 if (idle != CPU_IDLE)
6465 interval *= sd->busy_factor;
6466
6467 /* scale ms to jiffies */
6468 interval = msecs_to_jiffies(interval);
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006469 interval = clamp(interval, 1UL, max_load_balance_interval);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006470
6471 need_serialize = sd->flags & SD_SERIALIZE;
6472
6473 if (need_serialize) {
6474 if (!spin_trylock(&balancing))
6475 goto out;
6476 }
6477
6478 if (time_after_eq(jiffies, sd->last_balance + interval)) {
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006479 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006480 /*
Peter Zijlstra62633222013-08-19 12:41:09 +02006481 * The LBF_DST_PINNED logic could have changed
Joonsoo Kimde5eb2d2013-04-23 17:27:38 +09006482 * env->dst_cpu, so we can't know our idle
6483 * state even if we migrated tasks. Update it.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006484 */
Joonsoo Kimde5eb2d2013-04-23 17:27:38 +09006485 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006486 }
6487 sd->last_balance = jiffies;
6488 }
6489 if (need_serialize)
6490 spin_unlock(&balancing);
6491out:
6492 if (time_after(next_balance, sd->last_balance + interval)) {
6493 next_balance = sd->last_balance + interval;
6494 update_next_balance = 1;
6495 }
Jason Lowf48627e2013-09-13 11:26:53 -07006496 }
6497 if (need_decay) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006498 /*
Jason Lowf48627e2013-09-13 11:26:53 -07006499 * Ensure the rq-wide value also decays but keep it at a
6500 * reasonable floor to avoid funnies with rq->avg_idle.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006501 */
Jason Lowf48627e2013-09-13 11:26:53 -07006502 rq->max_idle_balance_cost =
6503 max((u64)sysctl_sched_migration_cost, max_cost);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006504 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006505 rcu_read_unlock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006506
6507 /*
6508 * next_balance will be updated only when there is a need.
6509 * When the cpu is attached to null domain for ex, it will not be
6510 * updated.
6511 */
6512 if (likely(update_next_balance))
6513 rq->next_balance = next_balance;
6514}
6515
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006516#ifdef CONFIG_NO_HZ_COMMON
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006517/*
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006518 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006519 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6520 */
6521static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
6522{
6523 struct rq *this_rq = cpu_rq(this_cpu);
6524 struct rq *rq;
6525 int balance_cpu;
6526
Suresh Siddha1c792db2011-12-01 17:07:32 -08006527 if (idle != CPU_IDLE ||
6528 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6529 goto end;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006530
6531 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
Suresh Siddha8a6d42d2011-12-06 11:19:37 -08006532 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006533 continue;
6534
6535 /*
6536 * If this cpu gets work to do, stop the load balancing
6537 * work being done for other cpus. Next load
6538 * balancing owner will pick it up.
6539 */
Suresh Siddha1c792db2011-12-01 17:07:32 -08006540 if (need_resched())
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006541 break;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006542
Vincent Guittot5ed4f1d2012-09-13 06:11:26 +02006543 rq = cpu_rq(balance_cpu);
6544
6545 raw_spin_lock_irq(&rq->lock);
6546 update_rq_clock(rq);
6547 update_idle_cpu_load(rq);
6548 raw_spin_unlock_irq(&rq->lock);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006549
6550 rebalance_domains(balance_cpu, CPU_IDLE);
6551
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006552 if (time_after(this_rq->next_balance, rq->next_balance))
6553 this_rq->next_balance = rq->next_balance;
6554 }
6555 nohz.next_balance = this_rq->next_balance;
Suresh Siddha1c792db2011-12-01 17:07:32 -08006556end:
6557 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006558}
6559
6560/*
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006561 * Current heuristic for kicking the idle load balancer in the presence
6562 * of an idle cpu is the system.
6563 * - This rq has more than one task.
6564 * - At any scheduler domain level, this cpu's scheduler group has multiple
6565 * busy cpu's exceeding the group's power.
6566 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6567 * domain span are idle.
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006568 */
6569static inline int nohz_kick_needed(struct rq *rq, int cpu)
6570{
6571 unsigned long now = jiffies;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006572 struct sched_domain *sd;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006573
Suresh Siddha1c792db2011-12-01 17:07:32 -08006574 if (unlikely(idle_cpu(cpu)))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006575 return 0;
6576
Suresh Siddha1c792db2011-12-01 17:07:32 -08006577 /*
6578 * We may be recently in ticked or tickless idle mode. At the first
6579 * busy tick after returning from idle, we will update the busy stats.
6580 */
Suresh Siddha69e1e812011-12-01 17:07:33 -08006581 set_cpu_sd_state_busy();
Alex Shic1cc0172012-09-10 15:10:58 +08006582 nohz_balance_exit_idle(cpu);
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006583
6584 /*
6585 * None are in tickless mode and hence no need for NOHZ idle load
6586 * balancing.
6587 */
6588 if (likely(!atomic_read(&nohz.nr_cpus)))
6589 return 0;
Suresh Siddha1c792db2011-12-01 17:07:32 -08006590
6591 if (time_before(now, nohz.next_balance))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006592 return 0;
6593
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006594 if (rq->nr_running >= 2)
6595 goto need_kick;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006596
Peter Zijlstra067491b2011-12-07 14:32:08 +01006597 rcu_read_lock();
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006598 for_each_domain(cpu, sd) {
6599 struct sched_group *sg = sd->groups;
6600 struct sched_group_power *sgp = sg->sgp;
6601 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006602
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006603 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
Peter Zijlstra067491b2011-12-07 14:32:08 +01006604 goto need_kick_unlock;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006605
6606 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
6607 && (cpumask_first_and(nohz.idle_cpus_mask,
6608 sched_domain_span(sd)) < cpu))
Peter Zijlstra067491b2011-12-07 14:32:08 +01006609 goto need_kick_unlock;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006610
6611 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
6612 break;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006613 }
Peter Zijlstra067491b2011-12-07 14:32:08 +01006614 rcu_read_unlock();
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006615 return 0;
Peter Zijlstra067491b2011-12-07 14:32:08 +01006616
6617need_kick_unlock:
6618 rcu_read_unlock();
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006619need_kick:
6620 return 1;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006621}
6622#else
6623static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
6624#endif
6625
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006626/*
6627 * run_rebalance_domains is triggered when needed from the scheduler tick.
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006628 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006629 */
6630static void run_rebalance_domains(struct softirq_action *h)
6631{
6632 int this_cpu = smp_processor_id();
6633 struct rq *this_rq = cpu_rq(this_cpu);
Suresh Siddha6eb57e02011-10-03 15:09:01 -07006634 enum cpu_idle_type idle = this_rq->idle_balance ?
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006635 CPU_IDLE : CPU_NOT_IDLE;
6636
6637 rebalance_domains(this_cpu, idle);
6638
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006639 /*
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006640 * If this cpu has a pending nohz_balance_kick, then do the
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006641 * balancing on behalf of the other idle cpus whose ticks are
6642 * stopped.
6643 */
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006644 nohz_idle_balance(this_cpu, idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006645}
6646
6647static inline int on_null_domain(int cpu)
6648{
Paul E. McKenney90a65012010-02-28 08:32:18 -08006649 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006650}
6651
6652/*
6653 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006654 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006655void trigger_load_balance(struct rq *rq, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006656{
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006657 /* Don't need to rebalance while attached to NULL domain */
6658 if (time_after_eq(jiffies, rq->next_balance) &&
6659 likely(!on_null_domain(cpu)))
6660 raise_softirq(SCHED_SOFTIRQ);
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006661#ifdef CONFIG_NO_HZ_COMMON
Suresh Siddha1c792db2011-12-01 17:07:32 -08006662 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006663 nohz_balancer_kick(cpu);
6664#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006665}
6666
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01006667static void rq_online_fair(struct rq *rq)
6668{
6669 update_sysctl();
6670}
6671
6672static void rq_offline_fair(struct rq *rq)
6673{
6674 update_sysctl();
Peter Boonstoppela4c96ae2012-08-09 15:34:47 -07006675
6676 /* Ensure any throttled groups are reachable by pick_next_task */
6677 unthrottle_offline_cfs_rqs(rq);
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01006678}
6679
Dhaval Giani55e12e52008-06-24 23:39:43 +05306680#endif /* CONFIG_SMP */
Peter Williamse1d14842007-10-24 18:23:51 +02006681
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006682/*
6683 * scheduler tick hitting a task of our scheduling class:
6684 */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01006685static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006686{
6687 struct cfs_rq *cfs_rq;
6688 struct sched_entity *se = &curr->se;
6689
6690 for_each_sched_entity(se) {
6691 cfs_rq = cfs_rq_of(se);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01006692 entity_tick(cfs_rq, se, queued);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006693 }
Ben Segall18bf2802012-10-04 12:51:20 +02006694
Dave Kleikamp10e84b92013-07-31 13:53:35 -07006695 if (numabalancing_enabled)
Peter Zijlstracbee9f82012-10-25 14:16:43 +02006696 task_tick_numa(rq, curr);
Linus Torvalds3d59eeb2012-12-16 14:33:25 -08006697
Ben Segall18bf2802012-10-04 12:51:20 +02006698 update_rq_runnable_avg(rq, 1);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006699}
6700
6701/*
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006702 * called on fork with the child task as argument from the parent's context
6703 * - child not yet on the tasklist
6704 * - preemption disabled
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006705 */
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006706static void task_fork_fair(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006707{
Daisuke Nishimura4fc420c2011-12-15 14:36:55 +09006708 struct cfs_rq *cfs_rq;
6709 struct sched_entity *se = &p->se, *curr;
Ingo Molnar00bf7bf2007-10-15 17:00:14 +02006710 int this_cpu = smp_processor_id();
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006711 struct rq *rq = this_rq();
6712 unsigned long flags;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006713
Thomas Gleixner05fa7852009-11-17 14:28:38 +01006714 raw_spin_lock_irqsave(&rq->lock, flags);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006715
Peter Zijlstra861d0342010-08-19 13:31:43 +02006716 update_rq_clock(rq);
6717
Daisuke Nishimura4fc420c2011-12-15 14:36:55 +09006718 cfs_rq = task_cfs_rq(current);
6719 curr = cfs_rq->curr;
6720
Daisuke Nishimura6c9a27f2013-09-10 18:16:36 +09006721 /*
6722 * Not only the cpu but also the task_group of the parent might have
6723 * been changed after parent->se.parent,cfs_rq were copied to
6724 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6725 * of child point to valid ones.
6726 */
6727 rcu_read_lock();
6728 __set_task_cpu(p, this_cpu);
6729 rcu_read_unlock();
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006730
Ting Yang7109c442007-08-28 12:53:24 +02006731 update_curr(cfs_rq);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006732
Mike Galbraithb5d9d732009-09-08 11:12:28 +02006733 if (curr)
6734 se->vruntime = curr->vruntime;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02006735 place_entity(cfs_rq, se, 1);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02006736
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006737 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
Dmitry Adamushko87fefa32007-10-15 17:00:08 +02006738 /*
Ingo Molnaredcb60a2007-10-15 17:00:08 +02006739 * Upon rescheduling, sched_class::put_prev_task() will place
6740 * 'current' within the tree based on its new key value.
6741 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02006742 swap(curr->vruntime, se->vruntime);
Bharata B Raoaec0a512008-08-28 14:42:49 +05306743 resched_task(rq->curr);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02006744 }
6745
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01006746 se->vruntime -= cfs_rq->min_vruntime;
6747
Thomas Gleixner05fa7852009-11-17 14:28:38 +01006748 raw_spin_unlock_irqrestore(&rq->lock, flags);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006749}
6750
Steven Rostedtcb469842008-01-25 21:08:22 +01006751/*
6752 * Priority of the task has changed. Check to see if we preempt
6753 * the current task.
6754 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006755static void
6756prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
Steven Rostedtcb469842008-01-25 21:08:22 +01006757{
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006758 if (!p->se.on_rq)
6759 return;
6760
Steven Rostedtcb469842008-01-25 21:08:22 +01006761 /*
6762 * Reschedule if we are currently running on this runqueue and
6763 * our priority decreased, or if we are not currently running on
6764 * this runqueue and our priority is higher than the current's
6765 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006766 if (rq->curr == p) {
Steven Rostedtcb469842008-01-25 21:08:22 +01006767 if (p->prio > oldprio)
6768 resched_task(rq->curr);
6769 } else
Peter Zijlstra15afe092008-09-20 23:38:02 +02006770 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01006771}
6772
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006773static void switched_from_fair(struct rq *rq, struct task_struct *p)
6774{
6775 struct sched_entity *se = &p->se;
6776 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6777
6778 /*
6779 * Ensure the task's vruntime is normalized, so that when its
6780 * switched back to the fair class the enqueue_entity(.flags=0) will
6781 * do the right thing.
6782 *
6783 * If it was on_rq, then the dequeue_entity(.flags=0) will already
6784 * have normalized the vruntime, if it was !on_rq, then only when
6785 * the task is sleeping will it still have non-normalized vruntime.
6786 */
6787 if (!se->on_rq && p->state != TASK_RUNNING) {
6788 /*
6789 * Fix up our vruntime so that the current sleep doesn't
6790 * cause 'unlimited' sleep bonus.
6791 */
6792 place_entity(cfs_rq, se, 0);
6793 se->vruntime -= cfs_rq->min_vruntime;
6794 }
Paul Turner9ee474f2012-10-04 13:18:30 +02006795
Alex Shi141965c2013-06-26 13:05:39 +08006796#ifdef CONFIG_SMP
Paul Turner9ee474f2012-10-04 13:18:30 +02006797 /*
6798 * Remove our load from contribution when we leave sched_fair
6799 * and ensure we don't carry in an old decay_count if we
6800 * switch back.
6801 */
Kirill Tkhai87e3c8a2013-07-21 04:32:07 +04006802 if (se->avg.decay_count) {
6803 __synchronize_entity_decay(se);
6804 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
Paul Turner9ee474f2012-10-04 13:18:30 +02006805 }
6806#endif
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006807}
6808
Steven Rostedtcb469842008-01-25 21:08:22 +01006809/*
6810 * We switched to the sched_fair class.
6811 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006812static void switched_to_fair(struct rq *rq, struct task_struct *p)
Steven Rostedtcb469842008-01-25 21:08:22 +01006813{
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006814 if (!p->se.on_rq)
6815 return;
6816
Steven Rostedtcb469842008-01-25 21:08:22 +01006817 /*
6818 * We were most likely switched from sched_rt, so
6819 * kick off the schedule if running, otherwise just see
6820 * if we can still preempt the current task.
6821 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006822 if (rq->curr == p)
Steven Rostedtcb469842008-01-25 21:08:22 +01006823 resched_task(rq->curr);
6824 else
Peter Zijlstra15afe092008-09-20 23:38:02 +02006825 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01006826}
6827
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02006828/* Account for a task changing its policy or group.
6829 *
6830 * This routine is mostly called to set cfs_rq->curr field when a task
6831 * migrates between groups/classes.
6832 */
6833static void set_curr_task_fair(struct rq *rq)
6834{
6835 struct sched_entity *se = &rq->curr->se;
6836
Paul Turnerec12cb72011-07-21 09:43:30 -07006837 for_each_sched_entity(se) {
6838 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6839
6840 set_next_entity(cfs_rq, se);
6841 /* ensure bandwidth has been allocated on our new cfs_rq */
6842 account_cfs_rq_runtime(cfs_rq, 0);
6843 }
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02006844}
6845
Peter Zijlstra029632f2011-10-25 10:00:11 +02006846void init_cfs_rq(struct cfs_rq *cfs_rq)
6847{
6848 cfs_rq->tasks_timeline = RB_ROOT;
Peter Zijlstra029632f2011-10-25 10:00:11 +02006849 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6850#ifndef CONFIG_64BIT
6851 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
6852#endif
Alex Shi141965c2013-06-26 13:05:39 +08006853#ifdef CONFIG_SMP
Paul Turner9ee474f2012-10-04 13:18:30 +02006854 atomic64_set(&cfs_rq->decay_counter, 1);
Alex Shi25099402013-06-20 10:18:55 +08006855 atomic_long_set(&cfs_rq->removed_load, 0);
Paul Turner9ee474f2012-10-04 13:18:30 +02006856#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02006857}
6858
Peter Zijlstra810b3812008-02-29 15:21:01 -05006859#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02006860static void task_move_group_fair(struct task_struct *p, int on_rq)
Peter Zijlstra810b3812008-02-29 15:21:01 -05006861{
Paul Turneraff3e492012-10-04 13:18:30 +02006862 struct cfs_rq *cfs_rq;
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02006863 /*
6864 * If the task was not on the rq at the time of this cgroup movement
6865 * it must have been asleep, sleeping tasks keep their ->vruntime
6866 * absolute on their old rq until wakeup (needed for the fair sleeper
6867 * bonus in place_entity()).
6868 *
6869 * If it was on the rq, we've just 'preempted' it, which does convert
6870 * ->vruntime to a relative base.
6871 *
6872 * Make sure both cases convert their relative position when migrating
6873 * to another cgroup's rq. This does somewhat interfere with the
6874 * fair sleeper stuff for the first placement, but who cares.
6875 */
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09006876 /*
6877 * When !on_rq, vruntime of the task has usually NOT been normalized.
6878 * But there are some cases where it has already been normalized:
6879 *
6880 * - Moving a forked child which is waiting for being woken up by
6881 * wake_up_new_task().
Daisuke Nishimura62af3782011-12-15 14:37:41 +09006882 * - Moving a task which has been woken up by try_to_wake_up() and
6883 * waiting for actually being woken up by sched_ttwu_pending().
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09006884 *
6885 * To prevent boost or penalty in the new cfs_rq caused by delta
6886 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
6887 */
Daisuke Nishimura62af3782011-12-15 14:37:41 +09006888 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09006889 on_rq = 1;
6890
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01006891 if (!on_rq)
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02006892 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
6893 set_task_rq(p, task_cpu(p));
Paul Turneraff3e492012-10-04 13:18:30 +02006894 if (!on_rq) {
6895 cfs_rq = cfs_rq_of(&p->se);
6896 p->se.vruntime += cfs_rq->min_vruntime;
6897#ifdef CONFIG_SMP
6898 /*
6899 * migrate_task_rq_fair() will have removed our previous
6900 * contribution, but we must synchronize for ongoing future
6901 * decay.
6902 */
6903 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
6904 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
6905#endif
6906 }
Peter Zijlstra810b3812008-02-29 15:21:01 -05006907}
Peter Zijlstra029632f2011-10-25 10:00:11 +02006908
6909void free_fair_sched_group(struct task_group *tg)
6910{
6911 int i;
6912
6913 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
6914
6915 for_each_possible_cpu(i) {
6916 if (tg->cfs_rq)
6917 kfree(tg->cfs_rq[i]);
6918 if (tg->se)
6919 kfree(tg->se[i]);
6920 }
6921
6922 kfree(tg->cfs_rq);
6923 kfree(tg->se);
6924}
6925
6926int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6927{
6928 struct cfs_rq *cfs_rq;
6929 struct sched_entity *se;
6930 int i;
6931
6932 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
6933 if (!tg->cfs_rq)
6934 goto err;
6935 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
6936 if (!tg->se)
6937 goto err;
6938
6939 tg->shares = NICE_0_LOAD;
6940
6941 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
6942
6943 for_each_possible_cpu(i) {
6944 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
6945 GFP_KERNEL, cpu_to_node(i));
6946 if (!cfs_rq)
6947 goto err;
6948
6949 se = kzalloc_node(sizeof(struct sched_entity),
6950 GFP_KERNEL, cpu_to_node(i));
6951 if (!se)
6952 goto err_free_rq;
6953
6954 init_cfs_rq(cfs_rq);
6955 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
6956 }
6957
6958 return 1;
6959
6960err_free_rq:
6961 kfree(cfs_rq);
6962err:
6963 return 0;
6964}
6965
6966void unregister_fair_sched_group(struct task_group *tg, int cpu)
6967{
6968 struct rq *rq = cpu_rq(cpu);
6969 unsigned long flags;
6970
6971 /*
6972 * Only empty task groups can be destroyed; so we can speculatively
6973 * check on_list without danger of it being re-added.
6974 */
6975 if (!tg->cfs_rq[cpu]->on_list)
6976 return;
6977
6978 raw_spin_lock_irqsave(&rq->lock, flags);
6979 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
6980 raw_spin_unlock_irqrestore(&rq->lock, flags);
6981}
6982
6983void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
6984 struct sched_entity *se, int cpu,
6985 struct sched_entity *parent)
6986{
6987 struct rq *rq = cpu_rq(cpu);
6988
6989 cfs_rq->tg = tg;
6990 cfs_rq->rq = rq;
Peter Zijlstra029632f2011-10-25 10:00:11 +02006991 init_cfs_rq_runtime(cfs_rq);
6992
6993 tg->cfs_rq[cpu] = cfs_rq;
6994 tg->se[cpu] = se;
6995
6996 /* se could be NULL for root_task_group */
6997 if (!se)
6998 return;
6999
7000 if (!parent)
7001 se->cfs_rq = &rq->cfs;
7002 else
7003 se->cfs_rq = parent->my_q;
7004
7005 se->my_q = cfs_rq;
7006 update_load_set(&se->load, 0);
7007 se->parent = parent;
7008}
7009
7010static DEFINE_MUTEX(shares_mutex);
7011
7012int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7013{
7014 int i;
7015 unsigned long flags;
7016
7017 /*
7018 * We can't change the weight of the root cgroup.
7019 */
7020 if (!tg->se[0])
7021 return -EINVAL;
7022
7023 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7024
7025 mutex_lock(&shares_mutex);
7026 if (tg->shares == shares)
7027 goto done;
7028
7029 tg->shares = shares;
7030 for_each_possible_cpu(i) {
7031 struct rq *rq = cpu_rq(i);
7032 struct sched_entity *se;
7033
7034 se = tg->se[i];
7035 /* Propagate contribution to hierarchy */
7036 raw_spin_lock_irqsave(&rq->lock, flags);
Frederic Weisbecker71b1da42013-04-12 01:50:59 +02007037
7038 /* Possible calls to update_curr() need rq clock */
7039 update_rq_clock(rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08007040 for_each_sched_entity(se)
Peter Zijlstra029632f2011-10-25 10:00:11 +02007041 update_cfs_shares(group_cfs_rq(se));
7042 raw_spin_unlock_irqrestore(&rq->lock, flags);
7043 }
7044
7045done:
7046 mutex_unlock(&shares_mutex);
7047 return 0;
7048}
7049#else /* CONFIG_FAIR_GROUP_SCHED */
7050
7051void free_fair_sched_group(struct task_group *tg) { }
7052
7053int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7054{
7055 return 1;
7056}
7057
7058void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7059
7060#endif /* CONFIG_FAIR_GROUP_SCHED */
7061
Peter Zijlstra810b3812008-02-29 15:21:01 -05007062
H Hartley Sweeten6d686f42010-01-13 20:21:52 -07007063static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
Peter Williams0d721ce2009-09-21 01:31:53 +00007064{
7065 struct sched_entity *se = &task->se;
Peter Williams0d721ce2009-09-21 01:31:53 +00007066 unsigned int rr_interval = 0;
7067
7068 /*
7069 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7070 * idle runqueue:
7071 */
Peter Williams0d721ce2009-09-21 01:31:53 +00007072 if (rq->cfs.load.weight)
Zhu Yanhaia59f4e02013-01-08 12:56:52 +08007073 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
Peter Williams0d721ce2009-09-21 01:31:53 +00007074
7075 return rr_interval;
7076}
7077
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007078/*
7079 * All the scheduling class methods:
7080 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02007081const struct sched_class fair_sched_class = {
Ingo Molnar5522d5d2007-10-15 17:00:12 +02007082 .next = &idle_sched_class,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007083 .enqueue_task = enqueue_task_fair,
7084 .dequeue_task = dequeue_task_fair,
7085 .yield_task = yield_task_fair,
Mike Galbraithd95f4122011-02-01 09:50:51 -05007086 .yield_to_task = yield_to_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007087
Ingo Molnar2e09bf52007-10-15 17:00:05 +02007088 .check_preempt_curr = check_preempt_wakeup,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007089
7090 .pick_next_task = pick_next_task_fair,
7091 .put_prev_task = put_prev_task_fair,
7092
Peter Williams681f3e62007-10-24 18:23:51 +02007093#ifdef CONFIG_SMP
Li Zefan4ce72a22008-10-22 15:25:26 +08007094 .select_task_rq = select_task_rq_fair,
Paul Turner0a74bef2012-10-04 13:18:30 +02007095 .migrate_task_rq = migrate_task_rq_fair,
Alex Shi141965c2013-06-26 13:05:39 +08007096
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01007097 .rq_online = rq_online_fair,
7098 .rq_offline = rq_offline_fair,
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01007099
7100 .task_waking = task_waking_fair,
Peter Williams681f3e62007-10-24 18:23:51 +02007101#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007102
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02007103 .set_curr_task = set_curr_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007104 .task_tick = task_tick_fair,
Peter Zijlstracd29fe62009-11-27 17:32:46 +01007105 .task_fork = task_fork_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01007106
7107 .prio_changed = prio_changed_fair,
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007108 .switched_from = switched_from_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01007109 .switched_to = switched_to_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05007110
Peter Williams0d721ce2009-09-21 01:31:53 +00007111 .get_rr_interval = get_rr_interval_fair,
7112
Peter Zijlstra810b3812008-02-29 15:21:01 -05007113#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007114 .task_move_group = task_move_group_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05007115#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007116};
7117
7118#ifdef CONFIG_SCHED_DEBUG
Peter Zijlstra029632f2011-10-25 10:00:11 +02007119void print_cfs_stats(struct seq_file *m, int cpu)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007120{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007121 struct cfs_rq *cfs_rq;
7122
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01007123 rcu_read_lock();
Ingo Molnarc3b64f12007-08-09 11:16:51 +02007124 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
Ingo Molnar5cef9ec2007-08-09 11:16:47 +02007125 print_cfs_rq(m, cpu, cfs_rq);
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01007126 rcu_read_unlock();
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007127}
7128#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02007129
7130__init void init_sched_fair_class(void)
7131{
7132#ifdef CONFIG_SMP
7133 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7134
Frederic Weisbecker3451d022011-08-10 23:21:01 +02007135#ifdef CONFIG_NO_HZ_COMMON
Diwakar Tundlam554ceca2012-03-07 14:44:26 -08007136 nohz.next_balance = jiffies;
Peter Zijlstra029632f2011-10-25 10:00:11 +02007137 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
Suresh Siddha71325962012-01-19 18:28:57 -08007138 cpu_notifier(sched_ilb_notifier, 0);
Peter Zijlstra029632f2011-10-25 10:00:11 +02007139#endif
7140#endif /* SMP */
7141
7142}