| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | *  linux/arch/i386/mm/fault.c | 
|  | 3 | * | 
|  | 4 | *  Copyright (C) 1995  Linus Torvalds | 
|  | 5 | */ | 
|  | 6 |  | 
|  | 7 | #include <linux/signal.h> | 
|  | 8 | #include <linux/sched.h> | 
|  | 9 | #include <linux/kernel.h> | 
|  | 10 | #include <linux/errno.h> | 
|  | 11 | #include <linux/string.h> | 
|  | 12 | #include <linux/types.h> | 
|  | 13 | #include <linux/ptrace.h> | 
|  | 14 | #include <linux/mman.h> | 
|  | 15 | #include <linux/mm.h> | 
|  | 16 | #include <linux/smp.h> | 
|  | 17 | #include <linux/smp_lock.h> | 
|  | 18 | #include <linux/interrupt.h> | 
|  | 19 | #include <linux/init.h> | 
|  | 20 | #include <linux/tty.h> | 
|  | 21 | #include <linux/vt_kern.h>		/* For unblank_screen() */ | 
|  | 22 | #include <linux/highmem.h> | 
|  | 23 | #include <linux/module.h> | 
|  | 24 |  | 
|  | 25 | #include <asm/system.h> | 
|  | 26 | #include <asm/uaccess.h> | 
|  | 27 | #include <asm/desc.h> | 
|  | 28 | #include <asm/kdebug.h> | 
|  | 29 |  | 
|  | 30 | extern void die(const char *,struct pt_regs *,long); | 
|  | 31 |  | 
|  | 32 | /* | 
|  | 33 | * Unlock any spinlocks which will prevent us from getting the | 
|  | 34 | * message out | 
|  | 35 | */ | 
|  | 36 | void bust_spinlocks(int yes) | 
|  | 37 | { | 
|  | 38 | int loglevel_save = console_loglevel; | 
|  | 39 |  | 
|  | 40 | if (yes) { | 
|  | 41 | oops_in_progress = 1; | 
|  | 42 | return; | 
|  | 43 | } | 
|  | 44 | #ifdef CONFIG_VT | 
|  | 45 | unblank_screen(); | 
|  | 46 | #endif | 
|  | 47 | oops_in_progress = 0; | 
|  | 48 | /* | 
|  | 49 | * OK, the message is on the console.  Now we call printk() | 
|  | 50 | * without oops_in_progress set so that printk will give klogd | 
|  | 51 | * a poke.  Hold onto your hats... | 
|  | 52 | */ | 
|  | 53 | console_loglevel = 15;		/* NMI oopser may have shut the console up */ | 
|  | 54 | printk(" "); | 
|  | 55 | console_loglevel = loglevel_save; | 
|  | 56 | } | 
|  | 57 |  | 
|  | 58 | /* | 
|  | 59 | * Return EIP plus the CS segment base.  The segment limit is also | 
|  | 60 | * adjusted, clamped to the kernel/user address space (whichever is | 
|  | 61 | * appropriate), and returned in *eip_limit. | 
|  | 62 | * | 
|  | 63 | * The segment is checked, because it might have been changed by another | 
|  | 64 | * task between the original faulting instruction and here. | 
|  | 65 | * | 
|  | 66 | * If CS is no longer a valid code segment, or if EIP is beyond the | 
|  | 67 | * limit, or if it is a kernel address when CS is not a kernel segment, | 
|  | 68 | * then the returned value will be greater than *eip_limit. | 
|  | 69 | * | 
|  | 70 | * This is slow, but is very rarely executed. | 
|  | 71 | */ | 
|  | 72 | static inline unsigned long get_segment_eip(struct pt_regs *regs, | 
|  | 73 | unsigned long *eip_limit) | 
|  | 74 | { | 
|  | 75 | unsigned long eip = regs->eip; | 
|  | 76 | unsigned seg = regs->xcs & 0xffff; | 
|  | 77 | u32 seg_ar, seg_limit, base, *desc; | 
|  | 78 |  | 
|  | 79 | /* The standard kernel/user address space limit. */ | 
|  | 80 | *eip_limit = (seg & 3) ? USER_DS.seg : KERNEL_DS.seg; | 
|  | 81 |  | 
|  | 82 | /* Unlikely, but must come before segment checks. */ | 
|  | 83 | if (unlikely((regs->eflags & VM_MASK) != 0)) | 
|  | 84 | return eip + (seg << 4); | 
|  | 85 |  | 
|  | 86 | /* By far the most common cases. */ | 
|  | 87 | if (likely(seg == __USER_CS || seg == __KERNEL_CS)) | 
|  | 88 | return eip; | 
|  | 89 |  | 
|  | 90 | /* Check the segment exists, is within the current LDT/GDT size, | 
|  | 91 | that kernel/user (ring 0..3) has the appropriate privilege, | 
|  | 92 | that it's a code segment, and get the limit. */ | 
|  | 93 | __asm__ ("larl %3,%0; lsll %3,%1" | 
|  | 94 | : "=&r" (seg_ar), "=r" (seg_limit) : "0" (0), "rm" (seg)); | 
|  | 95 | if ((~seg_ar & 0x9800) || eip > seg_limit) { | 
|  | 96 | *eip_limit = 0; | 
|  | 97 | return 1;	 /* So that returned eip > *eip_limit. */ | 
|  | 98 | } | 
|  | 99 |  | 
|  | 100 | /* Get the GDT/LDT descriptor base. | 
|  | 101 | When you look for races in this code remember that | 
|  | 102 | LDT and other horrors are only used in user space. */ | 
|  | 103 | if (seg & (1<<2)) { | 
|  | 104 | /* Must lock the LDT while reading it. */ | 
|  | 105 | down(¤t->mm->context.sem); | 
|  | 106 | desc = current->mm->context.ldt; | 
|  | 107 | desc = (void *)desc + (seg & ~7); | 
|  | 108 | } else { | 
|  | 109 | /* Must disable preemption while reading the GDT. */ | 
|  | 110 | desc = (u32 *)&per_cpu(cpu_gdt_table, get_cpu()); | 
|  | 111 | desc = (void *)desc + (seg & ~7); | 
|  | 112 | } | 
|  | 113 |  | 
|  | 114 | /* Decode the code segment base from the descriptor */ | 
|  | 115 | base = get_desc_base((unsigned long *)desc); | 
|  | 116 |  | 
|  | 117 | if (seg & (1<<2)) { | 
|  | 118 | up(¤t->mm->context.sem); | 
|  | 119 | } else | 
|  | 120 | put_cpu(); | 
|  | 121 |  | 
|  | 122 | /* Adjust EIP and segment limit, and clamp at the kernel limit. | 
|  | 123 | It's legitimate for segments to wrap at 0xffffffff. */ | 
|  | 124 | seg_limit += base; | 
|  | 125 | if (seg_limit < *eip_limit && seg_limit >= base) | 
|  | 126 | *eip_limit = seg_limit; | 
|  | 127 | return eip + base; | 
|  | 128 | } | 
|  | 129 |  | 
|  | 130 | /* | 
|  | 131 | * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch. | 
|  | 132 | * Check that here and ignore it. | 
|  | 133 | */ | 
|  | 134 | static int __is_prefetch(struct pt_regs *regs, unsigned long addr) | 
|  | 135 | { | 
|  | 136 | unsigned long limit; | 
|  | 137 | unsigned long instr = get_segment_eip (regs, &limit); | 
|  | 138 | int scan_more = 1; | 
|  | 139 | int prefetch = 0; | 
|  | 140 | int i; | 
|  | 141 |  | 
|  | 142 | for (i = 0; scan_more && i < 15; i++) { | 
|  | 143 | unsigned char opcode; | 
|  | 144 | unsigned char instr_hi; | 
|  | 145 | unsigned char instr_lo; | 
|  | 146 |  | 
|  | 147 | if (instr > limit) | 
|  | 148 | break; | 
| Domen Puncer | c7c5844 | 2005-06-25 14:58:46 -0700 | [diff] [blame] | 149 | if (__get_user(opcode, (unsigned char __user *) instr)) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 150 | break; | 
|  | 151 |  | 
|  | 152 | instr_hi = opcode & 0xf0; | 
|  | 153 | instr_lo = opcode & 0x0f; | 
|  | 154 | instr++; | 
|  | 155 |  | 
|  | 156 | switch (instr_hi) { | 
|  | 157 | case 0x20: | 
|  | 158 | case 0x30: | 
|  | 159 | /* Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. */ | 
|  | 160 | scan_more = ((instr_lo & 7) == 0x6); | 
|  | 161 | break; | 
|  | 162 |  | 
|  | 163 | case 0x60: | 
|  | 164 | /* 0x64 thru 0x67 are valid prefixes in all modes. */ | 
|  | 165 | scan_more = (instr_lo & 0xC) == 0x4; | 
|  | 166 | break; | 
|  | 167 | case 0xF0: | 
|  | 168 | /* 0xF0, 0xF2, and 0xF3 are valid prefixes */ | 
|  | 169 | scan_more = !instr_lo || (instr_lo>>1) == 1; | 
|  | 170 | break; | 
|  | 171 | case 0x00: | 
|  | 172 | /* Prefetch instruction is 0x0F0D or 0x0F18 */ | 
|  | 173 | scan_more = 0; | 
|  | 174 | if (instr > limit) | 
|  | 175 | break; | 
| Domen Puncer | c7c5844 | 2005-06-25 14:58:46 -0700 | [diff] [blame] | 176 | if (__get_user(opcode, (unsigned char __user *) instr)) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 177 | break; | 
|  | 178 | prefetch = (instr_lo == 0xF) && | 
|  | 179 | (opcode == 0x0D || opcode == 0x18); | 
|  | 180 | break; | 
|  | 181 | default: | 
|  | 182 | scan_more = 0; | 
|  | 183 | break; | 
|  | 184 | } | 
|  | 185 | } | 
|  | 186 | return prefetch; | 
|  | 187 | } | 
|  | 188 |  | 
|  | 189 | static inline int is_prefetch(struct pt_regs *regs, unsigned long addr, | 
|  | 190 | unsigned long error_code) | 
|  | 191 | { | 
|  | 192 | if (unlikely(boot_cpu_data.x86_vendor == X86_VENDOR_AMD && | 
|  | 193 | boot_cpu_data.x86 >= 6)) { | 
|  | 194 | /* Catch an obscure case of prefetch inside an NX page. */ | 
|  | 195 | if (nx_enabled && (error_code & 16)) | 
|  | 196 | return 0; | 
|  | 197 | return __is_prefetch(regs, addr); | 
|  | 198 | } | 
|  | 199 | return 0; | 
|  | 200 | } | 
|  | 201 |  | 
|  | 202 | fastcall void do_invalid_op(struct pt_regs *, unsigned long); | 
|  | 203 |  | 
|  | 204 | /* | 
|  | 205 | * This routine handles page faults.  It determines the address, | 
|  | 206 | * and the problem, and then passes it off to one of the appropriate | 
|  | 207 | * routines. | 
|  | 208 | * | 
|  | 209 | * error_code: | 
|  | 210 | *	bit 0 == 0 means no page found, 1 means protection fault | 
|  | 211 | *	bit 1 == 0 means read, 1 means write | 
|  | 212 | *	bit 2 == 0 means kernel, 1 means user-mode | 
|  | 213 | */ | 
|  | 214 | fastcall void do_page_fault(struct pt_regs *regs, unsigned long error_code) | 
|  | 215 | { | 
|  | 216 | struct task_struct *tsk; | 
|  | 217 | struct mm_struct *mm; | 
|  | 218 | struct vm_area_struct * vma; | 
|  | 219 | unsigned long address; | 
|  | 220 | unsigned long page; | 
|  | 221 | int write; | 
|  | 222 | siginfo_t info; | 
|  | 223 |  | 
|  | 224 | /* get the address */ | 
|  | 225 | __asm__("movl %%cr2,%0":"=r" (address)); | 
|  | 226 |  | 
|  | 227 | if (notify_die(DIE_PAGE_FAULT, "page fault", regs, error_code, 14, | 
|  | 228 | SIGSEGV) == NOTIFY_STOP) | 
|  | 229 | return; | 
|  | 230 | /* It's safe to allow irq's after cr2 has been saved */ | 
|  | 231 | if (regs->eflags & (X86_EFLAGS_IF|VM_MASK)) | 
|  | 232 | local_irq_enable(); | 
|  | 233 |  | 
|  | 234 | tsk = current; | 
|  | 235 |  | 
|  | 236 | info.si_code = SEGV_MAPERR; | 
|  | 237 |  | 
|  | 238 | /* | 
|  | 239 | * We fault-in kernel-space virtual memory on-demand. The | 
|  | 240 | * 'reference' page table is init_mm.pgd. | 
|  | 241 | * | 
|  | 242 | * NOTE! We MUST NOT take any locks for this case. We may | 
|  | 243 | * be in an interrupt or a critical region, and should | 
|  | 244 | * only copy the information from the master page table, | 
|  | 245 | * nothing more. | 
|  | 246 | * | 
|  | 247 | * This verifies that the fault happens in kernel space | 
|  | 248 | * (error_code & 4) == 0, and that the fault was not a | 
|  | 249 | * protection error (error_code & 1) == 0. | 
|  | 250 | */ | 
|  | 251 | if (unlikely(address >= TASK_SIZE)) { | 
|  | 252 | if (!(error_code & 5)) | 
|  | 253 | goto vmalloc_fault; | 
|  | 254 | /* | 
|  | 255 | * Don't take the mm semaphore here. If we fixup a prefetch | 
|  | 256 | * fault we could otherwise deadlock. | 
|  | 257 | */ | 
|  | 258 | goto bad_area_nosemaphore; | 
|  | 259 | } | 
|  | 260 |  | 
|  | 261 | mm = tsk->mm; | 
|  | 262 |  | 
|  | 263 | /* | 
|  | 264 | * If we're in an interrupt, have no user context or are running in an | 
|  | 265 | * atomic region then we must not take the fault.. | 
|  | 266 | */ | 
|  | 267 | if (in_atomic() || !mm) | 
|  | 268 | goto bad_area_nosemaphore; | 
|  | 269 |  | 
|  | 270 | /* When running in the kernel we expect faults to occur only to | 
|  | 271 | * addresses in user space.  All other faults represent errors in the | 
|  | 272 | * kernel and should generate an OOPS.  Unfortunatly, in the case of an | 
|  | 273 | * erroneous fault occuring in a code path which already holds mmap_sem | 
|  | 274 | * we will deadlock attempting to validate the fault against the | 
|  | 275 | * address space.  Luckily the kernel only validly references user | 
|  | 276 | * space from well defined areas of code, which are listed in the | 
|  | 277 | * exceptions table. | 
|  | 278 | * | 
|  | 279 | * As the vast majority of faults will be valid we will only perform | 
|  | 280 | * the source reference check when there is a possibilty of a deadlock. | 
|  | 281 | * Attempt to lock the address space, if we cannot we then validate the | 
|  | 282 | * source.  If this is invalid we can skip the address space check, | 
|  | 283 | * thus avoiding the deadlock. | 
|  | 284 | */ | 
|  | 285 | if (!down_read_trylock(&mm->mmap_sem)) { | 
|  | 286 | if ((error_code & 4) == 0 && | 
|  | 287 | !search_exception_tables(regs->eip)) | 
|  | 288 | goto bad_area_nosemaphore; | 
|  | 289 | down_read(&mm->mmap_sem); | 
|  | 290 | } | 
|  | 291 |  | 
|  | 292 | vma = find_vma(mm, address); | 
|  | 293 | if (!vma) | 
|  | 294 | goto bad_area; | 
|  | 295 | if (vma->vm_start <= address) | 
|  | 296 | goto good_area; | 
|  | 297 | if (!(vma->vm_flags & VM_GROWSDOWN)) | 
|  | 298 | goto bad_area; | 
|  | 299 | if (error_code & 4) { | 
|  | 300 | /* | 
|  | 301 | * accessing the stack below %esp is always a bug. | 
|  | 302 | * The "+ 32" is there due to some instructions (like | 
|  | 303 | * pusha) doing post-decrement on the stack and that | 
|  | 304 | * doesn't show up until later.. | 
|  | 305 | */ | 
|  | 306 | if (address + 32 < regs->esp) | 
|  | 307 | goto bad_area; | 
|  | 308 | } | 
|  | 309 | if (expand_stack(vma, address)) | 
|  | 310 | goto bad_area; | 
|  | 311 | /* | 
|  | 312 | * Ok, we have a good vm_area for this memory access, so | 
|  | 313 | * we can handle it.. | 
|  | 314 | */ | 
|  | 315 | good_area: | 
|  | 316 | info.si_code = SEGV_ACCERR; | 
|  | 317 | write = 0; | 
|  | 318 | switch (error_code & 3) { | 
|  | 319 | default:	/* 3: write, present */ | 
|  | 320 | #ifdef TEST_VERIFY_AREA | 
|  | 321 | if (regs->cs == KERNEL_CS) | 
|  | 322 | printk("WP fault at %08lx\n", regs->eip); | 
|  | 323 | #endif | 
|  | 324 | /* fall through */ | 
|  | 325 | case 2:		/* write, not present */ | 
|  | 326 | if (!(vma->vm_flags & VM_WRITE)) | 
|  | 327 | goto bad_area; | 
|  | 328 | write++; | 
|  | 329 | break; | 
|  | 330 | case 1:		/* read, present */ | 
|  | 331 | goto bad_area; | 
|  | 332 | case 0:		/* read, not present */ | 
|  | 333 | if (!(vma->vm_flags & (VM_READ | VM_EXEC))) | 
|  | 334 | goto bad_area; | 
|  | 335 | } | 
|  | 336 |  | 
|  | 337 | survive: | 
|  | 338 | /* | 
|  | 339 | * If for any reason at all we couldn't handle the fault, | 
|  | 340 | * make sure we exit gracefully rather than endlessly redo | 
|  | 341 | * the fault. | 
|  | 342 | */ | 
|  | 343 | switch (handle_mm_fault(mm, vma, address, write)) { | 
|  | 344 | case VM_FAULT_MINOR: | 
|  | 345 | tsk->min_flt++; | 
|  | 346 | break; | 
|  | 347 | case VM_FAULT_MAJOR: | 
|  | 348 | tsk->maj_flt++; | 
|  | 349 | break; | 
|  | 350 | case VM_FAULT_SIGBUS: | 
|  | 351 | goto do_sigbus; | 
|  | 352 | case VM_FAULT_OOM: | 
|  | 353 | goto out_of_memory; | 
|  | 354 | default: | 
|  | 355 | BUG(); | 
|  | 356 | } | 
|  | 357 |  | 
|  | 358 | /* | 
|  | 359 | * Did it hit the DOS screen memory VA from vm86 mode? | 
|  | 360 | */ | 
|  | 361 | if (regs->eflags & VM_MASK) { | 
|  | 362 | unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT; | 
|  | 363 | if (bit < 32) | 
|  | 364 | tsk->thread.screen_bitmap |= 1 << bit; | 
|  | 365 | } | 
|  | 366 | up_read(&mm->mmap_sem); | 
|  | 367 | return; | 
|  | 368 |  | 
|  | 369 | /* | 
|  | 370 | * Something tried to access memory that isn't in our memory map.. | 
|  | 371 | * Fix it, but check if it's kernel or user first.. | 
|  | 372 | */ | 
|  | 373 | bad_area: | 
|  | 374 | up_read(&mm->mmap_sem); | 
|  | 375 |  | 
|  | 376 | bad_area_nosemaphore: | 
|  | 377 | /* User mode accesses just cause a SIGSEGV */ | 
|  | 378 | if (error_code & 4) { | 
|  | 379 | /* | 
|  | 380 | * Valid to do another page fault here because this one came | 
|  | 381 | * from user space. | 
|  | 382 | */ | 
|  | 383 | if (is_prefetch(regs, address, error_code)) | 
|  | 384 | return; | 
|  | 385 |  | 
|  | 386 | tsk->thread.cr2 = address; | 
|  | 387 | /* Kernel addresses are always protection faults */ | 
|  | 388 | tsk->thread.error_code = error_code | (address >= TASK_SIZE); | 
|  | 389 | tsk->thread.trap_no = 14; | 
|  | 390 | info.si_signo = SIGSEGV; | 
|  | 391 | info.si_errno = 0; | 
|  | 392 | /* info.si_code has been set above */ | 
|  | 393 | info.si_addr = (void __user *)address; | 
|  | 394 | force_sig_info(SIGSEGV, &info, tsk); | 
|  | 395 | return; | 
|  | 396 | } | 
|  | 397 |  | 
|  | 398 | #ifdef CONFIG_X86_F00F_BUG | 
|  | 399 | /* | 
|  | 400 | * Pentium F0 0F C7 C8 bug workaround. | 
|  | 401 | */ | 
|  | 402 | if (boot_cpu_data.f00f_bug) { | 
|  | 403 | unsigned long nr; | 
|  | 404 |  | 
|  | 405 | nr = (address - idt_descr.address) >> 3; | 
|  | 406 |  | 
|  | 407 | if (nr == 6) { | 
|  | 408 | do_invalid_op(regs, 0); | 
|  | 409 | return; | 
|  | 410 | } | 
|  | 411 | } | 
|  | 412 | #endif | 
|  | 413 |  | 
|  | 414 | no_context: | 
|  | 415 | /* Are we prepared to handle this kernel fault?  */ | 
|  | 416 | if (fixup_exception(regs)) | 
|  | 417 | return; | 
|  | 418 |  | 
|  | 419 | /* | 
|  | 420 | * Valid to do another page fault here, because if this fault | 
|  | 421 | * had been triggered by is_prefetch fixup_exception would have | 
|  | 422 | * handled it. | 
|  | 423 | */ | 
|  | 424 | if (is_prefetch(regs, address, error_code)) | 
|  | 425 | return; | 
|  | 426 |  | 
|  | 427 | /* | 
|  | 428 | * Oops. The kernel tried to access some bad page. We'll have to | 
|  | 429 | * terminate things with extreme prejudice. | 
|  | 430 | */ | 
|  | 431 |  | 
|  | 432 | bust_spinlocks(1); | 
|  | 433 |  | 
|  | 434 | #ifdef CONFIG_X86_PAE | 
|  | 435 | if (error_code & 16) { | 
|  | 436 | pte_t *pte = lookup_address(address); | 
|  | 437 |  | 
|  | 438 | if (pte && pte_present(*pte) && !pte_exec_kernel(*pte)) | 
|  | 439 | printk(KERN_CRIT "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n", current->uid); | 
|  | 440 | } | 
|  | 441 | #endif | 
|  | 442 | if (address < PAGE_SIZE) | 
|  | 443 | printk(KERN_ALERT "Unable to handle kernel NULL pointer dereference"); | 
|  | 444 | else | 
|  | 445 | printk(KERN_ALERT "Unable to handle kernel paging request"); | 
|  | 446 | printk(" at virtual address %08lx\n",address); | 
|  | 447 | printk(KERN_ALERT " printing eip:\n"); | 
|  | 448 | printk("%08lx\n", regs->eip); | 
|  | 449 | asm("movl %%cr3,%0":"=r" (page)); | 
|  | 450 | page = ((unsigned long *) __va(page))[address >> 22]; | 
|  | 451 | printk(KERN_ALERT "*pde = %08lx\n", page); | 
|  | 452 | /* | 
|  | 453 | * We must not directly access the pte in the highpte | 
|  | 454 | * case, the page table might be allocated in highmem. | 
|  | 455 | * And lets rather not kmap-atomic the pte, just in case | 
|  | 456 | * it's allocated already. | 
|  | 457 | */ | 
|  | 458 | #ifndef CONFIG_HIGHPTE | 
|  | 459 | if (page & 1) { | 
|  | 460 | page &= PAGE_MASK; | 
|  | 461 | address &= 0x003ff000; | 
|  | 462 | page = ((unsigned long *) __va(page))[address >> PAGE_SHIFT]; | 
|  | 463 | printk(KERN_ALERT "*pte = %08lx\n", page); | 
|  | 464 | } | 
|  | 465 | #endif | 
| Alexander Nyberg | 4f339ec | 2005-06-25 14:58:27 -0700 | [diff] [blame] | 466 | tsk->thread.cr2 = address; | 
|  | 467 | tsk->thread.trap_no = 14; | 
|  | 468 | tsk->thread.error_code = error_code; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 469 | die("Oops", regs, error_code); | 
|  | 470 | bust_spinlocks(0); | 
|  | 471 | do_exit(SIGKILL); | 
|  | 472 |  | 
|  | 473 | /* | 
|  | 474 | * We ran out of memory, or some other thing happened to us that made | 
|  | 475 | * us unable to handle the page fault gracefully. | 
|  | 476 | */ | 
|  | 477 | out_of_memory: | 
|  | 478 | up_read(&mm->mmap_sem); | 
|  | 479 | if (tsk->pid == 1) { | 
|  | 480 | yield(); | 
|  | 481 | down_read(&mm->mmap_sem); | 
|  | 482 | goto survive; | 
|  | 483 | } | 
|  | 484 | printk("VM: killing process %s\n", tsk->comm); | 
|  | 485 | if (error_code & 4) | 
|  | 486 | do_exit(SIGKILL); | 
|  | 487 | goto no_context; | 
|  | 488 |  | 
|  | 489 | do_sigbus: | 
|  | 490 | up_read(&mm->mmap_sem); | 
|  | 491 |  | 
|  | 492 | /* Kernel mode? Handle exceptions or die */ | 
|  | 493 | if (!(error_code & 4)) | 
|  | 494 | goto no_context; | 
|  | 495 |  | 
|  | 496 | /* User space => ok to do another page fault */ | 
|  | 497 | if (is_prefetch(regs, address, error_code)) | 
|  | 498 | return; | 
|  | 499 |  | 
|  | 500 | tsk->thread.cr2 = address; | 
|  | 501 | tsk->thread.error_code = error_code; | 
|  | 502 | tsk->thread.trap_no = 14; | 
|  | 503 | info.si_signo = SIGBUS; | 
|  | 504 | info.si_errno = 0; | 
|  | 505 | info.si_code = BUS_ADRERR; | 
|  | 506 | info.si_addr = (void __user *)address; | 
|  | 507 | force_sig_info(SIGBUS, &info, tsk); | 
|  | 508 | return; | 
|  | 509 |  | 
|  | 510 | vmalloc_fault: | 
|  | 511 | { | 
|  | 512 | /* | 
|  | 513 | * Synchronize this task's top level page-table | 
|  | 514 | * with the 'reference' page table. | 
|  | 515 | * | 
|  | 516 | * Do _not_ use "tsk" here. We might be inside | 
|  | 517 | * an interrupt in the middle of a task switch.. | 
|  | 518 | */ | 
|  | 519 | int index = pgd_index(address); | 
|  | 520 | unsigned long pgd_paddr; | 
|  | 521 | pgd_t *pgd, *pgd_k; | 
|  | 522 | pud_t *pud, *pud_k; | 
|  | 523 | pmd_t *pmd, *pmd_k; | 
|  | 524 | pte_t *pte_k; | 
|  | 525 |  | 
|  | 526 | asm("movl %%cr3,%0":"=r" (pgd_paddr)); | 
|  | 527 | pgd = index + (pgd_t *)__va(pgd_paddr); | 
|  | 528 | pgd_k = init_mm.pgd + index; | 
|  | 529 |  | 
|  | 530 | if (!pgd_present(*pgd_k)) | 
|  | 531 | goto no_context; | 
|  | 532 |  | 
|  | 533 | /* | 
|  | 534 | * set_pgd(pgd, *pgd_k); here would be useless on PAE | 
|  | 535 | * and redundant with the set_pmd() on non-PAE. As would | 
|  | 536 | * set_pud. | 
|  | 537 | */ | 
|  | 538 |  | 
|  | 539 | pud = pud_offset(pgd, address); | 
|  | 540 | pud_k = pud_offset(pgd_k, address); | 
|  | 541 | if (!pud_present(*pud_k)) | 
|  | 542 | goto no_context; | 
|  | 543 |  | 
|  | 544 | pmd = pmd_offset(pud, address); | 
|  | 545 | pmd_k = pmd_offset(pud_k, address); | 
|  | 546 | if (!pmd_present(*pmd_k)) | 
|  | 547 | goto no_context; | 
|  | 548 | set_pmd(pmd, *pmd_k); | 
|  | 549 |  | 
|  | 550 | pte_k = pte_offset_kernel(pmd_k, address); | 
|  | 551 | if (!pte_present(*pte_k)) | 
|  | 552 | goto no_context; | 
|  | 553 | return; | 
|  | 554 | } | 
|  | 555 | } |