| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  * Basic two-word fraction declaration and manipulation. | 
 | 3 |  */ | 
 | 4 |  | 
 | 5 | #define _FP_FRAC_DECL_2(X)	_FP_W_TYPE X##_f0, X##_f1 | 
 | 6 | #define _FP_FRAC_COPY_2(D,S)	(D##_f0 = S##_f0, D##_f1 = S##_f1) | 
 | 7 | #define _FP_FRAC_SET_2(X,I)	__FP_FRAC_SET_2(X, I) | 
 | 8 | #define _FP_FRAC_HIGH_2(X)	(X##_f1) | 
 | 9 | #define _FP_FRAC_LOW_2(X)	(X##_f0) | 
 | 10 | #define _FP_FRAC_WORD_2(X,w)	(X##_f##w) | 
 | 11 |  | 
 | 12 | #define _FP_FRAC_SLL_2(X,N)						\ | 
 | 13 |   do {									\ | 
 | 14 |     if ((N) < _FP_W_TYPE_SIZE)						\ | 
 | 15 |       {									\ | 
 | 16 |         if (__builtin_constant_p(N) && (N) == 1) 			\ | 
 | 17 |           {								\ | 
 | 18 |             X##_f1 = X##_f1 + X##_f1 + (((_FP_WS_TYPE)(X##_f0)) < 0);	\ | 
 | 19 |             X##_f0 += X##_f0;						\ | 
 | 20 |           }								\ | 
 | 21 |         else								\ | 
 | 22 |           {								\ | 
 | 23 | 	    X##_f1 = X##_f1 << (N) | X##_f0 >> (_FP_W_TYPE_SIZE - (N));	\ | 
 | 24 | 	    X##_f0 <<= (N);						\ | 
 | 25 | 	  }								\ | 
 | 26 |       }									\ | 
 | 27 |     else								\ | 
 | 28 |       {									\ | 
 | 29 | 	X##_f1 = X##_f0 << ((N) - _FP_W_TYPE_SIZE);			\ | 
 | 30 | 	X##_f0 = 0;							\ | 
 | 31 |       }									\ | 
 | 32 |   } while (0) | 
 | 33 |  | 
 | 34 | #define _FP_FRAC_SRL_2(X,N)						\ | 
 | 35 |   do {									\ | 
 | 36 |     if ((N) < _FP_W_TYPE_SIZE)						\ | 
 | 37 |       {									\ | 
 | 38 | 	X##_f0 = X##_f0 >> (N) | X##_f1 << (_FP_W_TYPE_SIZE - (N));	\ | 
 | 39 | 	X##_f1 >>= (N);							\ | 
 | 40 |       }									\ | 
 | 41 |     else								\ | 
 | 42 |       {									\ | 
 | 43 | 	X##_f0 = X##_f1 >> ((N) - _FP_W_TYPE_SIZE);			\ | 
 | 44 | 	X##_f1 = 0;							\ | 
 | 45 |       }									\ | 
 | 46 |   } while (0) | 
 | 47 |  | 
 | 48 | /* Right shift with sticky-lsb.  */ | 
 | 49 | #define _FP_FRAC_SRS_2(X,N,sz)						\ | 
 | 50 |   do {									\ | 
 | 51 |     if ((N) < _FP_W_TYPE_SIZE)						\ | 
 | 52 |       {									\ | 
 | 53 | 	X##_f0 = (X##_f1 << (_FP_W_TYPE_SIZE - (N)) | X##_f0 >> (N) |	\ | 
 | 54 | 		  (__builtin_constant_p(N) && (N) == 1			\ | 
 | 55 | 		   ? X##_f0 & 1						\ | 
 | 56 | 		   : (X##_f0 << (_FP_W_TYPE_SIZE - (N))) != 0));	\ | 
 | 57 | 	X##_f1 >>= (N);							\ | 
 | 58 |       }									\ | 
 | 59 |     else								\ | 
 | 60 |       {									\ | 
 | 61 | 	X##_f0 = (X##_f1 >> ((N) - _FP_W_TYPE_SIZE) |			\ | 
 | 62 | 	          (((X##_f1 << (sz - (N))) | X##_f0) != 0));		\ | 
 | 63 | 	X##_f1 = 0;							\ | 
 | 64 |       }									\ | 
 | 65 |   } while (0) | 
 | 66 |  | 
 | 67 | #define _FP_FRAC_ADDI_2(X,I) \ | 
 | 68 |   __FP_FRAC_ADDI_2(X##_f1, X##_f0, I) | 
 | 69 |  | 
 | 70 | #define _FP_FRAC_ADD_2(R,X,Y) \ | 
 | 71 |   __FP_FRAC_ADD_2(R##_f1, R##_f0, X##_f1, X##_f0, Y##_f1, Y##_f0) | 
 | 72 |  | 
 | 73 | #define _FP_FRAC_SUB_2(R,X,Y) \ | 
 | 74 |   __FP_FRAC_SUB_2(R##_f1, R##_f0, X##_f1, X##_f0, Y##_f1, Y##_f0) | 
 | 75 |  | 
 | 76 | #define _FP_FRAC_CLZ_2(R,X)	\ | 
 | 77 |   do {				\ | 
 | 78 |     if (X##_f1)			\ | 
 | 79 |       __FP_CLZ(R,X##_f1);	\ | 
 | 80 |     else 			\ | 
 | 81 |     {				\ | 
 | 82 |       __FP_CLZ(R,X##_f0);	\ | 
 | 83 |       R += _FP_W_TYPE_SIZE;	\ | 
 | 84 |     }				\ | 
 | 85 |   } while(0) | 
 | 86 |  | 
 | 87 | /* Predicates */ | 
 | 88 | #define _FP_FRAC_NEGP_2(X)	((_FP_WS_TYPE)X##_f1 < 0) | 
 | 89 | #define _FP_FRAC_ZEROP_2(X)	((X##_f1 | X##_f0) == 0) | 
 | 90 | #define _FP_FRAC_OVERP_2(fs,X)	(X##_f1 & _FP_OVERFLOW_##fs) | 
 | 91 | #define _FP_FRAC_EQ_2(X, Y)	(X##_f1 == Y##_f1 && X##_f0 == Y##_f0) | 
 | 92 | #define _FP_FRAC_GT_2(X, Y)	\ | 
 | 93 |   ((X##_f1 > Y##_f1) || (X##_f1 == Y##_f1 && X##_f0 > Y##_f0)) | 
 | 94 | #define _FP_FRAC_GE_2(X, Y)	\ | 
 | 95 |   ((X##_f1 > Y##_f1) || (X##_f1 == Y##_f1 && X##_f0 >= Y##_f0)) | 
 | 96 |  | 
 | 97 | #define _FP_ZEROFRAC_2		0, 0 | 
 | 98 | #define _FP_MINFRAC_2		0, 1 | 
 | 99 |  | 
 | 100 | /* | 
 | 101 |  * Internals | 
 | 102 |  */ | 
 | 103 |  | 
 | 104 | #define __FP_FRAC_SET_2(X,I1,I0)	(X##_f0 = I0, X##_f1 = I1) | 
 | 105 |  | 
 | 106 | #define __FP_CLZ_2(R, xh, xl)	\ | 
 | 107 |   do {				\ | 
 | 108 |     if (xh)			\ | 
 | 109 |       __FP_CLZ(R,xl);		\ | 
 | 110 |     else 			\ | 
 | 111 |     {				\ | 
 | 112 |       __FP_CLZ(R,xl);		\ | 
 | 113 |       R += _FP_W_TYPE_SIZE;	\ | 
 | 114 |     }				\ | 
 | 115 |   } while(0) | 
 | 116 |  | 
 | 117 | #if 0 | 
 | 118 |  | 
 | 119 | #ifndef __FP_FRAC_ADDI_2 | 
 | 120 | #define __FP_FRAC_ADDI_2(xh, xl, i) \ | 
 | 121 |   (xh += ((xl += i) < i)) | 
 | 122 | #endif | 
 | 123 | #ifndef __FP_FRAC_ADD_2 | 
 | 124 | #define __FP_FRAC_ADD_2(rh, rl, xh, xl, yh, yl) \ | 
 | 125 |   (rh = xh + yh + ((rl = xl + yl) < xl)) | 
 | 126 | #endif | 
 | 127 | #ifndef __FP_FRAC_SUB_2 | 
 | 128 | #define __FP_FRAC_SUB_2(rh, rl, xh, xl, yh, yl) \ | 
 | 129 |   (rh = xh - yh - ((rl = xl - yl) > xl)) | 
 | 130 | #endif | 
 | 131 |  | 
 | 132 | #else | 
 | 133 |  | 
 | 134 | #undef __FP_FRAC_ADDI_2 | 
 | 135 | #define __FP_FRAC_ADDI_2(xh, xl, i)	add_ssaaaa(xh, xl, xh, xl, 0, i) | 
 | 136 | #undef __FP_FRAC_ADD_2 | 
 | 137 | #define __FP_FRAC_ADD_2			add_ssaaaa | 
 | 138 | #undef __FP_FRAC_SUB_2 | 
 | 139 | #define __FP_FRAC_SUB_2			sub_ddmmss | 
 | 140 |  | 
 | 141 | #endif | 
 | 142 |  | 
 | 143 | /* | 
 | 144 |  * Unpack the raw bits of a native fp value.  Do not classify or | 
 | 145 |  * normalize the data. | 
 | 146 |  */ | 
 | 147 |  | 
 | 148 | #define _FP_UNPACK_RAW_2(fs, X, val)			\ | 
 | 149 |   do {							\ | 
 | 150 |     union _FP_UNION_##fs _flo; _flo.flt = (val);	\ | 
 | 151 | 							\ | 
 | 152 |     X##_f0 = _flo.bits.frac0;				\ | 
 | 153 |     X##_f1 = _flo.bits.frac1;				\ | 
 | 154 |     X##_e  = _flo.bits.exp;				\ | 
 | 155 |     X##_s  = _flo.bits.sign;				\ | 
 | 156 |   } while (0) | 
 | 157 |  | 
 | 158 |  | 
 | 159 | /* | 
 | 160 |  * Repack the raw bits of a native fp value. | 
 | 161 |  */ | 
 | 162 |  | 
 | 163 | #define _FP_PACK_RAW_2(fs, val, X)			\ | 
 | 164 |   do {							\ | 
 | 165 |     union _FP_UNION_##fs _flo;				\ | 
 | 166 | 							\ | 
 | 167 |     _flo.bits.frac0 = X##_f0;				\ | 
 | 168 |     _flo.bits.frac1 = X##_f1;				\ | 
 | 169 |     _flo.bits.exp   = X##_e;				\ | 
 | 170 |     _flo.bits.sign  = X##_s;				\ | 
 | 171 | 							\ | 
 | 172 |     (val) = _flo.flt;					\ | 
 | 173 |   } while (0) | 
 | 174 |  | 
 | 175 |  | 
 | 176 | /* | 
 | 177 |  * Multiplication algorithms: | 
 | 178 |  */ | 
 | 179 |  | 
 | 180 | /* Given a 1W * 1W => 2W primitive, do the extended multiplication.  */ | 
 | 181 |  | 
 | 182 | #define _FP_MUL_MEAT_2_wide(fs, R, X, Y, doit)				\ | 
 | 183 |   do {									\ | 
 | 184 |     _FP_FRAC_DECL_4(_z); _FP_FRAC_DECL_2(_b); _FP_FRAC_DECL_2(_c);	\ | 
 | 185 | 									\ | 
 | 186 |     doit(_FP_FRAC_WORD_4(_z,1), _FP_FRAC_WORD_4(_z,0), X##_f0, Y##_f0); \ | 
 | 187 |     doit(_b_f1, _b_f0, X##_f0, Y##_f1);					\ | 
 | 188 |     doit(_c_f1, _c_f0, X##_f1, Y##_f0);					\ | 
 | 189 |     doit(_FP_FRAC_WORD_4(_z,3), _FP_FRAC_WORD_4(_z,2), X##_f1, Y##_f1); \ | 
 | 190 | 									\ | 
 | 191 |     __FP_FRAC_ADD_4(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2),	\ | 
 | 192 | 		    _FP_FRAC_WORD_4(_z,1),_FP_FRAC_WORD_4(_z,0),	\ | 
 | 193 | 		    0, _b_f1, _b_f0, 0,					\ | 
 | 194 | 		    _FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2),	\ | 
 | 195 | 		    _FP_FRAC_WORD_4(_z,1),_FP_FRAC_WORD_4(_z,0));	\ | 
 | 196 |     __FP_FRAC_ADD_4(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2),	\ | 
 | 197 | 		    _FP_FRAC_WORD_4(_z,1),_FP_FRAC_WORD_4(_z,0),	\ | 
 | 198 | 		    0, _c_f1, _c_f0, 0,					\ | 
 | 199 | 		    _FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2),	\ | 
 | 200 | 		    _FP_FRAC_WORD_4(_z,1),_FP_FRAC_WORD_4(_z,0));	\ | 
 | 201 | 									\ | 
 | 202 |     /* Normalize since we know where the msb of the multiplicands	\ | 
 | 203 |        were (bit B), we know that the msb of the of the product is	\ | 
 | 204 |        at either 2B or 2B-1.  */					\ | 
 | 205 |     _FP_FRAC_SRS_4(_z, _FP_WFRACBITS_##fs-1, 2*_FP_WFRACBITS_##fs);	\ | 
 | 206 |     R##_f0 = _FP_FRAC_WORD_4(_z,0);					\ | 
 | 207 |     R##_f1 = _FP_FRAC_WORD_4(_z,1);					\ | 
 | 208 |   } while (0) | 
 | 209 |  | 
 | 210 | /* This next macro appears to be totally broken. Fortunately nowhere | 
 | 211 |  * seems to use it :-> The problem is that we define _z[4] but | 
 | 212 |  * then use it in _FP_FRAC_SRS_4, which will attempt to access | 
 | 213 |  * _z_f[n] which will cause an error. The fix probably involves | 
 | 214 |  * declaring it with _FP_FRAC_DECL_4, see previous macro. -- PMM 02/1998 | 
 | 215 |  */ | 
 | 216 | #define _FP_MUL_MEAT_2_gmp(fs, R, X, Y)					\ | 
 | 217 |   do {									\ | 
 | 218 |     _FP_W_TYPE _x[2], _y[2], _z[4];					\ | 
 | 219 |     _x[0] = X##_f0; _x[1] = X##_f1;					\ | 
 | 220 |     _y[0] = Y##_f0; _y[1] = Y##_f1;					\ | 
 | 221 | 									\ | 
 | 222 |     mpn_mul_n(_z, _x, _y, 2);						\ | 
 | 223 | 									\ | 
 | 224 |     /* Normalize since we know where the msb of the multiplicands	\ | 
 | 225 |        were (bit B), we know that the msb of the of the product is	\ | 
 | 226 |        at either 2B or 2B-1.  */					\ | 
 | 227 |     _FP_FRAC_SRS_4(_z, _FP_WFRACBITS##_fs-1, 2*_FP_WFRACBITS_##fs);	\ | 
 | 228 |     R##_f0 = _z[0];							\ | 
 | 229 |     R##_f1 = _z[1];							\ | 
 | 230 |   } while (0) | 
 | 231 |  | 
 | 232 |  | 
 | 233 | /* | 
 | 234 |  * Division algorithms: | 
 | 235 |  * This seems to be giving me difficulties -- PMM | 
 | 236 |  * Look, NetBSD seems to be able to comment algorithms. Can't you? | 
 | 237 |  * I've thrown printks at the problem. | 
 | 238 |  * This now appears to work, but I still don't really know why. | 
 | 239 |  * Also, I don't think the result is properly normalised... | 
 | 240 |  */ | 
 | 241 |  | 
 | 242 | #define _FP_DIV_MEAT_2_udiv_64(fs, R, X, Y)				\ | 
 | 243 |   do {									\ | 
 | 244 |     extern void _fp_udivmodti4(_FP_W_TYPE q[2], _FP_W_TYPE r[2],	\ | 
 | 245 | 			       _FP_W_TYPE n1, _FP_W_TYPE n0,		\ | 
 | 246 | 			       _FP_W_TYPE d1, _FP_W_TYPE d0);		\ | 
 | 247 |     _FP_W_TYPE _n_f3, _n_f2, _n_f1, _n_f0, _r_f1, _r_f0;		\ | 
 | 248 |     _FP_W_TYPE _q_f1, _q_f0, _m_f1, _m_f0;				\ | 
 | 249 |     _FP_W_TYPE _rmem[2], _qmem[2];					\ | 
 | 250 |     /* I think this check is to ensure that the result is normalised.   \ | 
 | 251 |      * Assuming X,Y normalised (ie in [1.0,2.0)) X/Y will be in         \ | 
 | 252 |      * [0.5,2.0). Furthermore, it will be less than 1.0 iff X < Y.      \ | 
 | 253 |      * In this case we tweak things. (this is based on comments in      \ | 
 | 254 |      * the NetBSD FPU emulation code. )                                 \ | 
 | 255 |      * We know X,Y are normalised because we ensure this as part of     \ | 
 | 256 |      * the unpacking process. -- PMM                                    \ | 
 | 257 |      */									\ | 
 | 258 |     if (_FP_FRAC_GT_2(X, Y))						\ | 
 | 259 |       {									\ | 
 | 260 | /*	R##_e++; */							\ | 
 | 261 | 	_n_f3 = X##_f1 >> 1;						\ | 
 | 262 | 	_n_f2 = X##_f1 << (_FP_W_TYPE_SIZE - 1) | X##_f0 >> 1;		\ | 
 | 263 | 	_n_f1 = X##_f0 << (_FP_W_TYPE_SIZE - 1);			\ | 
 | 264 | 	_n_f0 = 0;							\ | 
 | 265 |       }									\ | 
 | 266 |     else								\ | 
 | 267 |       {									\ | 
 | 268 | 	R##_e--;							\ | 
 | 269 | 	_n_f3 = X##_f1;							\ | 
 | 270 | 	_n_f2 = X##_f0;							\ | 
 | 271 | 	_n_f1 = _n_f0 = 0;						\ | 
 | 272 |       }									\ | 
 | 273 | 									\ | 
 | 274 |     /* Normalize, i.e. make the most significant bit of the 		\ | 
 | 275 |        denominator set.  CHANGED: - 1 to nothing -- PMM */		\ | 
 | 276 |     _FP_FRAC_SLL_2(Y, _FP_WFRACXBITS_##fs /* -1 */);			\ | 
 | 277 | 									\ | 
 | 278 |     /* Do the 256/128 bit division given the 128-bit _fp_udivmodtf4 	\ | 
 | 279 |        primitive snagged from libgcc2.c.  */				\ | 
 | 280 | 									\ | 
 | 281 |     _fp_udivmodti4(_qmem, _rmem, _n_f3, _n_f2, 0, Y##_f1);		\ | 
 | 282 |     _q_f1 = _qmem[0];							\ | 
 | 283 |     umul_ppmm(_m_f1, _m_f0, _q_f1, Y##_f0);				\ | 
 | 284 |     _r_f1 = _rmem[0];							\ | 
 | 285 |     _r_f0 = _n_f1;							\ | 
 | 286 |     if (_FP_FRAC_GT_2(_m, _r))						\ | 
 | 287 |       {									\ | 
 | 288 | 	_q_f1--;							\ | 
 | 289 | 	_FP_FRAC_ADD_2(_r, _r, Y);					\ | 
 | 290 | 	if (_FP_FRAC_GE_2(_r, Y) && _FP_FRAC_GT_2(_m, _r))		\ | 
 | 291 | 	  {								\ | 
 | 292 | 	    _q_f1--;							\ | 
 | 293 | 	    _FP_FRAC_ADD_2(_r, _r, Y);					\ | 
 | 294 | 	  }								\ | 
 | 295 |       }									\ | 
 | 296 |     _FP_FRAC_SUB_2(_r, _r, _m);						\ | 
 | 297 | 									\ | 
 | 298 |     _fp_udivmodti4(_qmem, _rmem, _r_f1, _r_f0, 0, Y##_f1);		\ | 
 | 299 |     _q_f0 = _qmem[0];							\ | 
 | 300 |     umul_ppmm(_m_f1, _m_f0, _q_f0, Y##_f0);				\ | 
 | 301 |     _r_f1 = _rmem[0];							\ | 
 | 302 |     _r_f0 = _n_f0;							\ | 
 | 303 |     if (_FP_FRAC_GT_2(_m, _r))						\ | 
 | 304 |       {									\ | 
 | 305 | 	_q_f0--;							\ | 
 | 306 | 	_FP_FRAC_ADD_2(_r, _r, Y);					\ | 
 | 307 | 	if (_FP_FRAC_GE_2(_r, Y) && _FP_FRAC_GT_2(_m, _r))		\ | 
 | 308 | 	  {								\ | 
 | 309 | 	    _q_f0--;							\ | 
 | 310 | 	    _FP_FRAC_ADD_2(_r, _r, Y);					\ | 
 | 311 | 	  }								\ | 
 | 312 |       }									\ | 
 | 313 |     _FP_FRAC_SUB_2(_r, _r, _m);						\ | 
 | 314 | 									\ | 
 | 315 |     R##_f1 = _q_f1;							\ | 
 | 316 |     R##_f0 = _q_f0 | ((_r_f1 | _r_f0) != 0);				\ | 
 | 317 |     /* adjust so answer is normalized again. I'm not sure what the 	\ | 
 | 318 |      * final sz param should be. In practice it's never used since      \ | 
 | 319 |      * N is 1 which is always going to be < _FP_W_TYPE_SIZE...		\ | 
 | 320 |      */									\ | 
 | 321 |     /* _FP_FRAC_SRS_2(R,1,_FP_WFRACBITS_##fs);	*/			\ | 
 | 322 |   } while (0) | 
 | 323 |  | 
 | 324 |  | 
 | 325 | #define _FP_DIV_MEAT_2_gmp(fs, R, X, Y)					\ | 
 | 326 |   do {									\ | 
 | 327 |     _FP_W_TYPE _x[4], _y[2], _z[4];					\ | 
 | 328 |     _y[0] = Y##_f0; _y[1] = Y##_f1;					\ | 
 | 329 |     _x[0] = _x[3] = 0;							\ | 
 | 330 |     if (_FP_FRAC_GT_2(X, Y))						\ | 
 | 331 |       {									\ | 
 | 332 | 	R##_e++;							\ | 
 | 333 | 	_x[1] = (X##_f0 << (_FP_WFRACBITS-1 - _FP_W_TYPE_SIZE) |	\ | 
 | 334 | 		 X##_f1 >> (_FP_W_TYPE_SIZE -				\ | 
 | 335 | 			    (_FP_WFRACBITS-1 - _FP_W_TYPE_SIZE)));	\ | 
 | 336 | 	_x[2] = X##_f1 << (_FP_WFRACBITS-1 - _FP_W_TYPE_SIZE);		\ | 
 | 337 |       }									\ | 
 | 338 |     else								\ | 
 | 339 |       {									\ | 
 | 340 | 	_x[1] = (X##_f0 << (_FP_WFRACBITS - _FP_W_TYPE_SIZE) |		\ | 
 | 341 | 		 X##_f1 >> (_FP_W_TYPE_SIZE -				\ | 
 | 342 | 			    (_FP_WFRACBITS - _FP_W_TYPE_SIZE)));	\ | 
 | 343 | 	_x[2] = X##_f1 << (_FP_WFRACBITS - _FP_W_TYPE_SIZE);		\ | 
 | 344 |       }									\ | 
 | 345 | 									\ | 
 | 346 |     (void) mpn_divrem (_z, 0, _x, 4, _y, 2);				\ | 
 | 347 |     R##_f1 = _z[1];							\ | 
 | 348 |     R##_f0 = _z[0] | ((_x[0] | _x[1]) != 0);				\ | 
 | 349 |   } while (0) | 
 | 350 |  | 
 | 351 |  | 
 | 352 | /* | 
 | 353 |  * Square root algorithms: | 
 | 354 |  * We have just one right now, maybe Newton approximation | 
 | 355 |  * should be added for those machines where division is fast. | 
 | 356 |  */ | 
 | 357 |  | 
 | 358 | #define _FP_SQRT_MEAT_2(R, S, T, X, q)			\ | 
 | 359 |   do {							\ | 
 | 360 |     while (q)						\ | 
 | 361 |       {							\ | 
 | 362 |         T##_f1 = S##_f1 + q;				\ | 
 | 363 |         if (T##_f1 <= X##_f1)				\ | 
 | 364 |           {						\ | 
 | 365 |             S##_f1 = T##_f1 + q;			\ | 
 | 366 |             X##_f1 -= T##_f1;				\ | 
 | 367 |             R##_f1 += q;				\ | 
 | 368 |           }						\ | 
 | 369 |         _FP_FRAC_SLL_2(X, 1);				\ | 
 | 370 |         q >>= 1;					\ | 
 | 371 |       }							\ | 
 | 372 |     q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1);		\ | 
 | 373 |     while (q)						\ | 
 | 374 |       {							\ | 
 | 375 |         T##_f0 = S##_f0 + q;				\ | 
 | 376 |         T##_f1 = S##_f1;				\ | 
 | 377 |         if (T##_f1 < X##_f1 || 				\ | 
 | 378 |             (T##_f1 == X##_f1 && T##_f0 < X##_f0))	\ | 
 | 379 |           {						\ | 
 | 380 |             S##_f0 = T##_f0 + q;			\ | 
 | 381 |             if (((_FP_WS_TYPE)T##_f0) < 0 &&		\ | 
 | 382 |                 ((_FP_WS_TYPE)S##_f0) >= 0)		\ | 
 | 383 |               S##_f1++;					\ | 
 | 384 |             _FP_FRAC_SUB_2(X, X, T);			\ | 
 | 385 |             R##_f0 += q;				\ | 
 | 386 |           }						\ | 
 | 387 |         _FP_FRAC_SLL_2(X, 1);				\ | 
 | 388 |         q >>= 1;					\ | 
 | 389 |       }							\ | 
 | 390 |   } while (0) | 
 | 391 |  | 
 | 392 |  | 
 | 393 | /* | 
 | 394 |  * Assembly/disassembly for converting to/from integral types. | 
 | 395 |  * No shifting or overflow handled here. | 
 | 396 |  */ | 
 | 397 |  | 
 | 398 | #define _FP_FRAC_ASSEMBLE_2(r, X, rsize)	\ | 
 | 399 |   do {						\ | 
 | 400 |     if (rsize <= _FP_W_TYPE_SIZE)		\ | 
 | 401 |       r = X##_f0;				\ | 
 | 402 |     else					\ | 
 | 403 |       {						\ | 
 | 404 | 	r = X##_f1;				\ | 
 | 405 | 	r <<= _FP_W_TYPE_SIZE;			\ | 
 | 406 | 	r += X##_f0;				\ | 
 | 407 |       }						\ | 
 | 408 |   } while (0) | 
 | 409 |  | 
 | 410 | #define _FP_FRAC_DISASSEMBLE_2(X, r, rsize)				\ | 
 | 411 |   do {									\ | 
 | 412 |     X##_f0 = r;								\ | 
 | 413 |     X##_f1 = (rsize <= _FP_W_TYPE_SIZE ? 0 : r >> _FP_W_TYPE_SIZE);	\ | 
 | 414 |   } while (0) | 
 | 415 |  | 
 | 416 | /* | 
 | 417 |  * Convert FP values between word sizes | 
 | 418 |  */ | 
 | 419 |  | 
 | 420 | #define _FP_FRAC_CONV_1_2(dfs, sfs, D, S)				\ | 
 | 421 |   do {									\ | 
 | 422 |     _FP_FRAC_SRS_2(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs),	\ | 
 | 423 | 		   _FP_WFRACBITS_##sfs);				\ | 
 | 424 |     D##_f = S##_f0;							\ | 
 | 425 |   } while (0) | 
 | 426 |  | 
 | 427 | #define _FP_FRAC_CONV_2_1(dfs, sfs, D, S)				\ | 
 | 428 |   do {									\ | 
 | 429 |     D##_f0 = S##_f;							\ | 
 | 430 |     D##_f1 = 0;								\ | 
 | 431 |     _FP_FRAC_SLL_2(D, (_FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs));	\ | 
 | 432 |   } while (0) | 
 | 433 |  |