| Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 1 | /* | 
 | 2 |  * Copyright 2010 Tilera Corporation. All Rights Reserved. | 
 | 3 |  * | 
 | 4 |  *   This program is free software; you can redistribute it and/or | 
 | 5 |  *   modify it under the terms of the GNU General Public License | 
 | 6 |  *   as published by the Free Software Foundation, version 2. | 
 | 7 |  * | 
 | 8 |  *   This program is distributed in the hope that it will be useful, but | 
 | 9 |  *   WITHOUT ANY WARRANTY; without even the implied warranty of | 
 | 10 |  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | 
 | 11 |  *   NON INFRINGEMENT.  See the GNU General Public License for | 
 | 12 |  *   more details. | 
 | 13 |  * | 
 | 14 |  * From i386 code copyright (C) 1995  Linus Torvalds | 
 | 15 |  */ | 
 | 16 |  | 
 | 17 | #include <linux/signal.h> | 
 | 18 | #include <linux/sched.h> | 
 | 19 | #include <linux/kernel.h> | 
 | 20 | #include <linux/errno.h> | 
 | 21 | #include <linux/string.h> | 
 | 22 | #include <linux/types.h> | 
 | 23 | #include <linux/ptrace.h> | 
 | 24 | #include <linux/mman.h> | 
 | 25 | #include <linux/mm.h> | 
 | 26 | #include <linux/smp.h> | 
| Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 27 | #include <linux/interrupt.h> | 
 | 28 | #include <linux/init.h> | 
 | 29 | #include <linux/tty.h> | 
 | 30 | #include <linux/vt_kern.h>		/* For unblank_screen() */ | 
 | 31 | #include <linux/highmem.h> | 
 | 32 | #include <linux/module.h> | 
 | 33 | #include <linux/kprobes.h> | 
 | 34 | #include <linux/hugetlb.h> | 
 | 35 | #include <linux/syscalls.h> | 
 | 36 | #include <linux/uaccess.h> | 
 | 37 |  | 
 | 38 | #include <asm/system.h> | 
 | 39 | #include <asm/pgalloc.h> | 
 | 40 | #include <asm/sections.h> | 
| Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 41 | #include <asm/traps.h> | 
 | 42 | #include <asm/syscalls.h> | 
| Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 43 |  | 
 | 44 | #include <arch/interrupts.h> | 
 | 45 |  | 
| Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 46 | static noinline void force_sig_info_fault(int si_signo, int si_code, | 
 | 47 | 	unsigned long address, int fault_num, struct task_struct *tsk) | 
 | 48 | { | 
 | 49 | 	siginfo_t info; | 
 | 50 |  | 
 | 51 | 	if (unlikely(tsk->pid < 2)) { | 
 | 52 | 		panic("Signal %d (code %d) at %#lx sent to %s!", | 
 | 53 | 		      si_signo, si_code & 0xffff, address, | 
 | 54 | 		      tsk->pid ? "init" : "the idle task"); | 
 | 55 | 	} | 
 | 56 |  | 
 | 57 | 	info.si_signo = si_signo; | 
 | 58 | 	info.si_errno = 0; | 
 | 59 | 	info.si_code = si_code; | 
 | 60 | 	info.si_addr = (void __user *)address; | 
 | 61 | 	info.si_trapno = fault_num; | 
 | 62 | 	force_sig_info(si_signo, &info, tsk); | 
 | 63 | } | 
 | 64 |  | 
 | 65 | #ifndef __tilegx__ | 
 | 66 | /* | 
 | 67 |  * Synthesize the fault a PL0 process would get by doing a word-load of | 
| Chris Metcalf | d929b6a | 2010-10-14 14:34:33 -0400 | [diff] [blame] | 68 |  * an unaligned address or a high kernel address. | 
| Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 69 |  */ | 
| Chris Metcalf | d929b6a | 2010-10-14 14:34:33 -0400 | [diff] [blame] | 70 | SYSCALL_DEFINE2(cmpxchg_badaddr, unsigned long, address, | 
 | 71 | 		struct pt_regs *, regs) | 
| Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 72 | { | 
 | 73 | 	if (address >= PAGE_OFFSET) | 
 | 74 | 		force_sig_info_fault(SIGSEGV, SEGV_MAPERR, address, | 
 | 75 | 				     INT_DTLB_MISS, current); | 
 | 76 | 	else | 
 | 77 | 		force_sig_info_fault(SIGBUS, BUS_ADRALN, address, | 
 | 78 | 				     INT_UNALIGN_DATA, current); | 
 | 79 |  | 
 | 80 | 	/* | 
 | 81 | 	 * Adjust pc to point at the actual instruction, which is unusual | 
 | 82 | 	 * for syscalls normally, but is appropriate when we are claiming | 
 | 83 | 	 * that a syscall swint1 caused a page fault or bus error. | 
 | 84 | 	 */ | 
 | 85 | 	regs->pc -= 8; | 
 | 86 |  | 
 | 87 | 	/* | 
 | 88 | 	 * Mark this as a caller-save interrupt, like a normal page fault, | 
 | 89 | 	 * so that when we go through the signal handler path we will | 
 | 90 | 	 * properly restore r0, r1, and r2 for the signal handler arguments. | 
 | 91 | 	 */ | 
 | 92 | 	regs->flags |= PT_FLAGS_CALLER_SAVES; | 
 | 93 |  | 
 | 94 | 	return 0; | 
 | 95 | } | 
 | 96 | #endif | 
 | 97 |  | 
 | 98 | static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address) | 
 | 99 | { | 
 | 100 | 	unsigned index = pgd_index(address); | 
 | 101 | 	pgd_t *pgd_k; | 
 | 102 | 	pud_t *pud, *pud_k; | 
 | 103 | 	pmd_t *pmd, *pmd_k; | 
 | 104 |  | 
 | 105 | 	pgd += index; | 
 | 106 | 	pgd_k = init_mm.pgd + index; | 
 | 107 |  | 
 | 108 | 	if (!pgd_present(*pgd_k)) | 
 | 109 | 		return NULL; | 
 | 110 |  | 
 | 111 | 	pud = pud_offset(pgd, address); | 
 | 112 | 	pud_k = pud_offset(pgd_k, address); | 
 | 113 | 	if (!pud_present(*pud_k)) | 
 | 114 | 		return NULL; | 
 | 115 |  | 
 | 116 | 	pmd = pmd_offset(pud, address); | 
 | 117 | 	pmd_k = pmd_offset(pud_k, address); | 
 | 118 | 	if (!pmd_present(*pmd_k)) | 
 | 119 | 		return NULL; | 
 | 120 | 	if (!pmd_present(*pmd)) { | 
 | 121 | 		set_pmd(pmd, *pmd_k); | 
 | 122 | 		arch_flush_lazy_mmu_mode(); | 
 | 123 | 	} else | 
 | 124 | 		BUG_ON(pmd_ptfn(*pmd) != pmd_ptfn(*pmd_k)); | 
 | 125 | 	return pmd_k; | 
 | 126 | } | 
 | 127 |  | 
 | 128 | /* | 
 | 129 |  * Handle a fault on the vmalloc or module mapping area | 
 | 130 |  */ | 
 | 131 | static inline int vmalloc_fault(pgd_t *pgd, unsigned long address) | 
 | 132 | { | 
 | 133 | 	pmd_t *pmd_k; | 
 | 134 | 	pte_t *pte_k; | 
 | 135 |  | 
 | 136 | 	/* Make sure we are in vmalloc area */ | 
 | 137 | 	if (!(address >= VMALLOC_START && address < VMALLOC_END)) | 
 | 138 | 		return -1; | 
 | 139 |  | 
 | 140 | 	/* | 
 | 141 | 	 * Synchronize this task's top level page-table | 
 | 142 | 	 * with the 'reference' page table. | 
 | 143 | 	 */ | 
 | 144 | 	pmd_k = vmalloc_sync_one(pgd, address); | 
 | 145 | 	if (!pmd_k) | 
 | 146 | 		return -1; | 
 | 147 | 	if (pmd_huge(*pmd_k)) | 
 | 148 | 		return 0;   /* support TILE huge_vmap() API */ | 
 | 149 | 	pte_k = pte_offset_kernel(pmd_k, address); | 
 | 150 | 	if (!pte_present(*pte_k)) | 
 | 151 | 		return -1; | 
 | 152 | 	return 0; | 
 | 153 | } | 
 | 154 |  | 
 | 155 | /* Wait until this PTE has completed migration. */ | 
 | 156 | static void wait_for_migration(pte_t *pte) | 
 | 157 | { | 
 | 158 | 	if (pte_migrating(*pte)) { | 
 | 159 | 		/* | 
 | 160 | 		 * Wait until the migrater fixes up this pte. | 
 | 161 | 		 * We scale the loop count by the clock rate so we'll wait for | 
 | 162 | 		 * a few seconds here. | 
 | 163 | 		 */ | 
 | 164 | 		int retries = 0; | 
 | 165 | 		int bound = get_clock_rate(); | 
 | 166 | 		while (pte_migrating(*pte)) { | 
 | 167 | 			barrier(); | 
 | 168 | 			if (++retries > bound) | 
 | 169 | 				panic("Hit migrating PTE (%#llx) and" | 
 | 170 | 				      " page PFN %#lx still migrating", | 
 | 171 | 				      pte->val, pte_pfn(*pte)); | 
 | 172 | 		} | 
 | 173 | 	} | 
 | 174 | } | 
 | 175 |  | 
 | 176 | /* | 
 | 177 |  * It's not generally safe to use "current" to get the page table pointer, | 
 | 178 |  * since we might be running an oprofile interrupt in the middle of a | 
 | 179 |  * task switch. | 
 | 180 |  */ | 
 | 181 | static pgd_t *get_current_pgd(void) | 
 | 182 | { | 
 | 183 | 	HV_Context ctx = hv_inquire_context(); | 
 | 184 | 	unsigned long pgd_pfn = ctx.page_table >> PAGE_SHIFT; | 
 | 185 | 	struct page *pgd_page = pfn_to_page(pgd_pfn); | 
 | 186 | 	BUG_ON(PageHighMem(pgd_page));   /* oops, HIGHPTE? */ | 
 | 187 | 	return (pgd_t *) __va(ctx.page_table); | 
 | 188 | } | 
 | 189 |  | 
 | 190 | /* | 
 | 191 |  * We can receive a page fault from a migrating PTE at any time. | 
 | 192 |  * Handle it by just waiting until the fault resolves. | 
 | 193 |  * | 
 | 194 |  * It's also possible to get a migrating kernel PTE that resolves | 
 | 195 |  * itself during the downcall from hypervisor to Linux.  We just check | 
 | 196 |  * here to see if the PTE seems valid, and if so we retry it. | 
 | 197 |  * | 
 | 198 |  * NOTE! We MUST NOT take any locks for this case.  We may be in an | 
 | 199 |  * interrupt or a critical region, and must do as little as possible. | 
 | 200 |  * Similarly, we can't use atomic ops here, since we may be handling a | 
 | 201 |  * fault caused by an atomic op access. | 
 | 202 |  */ | 
 | 203 | static int handle_migrating_pte(pgd_t *pgd, int fault_num, | 
 | 204 | 				unsigned long address, | 
 | 205 | 				int is_kernel_mode, int write) | 
 | 206 | { | 
 | 207 | 	pud_t *pud; | 
 | 208 | 	pmd_t *pmd; | 
 | 209 | 	pte_t *pte; | 
 | 210 | 	pte_t pteval; | 
 | 211 |  | 
 | 212 | 	if (pgd_addr_invalid(address)) | 
 | 213 | 		return 0; | 
 | 214 |  | 
 | 215 | 	pgd += pgd_index(address); | 
 | 216 | 	pud = pud_offset(pgd, address); | 
 | 217 | 	if (!pud || !pud_present(*pud)) | 
 | 218 | 		return 0; | 
 | 219 | 	pmd = pmd_offset(pud, address); | 
 | 220 | 	if (!pmd || !pmd_present(*pmd)) | 
 | 221 | 		return 0; | 
 | 222 | 	pte = pmd_huge_page(*pmd) ? ((pte_t *)pmd) : | 
 | 223 | 		pte_offset_kernel(pmd, address); | 
 | 224 | 	pteval = *pte; | 
 | 225 | 	if (pte_migrating(pteval)) { | 
 | 226 | 		wait_for_migration(pte); | 
 | 227 | 		return 1; | 
 | 228 | 	} | 
 | 229 |  | 
 | 230 | 	if (!is_kernel_mode || !pte_present(pteval)) | 
 | 231 | 		return 0; | 
 | 232 | 	if (fault_num == INT_ITLB_MISS) { | 
 | 233 | 		if (pte_exec(pteval)) | 
 | 234 | 			return 1; | 
 | 235 | 	} else if (write) { | 
 | 236 | 		if (pte_write(pteval)) | 
 | 237 | 			return 1; | 
 | 238 | 	} else { | 
 | 239 | 		if (pte_read(pteval)) | 
 | 240 | 			return 1; | 
 | 241 | 	} | 
 | 242 |  | 
 | 243 | 	return 0; | 
 | 244 | } | 
 | 245 |  | 
 | 246 | /* | 
 | 247 |  * This routine is responsible for faulting in user pages. | 
 | 248 |  * It passes the work off to one of the appropriate routines. | 
 | 249 |  * It returns true if the fault was successfully handled. | 
 | 250 |  */ | 
 | 251 | static int handle_page_fault(struct pt_regs *regs, | 
 | 252 | 			     int fault_num, | 
 | 253 | 			     int is_page_fault, | 
 | 254 | 			     unsigned long address, | 
 | 255 | 			     int write) | 
 | 256 | { | 
 | 257 | 	struct task_struct *tsk; | 
 | 258 | 	struct mm_struct *mm; | 
 | 259 | 	struct vm_area_struct *vma; | 
 | 260 | 	unsigned long stack_offset; | 
 | 261 | 	int fault; | 
 | 262 | 	int si_code; | 
 | 263 | 	int is_kernel_mode; | 
 | 264 | 	pgd_t *pgd; | 
 | 265 |  | 
 | 266 | 	/* on TILE, protection faults are always writes */ | 
 | 267 | 	if (!is_page_fault) | 
 | 268 | 		write = 1; | 
 | 269 |  | 
 | 270 | 	is_kernel_mode = (EX1_PL(regs->ex1) != USER_PL); | 
 | 271 |  | 
 | 272 | 	tsk = validate_current(); | 
 | 273 |  | 
 | 274 | 	/* | 
 | 275 | 	 * Check to see if we might be overwriting the stack, and bail | 
 | 276 | 	 * out if so.  The page fault code is a relatively likely | 
 | 277 | 	 * place to get trapped in an infinite regress, and once we | 
 | 278 | 	 * overwrite the whole stack, it becomes very hard to recover. | 
 | 279 | 	 */ | 
 | 280 | 	stack_offset = stack_pointer & (THREAD_SIZE-1); | 
 | 281 | 	if (stack_offset < THREAD_SIZE / 8) { | 
| Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 282 | 		pr_alert("Potential stack overrun: sp %#lx\n", | 
| Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 283 | 		       stack_pointer); | 
 | 284 | 		show_regs(regs); | 
| Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 285 | 		pr_alert("Killing current process %d/%s\n", | 
| Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 286 | 		       tsk->pid, tsk->comm); | 
 | 287 | 		do_group_exit(SIGKILL); | 
 | 288 | 	} | 
 | 289 |  | 
 | 290 | 	/* | 
 | 291 | 	 * Early on, we need to check for migrating PTE entries; | 
 | 292 | 	 * see homecache.c.  If we find a migrating PTE, we wait until | 
 | 293 | 	 * the backing page claims to be done migrating, then we procede. | 
 | 294 | 	 * For kernel PTEs, we rewrite the PTE and return and retry. | 
 | 295 | 	 * Otherwise, we treat the fault like a normal "no PTE" fault, | 
 | 296 | 	 * rather than trying to patch up the existing PTE. | 
 | 297 | 	 */ | 
 | 298 | 	pgd = get_current_pgd(); | 
 | 299 | 	if (handle_migrating_pte(pgd, fault_num, address, | 
 | 300 | 				 is_kernel_mode, write)) | 
 | 301 | 		return 1; | 
 | 302 |  | 
 | 303 | 	si_code = SEGV_MAPERR; | 
 | 304 |  | 
 | 305 | 	/* | 
 | 306 | 	 * We fault-in kernel-space virtual memory on-demand. The | 
 | 307 | 	 * 'reference' page table is init_mm.pgd. | 
 | 308 | 	 * | 
 | 309 | 	 * NOTE! We MUST NOT take any locks for this case. We may | 
 | 310 | 	 * be in an interrupt or a critical region, and should | 
 | 311 | 	 * only copy the information from the master page table, | 
 | 312 | 	 * nothing more. | 
 | 313 | 	 * | 
 | 314 | 	 * This verifies that the fault happens in kernel space | 
 | 315 | 	 * and that the fault was not a protection fault. | 
 | 316 | 	 */ | 
 | 317 | 	if (unlikely(address >= TASK_SIZE && | 
 | 318 | 		     !is_arch_mappable_range(address, 0))) { | 
 | 319 | 		if (is_kernel_mode && is_page_fault && | 
 | 320 | 		    vmalloc_fault(pgd, address) >= 0) | 
 | 321 | 			return 1; | 
 | 322 | 		/* | 
 | 323 | 		 * Don't take the mm semaphore here. If we fixup a prefetch | 
 | 324 | 		 * fault we could otherwise deadlock. | 
 | 325 | 		 */ | 
 | 326 | 		mm = NULL;  /* happy compiler */ | 
 | 327 | 		vma = NULL; | 
 | 328 | 		goto bad_area_nosemaphore; | 
 | 329 | 	} | 
 | 330 |  | 
 | 331 | 	/* | 
 | 332 | 	 * If we're trying to touch user-space addresses, we must | 
 | 333 | 	 * be either at PL0, or else with interrupts enabled in the | 
 | 334 | 	 * kernel, so either way we can re-enable interrupts here. | 
 | 335 | 	 */ | 
 | 336 | 	local_irq_enable(); | 
 | 337 |  | 
 | 338 | 	mm = tsk->mm; | 
 | 339 |  | 
 | 340 | 	/* | 
 | 341 | 	 * If we're in an interrupt, have no user context or are running in an | 
 | 342 | 	 * atomic region then we must not take the fault. | 
 | 343 | 	 */ | 
 | 344 | 	if (in_atomic() || !mm) { | 
 | 345 | 		vma = NULL;  /* happy compiler */ | 
 | 346 | 		goto bad_area_nosemaphore; | 
 | 347 | 	} | 
 | 348 |  | 
 | 349 | 	/* | 
 | 350 | 	 * When running in the kernel we expect faults to occur only to | 
 | 351 | 	 * addresses in user space.  All other faults represent errors in the | 
 | 352 | 	 * kernel and should generate an OOPS.  Unfortunately, in the case of an | 
 | 353 | 	 * erroneous fault occurring in a code path which already holds mmap_sem | 
 | 354 | 	 * we will deadlock attempting to validate the fault against the | 
 | 355 | 	 * address space.  Luckily the kernel only validly references user | 
 | 356 | 	 * space from well defined areas of code, which are listed in the | 
 | 357 | 	 * exceptions table. | 
 | 358 | 	 * | 
 | 359 | 	 * As the vast majority of faults will be valid we will only perform | 
 | 360 | 	 * the source reference check when there is a possibility of a deadlock. | 
 | 361 | 	 * Attempt to lock the address space, if we cannot we then validate the | 
 | 362 | 	 * source.  If this is invalid we can skip the address space check, | 
 | 363 | 	 * thus avoiding the deadlock. | 
 | 364 | 	 */ | 
 | 365 | 	if (!down_read_trylock(&mm->mmap_sem)) { | 
 | 366 | 		if (is_kernel_mode && | 
 | 367 | 		    !search_exception_tables(regs->pc)) { | 
 | 368 | 			vma = NULL;  /* happy compiler */ | 
 | 369 | 			goto bad_area_nosemaphore; | 
 | 370 | 		} | 
 | 371 | 		down_read(&mm->mmap_sem); | 
 | 372 | 	} | 
 | 373 |  | 
 | 374 | 	vma = find_vma(mm, address); | 
 | 375 | 	if (!vma) | 
 | 376 | 		goto bad_area; | 
 | 377 | 	if (vma->vm_start <= address) | 
 | 378 | 		goto good_area; | 
 | 379 | 	if (!(vma->vm_flags & VM_GROWSDOWN)) | 
 | 380 | 		goto bad_area; | 
 | 381 | 	if (regs->sp < PAGE_OFFSET) { | 
 | 382 | 		/* | 
 | 383 | 		 * accessing the stack below sp is always a bug. | 
 | 384 | 		 */ | 
 | 385 | 		if (address < regs->sp) | 
 | 386 | 			goto bad_area; | 
 | 387 | 	} | 
 | 388 | 	if (expand_stack(vma, address)) | 
 | 389 | 		goto bad_area; | 
 | 390 |  | 
 | 391 | /* | 
 | 392 |  * Ok, we have a good vm_area for this memory access, so | 
 | 393 |  * we can handle it.. | 
 | 394 |  */ | 
 | 395 | good_area: | 
 | 396 | 	si_code = SEGV_ACCERR; | 
 | 397 | 	if (fault_num == INT_ITLB_MISS) { | 
 | 398 | 		if (!(vma->vm_flags & VM_EXEC)) | 
 | 399 | 			goto bad_area; | 
 | 400 | 	} else if (write) { | 
 | 401 | #ifdef TEST_VERIFY_AREA | 
 | 402 | 		if (!is_page_fault && regs->cs == KERNEL_CS) | 
| Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 403 | 			pr_err("WP fault at "REGFMT"\n", regs->eip); | 
| Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 404 | #endif | 
 | 405 | 		if (!(vma->vm_flags & VM_WRITE)) | 
 | 406 | 			goto bad_area; | 
 | 407 | 	} else { | 
 | 408 | 		if (!is_page_fault || !(vma->vm_flags & VM_READ)) | 
 | 409 | 			goto bad_area; | 
 | 410 | 	} | 
 | 411 |  | 
 | 412 |  survive: | 
 | 413 | 	/* | 
 | 414 | 	 * If for any reason at all we couldn't handle the fault, | 
 | 415 | 	 * make sure we exit gracefully rather than endlessly redo | 
 | 416 | 	 * the fault. | 
 | 417 | 	 */ | 
 | 418 | 	fault = handle_mm_fault(mm, vma, address, write); | 
 | 419 | 	if (unlikely(fault & VM_FAULT_ERROR)) { | 
 | 420 | 		if (fault & VM_FAULT_OOM) | 
 | 421 | 			goto out_of_memory; | 
 | 422 | 		else if (fault & VM_FAULT_SIGBUS) | 
 | 423 | 			goto do_sigbus; | 
 | 424 | 		BUG(); | 
 | 425 | 	} | 
 | 426 | 	if (fault & VM_FAULT_MAJOR) | 
 | 427 | 		tsk->maj_flt++; | 
 | 428 | 	else | 
 | 429 | 		tsk->min_flt++; | 
 | 430 |  | 
| Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 431 | #if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC() | 
| Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 432 | 	/* | 
 | 433 | 	 * If this was an asynchronous fault, | 
 | 434 | 	 * restart the appropriate engine. | 
 | 435 | 	 */ | 
 | 436 | 	switch (fault_num) { | 
 | 437 | #if CHIP_HAS_TILE_DMA() | 
 | 438 | 	case INT_DMATLB_MISS: | 
 | 439 | 	case INT_DMATLB_MISS_DWNCL: | 
 | 440 | 	case INT_DMATLB_ACCESS: | 
 | 441 | 	case INT_DMATLB_ACCESS_DWNCL: | 
 | 442 | 		__insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK); | 
 | 443 | 		break; | 
 | 444 | #endif | 
 | 445 | #if CHIP_HAS_SN_PROC() | 
 | 446 | 	case INT_SNITLB_MISS: | 
 | 447 | 	case INT_SNITLB_MISS_DWNCL: | 
 | 448 | 		__insn_mtspr(SPR_SNCTL, | 
 | 449 | 			     __insn_mfspr(SPR_SNCTL) & | 
 | 450 | 			     ~SPR_SNCTL__FRZPROC_MASK); | 
 | 451 | 		break; | 
 | 452 | #endif | 
 | 453 | 	} | 
| Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 454 | #endif | 
| Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 455 |  | 
 | 456 | 	up_read(&mm->mmap_sem); | 
 | 457 | 	return 1; | 
 | 458 |  | 
 | 459 | /* | 
 | 460 |  * Something tried to access memory that isn't in our memory map.. | 
 | 461 |  * Fix it, but check if it's kernel or user first.. | 
 | 462 |  */ | 
 | 463 | bad_area: | 
 | 464 | 	up_read(&mm->mmap_sem); | 
 | 465 |  | 
 | 466 | bad_area_nosemaphore: | 
 | 467 | 	/* User mode accesses just cause a SIGSEGV */ | 
 | 468 | 	if (!is_kernel_mode) { | 
 | 469 | 		/* | 
 | 470 | 		 * It's possible to have interrupts off here. | 
 | 471 | 		 */ | 
 | 472 | 		local_irq_enable(); | 
 | 473 |  | 
 | 474 | 		force_sig_info_fault(SIGSEGV, si_code, address, | 
 | 475 | 				     fault_num, tsk); | 
 | 476 | 		return 0; | 
 | 477 | 	} | 
 | 478 |  | 
 | 479 | no_context: | 
 | 480 | 	/* Are we prepared to handle this kernel fault?  */ | 
 | 481 | 	if (fixup_exception(regs)) | 
 | 482 | 		return 0; | 
 | 483 |  | 
 | 484 | /* | 
 | 485 |  * Oops. The kernel tried to access some bad page. We'll have to | 
 | 486 |  * terminate things with extreme prejudice. | 
 | 487 |  */ | 
 | 488 |  | 
 | 489 | 	bust_spinlocks(1); | 
 | 490 |  | 
 | 491 | 	/* FIXME: no lookup_address() yet */ | 
 | 492 | #ifdef SUPPORT_LOOKUP_ADDRESS | 
 | 493 | 	if (fault_num == INT_ITLB_MISS) { | 
 | 494 | 		pte_t *pte = lookup_address(address); | 
 | 495 |  | 
 | 496 | 		if (pte && pte_present(*pte) && !pte_exec_kernel(*pte)) | 
| Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 497 | 			pr_crit("kernel tried to execute" | 
| Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 498 | 			       " non-executable page - exploit attempt?" | 
 | 499 | 			       " (uid: %d)\n", current->uid); | 
 | 500 | 	} | 
 | 501 | #endif | 
 | 502 | 	if (address < PAGE_SIZE) | 
| Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 503 | 		pr_alert("Unable to handle kernel NULL pointer dereference\n"); | 
| Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 504 | 	else | 
| Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 505 | 		pr_alert("Unable to handle kernel paging request\n"); | 
 | 506 | 	pr_alert(" at virtual address "REGFMT", pc "REGFMT"\n", | 
 | 507 | 		 address, regs->pc); | 
| Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 508 |  | 
 | 509 | 	show_regs(regs); | 
 | 510 |  | 
 | 511 | 	if (unlikely(tsk->pid < 2)) { | 
 | 512 | 		panic("Kernel page fault running %s!", | 
 | 513 | 		      tsk->pid ? "init" : "the idle task"); | 
 | 514 | 	} | 
 | 515 |  | 
 | 516 | 	/* | 
 | 517 | 	 * More FIXME: we should probably copy the i386 here and | 
 | 518 | 	 * implement a generic die() routine.  Not today. | 
 | 519 | 	 */ | 
 | 520 | #ifdef SUPPORT_DIE | 
 | 521 | 	die("Oops", regs); | 
 | 522 | #endif | 
 | 523 | 	bust_spinlocks(1); | 
 | 524 |  | 
 | 525 | 	do_group_exit(SIGKILL); | 
 | 526 |  | 
 | 527 | /* | 
 | 528 |  * We ran out of memory, or some other thing happened to us that made | 
 | 529 |  * us unable to handle the page fault gracefully. | 
 | 530 |  */ | 
 | 531 | out_of_memory: | 
 | 532 | 	up_read(&mm->mmap_sem); | 
 | 533 | 	if (is_global_init(tsk)) { | 
 | 534 | 		yield(); | 
 | 535 | 		down_read(&mm->mmap_sem); | 
 | 536 | 		goto survive; | 
 | 537 | 	} | 
| Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 538 | 	pr_alert("VM: killing process %s\n", tsk->comm); | 
| Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 539 | 	if (!is_kernel_mode) | 
 | 540 | 		do_group_exit(SIGKILL); | 
 | 541 | 	goto no_context; | 
 | 542 |  | 
 | 543 | do_sigbus: | 
 | 544 | 	up_read(&mm->mmap_sem); | 
 | 545 |  | 
 | 546 | 	/* Kernel mode? Handle exceptions or die */ | 
 | 547 | 	if (is_kernel_mode) | 
 | 548 | 		goto no_context; | 
 | 549 |  | 
 | 550 | 	force_sig_info_fault(SIGBUS, BUS_ADRERR, address, fault_num, tsk); | 
 | 551 | 	return 0; | 
 | 552 | } | 
 | 553 |  | 
 | 554 | #ifndef __tilegx__ | 
 | 555 |  | 
| Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 556 | /* We must release ICS before panicking or we won't get anywhere. */ | 
 | 557 | #define ics_panic(fmt, ...) do { \ | 
 | 558 | 	__insn_mtspr(SPR_INTERRUPT_CRITICAL_SECTION, 0); \ | 
 | 559 | 	panic(fmt, __VA_ARGS__); \ | 
 | 560 | } while (0) | 
 | 561 |  | 
| Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 562 | /* | 
 | 563 |  * When we take an ITLB or DTLB fault or access violation in the | 
 | 564 |  * supervisor while the critical section bit is set, the hypervisor is | 
| Chris Metcalf | a78c942 | 2010-10-14 16:23:03 -0400 | [diff] [blame] | 565 |  * reluctant to write new values into the EX_CONTEXT_K_x registers, | 
| Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 566 |  * since that might indicate we have not yet squirreled the SPR | 
 | 567 |  * contents away and can thus safely take a recursive interrupt. | 
| Chris Metcalf | a78c942 | 2010-10-14 16:23:03 -0400 | [diff] [blame] | 568 |  * Accordingly, the hypervisor passes us the PC via SYSTEM_SAVE_K_2. | 
| Chris Metcalf | c745a8a | 2010-08-13 08:52:19 -0400 | [diff] [blame] | 569 |  * | 
 | 570 |  * Note that this routine is called before homecache_tlb_defer_enter(), | 
 | 571 |  * which means that we can properly unlock any atomics that might | 
 | 572 |  * be used there (good), but also means we must be very sensitive | 
 | 573 |  * to not touch any data structures that might be located in memory | 
 | 574 |  * that could migrate, as we could be entering the kernel on a dataplane | 
 | 575 |  * cpu that has been deferring kernel TLB updates.  This means, for | 
 | 576 |  * example, that we can't migrate init_mm or its pgd. | 
| Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 577 |  */ | 
 | 578 | struct intvec_state do_page_fault_ics(struct pt_regs *regs, int fault_num, | 
 | 579 | 				      unsigned long address, | 
 | 580 | 				      unsigned long info) | 
 | 581 | { | 
 | 582 | 	unsigned long pc = info & ~1; | 
 | 583 | 	int write = info & 1; | 
 | 584 | 	pgd_t *pgd = get_current_pgd(); | 
 | 585 |  | 
 | 586 | 	/* Retval is 1 at first since we will handle the fault fully. */ | 
 | 587 | 	struct intvec_state state = { | 
 | 588 | 		do_page_fault, fault_num, address, write, 1 | 
 | 589 | 	}; | 
 | 590 |  | 
 | 591 | 	/* Validate that we are plausibly in the right routine. */ | 
 | 592 | 	if ((pc & 0x7) != 0 || pc < PAGE_OFFSET || | 
 | 593 | 	    (fault_num != INT_DTLB_MISS && | 
 | 594 | 	     fault_num != INT_DTLB_ACCESS)) { | 
 | 595 | 		unsigned long old_pc = regs->pc; | 
 | 596 | 		regs->pc = pc; | 
 | 597 | 		ics_panic("Bad ICS page fault args:" | 
 | 598 | 			  " old PC %#lx, fault %d/%d at %#lx\n", | 
 | 599 | 			  old_pc, fault_num, write, address); | 
 | 600 | 	} | 
 | 601 |  | 
 | 602 | 	/* We might be faulting on a vmalloc page, so check that first. */ | 
 | 603 | 	if (fault_num != INT_DTLB_ACCESS && vmalloc_fault(pgd, address) >= 0) | 
 | 604 | 		return state; | 
 | 605 |  | 
 | 606 | 	/* | 
 | 607 | 	 * If we faulted with ICS set in sys_cmpxchg, we are providing | 
 | 608 | 	 * a user syscall service that should generate a signal on | 
 | 609 | 	 * fault.  We didn't set up a kernel stack on initial entry to | 
 | 610 | 	 * sys_cmpxchg, but instead had one set up by the fault, which | 
 | 611 | 	 * (because sys_cmpxchg never releases ICS) came to us via the | 
| Chris Metcalf | a78c942 | 2010-10-14 16:23:03 -0400 | [diff] [blame] | 612 | 	 * SYSTEM_SAVE_K_2 mechanism, and thus EX_CONTEXT_K_[01] are | 
| Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 613 | 	 * still referencing the original user code.  We release the | 
 | 614 | 	 * atomic lock and rewrite pt_regs so that it appears that we | 
 | 615 | 	 * came from user-space directly, and after we finish the | 
 | 616 | 	 * fault we'll go back to user space and re-issue the swint. | 
 | 617 | 	 * This way the backtrace information is correct if we need to | 
 | 618 | 	 * emit a stack dump at any point while handling this. | 
 | 619 | 	 * | 
 | 620 | 	 * Must match register use in sys_cmpxchg(). | 
 | 621 | 	 */ | 
 | 622 | 	if (pc >= (unsigned long) sys_cmpxchg && | 
 | 623 | 	    pc < (unsigned long) __sys_cmpxchg_end) { | 
 | 624 | #ifdef CONFIG_SMP | 
 | 625 | 		/* Don't unlock before we could have locked. */ | 
 | 626 | 		if (pc >= (unsigned long)__sys_cmpxchg_grab_lock) { | 
 | 627 | 			int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]); | 
 | 628 | 			__atomic_fault_unlock(lock_ptr); | 
 | 629 | 		} | 
 | 630 | #endif | 
 | 631 | 		regs->sp = regs->regs[27]; | 
 | 632 | 	} | 
 | 633 |  | 
 | 634 | 	/* | 
 | 635 | 	 * We can also fault in the atomic assembly, in which | 
 | 636 | 	 * case we use the exception table to do the first-level fixup. | 
 | 637 | 	 * We may re-fixup again in the real fault handler if it | 
 | 638 | 	 * turns out the faulting address is just bad, and not, | 
 | 639 | 	 * for example, migrating. | 
 | 640 | 	 */ | 
 | 641 | 	else if (pc >= (unsigned long) __start_atomic_asm_code && | 
 | 642 | 		   pc < (unsigned long) __end_atomic_asm_code) { | 
 | 643 | 		const struct exception_table_entry *fixup; | 
 | 644 | #ifdef CONFIG_SMP | 
 | 645 | 		/* Unlock the atomic lock. */ | 
 | 646 | 		int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]); | 
 | 647 | 		__atomic_fault_unlock(lock_ptr); | 
 | 648 | #endif | 
 | 649 | 		fixup = search_exception_tables(pc); | 
 | 650 | 		if (!fixup) | 
 | 651 | 			ics_panic("ICS atomic fault not in table:" | 
 | 652 | 				  " PC %#lx, fault %d", pc, fault_num); | 
 | 653 | 		regs->pc = fixup->fixup; | 
 | 654 | 		regs->ex1 = PL_ICS_EX1(KERNEL_PL, 0); | 
 | 655 | 	} | 
 | 656 |  | 
 | 657 | 	/* | 
 | 658 | 	 * NOTE: the one other type of access that might bring us here | 
 | 659 | 	 * are the memory ops in __tns_atomic_acquire/__tns_atomic_release, | 
 | 660 | 	 * but we don't have to check specially for them since we can | 
 | 661 | 	 * always safely return to the address of the fault and retry, | 
 | 662 | 	 * since no separate atomic locks are involved. | 
 | 663 | 	 */ | 
 | 664 |  | 
 | 665 | 	/* | 
 | 666 | 	 * Now that we have released the atomic lock (if necessary), | 
 | 667 | 	 * it's safe to spin if the PTE that caused the fault was migrating. | 
 | 668 | 	 */ | 
 | 669 | 	if (fault_num == INT_DTLB_ACCESS) | 
 | 670 | 		write = 1; | 
 | 671 | 	if (handle_migrating_pte(pgd, fault_num, address, 1, write)) | 
 | 672 | 		return state; | 
 | 673 |  | 
 | 674 | 	/* Return zero so that we continue on with normal fault handling. */ | 
 | 675 | 	state.retval = 0; | 
 | 676 | 	return state; | 
 | 677 | } | 
 | 678 |  | 
 | 679 | #endif /* !__tilegx__ */ | 
 | 680 |  | 
 | 681 | /* | 
 | 682 |  * This routine handles page faults.  It determines the address, and the | 
 | 683 |  * problem, and then passes it handle_page_fault() for normal DTLB and | 
 | 684 |  * ITLB issues, and for DMA or SN processor faults when we are in user | 
 | 685 |  * space.  For the latter, if we're in kernel mode, we just save the | 
 | 686 |  * interrupt away appropriately and return immediately.  We can't do | 
 | 687 |  * page faults for user code while in kernel mode. | 
 | 688 |  */ | 
 | 689 | void do_page_fault(struct pt_regs *regs, int fault_num, | 
 | 690 | 		   unsigned long address, unsigned long write) | 
 | 691 | { | 
 | 692 | 	int is_page_fault; | 
 | 693 |  | 
 | 694 | 	/* This case should have been handled by do_page_fault_ics(). */ | 
 | 695 | 	BUG_ON(write & ~1); | 
 | 696 |  | 
 | 697 | #if CHIP_HAS_TILE_DMA() | 
 | 698 | 	/* | 
 | 699 | 	 * If it's a DMA fault, suspend the transfer while we're | 
 | 700 | 	 * handling the miss; we'll restart after it's handled.  If we | 
 | 701 | 	 * don't suspend, it's possible that this process could swap | 
 | 702 | 	 * out and back in, and restart the engine since the DMA is | 
 | 703 | 	 * still 'running'. | 
 | 704 | 	 */ | 
 | 705 | 	if (fault_num == INT_DMATLB_MISS || | 
 | 706 | 	    fault_num == INT_DMATLB_ACCESS || | 
 | 707 | 	    fault_num == INT_DMATLB_MISS_DWNCL || | 
 | 708 | 	    fault_num == INT_DMATLB_ACCESS_DWNCL) { | 
 | 709 | 		__insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK); | 
 | 710 | 		while (__insn_mfspr(SPR_DMA_USER_STATUS) & | 
 | 711 | 		       SPR_DMA_STATUS__BUSY_MASK) | 
 | 712 | 			; | 
 | 713 | 	} | 
 | 714 | #endif | 
 | 715 |  | 
 | 716 | 	/* Validate fault num and decide if this is a first-time page fault. */ | 
 | 717 | 	switch (fault_num) { | 
 | 718 | 	case INT_ITLB_MISS: | 
 | 719 | 	case INT_DTLB_MISS: | 
 | 720 | #if CHIP_HAS_TILE_DMA() | 
 | 721 | 	case INT_DMATLB_MISS: | 
 | 722 | 	case INT_DMATLB_MISS_DWNCL: | 
 | 723 | #endif | 
 | 724 | #if CHIP_HAS_SN_PROC() | 
 | 725 | 	case INT_SNITLB_MISS: | 
 | 726 | 	case INT_SNITLB_MISS_DWNCL: | 
 | 727 | #endif | 
 | 728 | 		is_page_fault = 1; | 
 | 729 | 		break; | 
 | 730 |  | 
 | 731 | 	case INT_DTLB_ACCESS: | 
 | 732 | #if CHIP_HAS_TILE_DMA() | 
 | 733 | 	case INT_DMATLB_ACCESS: | 
 | 734 | 	case INT_DMATLB_ACCESS_DWNCL: | 
 | 735 | #endif | 
 | 736 | 		is_page_fault = 0; | 
 | 737 | 		break; | 
 | 738 |  | 
 | 739 | 	default: | 
 | 740 | 		panic("Bad fault number %d in do_page_fault", fault_num); | 
 | 741 | 	} | 
 | 742 |  | 
 | 743 | 	if (EX1_PL(regs->ex1) != USER_PL) { | 
 | 744 | 		struct async_tlb *async; | 
 | 745 | 		switch (fault_num) { | 
 | 746 | #if CHIP_HAS_TILE_DMA() | 
 | 747 | 		case INT_DMATLB_MISS: | 
 | 748 | 		case INT_DMATLB_ACCESS: | 
 | 749 | 		case INT_DMATLB_MISS_DWNCL: | 
 | 750 | 		case INT_DMATLB_ACCESS_DWNCL: | 
 | 751 | 			async = ¤t->thread.dma_async_tlb; | 
 | 752 | 			break; | 
 | 753 | #endif | 
 | 754 | #if CHIP_HAS_SN_PROC() | 
 | 755 | 		case INT_SNITLB_MISS: | 
 | 756 | 		case INT_SNITLB_MISS_DWNCL: | 
 | 757 | 			async = ¤t->thread.sn_async_tlb; | 
 | 758 | 			break; | 
 | 759 | #endif | 
 | 760 | 		default: | 
 | 761 | 			async = NULL; | 
 | 762 | 		} | 
 | 763 | 		if (async) { | 
 | 764 |  | 
 | 765 | 			/* | 
 | 766 | 			 * No vmalloc check required, so we can allow | 
 | 767 | 			 * interrupts immediately at this point. | 
 | 768 | 			 */ | 
 | 769 | 			local_irq_enable(); | 
 | 770 |  | 
 | 771 | 			set_thread_flag(TIF_ASYNC_TLB); | 
 | 772 | 			if (async->fault_num != 0) { | 
 | 773 | 				panic("Second async fault %d;" | 
 | 774 | 				      " old fault was %d (%#lx/%ld)", | 
 | 775 | 				      fault_num, async->fault_num, | 
 | 776 | 				      address, write); | 
 | 777 | 			} | 
 | 778 | 			BUG_ON(fault_num == 0); | 
 | 779 | 			async->fault_num = fault_num; | 
 | 780 | 			async->is_fault = is_page_fault; | 
 | 781 | 			async->is_write = write; | 
 | 782 | 			async->address = address; | 
 | 783 | 			return; | 
 | 784 | 		} | 
 | 785 | 	} | 
 | 786 |  | 
 | 787 | 	handle_page_fault(regs, fault_num, is_page_fault, address, write); | 
 | 788 | } | 
 | 789 |  | 
 | 790 |  | 
 | 791 | #if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC() | 
 | 792 | /* | 
 | 793 |  * Check an async_tlb structure to see if a deferred fault is waiting, | 
 | 794 |  * and if so pass it to the page-fault code. | 
 | 795 |  */ | 
 | 796 | static void handle_async_page_fault(struct pt_regs *regs, | 
 | 797 | 				    struct async_tlb *async) | 
 | 798 | { | 
 | 799 | 	if (async->fault_num) { | 
 | 800 | 		/* | 
 | 801 | 		 * Clear async->fault_num before calling the page-fault | 
 | 802 | 		 * handler so that if we re-interrupt before returning | 
 | 803 | 		 * from the function we have somewhere to put the | 
 | 804 | 		 * information from the new interrupt. | 
 | 805 | 		 */ | 
 | 806 | 		int fault_num = async->fault_num; | 
 | 807 | 		async->fault_num = 0; | 
 | 808 | 		handle_page_fault(regs, fault_num, async->is_fault, | 
 | 809 | 				  async->address, async->is_write); | 
 | 810 | 	} | 
 | 811 | } | 
 | 812 | #endif /* CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC() */ | 
 | 813 |  | 
 | 814 |  | 
 | 815 | /* | 
 | 816 |  * This routine effectively re-issues asynchronous page faults | 
 | 817 |  * when we are returning to user space. | 
 | 818 |  */ | 
 | 819 | void do_async_page_fault(struct pt_regs *regs) | 
 | 820 | { | 
 | 821 | 	/* | 
 | 822 | 	 * Clear thread flag early.  If we re-interrupt while processing | 
 | 823 | 	 * code here, we will reset it and recall this routine before | 
 | 824 | 	 * returning to user space. | 
 | 825 | 	 */ | 
 | 826 | 	clear_thread_flag(TIF_ASYNC_TLB); | 
 | 827 |  | 
 | 828 | #if CHIP_HAS_TILE_DMA() | 
 | 829 | 	handle_async_page_fault(regs, ¤t->thread.dma_async_tlb); | 
 | 830 | #endif | 
 | 831 | #if CHIP_HAS_SN_PROC() | 
 | 832 | 	handle_async_page_fault(regs, ¤t->thread.sn_async_tlb); | 
 | 833 | #endif | 
 | 834 | } | 
 | 835 |  | 
 | 836 | void vmalloc_sync_all(void) | 
 | 837 | { | 
 | 838 | #ifdef __tilegx__ | 
 | 839 | 	/* Currently all L1 kernel pmd's are static and shared. */ | 
 | 840 | 	BUG_ON(pgd_index(VMALLOC_END) != pgd_index(VMALLOC_START)); | 
 | 841 | #else | 
 | 842 | 	/* | 
 | 843 | 	 * Note that races in the updates of insync and start aren't | 
 | 844 | 	 * problematic: insync can only get set bits added, and updates to | 
 | 845 | 	 * start are only improving performance (without affecting correctness | 
 | 846 | 	 * if undone). | 
 | 847 | 	 */ | 
 | 848 | 	static DECLARE_BITMAP(insync, PTRS_PER_PGD); | 
 | 849 | 	static unsigned long start = PAGE_OFFSET; | 
 | 850 | 	unsigned long address; | 
 | 851 |  | 
 | 852 | 	BUILD_BUG_ON(PAGE_OFFSET & ~PGDIR_MASK); | 
 | 853 | 	for (address = start; address >= PAGE_OFFSET; address += PGDIR_SIZE) { | 
 | 854 | 		if (!test_bit(pgd_index(address), insync)) { | 
 | 855 | 			unsigned long flags; | 
 | 856 | 			struct list_head *pos; | 
 | 857 |  | 
 | 858 | 			spin_lock_irqsave(&pgd_lock, flags); | 
 | 859 | 			list_for_each(pos, &pgd_list) | 
 | 860 | 				if (!vmalloc_sync_one(list_to_pgd(pos), | 
 | 861 | 								address)) { | 
 | 862 | 					/* Must be at first entry in list. */ | 
 | 863 | 					BUG_ON(pos != pgd_list.next); | 
 | 864 | 					break; | 
 | 865 | 				} | 
 | 866 | 			spin_unlock_irqrestore(&pgd_lock, flags); | 
 | 867 | 			if (pos != pgd_list.next) | 
 | 868 | 				set_bit(pgd_index(address), insync); | 
 | 869 | 		} | 
 | 870 | 		if (address == start && test_bit(pgd_index(address), insync)) | 
 | 871 | 			start = address + PGDIR_SIZE; | 
 | 872 | 	} | 
 | 873 | #endif | 
 | 874 | } |