Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright 2010 Tilera Corporation. All Rights Reserved. |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or |
| 5 | * modify it under the terms of the GNU General Public License |
| 6 | * as published by the Free Software Foundation, version 2. |
| 7 | * |
| 8 | * This program is distributed in the hope that it will be useful, but |
| 9 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
| 10 | * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or |
| 11 | * NON INFRINGEMENT. See the GNU General Public License for |
| 12 | * more details. |
| 13 | */ |
| 14 | |
| 15 | #include <linux/sched.h> |
| 16 | #include <linux/preempt.h> |
| 17 | #include <linux/module.h> |
| 18 | #include <linux/fs.h> |
| 19 | #include <linux/kprobes.h> |
| 20 | #include <linux/elfcore.h> |
| 21 | #include <linux/tick.h> |
| 22 | #include <linux/init.h> |
| 23 | #include <linux/mm.h> |
| 24 | #include <linux/compat.h> |
| 25 | #include <linux/hardirq.h> |
| 26 | #include <linux/syscalls.h> |
| 27 | #include <asm/system.h> |
| 28 | #include <asm/stack.h> |
| 29 | #include <asm/homecache.h> |
| 30 | #include <arch/chip.h> |
| 31 | #include <arch/abi.h> |
| 32 | |
| 33 | |
| 34 | /* |
| 35 | * Use the (x86) "idle=poll" option to prefer low latency when leaving the |
| 36 | * idle loop over low power while in the idle loop, e.g. if we have |
| 37 | * one thread per core and we want to get threads out of futex waits fast. |
| 38 | */ |
| 39 | static int no_idle_nap; |
| 40 | static int __init idle_setup(char *str) |
| 41 | { |
| 42 | if (!str) |
| 43 | return -EINVAL; |
| 44 | |
| 45 | if (!strcmp(str, "poll")) { |
| 46 | printk("using polling idle threads.\n"); |
| 47 | no_idle_nap = 1; |
| 48 | } else if (!strcmp(str, "halt")) |
| 49 | no_idle_nap = 0; |
| 50 | else |
| 51 | return -1; |
| 52 | |
| 53 | return 0; |
| 54 | } |
| 55 | early_param("idle", idle_setup); |
| 56 | |
| 57 | /* |
| 58 | * The idle thread. There's no useful work to be |
| 59 | * done, so just try to conserve power and have a |
| 60 | * low exit latency (ie sit in a loop waiting for |
| 61 | * somebody to say that they'd like to reschedule) |
| 62 | */ |
| 63 | void cpu_idle(void) |
| 64 | { |
| 65 | extern void _cpu_idle(void); |
| 66 | int cpu = smp_processor_id(); |
| 67 | |
| 68 | |
| 69 | current_thread_info()->status |= TS_POLLING; |
| 70 | |
| 71 | if (no_idle_nap) { |
| 72 | while (1) { |
| 73 | while (!need_resched()) |
| 74 | cpu_relax(); |
| 75 | schedule(); |
| 76 | } |
| 77 | } |
| 78 | |
| 79 | /* endless idle loop with no priority at all */ |
| 80 | while (1) { |
| 81 | tick_nohz_stop_sched_tick(1); |
| 82 | while (!need_resched()) { |
| 83 | if (cpu_is_offline(cpu)) |
| 84 | BUG(); /* no HOTPLUG_CPU */ |
| 85 | |
| 86 | local_irq_disable(); |
| 87 | __get_cpu_var(irq_stat).idle_timestamp = jiffies; |
| 88 | current_thread_info()->status &= ~TS_POLLING; |
| 89 | /* |
| 90 | * TS_POLLING-cleared state must be visible before we |
| 91 | * test NEED_RESCHED: |
| 92 | */ |
| 93 | smp_mb(); |
| 94 | |
| 95 | if (!need_resched()) |
| 96 | _cpu_idle(); |
| 97 | else |
| 98 | local_irq_enable(); |
| 99 | current_thread_info()->status |= TS_POLLING; |
| 100 | } |
| 101 | tick_nohz_restart_sched_tick(); |
| 102 | preempt_enable_no_resched(); |
| 103 | schedule(); |
| 104 | preempt_disable(); |
| 105 | } |
| 106 | } |
| 107 | |
| 108 | struct thread_info *alloc_thread_info(struct task_struct *task) |
| 109 | { |
| 110 | struct page *page; |
| 111 | int flags = GFP_KERNEL; |
| 112 | |
| 113 | #ifdef CONFIG_DEBUG_STACK_USAGE |
| 114 | flags |= __GFP_ZERO; |
| 115 | #endif |
| 116 | |
| 117 | page = alloc_pages(flags, THREAD_SIZE_ORDER); |
| 118 | if (!page) |
| 119 | return 0; |
| 120 | |
| 121 | return (struct thread_info *)page_address(page); |
| 122 | } |
| 123 | |
| 124 | /* |
| 125 | * Free a thread_info node, and all of its derivative |
| 126 | * data structures. |
| 127 | */ |
| 128 | void free_thread_info(struct thread_info *info) |
| 129 | { |
| 130 | struct single_step_state *step_state = info->step_state; |
| 131 | |
| 132 | |
| 133 | if (step_state) { |
| 134 | |
| 135 | /* |
| 136 | * FIXME: we don't munmap step_state->buffer |
| 137 | * because the mm_struct for this process (info->task->mm) |
| 138 | * has already been zeroed in exit_mm(). Keeping a |
| 139 | * reference to it here seems like a bad move, so this |
| 140 | * means we can't munmap() the buffer, and therefore if we |
| 141 | * ptrace multiple threads in a process, we will slowly |
| 142 | * leak user memory. (Note that as soon as the last |
| 143 | * thread in a process dies, we will reclaim all user |
| 144 | * memory including single-step buffers in the usual way.) |
| 145 | * We should either assign a kernel VA to this buffer |
| 146 | * somehow, or we should associate the buffer(s) with the |
| 147 | * mm itself so we can clean them up that way. |
| 148 | */ |
| 149 | kfree(step_state); |
| 150 | } |
| 151 | |
| 152 | free_page((unsigned long)info); |
| 153 | } |
| 154 | |
| 155 | static void save_arch_state(struct thread_struct *t); |
| 156 | |
| 157 | extern void ret_from_fork(void); |
| 158 | |
| 159 | int copy_thread(unsigned long clone_flags, unsigned long sp, |
| 160 | unsigned long stack_size, |
| 161 | struct task_struct *p, struct pt_regs *regs) |
| 162 | { |
| 163 | struct pt_regs *childregs; |
| 164 | unsigned long ksp; |
| 165 | |
| 166 | /* |
| 167 | * When creating a new kernel thread we pass sp as zero. |
| 168 | * Assign it to a reasonable value now that we have the stack. |
| 169 | */ |
| 170 | if (sp == 0 && regs->ex1 == PL_ICS_EX1(KERNEL_PL, 0)) |
| 171 | sp = KSTK_TOP(p); |
| 172 | |
| 173 | /* |
| 174 | * Do not clone step state from the parent; each thread |
| 175 | * must make its own lazily. |
| 176 | */ |
| 177 | task_thread_info(p)->step_state = NULL; |
| 178 | |
| 179 | /* |
| 180 | * Start new thread in ret_from_fork so it schedules properly |
| 181 | * and then return from interrupt like the parent. |
| 182 | */ |
| 183 | p->thread.pc = (unsigned long) ret_from_fork; |
| 184 | |
| 185 | /* Save user stack top pointer so we can ID the stack vm area later. */ |
| 186 | p->thread.usp0 = sp; |
| 187 | |
| 188 | /* Record the pid of the process that created this one. */ |
| 189 | p->thread.creator_pid = current->pid; |
| 190 | |
| 191 | /* |
| 192 | * Copy the registers onto the kernel stack so the |
| 193 | * return-from-interrupt code will reload it into registers. |
| 194 | */ |
| 195 | childregs = task_pt_regs(p); |
| 196 | *childregs = *regs; |
| 197 | childregs->regs[0] = 0; /* return value is zero */ |
| 198 | childregs->sp = sp; /* override with new user stack pointer */ |
| 199 | |
| 200 | /* |
| 201 | * Copy the callee-saved registers from the passed pt_regs struct |
| 202 | * into the context-switch callee-saved registers area. |
| 203 | * We have to restore the callee-saved registers since we may |
| 204 | * be cloning a userspace task with userspace register state, |
| 205 | * and we won't be unwinding the same kernel frames to restore them. |
| 206 | * Zero out the C ABI save area to mark the top of the stack. |
| 207 | */ |
| 208 | ksp = (unsigned long) childregs; |
| 209 | ksp -= C_ABI_SAVE_AREA_SIZE; /* interrupt-entry save area */ |
| 210 | ((long *)ksp)[0] = ((long *)ksp)[1] = 0; |
| 211 | ksp -= CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long); |
| 212 | memcpy((void *)ksp, ®s->regs[CALLEE_SAVED_FIRST_REG], |
| 213 | CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long)); |
| 214 | ksp -= C_ABI_SAVE_AREA_SIZE; /* __switch_to() save area */ |
| 215 | ((long *)ksp)[0] = ((long *)ksp)[1] = 0; |
| 216 | p->thread.ksp = ksp; |
| 217 | |
| 218 | #if CHIP_HAS_TILE_DMA() |
| 219 | /* |
| 220 | * No DMA in the new thread. We model this on the fact that |
| 221 | * fork() clears the pending signals, alarms, and aio for the child. |
| 222 | */ |
| 223 | memset(&p->thread.tile_dma_state, 0, sizeof(struct tile_dma_state)); |
| 224 | memset(&p->thread.dma_async_tlb, 0, sizeof(struct async_tlb)); |
| 225 | #endif |
| 226 | |
| 227 | #if CHIP_HAS_SN_PROC() |
| 228 | /* Likewise, the new thread is not running static processor code. */ |
| 229 | p->thread.sn_proc_running = 0; |
| 230 | memset(&p->thread.sn_async_tlb, 0, sizeof(struct async_tlb)); |
| 231 | #endif |
| 232 | |
| 233 | #if CHIP_HAS_PROC_STATUS_SPR() |
| 234 | /* New thread has its miscellaneous processor state bits clear. */ |
| 235 | p->thread.proc_status = 0; |
| 236 | #endif |
| 237 | |
| 238 | |
| 239 | |
| 240 | /* |
| 241 | * Start the new thread with the current architecture state |
| 242 | * (user interrupt masks, etc.). |
| 243 | */ |
| 244 | save_arch_state(&p->thread); |
| 245 | |
| 246 | return 0; |
| 247 | } |
| 248 | |
| 249 | /* |
| 250 | * Return "current" if it looks plausible, or else a pointer to a dummy. |
| 251 | * This can be helpful if we are just trying to emit a clean panic. |
| 252 | */ |
| 253 | struct task_struct *validate_current(void) |
| 254 | { |
| 255 | static struct task_struct corrupt = { .comm = "<corrupt>" }; |
| 256 | struct task_struct *tsk = current; |
| 257 | if (unlikely((unsigned long)tsk < PAGE_OFFSET || |
| 258 | (void *)tsk > high_memory || |
| 259 | ((unsigned long)tsk & (__alignof__(*tsk) - 1)) != 0)) { |
| 260 | printk("Corrupt 'current' %p (sp %#lx)\n", tsk, stack_pointer); |
| 261 | tsk = &corrupt; |
| 262 | } |
| 263 | return tsk; |
| 264 | } |
| 265 | |
| 266 | /* Take and return the pointer to the previous task, for schedule_tail(). */ |
| 267 | struct task_struct *sim_notify_fork(struct task_struct *prev) |
| 268 | { |
| 269 | struct task_struct *tsk = current; |
| 270 | __insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK_PARENT | |
| 271 | (tsk->thread.creator_pid << _SIM_CONTROL_OPERATOR_BITS)); |
| 272 | __insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK | |
| 273 | (tsk->pid << _SIM_CONTROL_OPERATOR_BITS)); |
| 274 | return prev; |
| 275 | } |
| 276 | |
| 277 | int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs) |
| 278 | { |
| 279 | struct pt_regs *ptregs = task_pt_regs(tsk); |
| 280 | elf_core_copy_regs(regs, ptregs); |
| 281 | return 1; |
| 282 | } |
| 283 | |
| 284 | #if CHIP_HAS_TILE_DMA() |
| 285 | |
| 286 | /* Allow user processes to access the DMA SPRs */ |
| 287 | void grant_dma_mpls(void) |
| 288 | { |
| 289 | __insn_mtspr(SPR_MPL_DMA_CPL_SET_0, 1); |
| 290 | __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_0, 1); |
| 291 | } |
| 292 | |
| 293 | /* Forbid user processes from accessing the DMA SPRs */ |
| 294 | void restrict_dma_mpls(void) |
| 295 | { |
| 296 | __insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1); |
| 297 | __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1); |
| 298 | } |
| 299 | |
| 300 | /* Pause the DMA engine, then save off its state registers. */ |
| 301 | static void save_tile_dma_state(struct tile_dma_state *dma) |
| 302 | { |
| 303 | unsigned long state = __insn_mfspr(SPR_DMA_USER_STATUS); |
| 304 | unsigned long post_suspend_state; |
| 305 | |
| 306 | /* If we're running, suspend the engine. */ |
| 307 | if ((state & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK) |
| 308 | __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK); |
| 309 | |
| 310 | /* |
| 311 | * Wait for the engine to idle, then save regs. Note that we |
| 312 | * want to record the "running" bit from before suspension, |
| 313 | * and the "done" bit from after, so that we can properly |
| 314 | * distinguish a case where the user suspended the engine from |
| 315 | * the case where the kernel suspended as part of the context |
| 316 | * swap. |
| 317 | */ |
| 318 | do { |
| 319 | post_suspend_state = __insn_mfspr(SPR_DMA_USER_STATUS); |
| 320 | } while (post_suspend_state & SPR_DMA_STATUS__BUSY_MASK); |
| 321 | |
| 322 | dma->src = __insn_mfspr(SPR_DMA_SRC_ADDR); |
| 323 | dma->src_chunk = __insn_mfspr(SPR_DMA_SRC_CHUNK_ADDR); |
| 324 | dma->dest = __insn_mfspr(SPR_DMA_DST_ADDR); |
| 325 | dma->dest_chunk = __insn_mfspr(SPR_DMA_DST_CHUNK_ADDR); |
| 326 | dma->strides = __insn_mfspr(SPR_DMA_STRIDE); |
| 327 | dma->chunk_size = __insn_mfspr(SPR_DMA_CHUNK_SIZE); |
| 328 | dma->byte = __insn_mfspr(SPR_DMA_BYTE); |
| 329 | dma->status = (state & SPR_DMA_STATUS__RUNNING_MASK) | |
| 330 | (post_suspend_state & SPR_DMA_STATUS__DONE_MASK); |
| 331 | } |
| 332 | |
| 333 | /* Restart a DMA that was running before we were context-switched out. */ |
| 334 | static void restore_tile_dma_state(struct thread_struct *t) |
| 335 | { |
| 336 | const struct tile_dma_state *dma = &t->tile_dma_state; |
| 337 | |
| 338 | /* |
| 339 | * The only way to restore the done bit is to run a zero |
| 340 | * length transaction. |
| 341 | */ |
| 342 | if ((dma->status & SPR_DMA_STATUS__DONE_MASK) && |
| 343 | !(__insn_mfspr(SPR_DMA_USER_STATUS) & SPR_DMA_STATUS__DONE_MASK)) { |
| 344 | __insn_mtspr(SPR_DMA_BYTE, 0); |
| 345 | __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK); |
| 346 | while (__insn_mfspr(SPR_DMA_USER_STATUS) & |
| 347 | SPR_DMA_STATUS__BUSY_MASK) |
| 348 | ; |
| 349 | } |
| 350 | |
| 351 | __insn_mtspr(SPR_DMA_SRC_ADDR, dma->src); |
| 352 | __insn_mtspr(SPR_DMA_SRC_CHUNK_ADDR, dma->src_chunk); |
| 353 | __insn_mtspr(SPR_DMA_DST_ADDR, dma->dest); |
| 354 | __insn_mtspr(SPR_DMA_DST_CHUNK_ADDR, dma->dest_chunk); |
| 355 | __insn_mtspr(SPR_DMA_STRIDE, dma->strides); |
| 356 | __insn_mtspr(SPR_DMA_CHUNK_SIZE, dma->chunk_size); |
| 357 | __insn_mtspr(SPR_DMA_BYTE, dma->byte); |
| 358 | |
| 359 | /* |
| 360 | * Restart the engine if we were running and not done. |
| 361 | * Clear a pending async DMA fault that we were waiting on return |
| 362 | * to user space to execute, since we expect the DMA engine |
| 363 | * to regenerate those faults for us now. Note that we don't |
| 364 | * try to clear the TIF_ASYNC_TLB flag, since it's relatively |
| 365 | * harmless if set, and it covers both DMA and the SN processor. |
| 366 | */ |
| 367 | if ((dma->status & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK) { |
| 368 | t->dma_async_tlb.fault_num = 0; |
| 369 | __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK); |
| 370 | } |
| 371 | } |
| 372 | |
| 373 | #endif |
| 374 | |
| 375 | static void save_arch_state(struct thread_struct *t) |
| 376 | { |
| 377 | #if CHIP_HAS_SPLIT_INTR_MASK() |
| 378 | t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0_0) | |
| 379 | ((u64)__insn_mfspr(SPR_INTERRUPT_MASK_0_1) << 32); |
| 380 | #else |
| 381 | t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0); |
| 382 | #endif |
| 383 | t->ex_context[0] = __insn_mfspr(SPR_EX_CONTEXT_0_0); |
| 384 | t->ex_context[1] = __insn_mfspr(SPR_EX_CONTEXT_0_1); |
| 385 | t->system_save[0] = __insn_mfspr(SPR_SYSTEM_SAVE_0_0); |
| 386 | t->system_save[1] = __insn_mfspr(SPR_SYSTEM_SAVE_0_1); |
| 387 | t->system_save[2] = __insn_mfspr(SPR_SYSTEM_SAVE_0_2); |
| 388 | t->system_save[3] = __insn_mfspr(SPR_SYSTEM_SAVE_0_3); |
| 389 | t->intctrl_0 = __insn_mfspr(SPR_INTCTRL_0_STATUS); |
| 390 | #if CHIP_HAS_PROC_STATUS_SPR() |
| 391 | t->proc_status = __insn_mfspr(SPR_PROC_STATUS); |
| 392 | #endif |
| 393 | } |
| 394 | |
| 395 | static void restore_arch_state(const struct thread_struct *t) |
| 396 | { |
| 397 | #if CHIP_HAS_SPLIT_INTR_MASK() |
| 398 | __insn_mtspr(SPR_INTERRUPT_MASK_0_0, (u32) t->interrupt_mask); |
| 399 | __insn_mtspr(SPR_INTERRUPT_MASK_0_1, t->interrupt_mask >> 32); |
| 400 | #else |
| 401 | __insn_mtspr(SPR_INTERRUPT_MASK_0, t->interrupt_mask); |
| 402 | #endif |
| 403 | __insn_mtspr(SPR_EX_CONTEXT_0_0, t->ex_context[0]); |
| 404 | __insn_mtspr(SPR_EX_CONTEXT_0_1, t->ex_context[1]); |
| 405 | __insn_mtspr(SPR_SYSTEM_SAVE_0_0, t->system_save[0]); |
| 406 | __insn_mtspr(SPR_SYSTEM_SAVE_0_1, t->system_save[1]); |
| 407 | __insn_mtspr(SPR_SYSTEM_SAVE_0_2, t->system_save[2]); |
| 408 | __insn_mtspr(SPR_SYSTEM_SAVE_0_3, t->system_save[3]); |
| 409 | __insn_mtspr(SPR_INTCTRL_0_STATUS, t->intctrl_0); |
| 410 | #if CHIP_HAS_PROC_STATUS_SPR() |
| 411 | __insn_mtspr(SPR_PROC_STATUS, t->proc_status); |
| 412 | #endif |
| 413 | #if CHIP_HAS_TILE_RTF_HWM() |
| 414 | /* |
| 415 | * Clear this whenever we switch back to a process in case |
| 416 | * the previous process was monkeying with it. Even if enabled |
| 417 | * in CBOX_MSR1 via TILE_RTF_HWM_MIN, it's still just a |
| 418 | * performance hint, so isn't worth a full save/restore. |
| 419 | */ |
| 420 | __insn_mtspr(SPR_TILE_RTF_HWM, 0); |
| 421 | #endif |
| 422 | } |
| 423 | |
| 424 | |
| 425 | void _prepare_arch_switch(struct task_struct *next) |
| 426 | { |
| 427 | #if CHIP_HAS_SN_PROC() |
| 428 | int snctl; |
| 429 | #endif |
| 430 | #if CHIP_HAS_TILE_DMA() |
| 431 | struct tile_dma_state *dma = ¤t->thread.tile_dma_state; |
| 432 | if (dma->enabled) |
| 433 | save_tile_dma_state(dma); |
| 434 | #endif |
| 435 | #if CHIP_HAS_SN_PROC() |
| 436 | /* |
| 437 | * Suspend the static network processor if it was running. |
| 438 | * We do not suspend the fabric itself, just like we don't |
| 439 | * try to suspend the UDN. |
| 440 | */ |
| 441 | snctl = __insn_mfspr(SPR_SNCTL); |
| 442 | current->thread.sn_proc_running = |
| 443 | (snctl & SPR_SNCTL__FRZPROC_MASK) == 0; |
| 444 | if (current->thread.sn_proc_running) |
| 445 | __insn_mtspr(SPR_SNCTL, snctl | SPR_SNCTL__FRZPROC_MASK); |
| 446 | #endif |
| 447 | } |
| 448 | |
| 449 | |
| 450 | extern struct task_struct *__switch_to(struct task_struct *prev, |
| 451 | struct task_struct *next, |
| 452 | unsigned long new_system_save_1_0); |
| 453 | |
| 454 | struct task_struct *__sched _switch_to(struct task_struct *prev, |
| 455 | struct task_struct *next) |
| 456 | { |
| 457 | /* DMA state is already saved; save off other arch state. */ |
| 458 | save_arch_state(&prev->thread); |
| 459 | |
| 460 | #if CHIP_HAS_TILE_DMA() |
| 461 | /* |
| 462 | * Restore DMA in new task if desired. |
| 463 | * Note that it is only safe to restart here since interrupts |
| 464 | * are disabled, so we can't take any DMATLB miss or access |
| 465 | * interrupts before we have finished switching stacks. |
| 466 | */ |
| 467 | if (next->thread.tile_dma_state.enabled) { |
| 468 | restore_tile_dma_state(&next->thread); |
| 469 | grant_dma_mpls(); |
| 470 | } else { |
| 471 | restrict_dma_mpls(); |
| 472 | } |
| 473 | #endif |
| 474 | |
| 475 | /* Restore other arch state. */ |
| 476 | restore_arch_state(&next->thread); |
| 477 | |
| 478 | #if CHIP_HAS_SN_PROC() |
| 479 | /* |
| 480 | * Restart static network processor in the new process |
| 481 | * if it was running before. |
| 482 | */ |
| 483 | if (next->thread.sn_proc_running) { |
| 484 | int snctl = __insn_mfspr(SPR_SNCTL); |
| 485 | __insn_mtspr(SPR_SNCTL, snctl & ~SPR_SNCTL__FRZPROC_MASK); |
| 486 | } |
| 487 | #endif |
| 488 | |
| 489 | |
| 490 | /* |
| 491 | * Switch kernel SP, PC, and callee-saved registers. |
| 492 | * In the context of the new task, return the old task pointer |
| 493 | * (i.e. the task that actually called __switch_to). |
| 494 | * Pass the value to use for SYSTEM_SAVE_1_0 when we reset our sp. |
| 495 | */ |
| 496 | return __switch_to(prev, next, next_current_ksp0(next)); |
| 497 | } |
| 498 | |
| 499 | int _sys_fork(struct pt_regs *regs) |
| 500 | { |
| 501 | return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL); |
| 502 | } |
| 503 | |
| 504 | int _sys_clone(unsigned long clone_flags, unsigned long newsp, |
| 505 | int __user *parent_tidptr, int __user *child_tidptr, |
| 506 | struct pt_regs *regs) |
| 507 | { |
| 508 | if (!newsp) |
| 509 | newsp = regs->sp; |
| 510 | return do_fork(clone_flags, newsp, regs, 0, |
| 511 | parent_tidptr, child_tidptr); |
| 512 | } |
| 513 | |
| 514 | int _sys_vfork(struct pt_regs *regs) |
| 515 | { |
| 516 | return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, |
| 517 | regs, 0, NULL, NULL); |
| 518 | } |
| 519 | |
| 520 | /* |
| 521 | * sys_execve() executes a new program. |
| 522 | */ |
| 523 | int _sys_execve(char __user *path, char __user *__user *argv, |
| 524 | char __user *__user *envp, struct pt_regs *regs) |
| 525 | { |
| 526 | int error; |
| 527 | char *filename; |
| 528 | |
| 529 | filename = getname(path); |
| 530 | error = PTR_ERR(filename); |
| 531 | if (IS_ERR(filename)) |
| 532 | goto out; |
| 533 | error = do_execve(filename, argv, envp, regs); |
| 534 | putname(filename); |
| 535 | out: |
| 536 | return error; |
| 537 | } |
| 538 | |
| 539 | #ifdef CONFIG_COMPAT |
| 540 | int _compat_sys_execve(char __user *path, compat_uptr_t __user *argv, |
| 541 | compat_uptr_t __user *envp, struct pt_regs *regs) |
| 542 | { |
| 543 | int error; |
| 544 | char *filename; |
| 545 | |
| 546 | filename = getname(path); |
| 547 | error = PTR_ERR(filename); |
| 548 | if (IS_ERR(filename)) |
| 549 | goto out; |
| 550 | error = compat_do_execve(filename, argv, envp, regs); |
| 551 | putname(filename); |
| 552 | out: |
| 553 | return error; |
| 554 | } |
| 555 | #endif |
| 556 | |
| 557 | unsigned long get_wchan(struct task_struct *p) |
| 558 | { |
| 559 | struct KBacktraceIterator kbt; |
| 560 | |
| 561 | if (!p || p == current || p->state == TASK_RUNNING) |
| 562 | return 0; |
| 563 | |
| 564 | for (KBacktraceIterator_init(&kbt, p, NULL); |
| 565 | !KBacktraceIterator_end(&kbt); |
| 566 | KBacktraceIterator_next(&kbt)) { |
| 567 | if (!in_sched_functions(kbt.it.pc)) |
| 568 | return kbt.it.pc; |
| 569 | } |
| 570 | |
| 571 | return 0; |
| 572 | } |
| 573 | |
| 574 | /* |
| 575 | * We pass in lr as zero (cleared in kernel_thread) and the caller |
| 576 | * part of the backtrace ABI on the stack also zeroed (in copy_thread) |
| 577 | * so that backtraces will stop with this function. |
| 578 | * Note that we don't use r0, since copy_thread() clears it. |
| 579 | */ |
| 580 | static void start_kernel_thread(int dummy, int (*fn)(int), int arg) |
| 581 | { |
| 582 | do_exit(fn(arg)); |
| 583 | } |
| 584 | |
| 585 | /* |
| 586 | * Create a kernel thread |
| 587 | */ |
| 588 | int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) |
| 589 | { |
| 590 | struct pt_regs regs; |
| 591 | |
| 592 | memset(®s, 0, sizeof(regs)); |
| 593 | regs.ex1 = PL_ICS_EX1(KERNEL_PL, 0); /* run at kernel PL, no ICS */ |
| 594 | regs.pc = (long) start_kernel_thread; |
| 595 | regs.flags = PT_FLAGS_CALLER_SAVES; /* need to restore r1 and r2 */ |
| 596 | regs.regs[1] = (long) fn; /* function pointer */ |
| 597 | regs.regs[2] = (long) arg; /* parameter register */ |
| 598 | |
| 599 | /* Ok, create the new process.. */ |
| 600 | return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, |
| 601 | 0, NULL, NULL); |
| 602 | } |
| 603 | EXPORT_SYMBOL(kernel_thread); |
| 604 | |
| 605 | /* Flush thread state. */ |
| 606 | void flush_thread(void) |
| 607 | { |
| 608 | /* Nothing */ |
| 609 | } |
| 610 | |
| 611 | /* |
| 612 | * Free current thread data structures etc.. |
| 613 | */ |
| 614 | void exit_thread(void) |
| 615 | { |
| 616 | /* Nothing */ |
| 617 | } |
| 618 | |
| 619 | #ifdef __tilegx__ |
| 620 | # define LINECOUNT 3 |
| 621 | # define EXTRA_NL "\n" |
| 622 | #else |
| 623 | # define LINECOUNT 4 |
| 624 | # define EXTRA_NL "" |
| 625 | #endif |
| 626 | |
| 627 | void show_regs(struct pt_regs *regs) |
| 628 | { |
| 629 | struct task_struct *tsk = validate_current(); |
| 630 | int i, linebreak; |
| 631 | printk("\n"); |
| 632 | printk(" Pid: %d, comm: %20s, CPU: %d\n", |
| 633 | tsk->pid, tsk->comm, smp_processor_id()); |
| 634 | for (i = linebreak = 0; i < 53; ++i) { |
| 635 | printk(" r%-2d: "REGFMT, i, regs->regs[i]); |
| 636 | if (++linebreak == LINECOUNT) { |
| 637 | linebreak = 0; |
| 638 | printk("\n"); |
| 639 | } |
| 640 | } |
| 641 | printk(" tp : "REGFMT EXTRA_NL " sp : "REGFMT" lr : "REGFMT"\n", |
| 642 | regs->tp, regs->sp, regs->lr); |
| 643 | printk(" pc : "REGFMT" ex1: %ld faultnum: %ld\n", |
| 644 | regs->pc, regs->ex1, regs->faultnum); |
| 645 | |
| 646 | dump_stack_regs(regs); |
| 647 | } |