Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright 2010 Tilera Corporation. All Rights Reserved. |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or |
| 5 | * modify it under the terms of the GNU General Public License |
| 6 | * as published by the Free Software Foundation, version 2. |
| 7 | * |
| 8 | * This program is distributed in the hope that it will be useful, but |
| 9 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
| 10 | * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or |
| 11 | * NON INFRINGEMENT. See the GNU General Public License for |
| 12 | * more details. |
| 13 | * |
| 14 | * A code-rewriter that enables instruction single-stepping. |
| 15 | * Derived from iLib's single-stepping code. |
| 16 | */ |
| 17 | |
| 18 | #ifndef __tilegx__ /* No support for single-step yet. */ |
| 19 | |
| 20 | /* These functions are only used on the TILE platform */ |
| 21 | #include <linux/slab.h> |
| 22 | #include <linux/thread_info.h> |
| 23 | #include <linux/uaccess.h> |
| 24 | #include <linux/mman.h> |
| 25 | #include <linux/types.h> |
| 26 | #include <asm/cacheflush.h> |
| 27 | #include <asm/opcode-tile.h> |
| 28 | #include <asm/opcode_constants.h> |
| 29 | #include <arch/abi.h> |
| 30 | |
| 31 | #define signExtend17(val) sign_extend((val), 17) |
| 32 | #define TILE_X1_MASK (0xffffffffULL << 31) |
| 33 | |
| 34 | int unaligned_printk; |
| 35 | |
| 36 | static int __init setup_unaligned_printk(char *str) |
| 37 | { |
| 38 | long val; |
| 39 | if (strict_strtol(str, 0, &val) != 0) |
| 40 | return 0; |
| 41 | unaligned_printk = val; |
| 42 | printk("Printk for each unaligned data accesses is %s\n", |
| 43 | unaligned_printk ? "enabled" : "disabled"); |
| 44 | return 1; |
| 45 | } |
| 46 | __setup("unaligned_printk=", setup_unaligned_printk); |
| 47 | |
| 48 | unsigned int unaligned_fixup_count; |
| 49 | |
| 50 | enum mem_op { |
| 51 | MEMOP_NONE, |
| 52 | MEMOP_LOAD, |
| 53 | MEMOP_STORE, |
| 54 | MEMOP_LOAD_POSTINCR, |
| 55 | MEMOP_STORE_POSTINCR |
| 56 | }; |
| 57 | |
| 58 | static inline tile_bundle_bits set_BrOff_X1(tile_bundle_bits n, int32_t offset) |
| 59 | { |
| 60 | tile_bundle_bits result; |
| 61 | |
| 62 | /* mask out the old offset */ |
| 63 | tile_bundle_bits mask = create_BrOff_X1(-1); |
| 64 | result = n & (~mask); |
| 65 | |
| 66 | /* or in the new offset */ |
| 67 | result |= create_BrOff_X1(offset); |
| 68 | |
| 69 | return result; |
| 70 | } |
| 71 | |
| 72 | static inline tile_bundle_bits move_X1(tile_bundle_bits n, int dest, int src) |
| 73 | { |
| 74 | tile_bundle_bits result; |
| 75 | tile_bundle_bits op; |
| 76 | |
| 77 | result = n & (~TILE_X1_MASK); |
| 78 | |
| 79 | op = create_Opcode_X1(SPECIAL_0_OPCODE_X1) | |
| 80 | create_RRROpcodeExtension_X1(OR_SPECIAL_0_OPCODE_X1) | |
| 81 | create_Dest_X1(dest) | |
| 82 | create_SrcB_X1(TREG_ZERO) | |
| 83 | create_SrcA_X1(src) ; |
| 84 | |
| 85 | result |= op; |
| 86 | return result; |
| 87 | } |
| 88 | |
| 89 | static inline tile_bundle_bits nop_X1(tile_bundle_bits n) |
| 90 | { |
| 91 | return move_X1(n, TREG_ZERO, TREG_ZERO); |
| 92 | } |
| 93 | |
| 94 | static inline tile_bundle_bits addi_X1( |
| 95 | tile_bundle_bits n, int dest, int src, int imm) |
| 96 | { |
| 97 | n &= ~TILE_X1_MASK; |
| 98 | |
| 99 | n |= (create_SrcA_X1(src) | |
| 100 | create_Dest_X1(dest) | |
| 101 | create_Imm8_X1(imm) | |
| 102 | create_S_X1(0) | |
| 103 | create_Opcode_X1(IMM_0_OPCODE_X1) | |
| 104 | create_ImmOpcodeExtension_X1(ADDI_IMM_0_OPCODE_X1)); |
| 105 | |
| 106 | return n; |
| 107 | } |
| 108 | |
| 109 | static tile_bundle_bits rewrite_load_store_unaligned( |
| 110 | struct single_step_state *state, |
| 111 | tile_bundle_bits bundle, |
| 112 | struct pt_regs *regs, |
| 113 | enum mem_op mem_op, |
| 114 | int size, int sign_ext) |
| 115 | { |
| 116 | unsigned char *addr; |
| 117 | int val_reg, addr_reg, err, val; |
| 118 | |
| 119 | /* Get address and value registers */ |
| 120 | if (bundle & TILE_BUNDLE_Y_ENCODING_MASK) { |
| 121 | addr_reg = get_SrcA_Y2(bundle); |
| 122 | val_reg = get_SrcBDest_Y2(bundle); |
| 123 | } else if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) { |
| 124 | addr_reg = get_SrcA_X1(bundle); |
| 125 | val_reg = get_Dest_X1(bundle); |
| 126 | } else { |
| 127 | addr_reg = get_SrcA_X1(bundle); |
| 128 | val_reg = get_SrcB_X1(bundle); |
| 129 | } |
| 130 | |
| 131 | /* |
| 132 | * If registers are not GPRs, don't try to handle it. |
| 133 | * |
| 134 | * FIXME: we could handle non-GPR loads by getting the real value |
| 135 | * from memory, writing it to the single step buffer, using a |
| 136 | * temp_reg to hold a pointer to that memory, then executing that |
| 137 | * instruction and resetting temp_reg. For non-GPR stores, it's a |
| 138 | * little trickier; we could use the single step buffer for that |
| 139 | * too, but we'd have to add some more state bits so that we could |
| 140 | * call back in here to copy that value to the real target. For |
| 141 | * now, we just handle the simple case. |
| 142 | */ |
| 143 | if ((val_reg >= PTREGS_NR_GPRS && |
| 144 | (val_reg != TREG_ZERO || |
| 145 | mem_op == MEMOP_LOAD || |
| 146 | mem_op == MEMOP_LOAD_POSTINCR)) || |
| 147 | addr_reg >= PTREGS_NR_GPRS) |
| 148 | return bundle; |
| 149 | |
| 150 | /* If it's aligned, don't handle it specially */ |
| 151 | addr = (void *)regs->regs[addr_reg]; |
| 152 | if (((unsigned long)addr % size) == 0) |
| 153 | return bundle; |
| 154 | |
| 155 | #ifndef __LITTLE_ENDIAN |
| 156 | # error We assume little-endian representation with copy_xx_user size 2 here |
| 157 | #endif |
| 158 | /* Handle unaligned load/store */ |
| 159 | if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) { |
| 160 | unsigned short val_16; |
| 161 | switch (size) { |
| 162 | case 2: |
| 163 | err = copy_from_user(&val_16, addr, sizeof(val_16)); |
| 164 | val = sign_ext ? ((short)val_16) : val_16; |
| 165 | break; |
| 166 | case 4: |
| 167 | err = copy_from_user(&val, addr, sizeof(val)); |
| 168 | break; |
| 169 | default: |
| 170 | BUG(); |
| 171 | } |
| 172 | if (err == 0) { |
| 173 | state->update_reg = val_reg; |
| 174 | state->update_value = val; |
| 175 | state->update = 1; |
| 176 | } |
| 177 | } else { |
| 178 | val = (val_reg == TREG_ZERO) ? 0 : regs->regs[val_reg]; |
| 179 | err = copy_to_user(addr, &val, size); |
| 180 | } |
| 181 | |
| 182 | if (err) { |
| 183 | siginfo_t info = { |
| 184 | .si_signo = SIGSEGV, |
| 185 | .si_code = SEGV_MAPERR, |
| 186 | .si_addr = (void __user *)addr |
| 187 | }; |
| 188 | force_sig_info(info.si_signo, &info, current); |
| 189 | return (tile_bundle_bits) 0; |
| 190 | } |
| 191 | |
| 192 | if (unaligned_fixup == 0) { |
| 193 | siginfo_t info = { |
| 194 | .si_signo = SIGBUS, |
| 195 | .si_code = BUS_ADRALN, |
| 196 | .si_addr = (void __user *)addr |
| 197 | }; |
| 198 | force_sig_info(info.si_signo, &info, current); |
| 199 | return (tile_bundle_bits) 0; |
| 200 | } |
| 201 | |
| 202 | if (unaligned_printk || unaligned_fixup_count == 0) { |
| 203 | printk("Process %d/%s: PC %#lx: Fixup of" |
| 204 | " unaligned %s at %#lx.\n", |
| 205 | current->pid, current->comm, regs->pc, |
| 206 | (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) ? |
| 207 | "load" : "store", |
| 208 | (unsigned long)addr); |
| 209 | if (!unaligned_printk) { |
| 210 | printk("\n" |
| 211 | "Unaligned fixups in the kernel will slow your application considerably.\n" |
| 212 | "You can find them by writing \"1\" to /proc/sys/tile/unaligned_fixup/printk,\n" |
| 213 | "which requests the kernel show all unaligned fixups, or writing a \"0\"\n" |
| 214 | "to /proc/sys/tile/unaligned_fixup/enabled, in which case each unaligned\n" |
| 215 | "access will become a SIGBUS you can debug. No further warnings will be\n" |
| 216 | "shown so as to avoid additional slowdown, but you can track the number\n" |
| 217 | "of fixups performed via /proc/sys/tile/unaligned_fixup/count.\n" |
| 218 | "Use the tile-addr2line command (see \"info addr2line\") to decode PCs.\n" |
| 219 | "\n"); |
| 220 | } |
| 221 | } |
| 222 | ++unaligned_fixup_count; |
| 223 | |
| 224 | if (bundle & TILE_BUNDLE_Y_ENCODING_MASK) { |
| 225 | /* Convert the Y2 instruction to a prefetch. */ |
| 226 | bundle &= ~(create_SrcBDest_Y2(-1) | |
| 227 | create_Opcode_Y2(-1)); |
| 228 | bundle |= (create_SrcBDest_Y2(TREG_ZERO) | |
| 229 | create_Opcode_Y2(LW_OPCODE_Y2)); |
| 230 | /* Replace the load postincr with an addi */ |
| 231 | } else if (mem_op == MEMOP_LOAD_POSTINCR) { |
| 232 | bundle = addi_X1(bundle, addr_reg, addr_reg, |
| 233 | get_Imm8_X1(bundle)); |
| 234 | /* Replace the store postincr with an addi */ |
| 235 | } else if (mem_op == MEMOP_STORE_POSTINCR) { |
| 236 | bundle = addi_X1(bundle, addr_reg, addr_reg, |
| 237 | get_Dest_Imm8_X1(bundle)); |
| 238 | } else { |
| 239 | /* Convert the X1 instruction to a nop. */ |
| 240 | bundle &= ~(create_Opcode_X1(-1) | |
| 241 | create_UnShOpcodeExtension_X1(-1) | |
| 242 | create_UnOpcodeExtension_X1(-1)); |
| 243 | bundle |= (create_Opcode_X1(SHUN_0_OPCODE_X1) | |
| 244 | create_UnShOpcodeExtension_X1( |
| 245 | UN_0_SHUN_0_OPCODE_X1) | |
| 246 | create_UnOpcodeExtension_X1( |
| 247 | NOP_UN_0_SHUN_0_OPCODE_X1)); |
| 248 | } |
| 249 | |
| 250 | return bundle; |
| 251 | } |
| 252 | |
| 253 | /** |
| 254 | * single_step_once() - entry point when single stepping has been triggered. |
| 255 | * @regs: The machine register state |
| 256 | * |
| 257 | * When we arrive at this routine via a trampoline, the single step |
| 258 | * engine copies the executing bundle to the single step buffer. |
| 259 | * If the instruction is a condition branch, then the target is |
| 260 | * reset to one past the next instruction. If the instruction |
| 261 | * sets the lr, then that is noted. If the instruction is a jump |
| 262 | * or call, then the new target pc is preserved and the current |
| 263 | * bundle instruction set to null. |
| 264 | * |
| 265 | * The necessary post-single-step rewriting information is stored in |
| 266 | * single_step_state-> We use data segment values because the |
| 267 | * stack will be rewound when we run the rewritten single-stepped |
| 268 | * instruction. |
| 269 | */ |
| 270 | void single_step_once(struct pt_regs *regs) |
| 271 | { |
| 272 | extern tile_bundle_bits __single_step_ill_insn; |
| 273 | extern tile_bundle_bits __single_step_j_insn; |
| 274 | extern tile_bundle_bits __single_step_addli_insn; |
| 275 | extern tile_bundle_bits __single_step_auli_insn; |
| 276 | struct thread_info *info = (void *)current_thread_info(); |
| 277 | struct single_step_state *state = info->step_state; |
| 278 | int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP); |
| 279 | tile_bundle_bits *buffer, *pc; |
| 280 | tile_bundle_bits bundle; |
| 281 | int temp_reg; |
| 282 | int target_reg = TREG_LR; |
| 283 | int err; |
| 284 | enum mem_op mem_op = MEMOP_NONE; |
| 285 | int size = 0, sign_ext = 0; /* happy compiler */ |
| 286 | |
| 287 | asm( |
| 288 | " .pushsection .rodata.single_step\n" |
| 289 | " .align 8\n" |
| 290 | " .globl __single_step_ill_insn\n" |
| 291 | "__single_step_ill_insn:\n" |
| 292 | " ill\n" |
| 293 | " .globl __single_step_addli_insn\n" |
| 294 | "__single_step_addli_insn:\n" |
| 295 | " { nop; addli r0, zero, 0 }\n" |
| 296 | " .globl __single_step_auli_insn\n" |
| 297 | "__single_step_auli_insn:\n" |
| 298 | " { nop; auli r0, r0, 0 }\n" |
| 299 | " .globl __single_step_j_insn\n" |
| 300 | "__single_step_j_insn:\n" |
| 301 | " j .\n" |
| 302 | " .popsection\n" |
| 303 | ); |
| 304 | |
| 305 | if (state == NULL) { |
| 306 | /* allocate a page of writable, executable memory */ |
| 307 | state = kmalloc(sizeof(struct single_step_state), GFP_KERNEL); |
| 308 | if (state == NULL) { |
| 309 | printk("Out of kernel memory trying to single-step\n"); |
| 310 | return; |
| 311 | } |
| 312 | |
| 313 | /* allocate a cache line of writable, executable memory */ |
| 314 | down_write(¤t->mm->mmap_sem); |
| 315 | buffer = (void *) do_mmap(0, 0, 64, |
| 316 | PROT_EXEC | PROT_READ | PROT_WRITE, |
| 317 | MAP_PRIVATE | MAP_ANONYMOUS, |
| 318 | 0); |
| 319 | up_write(¤t->mm->mmap_sem); |
| 320 | |
| 321 | if ((int)buffer < 0 && (int)buffer > -PAGE_SIZE) { |
| 322 | kfree(state); |
| 323 | printk("Out of kernel pages trying to single-step\n"); |
| 324 | return; |
| 325 | } |
| 326 | |
| 327 | state->buffer = buffer; |
| 328 | state->is_enabled = 0; |
| 329 | |
| 330 | info->step_state = state; |
| 331 | |
| 332 | /* Validate our stored instruction patterns */ |
| 333 | BUG_ON(get_Opcode_X1(__single_step_addli_insn) != |
| 334 | ADDLI_OPCODE_X1); |
| 335 | BUG_ON(get_Opcode_X1(__single_step_auli_insn) != |
| 336 | AULI_OPCODE_X1); |
| 337 | BUG_ON(get_SrcA_X1(__single_step_addli_insn) != TREG_ZERO); |
| 338 | BUG_ON(get_Dest_X1(__single_step_addli_insn) != 0); |
| 339 | BUG_ON(get_JOffLong_X1(__single_step_j_insn) != 0); |
| 340 | } |
| 341 | |
| 342 | /* |
| 343 | * If we are returning from a syscall, we still haven't hit the |
| 344 | * "ill" for the swint1 instruction. So back the PC up to be |
| 345 | * pointing at the swint1, but we'll actually return directly |
| 346 | * back to the "ill" so we come back in via SIGILL as if we |
| 347 | * had "executed" the swint1 without ever being in kernel space. |
| 348 | */ |
| 349 | if (regs->faultnum == INT_SWINT_1) |
| 350 | regs->pc -= 8; |
| 351 | |
| 352 | pc = (tile_bundle_bits *)(regs->pc); |
| 353 | bundle = pc[0]; |
| 354 | |
| 355 | /* We'll follow the instruction with 2 ill op bundles */ |
| 356 | state->orig_pc = (unsigned long) pc; |
| 357 | state->next_pc = (unsigned long)(pc + 1); |
| 358 | state->branch_next_pc = 0; |
| 359 | state->update = 0; |
| 360 | |
| 361 | if (!(bundle & TILE_BUNDLE_Y_ENCODING_MASK)) { |
| 362 | /* two wide, check for control flow */ |
| 363 | int opcode = get_Opcode_X1(bundle); |
| 364 | |
| 365 | switch (opcode) { |
| 366 | /* branches */ |
| 367 | case BRANCH_OPCODE_X1: |
| 368 | { |
| 369 | int32_t offset = signExtend17(get_BrOff_X1(bundle)); |
| 370 | |
| 371 | /* |
| 372 | * For branches, we use a rewriting trick to let the |
| 373 | * hardware evaluate whether the branch is taken or |
| 374 | * untaken. We record the target offset and then |
| 375 | * rewrite the branch instruction to target 1 insn |
| 376 | * ahead if the branch is taken. We then follow the |
| 377 | * rewritten branch with two bundles, each containing |
| 378 | * an "ill" instruction. The supervisor examines the |
| 379 | * pc after the single step code is executed, and if |
| 380 | * the pc is the first ill instruction, then the |
| 381 | * branch (if any) was not taken. If the pc is the |
| 382 | * second ill instruction, then the branch was |
| 383 | * taken. The new pc is computed for these cases, and |
| 384 | * inserted into the registers for the thread. If |
| 385 | * the pc is the start of the single step code, then |
| 386 | * an exception or interrupt was taken before the |
| 387 | * code started processing, and the same "original" |
| 388 | * pc is restored. This change, different from the |
| 389 | * original implementation, has the advantage of |
| 390 | * executing a single user instruction. |
| 391 | */ |
| 392 | state->branch_next_pc = (unsigned long)(pc + offset); |
| 393 | |
| 394 | /* rewrite branch offset to go forward one bundle */ |
| 395 | bundle = set_BrOff_X1(bundle, 2); |
| 396 | } |
| 397 | break; |
| 398 | |
| 399 | /* jumps */ |
| 400 | case JALB_OPCODE_X1: |
| 401 | case JALF_OPCODE_X1: |
| 402 | state->update = 1; |
| 403 | state->next_pc = |
| 404 | (unsigned long) (pc + get_JOffLong_X1(bundle)); |
| 405 | break; |
| 406 | |
| 407 | case JB_OPCODE_X1: |
| 408 | case JF_OPCODE_X1: |
| 409 | state->next_pc = |
| 410 | (unsigned long) (pc + get_JOffLong_X1(bundle)); |
| 411 | bundle = nop_X1(bundle); |
| 412 | break; |
| 413 | |
| 414 | case SPECIAL_0_OPCODE_X1: |
| 415 | switch (get_RRROpcodeExtension_X1(bundle)) { |
| 416 | /* jump-register */ |
| 417 | case JALRP_SPECIAL_0_OPCODE_X1: |
| 418 | case JALR_SPECIAL_0_OPCODE_X1: |
| 419 | state->update = 1; |
| 420 | state->next_pc = |
| 421 | regs->regs[get_SrcA_X1(bundle)]; |
| 422 | break; |
| 423 | |
| 424 | case JRP_SPECIAL_0_OPCODE_X1: |
| 425 | case JR_SPECIAL_0_OPCODE_X1: |
| 426 | state->next_pc = |
| 427 | regs->regs[get_SrcA_X1(bundle)]; |
| 428 | bundle = nop_X1(bundle); |
| 429 | break; |
| 430 | |
| 431 | case LNK_SPECIAL_0_OPCODE_X1: |
| 432 | state->update = 1; |
| 433 | target_reg = get_Dest_X1(bundle); |
| 434 | break; |
| 435 | |
| 436 | /* stores */ |
| 437 | case SH_SPECIAL_0_OPCODE_X1: |
| 438 | mem_op = MEMOP_STORE; |
| 439 | size = 2; |
| 440 | break; |
| 441 | |
| 442 | case SW_SPECIAL_0_OPCODE_X1: |
| 443 | mem_op = MEMOP_STORE; |
| 444 | size = 4; |
| 445 | break; |
| 446 | } |
| 447 | break; |
| 448 | |
| 449 | /* loads and iret */ |
| 450 | case SHUN_0_OPCODE_X1: |
| 451 | if (get_UnShOpcodeExtension_X1(bundle) == |
| 452 | UN_0_SHUN_0_OPCODE_X1) { |
| 453 | switch (get_UnOpcodeExtension_X1(bundle)) { |
| 454 | case LH_UN_0_SHUN_0_OPCODE_X1: |
| 455 | mem_op = MEMOP_LOAD; |
| 456 | size = 2; |
| 457 | sign_ext = 1; |
| 458 | break; |
| 459 | |
| 460 | case LH_U_UN_0_SHUN_0_OPCODE_X1: |
| 461 | mem_op = MEMOP_LOAD; |
| 462 | size = 2; |
| 463 | sign_ext = 0; |
| 464 | break; |
| 465 | |
| 466 | case LW_UN_0_SHUN_0_OPCODE_X1: |
| 467 | mem_op = MEMOP_LOAD; |
| 468 | size = 4; |
| 469 | break; |
| 470 | |
| 471 | case IRET_UN_0_SHUN_0_OPCODE_X1: |
| 472 | { |
| 473 | unsigned long ex0_0 = __insn_mfspr( |
| 474 | SPR_EX_CONTEXT_0_0); |
| 475 | unsigned long ex0_1 = __insn_mfspr( |
| 476 | SPR_EX_CONTEXT_0_1); |
| 477 | /* |
| 478 | * Special-case it if we're iret'ing |
| 479 | * to PL0 again. Otherwise just let |
| 480 | * it run and it will generate SIGILL. |
| 481 | */ |
| 482 | if (EX1_PL(ex0_1) == USER_PL) { |
| 483 | state->next_pc = ex0_0; |
| 484 | regs->ex1 = ex0_1; |
| 485 | bundle = nop_X1(bundle); |
| 486 | } |
| 487 | } |
| 488 | } |
| 489 | } |
| 490 | break; |
| 491 | |
| 492 | #if CHIP_HAS_WH64() |
| 493 | /* postincrement operations */ |
| 494 | case IMM_0_OPCODE_X1: |
| 495 | switch (get_ImmOpcodeExtension_X1(bundle)) { |
| 496 | case LWADD_IMM_0_OPCODE_X1: |
| 497 | mem_op = MEMOP_LOAD_POSTINCR; |
| 498 | size = 4; |
| 499 | break; |
| 500 | |
| 501 | case LHADD_IMM_0_OPCODE_X1: |
| 502 | mem_op = MEMOP_LOAD_POSTINCR; |
| 503 | size = 2; |
| 504 | sign_ext = 1; |
| 505 | break; |
| 506 | |
| 507 | case LHADD_U_IMM_0_OPCODE_X1: |
| 508 | mem_op = MEMOP_LOAD_POSTINCR; |
| 509 | size = 2; |
| 510 | sign_ext = 0; |
| 511 | break; |
| 512 | |
| 513 | case SWADD_IMM_0_OPCODE_X1: |
| 514 | mem_op = MEMOP_STORE_POSTINCR; |
| 515 | size = 4; |
| 516 | break; |
| 517 | |
| 518 | case SHADD_IMM_0_OPCODE_X1: |
| 519 | mem_op = MEMOP_STORE_POSTINCR; |
| 520 | size = 2; |
| 521 | break; |
| 522 | |
| 523 | default: |
| 524 | break; |
| 525 | } |
| 526 | break; |
| 527 | #endif /* CHIP_HAS_WH64() */ |
| 528 | } |
| 529 | |
| 530 | if (state->update) { |
| 531 | /* |
| 532 | * Get an available register. We start with a |
| 533 | * bitmask with 1's for available registers. |
| 534 | * We truncate to the low 32 registers since |
| 535 | * we are guaranteed to have set bits in the |
| 536 | * low 32 bits, then use ctz to pick the first. |
| 537 | */ |
| 538 | u32 mask = (u32) ~((1ULL << get_Dest_X0(bundle)) | |
| 539 | (1ULL << get_SrcA_X0(bundle)) | |
| 540 | (1ULL << get_SrcB_X0(bundle)) | |
| 541 | (1ULL << target_reg)); |
| 542 | temp_reg = __builtin_ctz(mask); |
| 543 | state->update_reg = temp_reg; |
| 544 | state->update_value = regs->regs[temp_reg]; |
| 545 | regs->regs[temp_reg] = (unsigned long) (pc+1); |
| 546 | regs->flags |= PT_FLAGS_RESTORE_REGS; |
| 547 | bundle = move_X1(bundle, target_reg, temp_reg); |
| 548 | } |
| 549 | } else { |
| 550 | int opcode = get_Opcode_Y2(bundle); |
| 551 | |
| 552 | switch (opcode) { |
| 553 | /* loads */ |
| 554 | case LH_OPCODE_Y2: |
| 555 | mem_op = MEMOP_LOAD; |
| 556 | size = 2; |
| 557 | sign_ext = 1; |
| 558 | break; |
| 559 | |
| 560 | case LH_U_OPCODE_Y2: |
| 561 | mem_op = MEMOP_LOAD; |
| 562 | size = 2; |
| 563 | sign_ext = 0; |
| 564 | break; |
| 565 | |
| 566 | case LW_OPCODE_Y2: |
| 567 | mem_op = MEMOP_LOAD; |
| 568 | size = 4; |
| 569 | break; |
| 570 | |
| 571 | /* stores */ |
| 572 | case SH_OPCODE_Y2: |
| 573 | mem_op = MEMOP_STORE; |
| 574 | size = 2; |
| 575 | break; |
| 576 | |
| 577 | case SW_OPCODE_Y2: |
| 578 | mem_op = MEMOP_STORE; |
| 579 | size = 4; |
| 580 | break; |
| 581 | } |
| 582 | } |
| 583 | |
| 584 | /* |
| 585 | * Check if we need to rewrite an unaligned load/store. |
| 586 | * Returning zero is a special value meaning we need to SIGSEGV. |
| 587 | */ |
| 588 | if (mem_op != MEMOP_NONE && unaligned_fixup >= 0) { |
| 589 | bundle = rewrite_load_store_unaligned(state, bundle, regs, |
| 590 | mem_op, size, sign_ext); |
| 591 | if (bundle == 0) |
| 592 | return; |
| 593 | } |
| 594 | |
| 595 | /* write the bundle to our execution area */ |
| 596 | buffer = state->buffer; |
| 597 | err = __put_user(bundle, buffer++); |
| 598 | |
| 599 | /* |
| 600 | * If we're really single-stepping, we take an INT_ILL after. |
| 601 | * If we're just handling an unaligned access, we can just |
| 602 | * jump directly back to where we were in user code. |
| 603 | */ |
| 604 | if (is_single_step) { |
| 605 | err |= __put_user(__single_step_ill_insn, buffer++); |
| 606 | err |= __put_user(__single_step_ill_insn, buffer++); |
| 607 | } else { |
| 608 | long delta; |
| 609 | |
| 610 | if (state->update) { |
| 611 | /* We have some state to update; do it inline */ |
| 612 | int ha16; |
| 613 | bundle = __single_step_addli_insn; |
| 614 | bundle |= create_Dest_X1(state->update_reg); |
| 615 | bundle |= create_Imm16_X1(state->update_value); |
| 616 | err |= __put_user(bundle, buffer++); |
| 617 | bundle = __single_step_auli_insn; |
| 618 | bundle |= create_Dest_X1(state->update_reg); |
| 619 | bundle |= create_SrcA_X1(state->update_reg); |
| 620 | ha16 = (state->update_value + 0x8000) >> 16; |
| 621 | bundle |= create_Imm16_X1(ha16); |
| 622 | err |= __put_user(bundle, buffer++); |
| 623 | state->update = 0; |
| 624 | } |
| 625 | |
| 626 | /* End with a jump back to the next instruction */ |
| 627 | delta = ((regs->pc + TILE_BUNDLE_SIZE_IN_BYTES) - |
| 628 | (unsigned long)buffer) >> |
| 629 | TILE_LOG2_BUNDLE_ALIGNMENT_IN_BYTES; |
| 630 | bundle = __single_step_j_insn; |
| 631 | bundle |= create_JOffLong_X1(delta); |
| 632 | err |= __put_user(bundle, buffer++); |
| 633 | } |
| 634 | |
| 635 | if (err) { |
| 636 | printk("Fault when writing to single-step buffer\n"); |
| 637 | return; |
| 638 | } |
| 639 | |
| 640 | /* |
| 641 | * Flush the buffer. |
| 642 | * We do a local flush only, since this is a thread-specific buffer. |
| 643 | */ |
| 644 | __flush_icache_range((unsigned long) state->buffer, |
| 645 | (unsigned long) buffer); |
| 646 | |
| 647 | /* Indicate enabled */ |
| 648 | state->is_enabled = is_single_step; |
| 649 | regs->pc = (unsigned long) state->buffer; |
| 650 | |
| 651 | /* Fault immediately if we are coming back from a syscall. */ |
| 652 | if (regs->faultnum == INT_SWINT_1) |
| 653 | regs->pc += 8; |
| 654 | } |
| 655 | |
| 656 | #endif /* !__tilegx__ */ |