blob: 8dec650099c8a3d924e778c4b6aa3e89b2c945fb [file] [log] [blame]
Arne Jansen7414a032011-05-23 14:33:49 +02001/*
2 * Copyright (C) 2011 STRATO. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
20#include <linux/pagemap.h>
21#include <linux/writeback.h>
22#include <linux/blkdev.h>
23#include <linux/rbtree.h>
24#include <linux/slab.h>
25#include <linux/workqueue.h>
26#include "ctree.h"
27#include "volumes.h"
28#include "disk-io.h"
29#include "transaction.h"
30
31#undef DEBUG
32
33/*
34 * This is the implementation for the generic read ahead framework.
35 *
36 * To trigger a readahead, btrfs_reada_add must be called. It will start
37 * a read ahead for the given range [start, end) on tree root. The returned
38 * handle can either be used to wait on the readahead to finish
39 * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
40 *
41 * The read ahead works as follows:
42 * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
43 * reada_start_machine will then search for extents to prefetch and trigger
44 * some reads. When a read finishes for a node, all contained node/leaf
45 * pointers that lie in the given range will also be enqueued. The reads will
46 * be triggered in sequential order, thus giving a big win over a naive
47 * enumeration. It will also make use of multi-device layouts. Each disk
48 * will have its on read pointer and all disks will by utilized in parallel.
49 * Also will no two disks read both sides of a mirror simultaneously, as this
50 * would waste seeking capacity. Instead both disks will read different parts
51 * of the filesystem.
52 * Any number of readaheads can be started in parallel. The read order will be
53 * determined globally, i.e. 2 parallel readaheads will normally finish faster
54 * than the 2 started one after another.
55 */
56
Arne Jansen7414a032011-05-23 14:33:49 +020057#define MAX_IN_FLIGHT 6
58
59struct reada_extctl {
60 struct list_head list;
61 struct reada_control *rc;
62 u64 generation;
63};
64
65struct reada_extent {
66 u64 logical;
67 struct btrfs_key top;
68 u32 blocksize;
69 int err;
70 struct list_head extctl;
71 struct kref refcnt;
72 spinlock_t lock;
Stefan Behrens94598ba2012-03-27 14:21:26 -040073 struct reada_zone *zones[BTRFS_MAX_MIRRORS];
Arne Jansen7414a032011-05-23 14:33:49 +020074 int nzones;
75 struct btrfs_device *scheduled_for;
76};
77
78struct reada_zone {
79 u64 start;
80 u64 end;
81 u64 elems;
82 struct list_head list;
83 spinlock_t lock;
84 int locked;
85 struct btrfs_device *device;
Stefan Behrens94598ba2012-03-27 14:21:26 -040086 struct btrfs_device *devs[BTRFS_MAX_MIRRORS]; /* full list, incl
87 * self */
Arne Jansen7414a032011-05-23 14:33:49 +020088 int ndevs;
89 struct kref refcnt;
90};
91
92struct reada_machine_work {
93 struct btrfs_work work;
94 struct btrfs_fs_info *fs_info;
95};
96
97static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
98static void reada_control_release(struct kref *kref);
99static void reada_zone_release(struct kref *kref);
100static void reada_start_machine(struct btrfs_fs_info *fs_info);
101static void __reada_start_machine(struct btrfs_fs_info *fs_info);
102
103static int reada_add_block(struct reada_control *rc, u64 logical,
104 struct btrfs_key *top, int level, u64 generation);
105
106/* recurses */
107/* in case of err, eb might be NULL */
108static int __readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
109 u64 start, int err)
110{
111 int level = 0;
112 int nritems;
113 int i;
114 u64 bytenr;
115 u64 generation;
116 struct reada_extent *re;
117 struct btrfs_fs_info *fs_info = root->fs_info;
118 struct list_head list;
119 unsigned long index = start >> PAGE_CACHE_SHIFT;
120 struct btrfs_device *for_dev;
121
122 if (eb)
123 level = btrfs_header_level(eb);
124
125 /* find extent */
126 spin_lock(&fs_info->reada_lock);
127 re = radix_tree_lookup(&fs_info->reada_tree, index);
128 if (re)
129 kref_get(&re->refcnt);
130 spin_unlock(&fs_info->reada_lock);
131
132 if (!re)
133 return -1;
134
135 spin_lock(&re->lock);
136 /*
137 * just take the full list from the extent. afterwards we
138 * don't need the lock anymore
139 */
140 list_replace_init(&re->extctl, &list);
141 for_dev = re->scheduled_for;
142 re->scheduled_for = NULL;
143 spin_unlock(&re->lock);
144
145 if (err == 0) {
146 nritems = level ? btrfs_header_nritems(eb) : 0;
147 generation = btrfs_header_generation(eb);
148 /*
149 * FIXME: currently we just set nritems to 0 if this is a leaf,
150 * effectively ignoring the content. In a next step we could
151 * trigger more readahead depending from the content, e.g.
152 * fetch the checksums for the extents in the leaf.
153 */
154 } else {
155 /*
156 * this is the error case, the extent buffer has not been
157 * read correctly. We won't access anything from it and
158 * just cleanup our data structures. Effectively this will
159 * cut the branch below this node from read ahead.
160 */
161 nritems = 0;
162 generation = 0;
163 }
164
165 for (i = 0; i < nritems; i++) {
166 struct reada_extctl *rec;
167 u64 n_gen;
168 struct btrfs_key key;
169 struct btrfs_key next_key;
170
171 btrfs_node_key_to_cpu(eb, &key, i);
172 if (i + 1 < nritems)
173 btrfs_node_key_to_cpu(eb, &next_key, i + 1);
174 else
175 next_key = re->top;
176 bytenr = btrfs_node_blockptr(eb, i);
177 n_gen = btrfs_node_ptr_generation(eb, i);
178
179 list_for_each_entry(rec, &list, list) {
180 struct reada_control *rc = rec->rc;
181
182 /*
183 * if the generation doesn't match, just ignore this
184 * extctl. This will probably cut off a branch from
185 * prefetch. Alternatively one could start a new (sub-)
186 * prefetch for this branch, starting again from root.
187 * FIXME: move the generation check out of this loop
188 */
189#ifdef DEBUG
190 if (rec->generation != generation) {
191 printk(KERN_DEBUG "generation mismatch for "
192 "(%llu,%d,%llu) %llu != %llu\n",
193 key.objectid, key.type, key.offset,
194 rec->generation, generation);
195 }
196#endif
197 if (rec->generation == generation &&
198 btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
199 btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
200 reada_add_block(rc, bytenr, &next_key,
201 level - 1, n_gen);
202 }
203 }
204 /*
205 * free extctl records
206 */
207 while (!list_empty(&list)) {
208 struct reada_control *rc;
209 struct reada_extctl *rec;
210
211 rec = list_first_entry(&list, struct reada_extctl, list);
212 list_del(&rec->list);
213 rc = rec->rc;
214 kfree(rec);
215
216 kref_get(&rc->refcnt);
217 if (atomic_dec_and_test(&rc->elems)) {
218 kref_put(&rc->refcnt, reada_control_release);
219 wake_up(&rc->wait);
220 }
221 kref_put(&rc->refcnt, reada_control_release);
222
223 reada_extent_put(fs_info, re); /* one ref for each entry */
224 }
225 reada_extent_put(fs_info, re); /* our ref */
226 if (for_dev)
227 atomic_dec(&for_dev->reada_in_flight);
228
229 return 0;
230}
231
232/*
233 * start is passed separately in case eb in NULL, which may be the case with
234 * failed I/O
235 */
236int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
237 u64 start, int err)
238{
239 int ret;
240
241 ret = __readahead_hook(root, eb, start, err);
242
243 reada_start_machine(root->fs_info);
244
245 return ret;
246}
247
248static struct reada_zone *reada_find_zone(struct btrfs_fs_info *fs_info,
249 struct btrfs_device *dev, u64 logical,
Ilya Dryomov21ca5432011-11-04 09:41:02 -0400250 struct btrfs_bio *bbio)
Arne Jansen7414a032011-05-23 14:33:49 +0200251{
252 int ret;
Arne Jansen7414a032011-05-23 14:33:49 +0200253 struct reada_zone *zone;
254 struct btrfs_block_group_cache *cache = NULL;
255 u64 start;
256 u64 end;
257 int i;
258
Arne Jansen7414a032011-05-23 14:33:49 +0200259 zone = NULL;
260 spin_lock(&fs_info->reada_lock);
261 ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
262 logical >> PAGE_CACHE_SHIFT, 1);
263 if (ret == 1)
264 kref_get(&zone->refcnt);
265 spin_unlock(&fs_info->reada_lock);
266
267 if (ret == 1) {
268 if (logical >= zone->start && logical < zone->end)
269 return zone;
270 spin_lock(&fs_info->reada_lock);
271 kref_put(&zone->refcnt, reada_zone_release);
272 spin_unlock(&fs_info->reada_lock);
273 }
274
Arne Jansen7414a032011-05-23 14:33:49 +0200275 cache = btrfs_lookup_block_group(fs_info, logical);
276 if (!cache)
277 return NULL;
278
279 start = cache->key.objectid;
280 end = start + cache->key.offset - 1;
281 btrfs_put_block_group(cache);
282
283 zone = kzalloc(sizeof(*zone), GFP_NOFS);
284 if (!zone)
285 return NULL;
286
287 zone->start = start;
288 zone->end = end;
289 INIT_LIST_HEAD(&zone->list);
290 spin_lock_init(&zone->lock);
291 zone->locked = 0;
292 kref_init(&zone->refcnt);
293 zone->elems = 0;
294 zone->device = dev; /* our device always sits at index 0 */
Ilya Dryomov21ca5432011-11-04 09:41:02 -0400295 for (i = 0; i < bbio->num_stripes; ++i) {
Arne Jansen7414a032011-05-23 14:33:49 +0200296 /* bounds have already been checked */
Ilya Dryomov21ca5432011-11-04 09:41:02 -0400297 zone->devs[i] = bbio->stripes[i].dev;
Arne Jansen7414a032011-05-23 14:33:49 +0200298 }
Ilya Dryomov21ca5432011-11-04 09:41:02 -0400299 zone->ndevs = bbio->num_stripes;
Arne Jansen7414a032011-05-23 14:33:49 +0200300
301 spin_lock(&fs_info->reada_lock);
302 ret = radix_tree_insert(&dev->reada_zones,
Chris Masona1754232012-02-28 12:42:44 -0500303 (unsigned long)(zone->end >> PAGE_CACHE_SHIFT),
Arne Jansen7414a032011-05-23 14:33:49 +0200304 zone);
Arne Jansen7414a032011-05-23 14:33:49 +0200305
Arne Jansen8c9c2bf2012-02-25 09:09:30 +0100306 if (ret == -EEXIST) {
Arne Jansen7414a032011-05-23 14:33:49 +0200307 kfree(zone);
Arne Jansen8c9c2bf2012-02-25 09:09:30 +0100308 ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
309 logical >> PAGE_CACHE_SHIFT, 1);
310 if (ret == 1)
311 kref_get(&zone->refcnt);
Arne Jansen7414a032011-05-23 14:33:49 +0200312 }
Arne Jansen8c9c2bf2012-02-25 09:09:30 +0100313 spin_unlock(&fs_info->reada_lock);
Arne Jansen7414a032011-05-23 14:33:49 +0200314
315 return zone;
316}
317
318static struct reada_extent *reada_find_extent(struct btrfs_root *root,
319 u64 logical,
320 struct btrfs_key *top, int level)
321{
322 int ret;
Arne Jansen7414a032011-05-23 14:33:49 +0200323 struct reada_extent *re = NULL;
Arne Jansen8c9c2bf2012-02-25 09:09:30 +0100324 struct reada_extent *re_exist = NULL;
Arne Jansen7414a032011-05-23 14:33:49 +0200325 struct btrfs_fs_info *fs_info = root->fs_info;
326 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
Ilya Dryomov21ca5432011-11-04 09:41:02 -0400327 struct btrfs_bio *bbio = NULL;
Arne Jansen7414a032011-05-23 14:33:49 +0200328 struct btrfs_device *dev;
329 u32 blocksize;
330 u64 length;
331 int nzones = 0;
332 int i;
333 unsigned long index = logical >> PAGE_CACHE_SHIFT;
334
Arne Jansen7414a032011-05-23 14:33:49 +0200335 spin_lock(&fs_info->reada_lock);
336 re = radix_tree_lookup(&fs_info->reada_tree, index);
337 if (re)
338 kref_get(&re->refcnt);
339 spin_unlock(&fs_info->reada_lock);
340
Arne Jansen8c9c2bf2012-02-25 09:09:30 +0100341 if (re)
Arne Jansen7414a032011-05-23 14:33:49 +0200342 return re;
343
344 re = kzalloc(sizeof(*re), GFP_NOFS);
345 if (!re)
346 return NULL;
347
348 blocksize = btrfs_level_size(root, level);
349 re->logical = logical;
350 re->blocksize = blocksize;
351 re->top = *top;
352 INIT_LIST_HEAD(&re->extctl);
353 spin_lock_init(&re->lock);
354 kref_init(&re->refcnt);
355
356 /*
357 * map block
358 */
359 length = blocksize;
Ilya Dryomov21ca5432011-11-04 09:41:02 -0400360 ret = btrfs_map_block(map_tree, REQ_WRITE, logical, &length, &bbio, 0);
361 if (ret || !bbio || length < blocksize)
Arne Jansen7414a032011-05-23 14:33:49 +0200362 goto error;
363
Stefan Behrens94598ba2012-03-27 14:21:26 -0400364 if (bbio->num_stripes > BTRFS_MAX_MIRRORS) {
Arne Jansen7414a032011-05-23 14:33:49 +0200365 printk(KERN_ERR "btrfs readahead: more than %d copies not "
Stefan Behrens94598ba2012-03-27 14:21:26 -0400366 "supported", BTRFS_MAX_MIRRORS);
Arne Jansen7414a032011-05-23 14:33:49 +0200367 goto error;
368 }
369
Ilya Dryomov21ca5432011-11-04 09:41:02 -0400370 for (nzones = 0; nzones < bbio->num_stripes; ++nzones) {
Arne Jansen7414a032011-05-23 14:33:49 +0200371 struct reada_zone *zone;
372
Ilya Dryomov21ca5432011-11-04 09:41:02 -0400373 dev = bbio->stripes[nzones].dev;
374 zone = reada_find_zone(fs_info, dev, logical, bbio);
Arne Jansen7414a032011-05-23 14:33:49 +0200375 if (!zone)
376 break;
377
378 re->zones[nzones] = zone;
379 spin_lock(&zone->lock);
380 if (!zone->elems)
381 kref_get(&zone->refcnt);
382 ++zone->elems;
383 spin_unlock(&zone->lock);
384 spin_lock(&fs_info->reada_lock);
385 kref_put(&zone->refcnt, reada_zone_release);
386 spin_unlock(&fs_info->reada_lock);
387 }
388 re->nzones = nzones;
389 if (nzones == 0) {
390 /* not a single zone found, error and out */
391 goto error;
392 }
393
394 /* insert extent in reada_tree + all per-device trees, all or nothing */
395 spin_lock(&fs_info->reada_lock);
396 ret = radix_tree_insert(&fs_info->reada_tree, index, re);
Arne Jansen8c9c2bf2012-02-25 09:09:30 +0100397 if (ret == -EEXIST) {
398 re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
399 BUG_ON(!re_exist);
400 kref_get(&re_exist->refcnt);
401 spin_unlock(&fs_info->reada_lock);
402 goto error;
403 }
Arne Jansen7414a032011-05-23 14:33:49 +0200404 if (ret) {
405 spin_unlock(&fs_info->reada_lock);
Arne Jansen7414a032011-05-23 14:33:49 +0200406 goto error;
407 }
408 for (i = 0; i < nzones; ++i) {
Ilya Dryomov21ca5432011-11-04 09:41:02 -0400409 dev = bbio->stripes[i].dev;
Arne Jansen7414a032011-05-23 14:33:49 +0200410 ret = radix_tree_insert(&dev->reada_extents, index, re);
411 if (ret) {
412 while (--i >= 0) {
Ilya Dryomov21ca5432011-11-04 09:41:02 -0400413 dev = bbio->stripes[i].dev;
Arne Jansen7414a032011-05-23 14:33:49 +0200414 BUG_ON(dev == NULL);
415 radix_tree_delete(&dev->reada_extents, index);
416 }
417 BUG_ON(fs_info == NULL);
418 radix_tree_delete(&fs_info->reada_tree, index);
419 spin_unlock(&fs_info->reada_lock);
420 goto error;
421 }
422 }
423 spin_unlock(&fs_info->reada_lock);
424
Ilya Dryomov21ca5432011-11-04 09:41:02 -0400425 kfree(bbio);
Arne Jansen7414a032011-05-23 14:33:49 +0200426 return re;
427
428error:
429 while (nzones) {
430 struct reada_zone *zone;
431
432 --nzones;
433 zone = re->zones[nzones];
434 kref_get(&zone->refcnt);
435 spin_lock(&zone->lock);
436 --zone->elems;
437 if (zone->elems == 0) {
438 /*
439 * no fs_info->reada_lock needed, as this can't be
440 * the last ref
441 */
442 kref_put(&zone->refcnt, reada_zone_release);
443 }
444 spin_unlock(&zone->lock);
445
446 spin_lock(&fs_info->reada_lock);
447 kref_put(&zone->refcnt, reada_zone_release);
448 spin_unlock(&fs_info->reada_lock);
449 }
Ilya Dryomov21ca5432011-11-04 09:41:02 -0400450 kfree(bbio);
Arne Jansen7414a032011-05-23 14:33:49 +0200451 kfree(re);
Arne Jansen8c9c2bf2012-02-25 09:09:30 +0100452 return re_exist;
Arne Jansen7414a032011-05-23 14:33:49 +0200453}
454
455static void reada_kref_dummy(struct kref *kr)
456{
457}
458
459static void reada_extent_put(struct btrfs_fs_info *fs_info,
460 struct reada_extent *re)
461{
462 int i;
463 unsigned long index = re->logical >> PAGE_CACHE_SHIFT;
464
465 spin_lock(&fs_info->reada_lock);
466 if (!kref_put(&re->refcnt, reada_kref_dummy)) {
467 spin_unlock(&fs_info->reada_lock);
468 return;
469 }
470
471 radix_tree_delete(&fs_info->reada_tree, index);
472 for (i = 0; i < re->nzones; ++i) {
473 struct reada_zone *zone = re->zones[i];
474
475 radix_tree_delete(&zone->device->reada_extents, index);
476 }
477
478 spin_unlock(&fs_info->reada_lock);
479
480 for (i = 0; i < re->nzones; ++i) {
481 struct reada_zone *zone = re->zones[i];
482
483 kref_get(&zone->refcnt);
484 spin_lock(&zone->lock);
485 --zone->elems;
486 if (zone->elems == 0) {
487 /* no fs_info->reada_lock needed, as this can't be
488 * the last ref */
489 kref_put(&zone->refcnt, reada_zone_release);
490 }
491 spin_unlock(&zone->lock);
492
493 spin_lock(&fs_info->reada_lock);
494 kref_put(&zone->refcnt, reada_zone_release);
495 spin_unlock(&fs_info->reada_lock);
496 }
497 if (re->scheduled_for)
498 atomic_dec(&re->scheduled_for->reada_in_flight);
499
500 kfree(re);
501}
502
503static void reada_zone_release(struct kref *kref)
504{
505 struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
506
507 radix_tree_delete(&zone->device->reada_zones,
508 zone->end >> PAGE_CACHE_SHIFT);
509
510 kfree(zone);
511}
512
513static void reada_control_release(struct kref *kref)
514{
515 struct reada_control *rc = container_of(kref, struct reada_control,
516 refcnt);
517
518 kfree(rc);
519}
520
521static int reada_add_block(struct reada_control *rc, u64 logical,
522 struct btrfs_key *top, int level, u64 generation)
523{
524 struct btrfs_root *root = rc->root;
525 struct reada_extent *re;
526 struct reada_extctl *rec;
527
528 re = reada_find_extent(root, logical, top, level); /* takes one ref */
529 if (!re)
530 return -1;
531
532 rec = kzalloc(sizeof(*rec), GFP_NOFS);
533 if (!rec) {
534 reada_extent_put(root->fs_info, re);
535 return -1;
536 }
537
538 rec->rc = rc;
539 rec->generation = generation;
540 atomic_inc(&rc->elems);
541
542 spin_lock(&re->lock);
543 list_add_tail(&rec->list, &re->extctl);
544 spin_unlock(&re->lock);
545
546 /* leave the ref on the extent */
547
548 return 0;
549}
550
551/*
552 * called with fs_info->reada_lock held
553 */
554static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
555{
556 int i;
557 unsigned long index = zone->end >> PAGE_CACHE_SHIFT;
558
559 for (i = 0; i < zone->ndevs; ++i) {
560 struct reada_zone *peer;
561 peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
562 if (peer && peer->device != zone->device)
563 peer->locked = lock;
564 }
565}
566
567/*
568 * called with fs_info->reada_lock held
569 */
570static int reada_pick_zone(struct btrfs_device *dev)
571{
572 struct reada_zone *top_zone = NULL;
573 struct reada_zone *top_locked_zone = NULL;
574 u64 top_elems = 0;
575 u64 top_locked_elems = 0;
576 unsigned long index = 0;
577 int ret;
578
579 if (dev->reada_curr_zone) {
580 reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
581 kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
582 dev->reada_curr_zone = NULL;
583 }
584 /* pick the zone with the most elements */
585 while (1) {
586 struct reada_zone *zone;
587
588 ret = radix_tree_gang_lookup(&dev->reada_zones,
589 (void **)&zone, index, 1);
590 if (ret == 0)
591 break;
592 index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
593 if (zone->locked) {
594 if (zone->elems > top_locked_elems) {
595 top_locked_elems = zone->elems;
596 top_locked_zone = zone;
597 }
598 } else {
599 if (zone->elems > top_elems) {
600 top_elems = zone->elems;
601 top_zone = zone;
602 }
603 }
604 }
605 if (top_zone)
606 dev->reada_curr_zone = top_zone;
607 else if (top_locked_zone)
608 dev->reada_curr_zone = top_locked_zone;
609 else
610 return 0;
611
612 dev->reada_next = dev->reada_curr_zone->start;
613 kref_get(&dev->reada_curr_zone->refcnt);
614 reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
615
616 return 1;
617}
618
619static int reada_start_machine_dev(struct btrfs_fs_info *fs_info,
620 struct btrfs_device *dev)
621{
622 struct reada_extent *re = NULL;
623 int mirror_num = 0;
624 struct extent_buffer *eb = NULL;
625 u64 logical;
626 u32 blocksize;
627 int ret;
628 int i;
629 int need_kick = 0;
630
631 spin_lock(&fs_info->reada_lock);
632 if (dev->reada_curr_zone == NULL) {
633 ret = reada_pick_zone(dev);
634 if (!ret) {
635 spin_unlock(&fs_info->reada_lock);
636 return 0;
637 }
638 }
639 /*
640 * FIXME currently we issue the reads one extent at a time. If we have
641 * a contiguous block of extents, we could also coagulate them or use
642 * plugging to speed things up
643 */
644 ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
645 dev->reada_next >> PAGE_CACHE_SHIFT, 1);
646 if (ret == 0 || re->logical >= dev->reada_curr_zone->end) {
647 ret = reada_pick_zone(dev);
648 if (!ret) {
649 spin_unlock(&fs_info->reada_lock);
650 return 0;
651 }
652 re = NULL;
653 ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
654 dev->reada_next >> PAGE_CACHE_SHIFT, 1);
655 }
656 if (ret == 0) {
657 spin_unlock(&fs_info->reada_lock);
658 return 0;
659 }
660 dev->reada_next = re->logical + re->blocksize;
661 kref_get(&re->refcnt);
662
663 spin_unlock(&fs_info->reada_lock);
664
665 /*
666 * find mirror num
667 */
668 for (i = 0; i < re->nzones; ++i) {
669 if (re->zones[i]->device == dev) {
670 mirror_num = i + 1;
671 break;
672 }
673 }
674 logical = re->logical;
675 blocksize = re->blocksize;
676
677 spin_lock(&re->lock);
678 if (re->scheduled_for == NULL) {
679 re->scheduled_for = dev;
680 need_kick = 1;
681 }
682 spin_unlock(&re->lock);
683
684 reada_extent_put(fs_info, re);
685
686 if (!need_kick)
687 return 0;
688
689 atomic_inc(&dev->reada_in_flight);
690 ret = reada_tree_block_flagged(fs_info->extent_root, logical, blocksize,
691 mirror_num, &eb);
692 if (ret)
693 __readahead_hook(fs_info->extent_root, NULL, logical, ret);
694 else if (eb)
695 __readahead_hook(fs_info->extent_root, eb, eb->start, ret);
696
697 if (eb)
698 free_extent_buffer(eb);
699
700 return 1;
701
702}
703
704static void reada_start_machine_worker(struct btrfs_work *work)
705{
706 struct reada_machine_work *rmw;
707 struct btrfs_fs_info *fs_info;
708
709 rmw = container_of(work, struct reada_machine_work, work);
710 fs_info = rmw->fs_info;
711
712 kfree(rmw);
713
714 __reada_start_machine(fs_info);
715}
716
717static void __reada_start_machine(struct btrfs_fs_info *fs_info)
718{
719 struct btrfs_device *device;
720 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
721 u64 enqueued;
722 u64 total = 0;
723 int i;
724
725 do {
726 enqueued = 0;
727 list_for_each_entry(device, &fs_devices->devices, dev_list) {
728 if (atomic_read(&device->reada_in_flight) <
729 MAX_IN_FLIGHT)
730 enqueued += reada_start_machine_dev(fs_info,
731 device);
732 }
733 total += enqueued;
734 } while (enqueued && total < 10000);
735
736 if (enqueued == 0)
737 return;
738
739 /*
740 * If everything is already in the cache, this is effectively single
741 * threaded. To a) not hold the caller for too long and b) to utilize
742 * more cores, we broke the loop above after 10000 iterations and now
743 * enqueue to workers to finish it. This will distribute the load to
744 * the cores.
745 */
746 for (i = 0; i < 2; ++i)
747 reada_start_machine(fs_info);
748}
749
750static void reada_start_machine(struct btrfs_fs_info *fs_info)
751{
752 struct reada_machine_work *rmw;
753
754 rmw = kzalloc(sizeof(*rmw), GFP_NOFS);
755 if (!rmw) {
756 /* FIXME we cannot handle this properly right now */
757 BUG();
758 }
759 rmw->work.func = reada_start_machine_worker;
760 rmw->fs_info = fs_info;
761
762 btrfs_queue_worker(&fs_info->readahead_workers, &rmw->work);
763}
764
765#ifdef DEBUG
766static void dump_devs(struct btrfs_fs_info *fs_info, int all)
767{
768 struct btrfs_device *device;
769 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
770 unsigned long index;
771 int ret;
772 int i;
773 int j;
774 int cnt;
775
776 spin_lock(&fs_info->reada_lock);
777 list_for_each_entry(device, &fs_devices->devices, dev_list) {
778 printk(KERN_DEBUG "dev %lld has %d in flight\n", device->devid,
779 atomic_read(&device->reada_in_flight));
780 index = 0;
781 while (1) {
782 struct reada_zone *zone;
783 ret = radix_tree_gang_lookup(&device->reada_zones,
784 (void **)&zone, index, 1);
785 if (ret == 0)
786 break;
787 printk(KERN_DEBUG " zone %llu-%llu elems %llu locked "
788 "%d devs", zone->start, zone->end, zone->elems,
789 zone->locked);
790 for (j = 0; j < zone->ndevs; ++j) {
791 printk(KERN_CONT " %lld",
792 zone->devs[j]->devid);
793 }
794 if (device->reada_curr_zone == zone)
795 printk(KERN_CONT " curr off %llu",
796 device->reada_next - zone->start);
797 printk(KERN_CONT "\n");
798 index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
799 }
800 cnt = 0;
801 index = 0;
802 while (all) {
803 struct reada_extent *re = NULL;
804
805 ret = radix_tree_gang_lookup(&device->reada_extents,
806 (void **)&re, index, 1);
807 if (ret == 0)
808 break;
809 printk(KERN_DEBUG
810 " re: logical %llu size %u empty %d for %lld",
811 re->logical, re->blocksize,
812 list_empty(&re->extctl), re->scheduled_for ?
813 re->scheduled_for->devid : -1);
814
815 for (i = 0; i < re->nzones; ++i) {
816 printk(KERN_CONT " zone %llu-%llu devs",
817 re->zones[i]->start,
818 re->zones[i]->end);
819 for (j = 0; j < re->zones[i]->ndevs; ++j) {
820 printk(KERN_CONT " %lld",
821 re->zones[i]->devs[j]->devid);
822 }
823 }
824 printk(KERN_CONT "\n");
825 index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
826 if (++cnt > 15)
827 break;
828 }
829 }
830
831 index = 0;
832 cnt = 0;
833 while (all) {
834 struct reada_extent *re = NULL;
835
836 ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
837 index, 1);
838 if (ret == 0)
839 break;
840 if (!re->scheduled_for) {
841 index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
842 continue;
843 }
844 printk(KERN_DEBUG
845 "re: logical %llu size %u list empty %d for %lld",
846 re->logical, re->blocksize, list_empty(&re->extctl),
847 re->scheduled_for ? re->scheduled_for->devid : -1);
848 for (i = 0; i < re->nzones; ++i) {
849 printk(KERN_CONT " zone %llu-%llu devs",
850 re->zones[i]->start,
851 re->zones[i]->end);
852 for (i = 0; i < re->nzones; ++i) {
853 printk(KERN_CONT " zone %llu-%llu devs",
854 re->zones[i]->start,
855 re->zones[i]->end);
856 for (j = 0; j < re->zones[i]->ndevs; ++j) {
857 printk(KERN_CONT " %lld",
858 re->zones[i]->devs[j]->devid);
859 }
860 }
861 }
862 printk(KERN_CONT "\n");
863 index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
864 }
865 spin_unlock(&fs_info->reada_lock);
866}
867#endif
868
869/*
870 * interface
871 */
872struct reada_control *btrfs_reada_add(struct btrfs_root *root,
873 struct btrfs_key *key_start, struct btrfs_key *key_end)
874{
875 struct reada_control *rc;
876 u64 start;
877 u64 generation;
878 int level;
879 struct extent_buffer *node;
880 static struct btrfs_key max_key = {
881 .objectid = (u64)-1,
882 .type = (u8)-1,
883 .offset = (u64)-1
884 };
885
886 rc = kzalloc(sizeof(*rc), GFP_NOFS);
887 if (!rc)
888 return ERR_PTR(-ENOMEM);
889
890 rc->root = root;
891 rc->key_start = *key_start;
892 rc->key_end = *key_end;
893 atomic_set(&rc->elems, 0);
894 init_waitqueue_head(&rc->wait);
895 kref_init(&rc->refcnt);
896 kref_get(&rc->refcnt); /* one ref for having elements */
897
898 node = btrfs_root_node(root);
899 start = node->start;
900 level = btrfs_header_level(node);
901 generation = btrfs_header_generation(node);
902 free_extent_buffer(node);
903
904 reada_add_block(rc, start, &max_key, level, generation);
905
906 reada_start_machine(root->fs_info);
907
908 return rc;
909}
910
911#ifdef DEBUG
912int btrfs_reada_wait(void *handle)
913{
914 struct reada_control *rc = handle;
915
916 while (atomic_read(&rc->elems)) {
917 wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
918 5 * HZ);
919 dump_devs(rc->root->fs_info, rc->elems < 10 ? 1 : 0);
920 }
921
922 dump_devs(rc->root->fs_info, rc->elems < 10 ? 1 : 0);
923
924 kref_put(&rc->refcnt, reada_control_release);
925
926 return 0;
927}
928#else
929int btrfs_reada_wait(void *handle)
930{
931 struct reada_control *rc = handle;
932
933 while (atomic_read(&rc->elems)) {
934 wait_event(rc->wait, atomic_read(&rc->elems) == 0);
935 }
936
937 kref_put(&rc->refcnt, reada_control_release);
938
939 return 0;
940}
941#endif
942
943void btrfs_reada_detach(void *handle)
944{
945 struct reada_control *rc = handle;
946
947 kref_put(&rc->refcnt, reada_control_release);
948}