blob: da6fa22be000f77cef7298ea289d591b59b48c38 [file] [log] [blame]
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
Peter Zijlstra21805082007-08-25 18:41:53 +020018 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020021 */
22
Arjan van de Ven97455122008-01-25 21:08:34 +010023#include <linux/latencytop.h>
Christian Ehrhardt1983a922009-11-30 12:16:47 +010024#include <linux/sched.h>
Sisir Koppaka3436ae12011-03-26 18:22:55 +053025#include <linux/cpumask.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020026#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
Peter Zijlstracbee9f82012-10-25 14:16:43 +020029#include <linux/mempolicy.h>
Mel Gormane14808b2012-11-19 10:59:15 +000030#include <linux/migrate.h>
Peter Zijlstracbee9f82012-10-25 14:16:43 +020031#include <linux/task_work.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020032
33#include <trace/events/sched.h>
34
35#include "sched.h"
Arjan van de Ven97455122008-01-25 21:08:34 +010036
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020037/*
Peter Zijlstra21805082007-08-25 18:41:53 +020038 * Targeted preemption latency for CPU-bound tasks:
Takuya Yoshikawa864616e2010-10-14 16:09:13 +090039 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020040 *
Peter Zijlstra21805082007-08-25 18:41:53 +020041 * NOTE: this latency value is not the same as the concept of
Ingo Molnard274a4c2007-10-15 17:00:14 +020042 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020045 *
Ingo Molnard274a4c2007-10-15 17:00:14 +020046 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020048 */
Mike Galbraith21406922010-03-11 17:17:15 +010049unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020051
52/*
Christian Ehrhardt1983a922009-11-30 12:16:47 +010053 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
64/*
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010065 * Minimal preemption granularity for CPU-bound tasks:
Takuya Yoshikawa864616e2010-10-14 16:09:13 +090066 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010067 */
Ingo Molnar0bf377b2010-09-12 08:14:52 +020068unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010070
71/*
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
Ingo Molnar0bf377b2010-09-12 08:14:52 +020074static unsigned int sched_nr_latency = 8;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010075
76/*
Mike Galbraith2bba22c2009-09-09 15:41:37 +020077 * After fork, child runs first. If set to 0 (default) then
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020078 * parent will (try to) run first.
79 */
Mike Galbraith2bba22c2009-09-09 15:41:37 +020080unsigned int sysctl_sched_child_runs_first __read_mostly;
Peter Zijlstra21805082007-08-25 18:41:53 +020081
82/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020083 * SCHED_OTHER wake-up granularity.
Mike Galbraith172e0822009-09-09 15:41:37 +020084 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020085 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
Mike Galbraith172e0822009-09-09 15:41:37 +020090unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +010091unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020092
Ingo Molnarda84d962007-10-15 17:00:18 +020093const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
Paul Turnera7a4f8a2010-11-15 15:47:06 -080095/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
Paul Turnerec12cb72011-07-21 09:43:30 -0700102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
Paul Gortmaker85276322013-04-19 15:10:50 -0400116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
Peter Zijlstra029632f2011-10-25 10:00:11 +0200134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
181#if BITS_PER_LONG == 32
182# define WMULT_CONST (~0UL)
183#else
184# define WMULT_CONST (1UL << 32)
185#endif
186
187#define WMULT_SHIFT 32
188
189/*
190 * Shift right and round:
191 */
192#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194/*
195 * delta *= weight / lw
196 */
197static unsigned long
198calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200{
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234}
235
236
237const struct sched_class fair_sched_class;
Peter Zijlstraa4c2f002008-10-17 19:27:03 +0200238
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200239/**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
243#ifdef CONFIG_FAIR_GROUP_SCHED
244
245/* cpu runqueue to which this cfs_rq is attached */
246static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247{
248 return cfs_rq->rq;
249}
250
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200251/* An entity is a task if it doesn't "own" a runqueue */
252#define entity_is_task(se) (!se->my_q)
253
Peter Zijlstra8f488942009-07-24 12:25:30 +0200254static inline struct task_struct *task_of(struct sched_entity *se)
255{
256#ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258#endif
259 return container_of(se, struct task_struct, se);
260}
261
Peter Zijlstrab7581492008-04-19 19:45:00 +0200262/* Walk up scheduling entities hierarchy */
263#define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267{
268 return p->se.cfs_rq;
269}
270
271/* runqueue on which this entity is (to be) queued */
272static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273{
274 return se->cfs_rq;
275}
276
277/* runqueue "owned" by this group */
278static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279{
280 return grp->my_q;
281}
282
Paul Turneraff3e492012-10-04 13:18:30 +0200283static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
Paul Turner9ee474f2012-10-04 13:18:30 +0200285
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
Paul Turner67e86252010-11-15 15:47:05 -0800289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
Paul Turner67e86252010-11-15 15:47:05 -0800299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 }
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800303
304 cfs_rq->on_list = 1;
Paul Turner9ee474f2012-10-04 13:18:30 +0200305 /* We should have no load, but we need to update last_decay. */
Paul Turneraff3e492012-10-04 13:18:30 +0200306 update_cfs_rq_blocked_load(cfs_rq, 0);
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800307 }
308}
309
310static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311{
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316}
317
Peter Zijlstrab7581492008-04-19 19:45:00 +0200318/* Iterate thr' all leaf cfs_rq's on a runqueue */
319#define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322/* Do the two (enqueued) entities belong to the same group ? */
323static inline int
324is_same_group(struct sched_entity *se, struct sched_entity *pse)
325{
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330}
331
332static inline struct sched_entity *parent_entity(struct sched_entity *se)
333{
334 return se->parent;
335}
336
Peter Zijlstra464b7522008-10-24 11:06:15 +0200337/* return depth at which a sched entity is present in the hierarchy */
338static inline int depth_se(struct sched_entity *se)
339{
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346}
347
348static void
349find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350{
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378}
379
Peter Zijlstra8f488942009-07-24 12:25:30 +0200380#else /* !CONFIG_FAIR_GROUP_SCHED */
381
382static inline struct task_struct *task_of(struct sched_entity *se)
383{
384 return container_of(se, struct task_struct, se);
385}
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200386
387static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388{
389 return container_of(cfs_rq, struct rq, cfs);
390}
391
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200392#define entity_is_task(se) 1
393
Peter Zijlstrab7581492008-04-19 19:45:00 +0200394#define for_each_sched_entity(se) \
395 for (; se; se = NULL)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200396
Peter Zijlstrab7581492008-04-19 19:45:00 +0200397static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200398{
Peter Zijlstrab7581492008-04-19 19:45:00 +0200399 return &task_rq(p)->cfs;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200400}
401
Peter Zijlstrab7581492008-04-19 19:45:00 +0200402static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403{
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408}
409
410/* runqueue "owned" by this group */
411static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412{
413 return NULL;
414}
415
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800416static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417{
418}
419
420static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421{
422}
423
Peter Zijlstrab7581492008-04-19 19:45:00 +0200424#define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427static inline int
428is_same_group(struct sched_entity *se, struct sched_entity *pse)
429{
430 return 1;
431}
432
433static inline struct sched_entity *parent_entity(struct sched_entity *se)
434{
435 return NULL;
436}
437
Peter Zijlstra464b7522008-10-24 11:06:15 +0200438static inline void
439find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440{
441}
442
Peter Zijlstrab7581492008-04-19 19:45:00 +0200443#endif /* CONFIG_FAIR_GROUP_SCHED */
444
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -0700445static __always_inline
446void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200447
448/**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
Andrei Epure1bf08232013-03-12 21:12:24 +0200452static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
Peter Zijlstra02e04312007-10-15 17:00:07 +0200453{
Andrei Epure1bf08232013-03-12 21:12:24 +0200454 s64 delta = (s64)(vruntime - max_vruntime);
Peter Zijlstra368059a2007-10-15 17:00:11 +0200455 if (delta > 0)
Andrei Epure1bf08232013-03-12 21:12:24 +0200456 max_vruntime = vruntime;
Peter Zijlstra02e04312007-10-15 17:00:07 +0200457
Andrei Epure1bf08232013-03-12 21:12:24 +0200458 return max_vruntime;
Peter Zijlstra02e04312007-10-15 17:00:07 +0200459}
460
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200461static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
Peter Zijlstrab0ffd242007-10-15 17:00:12 +0200462{
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468}
469
Fabio Checconi54fdc582009-07-16 12:32:27 +0200470static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472{
473 return (s64)(a->vruntime - b->vruntime) < 0;
474}
475
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200476static void update_min_vruntime(struct cfs_rq *cfs_rq)
477{
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
Peter Zijlstrae17036d2009-01-15 14:53:39 +0100488 if (!cfs_rq->curr)
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
Andrei Epure1bf08232013-03-12 21:12:24 +0200494 /* ensure we never gain time by being placed backwards. */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
Peter Zijlstra3fe16982011-04-05 17:23:48 +0200496#ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499#endif
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200500}
501
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200502/*
503 * Enqueue an entity into the rb-tree:
504 */
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200505static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200506{
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
Stephan Baerwolf2bd2d6f2011-07-20 14:46:59 +0200522 if (entity_before(se, entry)) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200534 if (leftmost)
Ingo Molnar57cb4992007-10-15 17:00:11 +0200535 cfs_rq->rb_leftmost = &se->run_node;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200539}
540
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200541static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200542{
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100548 }
Ingo Molnare9acbff2007-10-15 17:00:04 +0200549
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200551}
552
Peter Zijlstra029632f2011-10-25 10:00:11 +0200553struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200554{
Peter Zijlstraf4b67552008-11-04 21:25:07 +0100555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200561}
562
Rik van Rielac53db52011-02-01 09:51:03 -0500563static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564{
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571}
572
573#ifdef CONFIG_SCHED_DEBUG
Peter Zijlstra029632f2011-10-25 10:00:11 +0200574struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200575{
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200577
Balbir Singh70eee742008-02-22 13:25:53 +0530578 if (!last)
579 return NULL;
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100580
581 return rb_entry(last, struct sched_entity, run_node);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200582}
583
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200584/**************************************************************
585 * Scheduling class statistics methods:
586 */
587
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100588int sched_proc_update_handler(struct ctl_table *table, int write,
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700589 void __user *buffer, size_t *lenp,
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100590 loff_t *ppos)
591{
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100593 int factor = get_update_sysctl_factor();
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100601#define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100606#undef WRT_SYSCTL
607
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100608 return 0;
609}
610#endif
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200611
612/*
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200613 * delta /= w
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200614 */
615static inline unsigned long
616calc_delta_fair(unsigned long delta, struct sched_entity *se)
617{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200620
621 return delta;
622}
623
624/*
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200625 * The idea is to set a period in which each task runs once.
626 *
Borislav Petkov532b1852012-08-08 16:16:04 +0200627 * When there are too many tasks (sched_nr_latency) we have to stretch
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200632static u64 __sched_period(unsigned long nr_running)
633{
634 u64 period = sysctl_sched_latency;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100635 unsigned long nr_latency = sched_nr_latency;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200636
637 if (unlikely(nr_running > nr_latency)) {
Peter Zijlstra4bf0b772008-01-25 21:08:21 +0100638 period = sysctl_sched_min_granularity;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200639 period *= nr_running;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200640 }
641
642 return period;
643}
644
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200645/*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200649 * s = p*P[w/rw]
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200650 */
Peter Zijlstra6d0f0eb2007-10-15 17:00:05 +0200651static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Peter Zijlstra21805082007-08-25 18:41:53 +0200652{
Mike Galbraith0a582442009-01-02 12:16:42 +0100653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200654
Mike Galbraith0a582442009-01-02 12:16:42 +0100655 for_each_sched_entity(se) {
Lin Ming6272d682009-01-15 17:17:15 +0100656 struct load_weight *load;
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200657 struct load_weight lw;
Lin Ming6272d682009-01-15 17:17:15 +0100658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200661
Mike Galbraith0a582442009-01-02 12:16:42 +0100662 if (unlikely(!se->on_rq)) {
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200663 lw = cfs_rq->load;
Mike Galbraith0a582442009-01-02 12:16:42 +0100664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200671}
672
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200673/*
Andrei Epure660cc002013-03-11 12:03:20 +0200674 * We calculate the vruntime slice of a to-be-inserted task.
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200675 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200676 * vs = s/w
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200677 */
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200678static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200679{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200681}
682
Alex Shia75cdaa2013-06-20 10:18:47 +0800683#ifdef CONFIG_SMP
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100684static unsigned long task_h_load(struct task_struct *p);
685
Alex Shia75cdaa2013-06-20 10:18:47 +0800686static inline void __update_task_entity_contrib(struct sched_entity *se);
687
688/* Give new task start runnable values to heavy its load in infant time */
689void init_task_runnable_average(struct task_struct *p)
690{
691 u32 slice;
692
693 p->se.avg.decay_count = 0;
694 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
695 p->se.avg.runnable_avg_sum = slice;
696 p->se.avg.runnable_avg_period = slice;
697 __update_task_entity_contrib(&p->se);
698}
699#else
700void init_task_runnable_average(struct task_struct *p)
701{
702}
703#endif
704
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200705/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200706 * Update the current task's runtime statistics. Skip current tasks that
707 * are not in our scheduling class.
708 */
709static inline void
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200710__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
711 unsigned long delta_exec)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200712{
Ingo Molnarbbdba7c2007-10-15 17:00:06 +0200713 unsigned long delta_exec_weighted;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200714
Lucas De Marchi41acab82010-03-10 23:37:45 -0300715 schedstat_set(curr->statistics.exec_max,
716 max((u64)delta_exec, curr->statistics.exec_max));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200717
718 curr->sum_exec_runtime += delta_exec;
Ingo Molnar7a62eab2007-10-15 17:00:06 +0200719 schedstat_add(cfs_rq, exec_clock, delta_exec);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200720 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +0100721
Ingo Molnare9acbff2007-10-15 17:00:04 +0200722 curr->vruntime += delta_exec_weighted;
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200723 update_min_vruntime(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200724}
725
Ingo Molnarb7cc0892007-08-09 11:16:47 +0200726static void update_curr(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200727{
Ingo Molnar429d43b2007-10-15 17:00:03 +0200728 struct sched_entity *curr = cfs_rq->curr;
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200729 u64 now = rq_clock_task(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200730 unsigned long delta_exec;
731
732 if (unlikely(!curr))
733 return;
734
735 /*
736 * Get the amount of time the current task was running
737 * since the last time we changed load (this cannot
738 * overflow on 32 bits):
739 */
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200740 delta_exec = (unsigned long)(now - curr->exec_start);
Peter Zijlstra34f28ec2008-12-16 08:45:31 +0100741 if (!delta_exec)
742 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200743
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200744 __update_curr(cfs_rq, curr, delta_exec);
745 curr->exec_start = now;
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100746
747 if (entity_is_task(curr)) {
748 struct task_struct *curtask = task_of(curr);
749
Ingo Molnarf977bb42009-09-13 18:15:54 +0200750 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100751 cpuacct_charge(curtask, delta_exec);
Frank Mayharf06febc2008-09-12 09:54:39 -0700752 account_group_exec_runtime(curtask, delta_exec);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100753 }
Paul Turnerec12cb72011-07-21 09:43:30 -0700754
755 account_cfs_rq_runtime(cfs_rq, delta_exec);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200756}
757
758static inline void
Ingo Molnar5870db52007-08-09 11:16:47 +0200759update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200760{
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200761 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200762}
763
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200764/*
765 * Task is being enqueued - update stats:
766 */
Ingo Molnard2417e52007-08-09 11:16:47 +0200767static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200768{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200769 /*
770 * Are we enqueueing a waiting task? (for current tasks
771 * a dequeue/enqueue event is a NOP)
772 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200773 if (se != cfs_rq->curr)
Ingo Molnar5870db52007-08-09 11:16:47 +0200774 update_stats_wait_start(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200775}
776
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200777static void
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200778update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200779{
Lucas De Marchi41acab82010-03-10 23:37:45 -0300780 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200781 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
Lucas De Marchi41acab82010-03-10 23:37:45 -0300782 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
783 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200784 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200785#ifdef CONFIG_SCHEDSTATS
786 if (entity_is_task(se)) {
787 trace_sched_stat_wait(task_of(se),
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200788 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200789 }
790#endif
Lucas De Marchi41acab82010-03-10 23:37:45 -0300791 schedstat_set(se->statistics.wait_start, 0);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200792}
793
794static inline void
Ingo Molnar19b6a2e2007-08-09 11:16:48 +0200795update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200796{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200797 /*
798 * Mark the end of the wait period if dequeueing a
799 * waiting task:
800 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200801 if (se != cfs_rq->curr)
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200802 update_stats_wait_end(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200803}
804
805/*
806 * We are picking a new current task - update its stats:
807 */
808static inline void
Ingo Molnar79303e92007-08-09 11:16:47 +0200809update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200810{
811 /*
812 * We are starting a new run period:
813 */
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200814 se->exec_start = rq_clock_task(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200815}
816
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200817/**************************************************
818 * Scheduling class queueing methods:
819 */
820
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200821#ifdef CONFIG_NUMA_BALANCING
822/*
Mel Gorman598f0ec2013-10-07 11:28:55 +0100823 * Approximate time to scan a full NUMA task in ms. The task scan period is
824 * calculated based on the tasks virtual memory size and
825 * numa_balancing_scan_size.
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200826 */
Mel Gorman598f0ec2013-10-07 11:28:55 +0100827unsigned int sysctl_numa_balancing_scan_period_min = 1000;
828unsigned int sysctl_numa_balancing_scan_period_max = 60000;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200829
830/* Portion of address space to scan in MB */
831unsigned int sysctl_numa_balancing_scan_size = 256;
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200832
Peter Zijlstra4b96a292012-10-25 14:16:47 +0200833/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
834unsigned int sysctl_numa_balancing_scan_delay = 1000;
835
Mel Gorman598f0ec2013-10-07 11:28:55 +0100836static unsigned int task_nr_scan_windows(struct task_struct *p)
837{
838 unsigned long rss = 0;
839 unsigned long nr_scan_pages;
840
841 /*
842 * Calculations based on RSS as non-present and empty pages are skipped
843 * by the PTE scanner and NUMA hinting faults should be trapped based
844 * on resident pages
845 */
846 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
847 rss = get_mm_rss(p->mm);
848 if (!rss)
849 rss = nr_scan_pages;
850
851 rss = round_up(rss, nr_scan_pages);
852 return rss / nr_scan_pages;
853}
854
855/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
856#define MAX_SCAN_WINDOW 2560
857
858static unsigned int task_scan_min(struct task_struct *p)
859{
860 unsigned int scan, floor;
861 unsigned int windows = 1;
862
863 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
864 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
865 floor = 1000 / windows;
866
867 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
868 return max_t(unsigned int, floor, scan);
869}
870
871static unsigned int task_scan_max(struct task_struct *p)
872{
873 unsigned int smin = task_scan_min(p);
874 unsigned int smax;
875
876 /* Watch for min being lower than max due to floor calculations */
877 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
878 return max(smin, smax);
879}
880
Mel Gorman3a7053b2013-10-07 11:29:00 +0100881/*
882 * Once a preferred node is selected the scheduler balancer will prefer moving
883 * a task to that node for sysctl_numa_balancing_settle_count number of PTE
884 * scans. This will give the process the chance to accumulate more faults on
885 * the preferred node but still allow the scheduler to move the task again if
886 * the nodes CPUs are overloaded.
887 */
Rik van Riel6fe6b2d2013-10-07 11:29:08 +0100888unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
Mel Gorman3a7053b2013-10-07 11:29:00 +0100889
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +0100890static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
891{
892 rq->nr_numa_running += (p->numa_preferred_nid != -1);
893 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
894}
895
896static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
897{
898 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
899 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
900}
901
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100902struct numa_group {
903 atomic_t refcount;
904
905 spinlock_t lock; /* nr_tasks, tasks */
906 int nr_tasks;
Mel Gormane29cf082013-10-07 11:29:22 +0100907 pid_t gid;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100908 struct list_head task_list;
909
910 struct rcu_head rcu;
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100911 atomic_long_t total_faults;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100912 atomic_long_t faults[0];
913};
914
Mel Gormane29cf082013-10-07 11:29:22 +0100915pid_t task_numa_group_id(struct task_struct *p)
916{
917 return p->numa_group ? p->numa_group->gid : 0;
918}
919
Mel Gormanac8e8952013-10-07 11:29:03 +0100920static inline int task_faults_idx(int nid, int priv)
921{
922 return 2 * nid + priv;
923}
924
925static inline unsigned long task_faults(struct task_struct *p, int nid)
926{
927 if (!p->numa_faults)
928 return 0;
929
930 return p->numa_faults[task_faults_idx(nid, 0)] +
931 p->numa_faults[task_faults_idx(nid, 1)];
932}
933
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100934static inline unsigned long group_faults(struct task_struct *p, int nid)
935{
936 if (!p->numa_group)
937 return 0;
938
939 return atomic_long_read(&p->numa_group->faults[2*nid]) +
940 atomic_long_read(&p->numa_group->faults[2*nid+1]);
941}
942
943/*
944 * These return the fraction of accesses done by a particular task, or
945 * task group, on a particular numa node. The group weight is given a
946 * larger multiplier, in order to group tasks together that are almost
947 * evenly spread out between numa nodes.
948 */
949static inline unsigned long task_weight(struct task_struct *p, int nid)
950{
951 unsigned long total_faults;
952
953 if (!p->numa_faults)
954 return 0;
955
956 total_faults = p->total_numa_faults;
957
958 if (!total_faults)
959 return 0;
960
961 return 1000 * task_faults(p, nid) / total_faults;
962}
963
964static inline unsigned long group_weight(struct task_struct *p, int nid)
965{
966 unsigned long total_faults;
967
968 if (!p->numa_group)
969 return 0;
970
971 total_faults = atomic_long_read(&p->numa_group->total_faults);
972
973 if (!total_faults)
974 return 0;
975
Rik van Rielca28aa52013-10-07 11:29:32 +0100976 return 1000 * group_faults(p, nid) / total_faults;
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100977}
978
Mel Gormane6628d52013-10-07 11:29:02 +0100979static unsigned long weighted_cpuload(const int cpu);
Mel Gorman58d081b2013-10-07 11:29:10 +0100980static unsigned long source_load(int cpu, int type);
981static unsigned long target_load(int cpu, int type);
982static unsigned long power_of(int cpu);
983static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
Mel Gormane6628d52013-10-07 11:29:02 +0100984
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100985/* Cached statistics for all CPUs within a node */
Mel Gorman58d081b2013-10-07 11:29:10 +0100986struct numa_stats {
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100987 unsigned long nr_running;
Mel Gorman58d081b2013-10-07 11:29:10 +0100988 unsigned long load;
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100989
990 /* Total compute capacity of CPUs on a node */
991 unsigned long power;
992
993 /* Approximate capacity in terms of runnable tasks on a node */
994 unsigned long capacity;
995 int has_capacity;
Mel Gorman58d081b2013-10-07 11:29:10 +0100996};
Mel Gormane6628d52013-10-07 11:29:02 +0100997
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100998/*
999 * XXX borrowed from update_sg_lb_stats
1000 */
1001static void update_numa_stats(struct numa_stats *ns, int nid)
1002{
1003 int cpu;
1004
1005 memset(ns, 0, sizeof(*ns));
1006 for_each_cpu(cpu, cpumask_of_node(nid)) {
1007 struct rq *rq = cpu_rq(cpu);
1008
1009 ns->nr_running += rq->nr_running;
1010 ns->load += weighted_cpuload(cpu);
1011 ns->power += power_of(cpu);
1012 }
1013
1014 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1015 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1016 ns->has_capacity = (ns->nr_running < ns->capacity);
1017}
1018
Mel Gorman58d081b2013-10-07 11:29:10 +01001019struct task_numa_env {
1020 struct task_struct *p;
1021
1022 int src_cpu, src_nid;
1023 int dst_cpu, dst_nid;
1024
1025 struct numa_stats src_stats, dst_stats;
1026
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001027 int imbalance_pct, idx;
1028
1029 struct task_struct *best_task;
1030 long best_imp;
Mel Gorman58d081b2013-10-07 11:29:10 +01001031 int best_cpu;
1032};
1033
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001034static void task_numa_assign(struct task_numa_env *env,
1035 struct task_struct *p, long imp)
1036{
1037 if (env->best_task)
1038 put_task_struct(env->best_task);
1039 if (p)
1040 get_task_struct(p);
1041
1042 env->best_task = p;
1043 env->best_imp = imp;
1044 env->best_cpu = env->dst_cpu;
1045}
1046
1047/*
1048 * This checks if the overall compute and NUMA accesses of the system would
1049 * be improved if the source tasks was migrated to the target dst_cpu taking
1050 * into account that it might be best if task running on the dst_cpu should
1051 * be exchanged with the source task
1052 */
Rik van Riel887c2902013-10-07 11:29:31 +01001053static void task_numa_compare(struct task_numa_env *env,
1054 long taskimp, long groupimp)
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001055{
1056 struct rq *src_rq = cpu_rq(env->src_cpu);
1057 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1058 struct task_struct *cur;
1059 long dst_load, src_load;
1060 long load;
Rik van Riel887c2902013-10-07 11:29:31 +01001061 long imp = (groupimp > 0) ? groupimp : taskimp;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001062
1063 rcu_read_lock();
1064 cur = ACCESS_ONCE(dst_rq->curr);
1065 if (cur->pid == 0) /* idle */
1066 cur = NULL;
1067
1068 /*
1069 * "imp" is the fault differential for the source task between the
1070 * source and destination node. Calculate the total differential for
1071 * the source task and potential destination task. The more negative
1072 * the value is, the more rmeote accesses that would be expected to
1073 * be incurred if the tasks were swapped.
1074 */
1075 if (cur) {
1076 /* Skip this swap candidate if cannot move to the source cpu */
1077 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1078 goto unlock;
1079
Rik van Riel887c2902013-10-07 11:29:31 +01001080 /*
1081 * If dst and source tasks are in the same NUMA group, or not
Rik van Rielca28aa52013-10-07 11:29:32 +01001082 * in any group then look only at task weights.
Rik van Riel887c2902013-10-07 11:29:31 +01001083 */
Rik van Rielca28aa52013-10-07 11:29:32 +01001084 if (cur->numa_group == env->p->numa_group) {
Rik van Riel887c2902013-10-07 11:29:31 +01001085 imp = taskimp + task_weight(cur, env->src_nid) -
1086 task_weight(cur, env->dst_nid);
Rik van Rielca28aa52013-10-07 11:29:32 +01001087 /*
1088 * Add some hysteresis to prevent swapping the
1089 * tasks within a group over tiny differences.
1090 */
1091 if (cur->numa_group)
1092 imp -= imp/16;
Rik van Riel887c2902013-10-07 11:29:31 +01001093 } else {
Rik van Rielca28aa52013-10-07 11:29:32 +01001094 /*
1095 * Compare the group weights. If a task is all by
1096 * itself (not part of a group), use the task weight
1097 * instead.
1098 */
1099 if (env->p->numa_group)
1100 imp = groupimp;
1101 else
1102 imp = taskimp;
1103
1104 if (cur->numa_group)
1105 imp += group_weight(cur, env->src_nid) -
1106 group_weight(cur, env->dst_nid);
1107 else
1108 imp += task_weight(cur, env->src_nid) -
1109 task_weight(cur, env->dst_nid);
Rik van Riel887c2902013-10-07 11:29:31 +01001110 }
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001111 }
1112
1113 if (imp < env->best_imp)
1114 goto unlock;
1115
1116 if (!cur) {
1117 /* Is there capacity at our destination? */
1118 if (env->src_stats.has_capacity &&
1119 !env->dst_stats.has_capacity)
1120 goto unlock;
1121
1122 goto balance;
1123 }
1124
1125 /* Balance doesn't matter much if we're running a task per cpu */
1126 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1127 goto assign;
1128
1129 /*
1130 * In the overloaded case, try and keep the load balanced.
1131 */
1132balance:
1133 dst_load = env->dst_stats.load;
1134 src_load = env->src_stats.load;
1135
1136 /* XXX missing power terms */
1137 load = task_h_load(env->p);
1138 dst_load += load;
1139 src_load -= load;
1140
1141 if (cur) {
1142 load = task_h_load(cur);
1143 dst_load -= load;
1144 src_load += load;
1145 }
1146
1147 /* make src_load the smaller */
1148 if (dst_load < src_load)
1149 swap(dst_load, src_load);
1150
1151 if (src_load * env->imbalance_pct < dst_load * 100)
1152 goto unlock;
1153
1154assign:
1155 task_numa_assign(env, cur, imp);
1156unlock:
1157 rcu_read_unlock();
1158}
1159
Rik van Riel887c2902013-10-07 11:29:31 +01001160static void task_numa_find_cpu(struct task_numa_env *env,
1161 long taskimp, long groupimp)
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001162{
1163 int cpu;
1164
1165 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1166 /* Skip this CPU if the source task cannot migrate */
1167 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1168 continue;
1169
1170 env->dst_cpu = cpu;
Rik van Riel887c2902013-10-07 11:29:31 +01001171 task_numa_compare(env, taskimp, groupimp);
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001172 }
1173}
1174
Mel Gorman58d081b2013-10-07 11:29:10 +01001175static int task_numa_migrate(struct task_struct *p)
Mel Gormane6628d52013-10-07 11:29:02 +01001176{
Mel Gorman58d081b2013-10-07 11:29:10 +01001177 struct task_numa_env env = {
1178 .p = p,
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001179
Mel Gorman58d081b2013-10-07 11:29:10 +01001180 .src_cpu = task_cpu(p),
Ingo Molnarb32e86b2013-10-07 11:29:30 +01001181 .src_nid = task_node(p),
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001182
1183 .imbalance_pct = 112,
1184
1185 .best_task = NULL,
1186 .best_imp = 0,
1187 .best_cpu = -1
Mel Gorman58d081b2013-10-07 11:29:10 +01001188 };
1189 struct sched_domain *sd;
Rik van Riel887c2902013-10-07 11:29:31 +01001190 unsigned long taskweight, groupweight;
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001191 int nid, ret;
Rik van Riel887c2902013-10-07 11:29:31 +01001192 long taskimp, groupimp;
Mel Gormane6628d52013-10-07 11:29:02 +01001193
Mel Gorman58d081b2013-10-07 11:29:10 +01001194 /*
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001195 * Pick the lowest SD_NUMA domain, as that would have the smallest
1196 * imbalance and would be the first to start moving tasks about.
1197 *
1198 * And we want to avoid any moving of tasks about, as that would create
1199 * random movement of tasks -- counter the numa conditions we're trying
1200 * to satisfy here.
Mel Gorman58d081b2013-10-07 11:29:10 +01001201 */
Mel Gormane6628d52013-10-07 11:29:02 +01001202 rcu_read_lock();
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001203 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1204 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
Mel Gormane6628d52013-10-07 11:29:02 +01001205 rcu_read_unlock();
1206
Rik van Riel887c2902013-10-07 11:29:31 +01001207 taskweight = task_weight(p, env.src_nid);
1208 groupweight = group_weight(p, env.src_nid);
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001209 update_numa_stats(&env.src_stats, env.src_nid);
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001210 env.dst_nid = p->numa_preferred_nid;
Rik van Riel887c2902013-10-07 11:29:31 +01001211 taskimp = task_weight(p, env.dst_nid) - taskweight;
1212 groupimp = group_weight(p, env.dst_nid) - groupweight;
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001213 update_numa_stats(&env.dst_stats, env.dst_nid);
Mel Gorman58d081b2013-10-07 11:29:10 +01001214
Rik van Riele1dda8a2013-10-07 11:29:19 +01001215 /* If the preferred nid has capacity, try to use it. */
1216 if (env.dst_stats.has_capacity)
Rik van Riel887c2902013-10-07 11:29:31 +01001217 task_numa_find_cpu(&env, taskimp, groupimp);
Rik van Riele1dda8a2013-10-07 11:29:19 +01001218
1219 /* No space available on the preferred nid. Look elsewhere. */
1220 if (env.best_cpu == -1) {
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001221 for_each_online_node(nid) {
1222 if (nid == env.src_nid || nid == p->numa_preferred_nid)
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001223 continue;
1224
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001225 /* Only consider nodes where both task and groups benefit */
Rik van Riel887c2902013-10-07 11:29:31 +01001226 taskimp = task_weight(p, nid) - taskweight;
1227 groupimp = group_weight(p, nid) - groupweight;
1228 if (taskimp < 0 && groupimp < 0)
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001229 continue;
1230
1231 env.dst_nid = nid;
1232 update_numa_stats(&env.dst_stats, env.dst_nid);
Rik van Riel887c2902013-10-07 11:29:31 +01001233 task_numa_find_cpu(&env, taskimp, groupimp);
Mel Gorman58d081b2013-10-07 11:29:10 +01001234 }
1235 }
1236
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001237 /* No better CPU than the current one was found. */
1238 if (env.best_cpu == -1)
1239 return -EAGAIN;
1240
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001241 sched_setnuma(p, env.dst_nid);
1242
Rik van Riel04bb2f92013-10-07 11:29:36 +01001243 /*
1244 * Reset the scan period if the task is being rescheduled on an
1245 * alternative node to recheck if the tasks is now properly placed.
1246 */
1247 p->numa_scan_period = task_scan_min(p);
1248
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001249 if (env.best_task == NULL) {
1250 int ret = migrate_task_to(p, env.best_cpu);
1251 return ret;
1252 }
1253
1254 ret = migrate_swap(p, env.best_task);
1255 put_task_struct(env.best_task);
1256 return ret;
Mel Gormane6628d52013-10-07 11:29:02 +01001257}
1258
Mel Gorman6b9a7462013-10-07 11:29:11 +01001259/* Attempt to migrate a task to a CPU on the preferred node. */
1260static void numa_migrate_preferred(struct task_struct *p)
1261{
1262 /* Success if task is already running on preferred CPU */
1263 p->numa_migrate_retry = 0;
Rik van Riel06ea5e02013-10-07 11:29:12 +01001264 if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid) {
1265 /*
1266 * If migration is temporarily disabled due to a task migration
1267 * then re-enable it now as the task is running on its
1268 * preferred node and memory should migrate locally
1269 */
1270 if (!p->numa_migrate_seq)
1271 p->numa_migrate_seq++;
Mel Gorman6b9a7462013-10-07 11:29:11 +01001272 return;
Rik van Riel06ea5e02013-10-07 11:29:12 +01001273 }
Mel Gorman6b9a7462013-10-07 11:29:11 +01001274
1275 /* This task has no NUMA fault statistics yet */
1276 if (unlikely(p->numa_preferred_nid == -1))
1277 return;
1278
1279 /* Otherwise, try migrate to a CPU on the preferred node */
1280 if (task_numa_migrate(p) != 0)
1281 p->numa_migrate_retry = jiffies + HZ*5;
1282}
1283
Rik van Riel04bb2f92013-10-07 11:29:36 +01001284/*
1285 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1286 * increments. The more local the fault statistics are, the higher the scan
1287 * period will be for the next scan window. If local/remote ratio is below
1288 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1289 * scan period will decrease
1290 */
1291#define NUMA_PERIOD_SLOTS 10
1292#define NUMA_PERIOD_THRESHOLD 3
1293
1294/*
1295 * Increase the scan period (slow down scanning) if the majority of
1296 * our memory is already on our local node, or if the majority of
1297 * the page accesses are shared with other processes.
1298 * Otherwise, decrease the scan period.
1299 */
1300static void update_task_scan_period(struct task_struct *p,
1301 unsigned long shared, unsigned long private)
1302{
1303 unsigned int period_slot;
1304 int ratio;
1305 int diff;
1306
1307 unsigned long remote = p->numa_faults_locality[0];
1308 unsigned long local = p->numa_faults_locality[1];
1309
1310 /*
1311 * If there were no record hinting faults then either the task is
1312 * completely idle or all activity is areas that are not of interest
1313 * to automatic numa balancing. Scan slower
1314 */
1315 if (local + shared == 0) {
1316 p->numa_scan_period = min(p->numa_scan_period_max,
1317 p->numa_scan_period << 1);
1318
1319 p->mm->numa_next_scan = jiffies +
1320 msecs_to_jiffies(p->numa_scan_period);
1321
1322 return;
1323 }
1324
1325 /*
1326 * Prepare to scale scan period relative to the current period.
1327 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1328 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1329 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1330 */
1331 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1332 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1333 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1334 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1335 if (!slot)
1336 slot = 1;
1337 diff = slot * period_slot;
1338 } else {
1339 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1340
1341 /*
1342 * Scale scan rate increases based on sharing. There is an
1343 * inverse relationship between the degree of sharing and
1344 * the adjustment made to the scanning period. Broadly
1345 * speaking the intent is that there is little point
1346 * scanning faster if shared accesses dominate as it may
1347 * simply bounce migrations uselessly
1348 */
1349 period_slot = DIV_ROUND_UP(diff, NUMA_PERIOD_SLOTS);
1350 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1351 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1352 }
1353
1354 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1355 task_scan_min(p), task_scan_max(p));
1356 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1357}
1358
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001359static void task_numa_placement(struct task_struct *p)
1360{
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001361 int seq, nid, max_nid = -1, max_group_nid = -1;
1362 unsigned long max_faults = 0, max_group_faults = 0;
Rik van Riel04bb2f92013-10-07 11:29:36 +01001363 unsigned long fault_types[2] = { 0, 0 };
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001364 spinlock_t *group_lock = NULL;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001365
Hugh Dickins2832bc12012-12-19 17:42:16 -08001366 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001367 if (p->numa_scan_seq == seq)
1368 return;
1369 p->numa_scan_seq = seq;
Mel Gorman3a7053b2013-10-07 11:29:00 +01001370 p->numa_migrate_seq++;
Mel Gorman598f0ec2013-10-07 11:28:55 +01001371 p->numa_scan_period_max = task_scan_max(p);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001372
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001373 /* If the task is part of a group prevent parallel updates to group stats */
1374 if (p->numa_group) {
1375 group_lock = &p->numa_group->lock;
1376 spin_lock(group_lock);
1377 }
1378
Mel Gorman688b7582013-10-07 11:28:58 +01001379 /* Find the node with the highest number of faults */
1380 for_each_online_node(nid) {
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001381 unsigned long faults = 0, group_faults = 0;
Mel Gormanac8e8952013-10-07 11:29:03 +01001382 int priv, i;
Mel Gorman745d6142013-10-07 11:28:59 +01001383
Mel Gormanac8e8952013-10-07 11:29:03 +01001384 for (priv = 0; priv < 2; priv++) {
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001385 long diff;
1386
Mel Gormanac8e8952013-10-07 11:29:03 +01001387 i = task_faults_idx(nid, priv);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001388 diff = -p->numa_faults[i];
Mel Gorman745d6142013-10-07 11:28:59 +01001389
Mel Gormanac8e8952013-10-07 11:29:03 +01001390 /* Decay existing window, copy faults since last scan */
1391 p->numa_faults[i] >>= 1;
1392 p->numa_faults[i] += p->numa_faults_buffer[i];
Rik van Riel04bb2f92013-10-07 11:29:36 +01001393 fault_types[priv] += p->numa_faults_buffer[i];
Mel Gormanac8e8952013-10-07 11:29:03 +01001394 p->numa_faults_buffer[i] = 0;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001395
1396 faults += p->numa_faults[i];
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001397 diff += p->numa_faults[i];
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001398 p->total_numa_faults += diff;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001399 if (p->numa_group) {
1400 /* safe because we can only change our own group */
1401 atomic_long_add(diff, &p->numa_group->faults[i]);
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001402 atomic_long_add(diff, &p->numa_group->total_faults);
1403 group_faults += atomic_long_read(&p->numa_group->faults[i]);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001404 }
Mel Gormanac8e8952013-10-07 11:29:03 +01001405 }
1406
Mel Gorman688b7582013-10-07 11:28:58 +01001407 if (faults > max_faults) {
1408 max_faults = faults;
1409 max_nid = nid;
1410 }
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001411
1412 if (group_faults > max_group_faults) {
1413 max_group_faults = group_faults;
1414 max_group_nid = nid;
1415 }
1416 }
1417
Rik van Riel04bb2f92013-10-07 11:29:36 +01001418 update_task_scan_period(p, fault_types[0], fault_types[1]);
1419
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001420 if (p->numa_group) {
1421 /*
1422 * If the preferred task and group nids are different,
1423 * iterate over the nodes again to find the best place.
1424 */
1425 if (max_nid != max_group_nid) {
1426 unsigned long weight, max_weight = 0;
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001427
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001428 for_each_online_node(nid) {
1429 weight = task_weight(p, nid) + group_weight(p, nid);
1430 if (weight > max_weight) {
1431 max_weight = weight;
1432 max_nid = nid;
1433 }
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001434 }
1435 }
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001436
1437 spin_unlock(group_lock);
Mel Gorman688b7582013-10-07 11:28:58 +01001438 }
1439
Mel Gorman6b9a7462013-10-07 11:29:11 +01001440 /* Preferred node as the node with the most faults */
Mel Gorman3a7053b2013-10-07 11:29:00 +01001441 if (max_faults && max_nid != p->numa_preferred_nid) {
Mel Gormane6628d52013-10-07 11:29:02 +01001442 /* Update the preferred nid and migrate task if possible */
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001443 sched_setnuma(p, max_nid);
Mel Gorman6b9a7462013-10-07 11:29:11 +01001444 numa_migrate_preferred(p);
Mel Gorman3a7053b2013-10-07 11:29:00 +01001445 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001446}
1447
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001448static inline int get_numa_group(struct numa_group *grp)
1449{
1450 return atomic_inc_not_zero(&grp->refcount);
1451}
1452
1453static inline void put_numa_group(struct numa_group *grp)
1454{
1455 if (atomic_dec_and_test(&grp->refcount))
1456 kfree_rcu(grp, rcu);
1457}
1458
1459static void double_lock(spinlock_t *l1, spinlock_t *l2)
1460{
1461 if (l1 > l2)
1462 swap(l1, l2);
1463
1464 spin_lock(l1);
1465 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1466}
1467
Mel Gorman3e6a9412013-10-07 11:29:35 +01001468static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1469 int *priv)
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001470{
1471 struct numa_group *grp, *my_grp;
1472 struct task_struct *tsk;
1473 bool join = false;
1474 int cpu = cpupid_to_cpu(cpupid);
1475 int i;
1476
1477 if (unlikely(!p->numa_group)) {
1478 unsigned int size = sizeof(struct numa_group) +
1479 2*nr_node_ids*sizeof(atomic_long_t);
1480
1481 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1482 if (!grp)
1483 return;
1484
1485 atomic_set(&grp->refcount, 1);
1486 spin_lock_init(&grp->lock);
1487 INIT_LIST_HEAD(&grp->task_list);
Mel Gormane29cf082013-10-07 11:29:22 +01001488 grp->gid = p->pid;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001489
1490 for (i = 0; i < 2*nr_node_ids; i++)
1491 atomic_long_set(&grp->faults[i], p->numa_faults[i]);
1492
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001493 atomic_long_set(&grp->total_faults, p->total_numa_faults);
1494
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001495 list_add(&p->numa_entry, &grp->task_list);
1496 grp->nr_tasks++;
1497 rcu_assign_pointer(p->numa_group, grp);
1498 }
1499
1500 rcu_read_lock();
1501 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1502
1503 if (!cpupid_match_pid(tsk, cpupid))
1504 goto unlock;
1505
1506 grp = rcu_dereference(tsk->numa_group);
1507 if (!grp)
1508 goto unlock;
1509
1510 my_grp = p->numa_group;
1511 if (grp == my_grp)
1512 goto unlock;
1513
1514 /*
1515 * Only join the other group if its bigger; if we're the bigger group,
1516 * the other task will join us.
1517 */
1518 if (my_grp->nr_tasks > grp->nr_tasks)
1519 goto unlock;
1520
1521 /*
1522 * Tie-break on the grp address.
1523 */
1524 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1525 goto unlock;
1526
Rik van Rieldabe1d92013-10-07 11:29:34 +01001527 /* Always join threads in the same process. */
1528 if (tsk->mm == current->mm)
1529 join = true;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001530
Rik van Rieldabe1d92013-10-07 11:29:34 +01001531 /* Simple filter to avoid false positives due to PID collisions */
1532 if (flags & TNF_SHARED)
1533 join = true;
1534
Mel Gorman3e6a9412013-10-07 11:29:35 +01001535 /* Update priv based on whether false sharing was detected */
1536 *priv = !join;
1537
Rik van Rieldabe1d92013-10-07 11:29:34 +01001538 if (join && !get_numa_group(grp))
1539 join = false;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001540
1541unlock:
1542 rcu_read_unlock();
1543
1544 if (!join)
1545 return;
1546
1547 for (i = 0; i < 2*nr_node_ids; i++) {
1548 atomic_long_sub(p->numa_faults[i], &my_grp->faults[i]);
1549 atomic_long_add(p->numa_faults[i], &grp->faults[i]);
1550 }
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001551 atomic_long_sub(p->total_numa_faults, &my_grp->total_faults);
1552 atomic_long_add(p->total_numa_faults, &grp->total_faults);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001553
1554 double_lock(&my_grp->lock, &grp->lock);
1555
1556 list_move(&p->numa_entry, &grp->task_list);
1557 my_grp->nr_tasks--;
1558 grp->nr_tasks++;
1559
1560 spin_unlock(&my_grp->lock);
1561 spin_unlock(&grp->lock);
1562
1563 rcu_assign_pointer(p->numa_group, grp);
1564
1565 put_numa_group(my_grp);
1566}
1567
1568void task_numa_free(struct task_struct *p)
1569{
1570 struct numa_group *grp = p->numa_group;
1571 int i;
Rik van Riel82727012013-10-07 11:29:28 +01001572 void *numa_faults = p->numa_faults;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001573
1574 if (grp) {
1575 for (i = 0; i < 2*nr_node_ids; i++)
1576 atomic_long_sub(p->numa_faults[i], &grp->faults[i]);
1577
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001578 atomic_long_sub(p->total_numa_faults, &grp->total_faults);
1579
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001580 spin_lock(&grp->lock);
1581 list_del(&p->numa_entry);
1582 grp->nr_tasks--;
1583 spin_unlock(&grp->lock);
1584 rcu_assign_pointer(p->numa_group, NULL);
1585 put_numa_group(grp);
1586 }
1587
Rik van Riel82727012013-10-07 11:29:28 +01001588 p->numa_faults = NULL;
1589 p->numa_faults_buffer = NULL;
1590 kfree(numa_faults);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001591}
1592
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001593/*
1594 * Got a PROT_NONE fault for a page on @node.
1595 */
Peter Zijlstra6688cc02013-10-07 11:29:24 +01001596void task_numa_fault(int last_cpupid, int node, int pages, int flags)
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001597{
1598 struct task_struct *p = current;
Peter Zijlstra6688cc02013-10-07 11:29:24 +01001599 bool migrated = flags & TNF_MIGRATED;
Mel Gormanac8e8952013-10-07 11:29:03 +01001600 int priv;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001601
Dave Kleikamp10e84b92013-07-31 13:53:35 -07001602 if (!numabalancing_enabled)
Mel Gorman1a687c22012-11-22 11:16:36 +00001603 return;
1604
Mel Gorman9ff1d9f2013-10-07 11:29:04 +01001605 /* for example, ksmd faulting in a user's mm */
1606 if (!p->mm)
1607 return;
1608
Rik van Riel82727012013-10-07 11:29:28 +01001609 /* Do not worry about placement if exiting */
1610 if (p->state == TASK_DEAD)
1611 return;
1612
Mel Gormanf809ca92013-10-07 11:28:57 +01001613 /* Allocate buffer to track faults on a per-node basis */
1614 if (unlikely(!p->numa_faults)) {
Mel Gormanac8e8952013-10-07 11:29:03 +01001615 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
Mel Gormanf809ca92013-10-07 11:28:57 +01001616
Mel Gorman745d6142013-10-07 11:28:59 +01001617 /* numa_faults and numa_faults_buffer share the allocation */
1618 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
Mel Gormanf809ca92013-10-07 11:28:57 +01001619 if (!p->numa_faults)
1620 return;
Mel Gorman745d6142013-10-07 11:28:59 +01001621
1622 BUG_ON(p->numa_faults_buffer);
Mel Gormanac8e8952013-10-07 11:29:03 +01001623 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001624 p->total_numa_faults = 0;
Rik van Riel04bb2f92013-10-07 11:29:36 +01001625 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
Mel Gormanf809ca92013-10-07 11:28:57 +01001626 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001627
Mel Gormanfb003b82012-11-15 09:01:14 +00001628 /*
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001629 * First accesses are treated as private, otherwise consider accesses
1630 * to be private if the accessing pid has not changed
1631 */
1632 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1633 priv = 1;
1634 } else {
1635 priv = cpupid_match_pid(p, last_cpupid);
Peter Zijlstra6688cc02013-10-07 11:29:24 +01001636 if (!priv && !(flags & TNF_NO_GROUP))
Mel Gorman3e6a9412013-10-07 11:29:35 +01001637 task_numa_group(p, last_cpupid, flags, &priv);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001638 }
1639
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001640 task_numa_placement(p);
Mel Gormanf809ca92013-10-07 11:28:57 +01001641
Mel Gorman6b9a7462013-10-07 11:29:11 +01001642 /* Retry task to preferred node migration if it previously failed */
1643 if (p->numa_migrate_retry && time_after(jiffies, p->numa_migrate_retry))
1644 numa_migrate_preferred(p);
1645
Ingo Molnarb32e86b2013-10-07 11:29:30 +01001646 if (migrated)
1647 p->numa_pages_migrated += pages;
1648
Mel Gormanac8e8952013-10-07 11:29:03 +01001649 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
Rik van Riel04bb2f92013-10-07 11:29:36 +01001650 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001651}
1652
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001653static void reset_ptenuma_scan(struct task_struct *p)
1654{
1655 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1656 p->mm->numa_scan_offset = 0;
1657}
1658
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001659/*
1660 * The expensive part of numa migration is done from task_work context.
1661 * Triggered from task_tick_numa().
1662 */
1663void task_numa_work(struct callback_head *work)
1664{
1665 unsigned long migrate, next_scan, now = jiffies;
1666 struct task_struct *p = current;
1667 struct mm_struct *mm = p->mm;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001668 struct vm_area_struct *vma;
Mel Gorman9f406042012-11-14 18:34:32 +00001669 unsigned long start, end;
Mel Gorman598f0ec2013-10-07 11:28:55 +01001670 unsigned long nr_pte_updates = 0;
Mel Gorman9f406042012-11-14 18:34:32 +00001671 long pages;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001672
1673 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1674
1675 work->next = work; /* protect against double add */
1676 /*
1677 * Who cares about NUMA placement when they're dying.
1678 *
1679 * NOTE: make sure not to dereference p->mm before this check,
1680 * exit_task_work() happens _after_ exit_mm() so we could be called
1681 * without p->mm even though we still had it when we enqueued this
1682 * work.
1683 */
1684 if (p->flags & PF_EXITING)
1685 return;
1686
Mel Gorman930aa172013-10-07 11:29:37 +01001687 if (!mm->numa_next_scan) {
Mel Gorman7e8d16b2013-10-07 11:28:54 +01001688 mm->numa_next_scan = now +
1689 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
Mel Gormanb8593bf2012-11-21 01:18:23 +00001690 }
1691
1692 /*
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001693 * Enforce maximal scan/migration frequency..
1694 */
1695 migrate = mm->numa_next_scan;
1696 if (time_before(now, migrate))
1697 return;
1698
Mel Gorman598f0ec2013-10-07 11:28:55 +01001699 if (p->numa_scan_period == 0) {
1700 p->numa_scan_period_max = task_scan_max(p);
1701 p->numa_scan_period = task_scan_min(p);
1702 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001703
Mel Gormanfb003b82012-11-15 09:01:14 +00001704 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001705 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1706 return;
1707
Mel Gormane14808b2012-11-19 10:59:15 +00001708 /*
Peter Zijlstra19a78d12013-10-07 11:28:51 +01001709 * Delay this task enough that another task of this mm will likely win
1710 * the next time around.
1711 */
1712 p->node_stamp += 2 * TICK_NSEC;
1713
Mel Gorman9f406042012-11-14 18:34:32 +00001714 start = mm->numa_scan_offset;
1715 pages = sysctl_numa_balancing_scan_size;
1716 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1717 if (!pages)
1718 return;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001719
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001720 down_read(&mm->mmap_sem);
Mel Gorman9f406042012-11-14 18:34:32 +00001721 vma = find_vma(mm, start);
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001722 if (!vma) {
1723 reset_ptenuma_scan(p);
Mel Gorman9f406042012-11-14 18:34:32 +00001724 start = 0;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001725 vma = mm->mmap;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001726 }
Mel Gorman9f406042012-11-14 18:34:32 +00001727 for (; vma; vma = vma->vm_next) {
Mel Gormanfc3147242013-10-07 11:29:09 +01001728 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001729 continue;
1730
Mel Gorman4591ce4f2013-10-07 11:29:13 +01001731 /*
1732 * Shared library pages mapped by multiple processes are not
1733 * migrated as it is expected they are cache replicated. Avoid
1734 * hinting faults in read-only file-backed mappings or the vdso
1735 * as migrating the pages will be of marginal benefit.
1736 */
1737 if (!vma->vm_mm ||
1738 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1739 continue;
1740
Mel Gorman9f406042012-11-14 18:34:32 +00001741 do {
1742 start = max(start, vma->vm_start);
1743 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1744 end = min(end, vma->vm_end);
Mel Gorman598f0ec2013-10-07 11:28:55 +01001745 nr_pte_updates += change_prot_numa(vma, start, end);
1746
1747 /*
1748 * Scan sysctl_numa_balancing_scan_size but ensure that
1749 * at least one PTE is updated so that unused virtual
1750 * address space is quickly skipped.
1751 */
1752 if (nr_pte_updates)
1753 pages -= (end - start) >> PAGE_SHIFT;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001754
Mel Gorman9f406042012-11-14 18:34:32 +00001755 start = end;
1756 if (pages <= 0)
1757 goto out;
1758 } while (end != vma->vm_end);
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001759 }
1760
Mel Gorman9f406042012-11-14 18:34:32 +00001761out:
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001762 /*
Peter Zijlstrac69307d2013-10-07 11:28:41 +01001763 * It is possible to reach the end of the VMA list but the last few
1764 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1765 * would find the !migratable VMA on the next scan but not reset the
1766 * scanner to the start so check it now.
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001767 */
1768 if (vma)
Mel Gorman9f406042012-11-14 18:34:32 +00001769 mm->numa_scan_offset = start;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001770 else
1771 reset_ptenuma_scan(p);
1772 up_read(&mm->mmap_sem);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001773}
1774
1775/*
1776 * Drive the periodic memory faults..
1777 */
1778void task_tick_numa(struct rq *rq, struct task_struct *curr)
1779{
1780 struct callback_head *work = &curr->numa_work;
1781 u64 period, now;
1782
1783 /*
1784 * We don't care about NUMA placement if we don't have memory.
1785 */
1786 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1787 return;
1788
1789 /*
1790 * Using runtime rather than walltime has the dual advantage that
1791 * we (mostly) drive the selection from busy threads and that the
1792 * task needs to have done some actual work before we bother with
1793 * NUMA placement.
1794 */
1795 now = curr->se.sum_exec_runtime;
1796 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1797
1798 if (now - curr->node_stamp > period) {
Peter Zijlstra4b96a292012-10-25 14:16:47 +02001799 if (!curr->node_stamp)
Mel Gorman598f0ec2013-10-07 11:28:55 +01001800 curr->numa_scan_period = task_scan_min(curr);
Peter Zijlstra19a78d12013-10-07 11:28:51 +01001801 curr->node_stamp += period;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001802
1803 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1804 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1805 task_work_add(curr, work, true);
1806 }
1807 }
1808}
1809#else
1810static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1811{
1812}
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001813
1814static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1815{
1816}
1817
1818static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1819{
1820}
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001821#endif /* CONFIG_NUMA_BALANCING */
1822
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001823static void
1824account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1825{
1826 update_load_add(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +02001827 if (!parent_entity(se))
Peter Zijlstra029632f2011-10-25 10:00:11 +02001828 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
Peter Zijlstra367456c2012-02-20 21:49:09 +01001829#ifdef CONFIG_SMP
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001830 if (entity_is_task(se)) {
1831 struct rq *rq = rq_of(cfs_rq);
1832
1833 account_numa_enqueue(rq, task_of(se));
1834 list_add(&se->group_node, &rq->cfs_tasks);
1835 }
Peter Zijlstra367456c2012-02-20 21:49:09 +01001836#endif
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001837 cfs_rq->nr_running++;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001838}
1839
1840static void
1841account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1842{
1843 update_load_sub(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +02001844 if (!parent_entity(se))
Peter Zijlstra029632f2011-10-25 10:00:11 +02001845 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001846 if (entity_is_task(se)) {
1847 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
Bharata B Raob87f1722008-09-25 09:53:54 +05301848 list_del_init(&se->group_node);
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001849 }
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001850 cfs_rq->nr_running--;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001851}
1852
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001853#ifdef CONFIG_FAIR_GROUP_SCHED
1854# ifdef CONFIG_SMP
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001855static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1856{
1857 long tg_weight;
1858
1859 /*
1860 * Use this CPU's actual weight instead of the last load_contribution
1861 * to gain a more accurate current total weight. See
1862 * update_cfs_rq_load_contribution().
1863 */
Alex Shibf5b9862013-06-20 10:18:54 +08001864 tg_weight = atomic_long_read(&tg->load_avg);
Paul Turner82958362012-10-04 13:18:31 +02001865 tg_weight -= cfs_rq->tg_load_contrib;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001866 tg_weight += cfs_rq->load.weight;
1867
1868 return tg_weight;
1869}
1870
Paul Turner6d5ab292011-01-21 20:45:01 -08001871static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001872{
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001873 long tg_weight, load, shares;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001874
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001875 tg_weight = calc_tg_weight(tg, cfs_rq);
Paul Turner6d5ab292011-01-21 20:45:01 -08001876 load = cfs_rq->load.weight;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001877
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001878 shares = (tg->shares * load);
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001879 if (tg_weight)
1880 shares /= tg_weight;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001881
1882 if (shares < MIN_SHARES)
1883 shares = MIN_SHARES;
1884 if (shares > tg->shares)
1885 shares = tg->shares;
1886
1887 return shares;
1888}
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001889# else /* CONFIG_SMP */
Paul Turner6d5ab292011-01-21 20:45:01 -08001890static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001891{
1892 return tg->shares;
1893}
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001894# endif /* CONFIG_SMP */
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001895static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1896 unsigned long weight)
1897{
Paul Turner19e5eeb2010-12-15 19:10:18 -08001898 if (se->on_rq) {
1899 /* commit outstanding execution time */
1900 if (cfs_rq->curr == se)
1901 update_curr(cfs_rq);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001902 account_entity_dequeue(cfs_rq, se);
Paul Turner19e5eeb2010-12-15 19:10:18 -08001903 }
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001904
1905 update_load_set(&se->load, weight);
1906
1907 if (se->on_rq)
1908 account_entity_enqueue(cfs_rq, se);
1909}
1910
Paul Turner82958362012-10-04 13:18:31 +02001911static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1912
Paul Turner6d5ab292011-01-21 20:45:01 -08001913static void update_cfs_shares(struct cfs_rq *cfs_rq)
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001914{
1915 struct task_group *tg;
1916 struct sched_entity *se;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001917 long shares;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001918
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001919 tg = cfs_rq->tg;
1920 se = tg->se[cpu_of(rq_of(cfs_rq))];
Paul Turner64660c82011-07-21 09:43:36 -07001921 if (!se || throttled_hierarchy(cfs_rq))
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001922 return;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001923#ifndef CONFIG_SMP
1924 if (likely(se->load.weight == tg->shares))
1925 return;
1926#endif
Paul Turner6d5ab292011-01-21 20:45:01 -08001927 shares = calc_cfs_shares(cfs_rq, tg);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001928
1929 reweight_entity(cfs_rq_of(se), se, shares);
1930}
1931#else /* CONFIG_FAIR_GROUP_SCHED */
Paul Turner6d5ab292011-01-21 20:45:01 -08001932static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001933{
1934}
1935#endif /* CONFIG_FAIR_GROUP_SCHED */
1936
Alex Shi141965c2013-06-26 13:05:39 +08001937#ifdef CONFIG_SMP
Paul Turner9d85f212012-10-04 13:18:29 +02001938/*
Paul Turner5b51f2f2012-10-04 13:18:32 +02001939 * We choose a half-life close to 1 scheduling period.
1940 * Note: The tables below are dependent on this value.
1941 */
1942#define LOAD_AVG_PERIOD 32
1943#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1944#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1945
1946/* Precomputed fixed inverse multiplies for multiplication by y^n */
1947static const u32 runnable_avg_yN_inv[] = {
1948 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1949 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1950 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1951 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1952 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1953 0x85aac367, 0x82cd8698,
1954};
1955
1956/*
1957 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1958 * over-estimates when re-combining.
1959 */
1960static const u32 runnable_avg_yN_sum[] = {
1961 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1962 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1963 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1964};
1965
1966/*
Paul Turner9d85f212012-10-04 13:18:29 +02001967 * Approximate:
1968 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1969 */
1970static __always_inline u64 decay_load(u64 val, u64 n)
1971{
Paul Turner5b51f2f2012-10-04 13:18:32 +02001972 unsigned int local_n;
1973
1974 if (!n)
1975 return val;
1976 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1977 return 0;
1978
1979 /* after bounds checking we can collapse to 32-bit */
1980 local_n = n;
1981
1982 /*
1983 * As y^PERIOD = 1/2, we can combine
1984 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1985 * With a look-up table which covers k^n (n<PERIOD)
1986 *
1987 * To achieve constant time decay_load.
1988 */
1989 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1990 val >>= local_n / LOAD_AVG_PERIOD;
1991 local_n %= LOAD_AVG_PERIOD;
Paul Turner9d85f212012-10-04 13:18:29 +02001992 }
1993
Paul Turner5b51f2f2012-10-04 13:18:32 +02001994 val *= runnable_avg_yN_inv[local_n];
1995 /* We don't use SRR here since we always want to round down. */
1996 return val >> 32;
1997}
1998
1999/*
2000 * For updates fully spanning n periods, the contribution to runnable
2001 * average will be: \Sum 1024*y^n
2002 *
2003 * We can compute this reasonably efficiently by combining:
2004 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2005 */
2006static u32 __compute_runnable_contrib(u64 n)
2007{
2008 u32 contrib = 0;
2009
2010 if (likely(n <= LOAD_AVG_PERIOD))
2011 return runnable_avg_yN_sum[n];
2012 else if (unlikely(n >= LOAD_AVG_MAX_N))
2013 return LOAD_AVG_MAX;
2014
2015 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2016 do {
2017 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2018 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2019
2020 n -= LOAD_AVG_PERIOD;
2021 } while (n > LOAD_AVG_PERIOD);
2022
2023 contrib = decay_load(contrib, n);
2024 return contrib + runnable_avg_yN_sum[n];
Paul Turner9d85f212012-10-04 13:18:29 +02002025}
2026
2027/*
2028 * We can represent the historical contribution to runnable average as the
2029 * coefficients of a geometric series. To do this we sub-divide our runnable
2030 * history into segments of approximately 1ms (1024us); label the segment that
2031 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2032 *
2033 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2034 * p0 p1 p2
2035 * (now) (~1ms ago) (~2ms ago)
2036 *
2037 * Let u_i denote the fraction of p_i that the entity was runnable.
2038 *
2039 * We then designate the fractions u_i as our co-efficients, yielding the
2040 * following representation of historical load:
2041 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2042 *
2043 * We choose y based on the with of a reasonably scheduling period, fixing:
2044 * y^32 = 0.5
2045 *
2046 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2047 * approximately half as much as the contribution to load within the last ms
2048 * (u_0).
2049 *
2050 * When a period "rolls over" and we have new u_0`, multiplying the previous
2051 * sum again by y is sufficient to update:
2052 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2053 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2054 */
2055static __always_inline int __update_entity_runnable_avg(u64 now,
2056 struct sched_avg *sa,
2057 int runnable)
2058{
Paul Turner5b51f2f2012-10-04 13:18:32 +02002059 u64 delta, periods;
2060 u32 runnable_contrib;
Paul Turner9d85f212012-10-04 13:18:29 +02002061 int delta_w, decayed = 0;
2062
2063 delta = now - sa->last_runnable_update;
2064 /*
2065 * This should only happen when time goes backwards, which it
2066 * unfortunately does during sched clock init when we swap over to TSC.
2067 */
2068 if ((s64)delta < 0) {
2069 sa->last_runnable_update = now;
2070 return 0;
2071 }
2072
2073 /*
2074 * Use 1024ns as the unit of measurement since it's a reasonable
2075 * approximation of 1us and fast to compute.
2076 */
2077 delta >>= 10;
2078 if (!delta)
2079 return 0;
2080 sa->last_runnable_update = now;
2081
2082 /* delta_w is the amount already accumulated against our next period */
2083 delta_w = sa->runnable_avg_period % 1024;
2084 if (delta + delta_w >= 1024) {
2085 /* period roll-over */
2086 decayed = 1;
2087
2088 /*
2089 * Now that we know we're crossing a period boundary, figure
2090 * out how much from delta we need to complete the current
2091 * period and accrue it.
2092 */
2093 delta_w = 1024 - delta_w;
Paul Turner5b51f2f2012-10-04 13:18:32 +02002094 if (runnable)
2095 sa->runnable_avg_sum += delta_w;
2096 sa->runnable_avg_period += delta_w;
Paul Turner9d85f212012-10-04 13:18:29 +02002097
Paul Turner5b51f2f2012-10-04 13:18:32 +02002098 delta -= delta_w;
Paul Turner9d85f212012-10-04 13:18:29 +02002099
Paul Turner5b51f2f2012-10-04 13:18:32 +02002100 /* Figure out how many additional periods this update spans */
2101 periods = delta / 1024;
2102 delta %= 1024;
2103
2104 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2105 periods + 1);
2106 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2107 periods + 1);
2108
2109 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2110 runnable_contrib = __compute_runnable_contrib(periods);
2111 if (runnable)
2112 sa->runnable_avg_sum += runnable_contrib;
2113 sa->runnable_avg_period += runnable_contrib;
Paul Turner9d85f212012-10-04 13:18:29 +02002114 }
2115
2116 /* Remainder of delta accrued against u_0` */
2117 if (runnable)
2118 sa->runnable_avg_sum += delta;
2119 sa->runnable_avg_period += delta;
2120
2121 return decayed;
2122}
2123
Paul Turner9ee474f2012-10-04 13:18:30 +02002124/* Synchronize an entity's decay with its parenting cfs_rq.*/
Paul Turneraff3e492012-10-04 13:18:30 +02002125static inline u64 __synchronize_entity_decay(struct sched_entity *se)
Paul Turner9ee474f2012-10-04 13:18:30 +02002126{
2127 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2128 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2129
2130 decays -= se->avg.decay_count;
2131 if (!decays)
Paul Turneraff3e492012-10-04 13:18:30 +02002132 return 0;
Paul Turner9ee474f2012-10-04 13:18:30 +02002133
2134 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2135 se->avg.decay_count = 0;
Paul Turneraff3e492012-10-04 13:18:30 +02002136
2137 return decays;
Paul Turner9ee474f2012-10-04 13:18:30 +02002138}
2139
Paul Turnerc566e8e2012-10-04 13:18:30 +02002140#ifdef CONFIG_FAIR_GROUP_SCHED
2141static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2142 int force_update)
2143{
2144 struct task_group *tg = cfs_rq->tg;
Alex Shibf5b9862013-06-20 10:18:54 +08002145 long tg_contrib;
Paul Turnerc566e8e2012-10-04 13:18:30 +02002146
2147 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2148 tg_contrib -= cfs_rq->tg_load_contrib;
2149
Alex Shibf5b9862013-06-20 10:18:54 +08002150 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2151 atomic_long_add(tg_contrib, &tg->load_avg);
Paul Turnerc566e8e2012-10-04 13:18:30 +02002152 cfs_rq->tg_load_contrib += tg_contrib;
2153 }
2154}
Paul Turner8165e142012-10-04 13:18:31 +02002155
Paul Turnerbb17f652012-10-04 13:18:31 +02002156/*
2157 * Aggregate cfs_rq runnable averages into an equivalent task_group
2158 * representation for computing load contributions.
2159 */
2160static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2161 struct cfs_rq *cfs_rq)
2162{
2163 struct task_group *tg = cfs_rq->tg;
2164 long contrib;
2165
2166 /* The fraction of a cpu used by this cfs_rq */
2167 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
2168 sa->runnable_avg_period + 1);
2169 contrib -= cfs_rq->tg_runnable_contrib;
2170
2171 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2172 atomic_add(contrib, &tg->runnable_avg);
2173 cfs_rq->tg_runnable_contrib += contrib;
2174 }
2175}
2176
Paul Turner8165e142012-10-04 13:18:31 +02002177static inline void __update_group_entity_contrib(struct sched_entity *se)
2178{
2179 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2180 struct task_group *tg = cfs_rq->tg;
Paul Turnerbb17f652012-10-04 13:18:31 +02002181 int runnable_avg;
2182
Paul Turner8165e142012-10-04 13:18:31 +02002183 u64 contrib;
2184
2185 contrib = cfs_rq->tg_load_contrib * tg->shares;
Alex Shibf5b9862013-06-20 10:18:54 +08002186 se->avg.load_avg_contrib = div_u64(contrib,
2187 atomic_long_read(&tg->load_avg) + 1);
Paul Turnerbb17f652012-10-04 13:18:31 +02002188
2189 /*
2190 * For group entities we need to compute a correction term in the case
2191 * that they are consuming <1 cpu so that we would contribute the same
2192 * load as a task of equal weight.
2193 *
2194 * Explicitly co-ordinating this measurement would be expensive, but
2195 * fortunately the sum of each cpus contribution forms a usable
2196 * lower-bound on the true value.
2197 *
2198 * Consider the aggregate of 2 contributions. Either they are disjoint
2199 * (and the sum represents true value) or they are disjoint and we are
2200 * understating by the aggregate of their overlap.
2201 *
2202 * Extending this to N cpus, for a given overlap, the maximum amount we
2203 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2204 * cpus that overlap for this interval and w_i is the interval width.
2205 *
2206 * On a small machine; the first term is well-bounded which bounds the
2207 * total error since w_i is a subset of the period. Whereas on a
2208 * larger machine, while this first term can be larger, if w_i is the
2209 * of consequential size guaranteed to see n_i*w_i quickly converge to
2210 * our upper bound of 1-cpu.
2211 */
2212 runnable_avg = atomic_read(&tg->runnable_avg);
2213 if (runnable_avg < NICE_0_LOAD) {
2214 se->avg.load_avg_contrib *= runnable_avg;
2215 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2216 }
Paul Turner8165e142012-10-04 13:18:31 +02002217}
Paul Turnerc566e8e2012-10-04 13:18:30 +02002218#else
2219static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2220 int force_update) {}
Paul Turnerbb17f652012-10-04 13:18:31 +02002221static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2222 struct cfs_rq *cfs_rq) {}
Paul Turner8165e142012-10-04 13:18:31 +02002223static inline void __update_group_entity_contrib(struct sched_entity *se) {}
Paul Turnerc566e8e2012-10-04 13:18:30 +02002224#endif
2225
Paul Turner8165e142012-10-04 13:18:31 +02002226static inline void __update_task_entity_contrib(struct sched_entity *se)
2227{
2228 u32 contrib;
2229
2230 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2231 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2232 contrib /= (se->avg.runnable_avg_period + 1);
2233 se->avg.load_avg_contrib = scale_load(contrib);
2234}
2235
Paul Turner2dac7542012-10-04 13:18:30 +02002236/* Compute the current contribution to load_avg by se, return any delta */
2237static long __update_entity_load_avg_contrib(struct sched_entity *se)
2238{
2239 long old_contrib = se->avg.load_avg_contrib;
2240
Paul Turner8165e142012-10-04 13:18:31 +02002241 if (entity_is_task(se)) {
2242 __update_task_entity_contrib(se);
2243 } else {
Paul Turnerbb17f652012-10-04 13:18:31 +02002244 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
Paul Turner8165e142012-10-04 13:18:31 +02002245 __update_group_entity_contrib(se);
2246 }
Paul Turner2dac7542012-10-04 13:18:30 +02002247
2248 return se->avg.load_avg_contrib - old_contrib;
2249}
2250
Paul Turner9ee474f2012-10-04 13:18:30 +02002251static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2252 long load_contrib)
2253{
2254 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2255 cfs_rq->blocked_load_avg -= load_contrib;
2256 else
2257 cfs_rq->blocked_load_avg = 0;
2258}
2259
Paul Turnerf1b17282012-10-04 13:18:31 +02002260static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2261
Paul Turner9d85f212012-10-04 13:18:29 +02002262/* Update a sched_entity's runnable average */
Paul Turner9ee474f2012-10-04 13:18:30 +02002263static inline void update_entity_load_avg(struct sched_entity *se,
2264 int update_cfs_rq)
Paul Turner9d85f212012-10-04 13:18:29 +02002265{
Paul Turner2dac7542012-10-04 13:18:30 +02002266 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2267 long contrib_delta;
Paul Turnerf1b17282012-10-04 13:18:31 +02002268 u64 now;
Paul Turner2dac7542012-10-04 13:18:30 +02002269
Paul Turnerf1b17282012-10-04 13:18:31 +02002270 /*
2271 * For a group entity we need to use their owned cfs_rq_clock_task() in
2272 * case they are the parent of a throttled hierarchy.
2273 */
2274 if (entity_is_task(se))
2275 now = cfs_rq_clock_task(cfs_rq);
2276 else
2277 now = cfs_rq_clock_task(group_cfs_rq(se));
2278
2279 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
Paul Turner2dac7542012-10-04 13:18:30 +02002280 return;
2281
2282 contrib_delta = __update_entity_load_avg_contrib(se);
Paul Turner9ee474f2012-10-04 13:18:30 +02002283
2284 if (!update_cfs_rq)
2285 return;
2286
Paul Turner2dac7542012-10-04 13:18:30 +02002287 if (se->on_rq)
2288 cfs_rq->runnable_load_avg += contrib_delta;
Paul Turner9ee474f2012-10-04 13:18:30 +02002289 else
2290 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2291}
2292
2293/*
2294 * Decay the load contributed by all blocked children and account this so that
2295 * their contribution may appropriately discounted when they wake up.
2296 */
Paul Turneraff3e492012-10-04 13:18:30 +02002297static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
Paul Turner9ee474f2012-10-04 13:18:30 +02002298{
Paul Turnerf1b17282012-10-04 13:18:31 +02002299 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
Paul Turner9ee474f2012-10-04 13:18:30 +02002300 u64 decays;
2301
2302 decays = now - cfs_rq->last_decay;
Paul Turneraff3e492012-10-04 13:18:30 +02002303 if (!decays && !force_update)
Paul Turner9ee474f2012-10-04 13:18:30 +02002304 return;
2305
Alex Shi25099402013-06-20 10:18:55 +08002306 if (atomic_long_read(&cfs_rq->removed_load)) {
2307 unsigned long removed_load;
2308 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
Paul Turneraff3e492012-10-04 13:18:30 +02002309 subtract_blocked_load_contrib(cfs_rq, removed_load);
2310 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002311
Paul Turneraff3e492012-10-04 13:18:30 +02002312 if (decays) {
2313 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2314 decays);
2315 atomic64_add(decays, &cfs_rq->decay_counter);
2316 cfs_rq->last_decay = now;
2317 }
Paul Turnerc566e8e2012-10-04 13:18:30 +02002318
2319 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
Paul Turner9d85f212012-10-04 13:18:29 +02002320}
Ben Segall18bf2802012-10-04 12:51:20 +02002321
2322static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2323{
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002324 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
Paul Turnerbb17f652012-10-04 13:18:31 +02002325 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
Ben Segall18bf2802012-10-04 12:51:20 +02002326}
Paul Turner2dac7542012-10-04 13:18:30 +02002327
2328/* Add the load generated by se into cfs_rq's child load-average */
2329static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002330 struct sched_entity *se,
2331 int wakeup)
Paul Turner2dac7542012-10-04 13:18:30 +02002332{
Paul Turneraff3e492012-10-04 13:18:30 +02002333 /*
2334 * We track migrations using entity decay_count <= 0, on a wake-up
2335 * migration we use a negative decay count to track the remote decays
2336 * accumulated while sleeping.
Alex Shia75cdaa2013-06-20 10:18:47 +08002337 *
2338 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2339 * are seen by enqueue_entity_load_avg() as a migration with an already
2340 * constructed load_avg_contrib.
Paul Turneraff3e492012-10-04 13:18:30 +02002341 */
2342 if (unlikely(se->avg.decay_count <= 0)) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002343 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
Paul Turneraff3e492012-10-04 13:18:30 +02002344 if (se->avg.decay_count) {
2345 /*
2346 * In a wake-up migration we have to approximate the
2347 * time sleeping. This is because we can't synchronize
2348 * clock_task between the two cpus, and it is not
2349 * guaranteed to be read-safe. Instead, we can
2350 * approximate this using our carried decays, which are
2351 * explicitly atomically readable.
2352 */
2353 se->avg.last_runnable_update -= (-se->avg.decay_count)
2354 << 20;
2355 update_entity_load_avg(se, 0);
2356 /* Indicate that we're now synchronized and on-rq */
2357 se->avg.decay_count = 0;
2358 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002359 wakeup = 0;
2360 } else {
Alex Shi282cf492013-06-20 10:18:48 +08002361 /*
2362 * Task re-woke on same cpu (or else migrate_task_rq_fair()
2363 * would have made count negative); we must be careful to avoid
2364 * double-accounting blocked time after synchronizing decays.
2365 */
2366 se->avg.last_runnable_update += __synchronize_entity_decay(se)
2367 << 20;
Paul Turner9ee474f2012-10-04 13:18:30 +02002368 }
2369
Paul Turneraff3e492012-10-04 13:18:30 +02002370 /* migrated tasks did not contribute to our blocked load */
2371 if (wakeup) {
Paul Turner9ee474f2012-10-04 13:18:30 +02002372 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
Paul Turneraff3e492012-10-04 13:18:30 +02002373 update_entity_load_avg(se, 0);
2374 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002375
Paul Turner2dac7542012-10-04 13:18:30 +02002376 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
Paul Turneraff3e492012-10-04 13:18:30 +02002377 /* we force update consideration on load-balancer moves */
2378 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
Paul Turner2dac7542012-10-04 13:18:30 +02002379}
2380
Paul Turner9ee474f2012-10-04 13:18:30 +02002381/*
2382 * Remove se's load from this cfs_rq child load-average, if the entity is
2383 * transitioning to a blocked state we track its projected decay using
2384 * blocked_load_avg.
2385 */
Paul Turner2dac7542012-10-04 13:18:30 +02002386static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002387 struct sched_entity *se,
2388 int sleep)
Paul Turner2dac7542012-10-04 13:18:30 +02002389{
Paul Turner9ee474f2012-10-04 13:18:30 +02002390 update_entity_load_avg(se, 1);
Paul Turneraff3e492012-10-04 13:18:30 +02002391 /* we force update consideration on load-balancer moves */
2392 update_cfs_rq_blocked_load(cfs_rq, !sleep);
Paul Turner9ee474f2012-10-04 13:18:30 +02002393
Paul Turner2dac7542012-10-04 13:18:30 +02002394 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
Paul Turner9ee474f2012-10-04 13:18:30 +02002395 if (sleep) {
2396 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2397 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2398 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
Paul Turner2dac7542012-10-04 13:18:30 +02002399}
Vincent Guittot642dbc32013-04-18 18:34:26 +02002400
2401/*
2402 * Update the rq's load with the elapsed running time before entering
2403 * idle. if the last scheduled task is not a CFS task, idle_enter will
2404 * be the only way to update the runnable statistic.
2405 */
2406void idle_enter_fair(struct rq *this_rq)
2407{
2408 update_rq_runnable_avg(this_rq, 1);
2409}
2410
2411/*
2412 * Update the rq's load with the elapsed idle time before a task is
2413 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2414 * be the only way to update the runnable statistic.
2415 */
2416void idle_exit_fair(struct rq *this_rq)
2417{
2418 update_rq_runnable_avg(this_rq, 0);
2419}
2420
Paul Turner9d85f212012-10-04 13:18:29 +02002421#else
Paul Turner9ee474f2012-10-04 13:18:30 +02002422static inline void update_entity_load_avg(struct sched_entity *se,
2423 int update_cfs_rq) {}
Ben Segall18bf2802012-10-04 12:51:20 +02002424static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
Paul Turner2dac7542012-10-04 13:18:30 +02002425static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002426 struct sched_entity *se,
2427 int wakeup) {}
Paul Turner2dac7542012-10-04 13:18:30 +02002428static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002429 struct sched_entity *se,
2430 int sleep) {}
Paul Turneraff3e492012-10-04 13:18:30 +02002431static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2432 int force_update) {}
Paul Turner9d85f212012-10-04 13:18:29 +02002433#endif
2434
Ingo Molnar2396af62007-08-09 11:16:48 +02002435static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002436{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002437#ifdef CONFIG_SCHEDSTATS
Peter Zijlstrae4143142009-07-23 20:13:26 +02002438 struct task_struct *tsk = NULL;
2439
2440 if (entity_is_task(se))
2441 tsk = task_of(se);
2442
Lucas De Marchi41acab82010-03-10 23:37:45 -03002443 if (se->statistics.sleep_start) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002444 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002445
2446 if ((s64)delta < 0)
2447 delta = 0;
2448
Lucas De Marchi41acab82010-03-10 23:37:45 -03002449 if (unlikely(delta > se->statistics.sleep_max))
2450 se->statistics.sleep_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002451
Peter Zijlstra8c79a042012-01-30 14:51:37 +01002452 se->statistics.sleep_start = 0;
Lucas De Marchi41acab82010-03-10 23:37:45 -03002453 se->statistics.sum_sleep_runtime += delta;
Arjan van de Ven97455122008-01-25 21:08:34 +01002454
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002455 if (tsk) {
Peter Zijlstrae4143142009-07-23 20:13:26 +02002456 account_scheduler_latency(tsk, delta >> 10, 1);
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002457 trace_sched_stat_sleep(tsk, delta);
2458 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002459 }
Lucas De Marchi41acab82010-03-10 23:37:45 -03002460 if (se->statistics.block_start) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002461 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002462
2463 if ((s64)delta < 0)
2464 delta = 0;
2465
Lucas De Marchi41acab82010-03-10 23:37:45 -03002466 if (unlikely(delta > se->statistics.block_max))
2467 se->statistics.block_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002468
Peter Zijlstra8c79a042012-01-30 14:51:37 +01002469 se->statistics.block_start = 0;
Lucas De Marchi41acab82010-03-10 23:37:45 -03002470 se->statistics.sum_sleep_runtime += delta;
Ingo Molnar30084fb2007-10-02 14:13:08 +02002471
Peter Zijlstrae4143142009-07-23 20:13:26 +02002472 if (tsk) {
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -07002473 if (tsk->in_iowait) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03002474 se->statistics.iowait_sum += delta;
2475 se->statistics.iowait_count++;
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002476 trace_sched_stat_iowait(tsk, delta);
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -07002477 }
2478
Andrew Vaginb781a602011-11-28 12:03:35 +03002479 trace_sched_stat_blocked(tsk, delta);
2480
Peter Zijlstrae4143142009-07-23 20:13:26 +02002481 /*
2482 * Blocking time is in units of nanosecs, so shift by
2483 * 20 to get a milliseconds-range estimation of the
2484 * amount of time that the task spent sleeping:
2485 */
2486 if (unlikely(prof_on == SLEEP_PROFILING)) {
2487 profile_hits(SLEEP_PROFILING,
2488 (void *)get_wchan(tsk),
2489 delta >> 20);
2490 }
2491 account_scheduler_latency(tsk, delta >> 10, 0);
Ingo Molnar30084fb2007-10-02 14:13:08 +02002492 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002493 }
2494#endif
2495}
2496
Peter Zijlstraddc97292007-10-15 17:00:10 +02002497static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2498{
2499#ifdef CONFIG_SCHED_DEBUG
2500 s64 d = se->vruntime - cfs_rq->min_vruntime;
2501
2502 if (d < 0)
2503 d = -d;
2504
2505 if (d > 3*sysctl_sched_latency)
2506 schedstat_inc(cfs_rq, nr_spread_over);
2507#endif
2508}
2509
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002510static void
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002511place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2512{
Peter Zijlstra1af5f732008-10-24 11:06:13 +02002513 u64 vruntime = cfs_rq->min_vruntime;
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +02002514
Peter Zijlstra2cb86002007-11-09 22:39:37 +01002515 /*
2516 * The 'current' period is already promised to the current tasks,
2517 * however the extra weight of the new task will slow them down a
2518 * little, place the new task so that it fits in the slot that
2519 * stays open at the end.
2520 */
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +02002521 if (initial && sched_feat(START_DEBIT))
Peter Zijlstraf9c0b092008-10-17 19:27:04 +02002522 vruntime += sched_vslice(cfs_rq, se);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002523
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002524 /* sleeps up to a single latency don't count. */
Mike Galbraith5ca98802010-03-11 17:17:17 +01002525 if (!initial) {
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002526 unsigned long thresh = sysctl_sched_latency;
Peter Zijlstraa7be37a2008-06-27 13:41:11 +02002527
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002528 /*
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002529 * Halve their sleep time's effect, to allow
2530 * for a gentler effect of sleepers:
2531 */
2532 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2533 thresh >>= 1;
Ingo Molnar51e03042009-09-16 08:54:45 +02002534
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002535 vruntime -= thresh;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002536 }
2537
Mike Galbraithb5d9d732009-09-08 11:12:28 +02002538 /* ensure we never gain time by being placed backwards. */
Viresh Kumar16c8f1c2012-11-08 13:33:46 +05302539 se->vruntime = max_vruntime(se->vruntime, vruntime);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002540}
2541
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002542static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2543
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002544static void
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002545enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002546{
2547 /*
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002548 * Update the normalized vruntime before updating min_vruntime
Kamalesh Babulal0fc576d2013-06-27 11:24:18 +05302549 * through calling update_curr().
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002550 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002551 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002552 se->vruntime += cfs_rq->min_vruntime;
2553
2554 /*
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002555 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002556 */
Ingo Molnarb7cc0892007-08-09 11:16:47 +02002557 update_curr(cfs_rq);
Paul Turnerf269ae02012-10-04 13:18:31 +02002558 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002559 account_entity_enqueue(cfs_rq, se);
2560 update_cfs_shares(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002561
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002562 if (flags & ENQUEUE_WAKEUP) {
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002563 place_entity(cfs_rq, se, 0);
Ingo Molnar2396af62007-08-09 11:16:48 +02002564 enqueue_sleeper(cfs_rq, se);
Ingo Molnare9acbff2007-10-15 17:00:04 +02002565 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002566
Ingo Molnard2417e52007-08-09 11:16:47 +02002567 update_stats_enqueue(cfs_rq, se);
Peter Zijlstraddc97292007-10-15 17:00:10 +02002568 check_spread(cfs_rq, se);
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002569 if (se != cfs_rq->curr)
2570 __enqueue_entity(cfs_rq, se);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002571 se->on_rq = 1;
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -08002572
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002573 if (cfs_rq->nr_running == 1) {
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -08002574 list_add_leaf_cfs_rq(cfs_rq);
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002575 check_enqueue_throttle(cfs_rq);
2576 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002577}
2578
Rik van Riel2c13c9192011-02-01 09:48:37 -05002579static void __clear_buddies_last(struct sched_entity *se)
Peter Zijlstra2002c692008-11-11 11:52:33 +01002580{
Rik van Riel2c13c9192011-02-01 09:48:37 -05002581 for_each_sched_entity(se) {
2582 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2583 if (cfs_rq->last == se)
2584 cfs_rq->last = NULL;
2585 else
2586 break;
2587 }
2588}
Peter Zijlstra2002c692008-11-11 11:52:33 +01002589
Rik van Riel2c13c9192011-02-01 09:48:37 -05002590static void __clear_buddies_next(struct sched_entity *se)
2591{
2592 for_each_sched_entity(se) {
2593 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2594 if (cfs_rq->next == se)
2595 cfs_rq->next = NULL;
2596 else
2597 break;
2598 }
Peter Zijlstra2002c692008-11-11 11:52:33 +01002599}
2600
Rik van Rielac53db52011-02-01 09:51:03 -05002601static void __clear_buddies_skip(struct sched_entity *se)
2602{
2603 for_each_sched_entity(se) {
2604 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2605 if (cfs_rq->skip == se)
2606 cfs_rq->skip = NULL;
2607 else
2608 break;
2609 }
2610}
2611
Peter Zijlstraa571bbe2009-01-28 14:51:40 +01002612static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2613{
Rik van Riel2c13c9192011-02-01 09:48:37 -05002614 if (cfs_rq->last == se)
2615 __clear_buddies_last(se);
2616
2617 if (cfs_rq->next == se)
2618 __clear_buddies_next(se);
Rik van Rielac53db52011-02-01 09:51:03 -05002619
2620 if (cfs_rq->skip == se)
2621 __clear_buddies_skip(se);
Peter Zijlstraa571bbe2009-01-28 14:51:40 +01002622}
2623
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07002624static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
Paul Turnerd8b49862011-07-21 09:43:41 -07002625
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002626static void
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002627dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002628{
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002629 /*
2630 * Update run-time statistics of the 'current'.
2631 */
2632 update_curr(cfs_rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002633 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002634
Ingo Molnar19b6a2e2007-08-09 11:16:48 +02002635 update_stats_dequeue(cfs_rq, se);
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002636 if (flags & DEQUEUE_SLEEP) {
Peter Zijlstra67e9fb22007-10-15 17:00:10 +02002637#ifdef CONFIG_SCHEDSTATS
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002638 if (entity_is_task(se)) {
2639 struct task_struct *tsk = task_of(se);
2640
2641 if (tsk->state & TASK_INTERRUPTIBLE)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002642 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002643 if (tsk->state & TASK_UNINTERRUPTIBLE)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002644 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002645 }
Dmitry Adamushkodb36cc72007-10-15 17:00:06 +02002646#endif
Peter Zijlstra67e9fb22007-10-15 17:00:10 +02002647 }
2648
Peter Zijlstra2002c692008-11-11 11:52:33 +01002649 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +01002650
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002651 if (se != cfs_rq->curr)
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002652 __dequeue_entity(cfs_rq, se);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002653 se->on_rq = 0;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002654 account_entity_dequeue(cfs_rq, se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002655
2656 /*
2657 * Normalize the entity after updating the min_vruntime because the
2658 * update can refer to the ->curr item and we need to reflect this
2659 * movement in our normalized position.
2660 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002661 if (!(flags & DEQUEUE_SLEEP))
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002662 se->vruntime -= cfs_rq->min_vruntime;
Peter Zijlstra1e876232011-05-17 16:21:10 -07002663
Paul Turnerd8b49862011-07-21 09:43:41 -07002664 /* return excess runtime on last dequeue */
2665 return_cfs_rq_runtime(cfs_rq);
2666
Peter Zijlstra1e876232011-05-17 16:21:10 -07002667 update_min_vruntime(cfs_rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002668 update_cfs_shares(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002669}
2670
2671/*
2672 * Preempt the current task with a newly woken task if needed:
2673 */
Peter Zijlstra7c92e542007-09-05 14:32:49 +02002674static void
Ingo Molnar2e09bf52007-10-15 17:00:05 +02002675check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002676{
Peter Zijlstra11697832007-09-05 14:32:49 +02002677 unsigned long ideal_runtime, delta_exec;
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002678 struct sched_entity *se;
2679 s64 delta;
Peter Zijlstra11697832007-09-05 14:32:49 +02002680
Peter Zijlstra6d0f0eb2007-10-15 17:00:05 +02002681 ideal_runtime = sched_slice(cfs_rq, curr);
Peter Zijlstra11697832007-09-05 14:32:49 +02002682 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +01002683 if (delta_exec > ideal_runtime) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002684 resched_task(rq_of(cfs_rq)->curr);
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +01002685 /*
2686 * The current task ran long enough, ensure it doesn't get
2687 * re-elected due to buddy favours.
2688 */
2689 clear_buddies(cfs_rq, curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +02002690 return;
2691 }
2692
2693 /*
2694 * Ensure that a task that missed wakeup preemption by a
2695 * narrow margin doesn't have to wait for a full slice.
2696 * This also mitigates buddy induced latencies under load.
2697 */
Mike Galbraithf685cea2009-10-23 23:09:22 +02002698 if (delta_exec < sysctl_sched_min_granularity)
2699 return;
2700
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002701 se = __pick_first_entity(cfs_rq);
2702 delta = curr->vruntime - se->vruntime;
Mike Galbraithf685cea2009-10-23 23:09:22 +02002703
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002704 if (delta < 0)
2705 return;
Mike Galbraithd7d82942011-01-05 05:41:17 +01002706
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002707 if (delta > ideal_runtime)
2708 resched_task(rq_of(cfs_rq)->curr);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002709}
2710
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002711static void
Ingo Molnar8494f412007-08-09 11:16:48 +02002712set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002713{
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002714 /* 'current' is not kept within the tree. */
2715 if (se->on_rq) {
2716 /*
2717 * Any task has to be enqueued before it get to execute on
2718 * a CPU. So account for the time it spent waiting on the
2719 * runqueue.
2720 */
2721 update_stats_wait_end(cfs_rq, se);
2722 __dequeue_entity(cfs_rq, se);
2723 }
2724
Ingo Molnar79303e92007-08-09 11:16:47 +02002725 update_stats_curr_start(cfs_rq, se);
Ingo Molnar429d43b2007-10-15 17:00:03 +02002726 cfs_rq->curr = se;
Ingo Molnareba1ed42007-10-15 17:00:02 +02002727#ifdef CONFIG_SCHEDSTATS
2728 /*
2729 * Track our maximum slice length, if the CPU's load is at
2730 * least twice that of our own weight (i.e. dont track it
2731 * when there are only lesser-weight tasks around):
2732 */
Dmitry Adamushko495eca42007-10-15 17:00:06 +02002733 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03002734 se->statistics.slice_max = max(se->statistics.slice_max,
Ingo Molnareba1ed42007-10-15 17:00:02 +02002735 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2736 }
2737#endif
Peter Zijlstra4a55b452007-09-05 14:32:49 +02002738 se->prev_sum_exec_runtime = se->sum_exec_runtime;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002739}
2740
Peter Zijlstra3f3a4902008-10-24 11:06:16 +02002741static int
2742wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2743
Rik van Rielac53db52011-02-01 09:51:03 -05002744/*
2745 * Pick the next process, keeping these things in mind, in this order:
2746 * 1) keep things fair between processes/task groups
2747 * 2) pick the "next" process, since someone really wants that to run
2748 * 3) pick the "last" process, for cache locality
2749 * 4) do not run the "skip" process, if something else is available
2750 */
Peter Zijlstraf4b67552008-11-04 21:25:07 +01002751static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002752{
Rik van Rielac53db52011-02-01 09:51:03 -05002753 struct sched_entity *se = __pick_first_entity(cfs_rq);
Mike Galbraithf685cea2009-10-23 23:09:22 +02002754 struct sched_entity *left = se;
Peter Zijlstraf4b67552008-11-04 21:25:07 +01002755
Rik van Rielac53db52011-02-01 09:51:03 -05002756 /*
2757 * Avoid running the skip buddy, if running something else can
2758 * be done without getting too unfair.
2759 */
2760 if (cfs_rq->skip == se) {
2761 struct sched_entity *second = __pick_next_entity(se);
2762 if (second && wakeup_preempt_entity(second, left) < 1)
2763 se = second;
2764 }
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002765
Mike Galbraithf685cea2009-10-23 23:09:22 +02002766 /*
2767 * Prefer last buddy, try to return the CPU to a preempted task.
2768 */
2769 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2770 se = cfs_rq->last;
2771
Rik van Rielac53db52011-02-01 09:51:03 -05002772 /*
2773 * Someone really wants this to run. If it's not unfair, run it.
2774 */
2775 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2776 se = cfs_rq->next;
2777
Mike Galbraithf685cea2009-10-23 23:09:22 +02002778 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +01002779
2780 return se;
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002781}
2782
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002783static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2784
Ingo Molnarab6cde22007-08-09 11:16:48 +02002785static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002786{
2787 /*
2788 * If still on the runqueue then deactivate_task()
2789 * was not called and update_curr() has to be done:
2790 */
2791 if (prev->on_rq)
Ingo Molnarb7cc0892007-08-09 11:16:47 +02002792 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002793
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002794 /* throttle cfs_rqs exceeding runtime */
2795 check_cfs_rq_runtime(cfs_rq);
2796
Peter Zijlstraddc97292007-10-15 17:00:10 +02002797 check_spread(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002798 if (prev->on_rq) {
Ingo Molnar5870db52007-08-09 11:16:47 +02002799 update_stats_wait_start(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002800 /* Put 'current' back into the tree. */
2801 __enqueue_entity(cfs_rq, prev);
Paul Turner9d85f212012-10-04 13:18:29 +02002802 /* in !on_rq case, update occurred at dequeue */
Paul Turner9ee474f2012-10-04 13:18:30 +02002803 update_entity_load_avg(prev, 1);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002804 }
Ingo Molnar429d43b2007-10-15 17:00:03 +02002805 cfs_rq->curr = NULL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002806}
2807
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002808static void
2809entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002810{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002811 /*
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002812 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002813 */
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002814 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002815
Paul Turner43365bd2010-12-15 19:10:17 -08002816 /*
Paul Turner9d85f212012-10-04 13:18:29 +02002817 * Ensure that runnable average is periodically updated.
2818 */
Paul Turner9ee474f2012-10-04 13:18:30 +02002819 update_entity_load_avg(curr, 1);
Paul Turneraff3e492012-10-04 13:18:30 +02002820 update_cfs_rq_blocked_load(cfs_rq, 1);
Peter Zijlstrabf0bd942013-07-26 23:48:42 +02002821 update_cfs_shares(cfs_rq);
Paul Turner9d85f212012-10-04 13:18:29 +02002822
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002823#ifdef CONFIG_SCHED_HRTICK
2824 /*
2825 * queued ticks are scheduled to match the slice, so don't bother
2826 * validating it and just reschedule.
2827 */
Harvey Harrison983ed7a2008-04-24 18:17:55 -07002828 if (queued) {
2829 resched_task(rq_of(cfs_rq)->curr);
2830 return;
2831 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002832 /*
2833 * don't let the period tick interfere with the hrtick preemption
2834 */
2835 if (!sched_feat(DOUBLE_TICK) &&
2836 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2837 return;
2838#endif
2839
Yong Zhang2c2efae2011-07-29 16:20:33 +08002840 if (cfs_rq->nr_running > 1)
Ingo Molnar2e09bf52007-10-15 17:00:05 +02002841 check_preempt_tick(cfs_rq, curr);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002842}
2843
Paul Turnerab84d312011-07-21 09:43:28 -07002844
2845/**************************************************
2846 * CFS bandwidth control machinery
2847 */
2848
2849#ifdef CONFIG_CFS_BANDWIDTH
Peter Zijlstra029632f2011-10-25 10:00:11 +02002850
2851#ifdef HAVE_JUMP_LABEL
Ingo Molnarc5905af2012-02-24 08:31:31 +01002852static struct static_key __cfs_bandwidth_used;
Peter Zijlstra029632f2011-10-25 10:00:11 +02002853
2854static inline bool cfs_bandwidth_used(void)
2855{
Ingo Molnarc5905af2012-02-24 08:31:31 +01002856 return static_key_false(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002857}
2858
2859void account_cfs_bandwidth_used(int enabled, int was_enabled)
2860{
2861 /* only need to count groups transitioning between enabled/!enabled */
2862 if (enabled && !was_enabled)
Ingo Molnarc5905af2012-02-24 08:31:31 +01002863 static_key_slow_inc(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002864 else if (!enabled && was_enabled)
Ingo Molnarc5905af2012-02-24 08:31:31 +01002865 static_key_slow_dec(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002866}
2867#else /* HAVE_JUMP_LABEL */
2868static bool cfs_bandwidth_used(void)
2869{
2870 return true;
2871}
2872
2873void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2874#endif /* HAVE_JUMP_LABEL */
2875
Paul Turnerab84d312011-07-21 09:43:28 -07002876/*
2877 * default period for cfs group bandwidth.
2878 * default: 0.1s, units: nanoseconds
2879 */
2880static inline u64 default_cfs_period(void)
2881{
2882 return 100000000ULL;
2883}
Paul Turnerec12cb72011-07-21 09:43:30 -07002884
2885static inline u64 sched_cfs_bandwidth_slice(void)
2886{
2887 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2888}
2889
Paul Turnera9cf55b2011-07-21 09:43:32 -07002890/*
2891 * Replenish runtime according to assigned quota and update expiration time.
2892 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2893 * additional synchronization around rq->lock.
2894 *
2895 * requires cfs_b->lock
2896 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02002897void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
Paul Turnera9cf55b2011-07-21 09:43:32 -07002898{
2899 u64 now;
2900
2901 if (cfs_b->quota == RUNTIME_INF)
2902 return;
2903
2904 now = sched_clock_cpu(smp_processor_id());
2905 cfs_b->runtime = cfs_b->quota;
2906 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2907}
2908
Peter Zijlstra029632f2011-10-25 10:00:11 +02002909static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2910{
2911 return &tg->cfs_bandwidth;
2912}
2913
Paul Turnerf1b17282012-10-04 13:18:31 +02002914/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2915static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2916{
2917 if (unlikely(cfs_rq->throttle_count))
2918 return cfs_rq->throttled_clock_task;
2919
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002920 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
Paul Turnerf1b17282012-10-04 13:18:31 +02002921}
2922
Paul Turner85dac902011-07-21 09:43:33 -07002923/* returns 0 on failure to allocate runtime */
2924static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
Paul Turnerec12cb72011-07-21 09:43:30 -07002925{
2926 struct task_group *tg = cfs_rq->tg;
2927 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002928 u64 amount = 0, min_amount, expires;
Paul Turnerec12cb72011-07-21 09:43:30 -07002929
2930 /* note: this is a positive sum as runtime_remaining <= 0 */
2931 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2932
2933 raw_spin_lock(&cfs_b->lock);
2934 if (cfs_b->quota == RUNTIME_INF)
2935 amount = min_amount;
Paul Turner58088ad2011-07-21 09:43:31 -07002936 else {
Paul Turnera9cf55b2011-07-21 09:43:32 -07002937 /*
2938 * If the bandwidth pool has become inactive, then at least one
2939 * period must have elapsed since the last consumption.
2940 * Refresh the global state and ensure bandwidth timer becomes
2941 * active.
2942 */
2943 if (!cfs_b->timer_active) {
2944 __refill_cfs_bandwidth_runtime(cfs_b);
Paul Turner58088ad2011-07-21 09:43:31 -07002945 __start_cfs_bandwidth(cfs_b);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002946 }
Paul Turner58088ad2011-07-21 09:43:31 -07002947
2948 if (cfs_b->runtime > 0) {
2949 amount = min(cfs_b->runtime, min_amount);
2950 cfs_b->runtime -= amount;
2951 cfs_b->idle = 0;
2952 }
Paul Turnerec12cb72011-07-21 09:43:30 -07002953 }
Paul Turnera9cf55b2011-07-21 09:43:32 -07002954 expires = cfs_b->runtime_expires;
Paul Turnerec12cb72011-07-21 09:43:30 -07002955 raw_spin_unlock(&cfs_b->lock);
2956
2957 cfs_rq->runtime_remaining += amount;
Paul Turnera9cf55b2011-07-21 09:43:32 -07002958 /*
2959 * we may have advanced our local expiration to account for allowed
2960 * spread between our sched_clock and the one on which runtime was
2961 * issued.
2962 */
2963 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2964 cfs_rq->runtime_expires = expires;
Paul Turner85dac902011-07-21 09:43:33 -07002965
2966 return cfs_rq->runtime_remaining > 0;
Paul Turnera9cf55b2011-07-21 09:43:32 -07002967}
2968
2969/*
2970 * Note: This depends on the synchronization provided by sched_clock and the
2971 * fact that rq->clock snapshots this value.
2972 */
2973static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2974{
2975 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002976
2977 /* if the deadline is ahead of our clock, nothing to do */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002978 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
Paul Turnera9cf55b2011-07-21 09:43:32 -07002979 return;
2980
2981 if (cfs_rq->runtime_remaining < 0)
2982 return;
2983
2984 /*
2985 * If the local deadline has passed we have to consider the
2986 * possibility that our sched_clock is 'fast' and the global deadline
2987 * has not truly expired.
2988 *
2989 * Fortunately we can check determine whether this the case by checking
2990 * whether the global deadline has advanced.
2991 */
2992
2993 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2994 /* extend local deadline, drift is bounded above by 2 ticks */
2995 cfs_rq->runtime_expires += TICK_NSEC;
2996 } else {
2997 /* global deadline is ahead, expiration has passed */
2998 cfs_rq->runtime_remaining = 0;
2999 }
Paul Turnerec12cb72011-07-21 09:43:30 -07003000}
3001
3002static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3003 unsigned long delta_exec)
3004{
Paul Turnera9cf55b2011-07-21 09:43:32 -07003005 /* dock delta_exec before expiring quota (as it could span periods) */
Paul Turnerec12cb72011-07-21 09:43:30 -07003006 cfs_rq->runtime_remaining -= delta_exec;
Paul Turnera9cf55b2011-07-21 09:43:32 -07003007 expire_cfs_rq_runtime(cfs_rq);
3008
3009 if (likely(cfs_rq->runtime_remaining > 0))
Paul Turnerec12cb72011-07-21 09:43:30 -07003010 return;
3011
Paul Turner85dac902011-07-21 09:43:33 -07003012 /*
3013 * if we're unable to extend our runtime we resched so that the active
3014 * hierarchy can be throttled
3015 */
3016 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3017 resched_task(rq_of(cfs_rq)->curr);
Paul Turnerec12cb72011-07-21 09:43:30 -07003018}
3019
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07003020static __always_inline
3021void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
Paul Turnerec12cb72011-07-21 09:43:30 -07003022{
Paul Turner56f570e2011-11-07 20:26:33 -08003023 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
Paul Turnerec12cb72011-07-21 09:43:30 -07003024 return;
3025
3026 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3027}
3028
Paul Turner85dac902011-07-21 09:43:33 -07003029static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3030{
Paul Turner56f570e2011-11-07 20:26:33 -08003031 return cfs_bandwidth_used() && cfs_rq->throttled;
Paul Turner85dac902011-07-21 09:43:33 -07003032}
3033
Paul Turner64660c82011-07-21 09:43:36 -07003034/* check whether cfs_rq, or any parent, is throttled */
3035static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3036{
Paul Turner56f570e2011-11-07 20:26:33 -08003037 return cfs_bandwidth_used() && cfs_rq->throttle_count;
Paul Turner64660c82011-07-21 09:43:36 -07003038}
3039
3040/*
3041 * Ensure that neither of the group entities corresponding to src_cpu or
3042 * dest_cpu are members of a throttled hierarchy when performing group
3043 * load-balance operations.
3044 */
3045static inline int throttled_lb_pair(struct task_group *tg,
3046 int src_cpu, int dest_cpu)
3047{
3048 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3049
3050 src_cfs_rq = tg->cfs_rq[src_cpu];
3051 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3052
3053 return throttled_hierarchy(src_cfs_rq) ||
3054 throttled_hierarchy(dest_cfs_rq);
3055}
3056
3057/* updated child weight may affect parent so we have to do this bottom up */
3058static int tg_unthrottle_up(struct task_group *tg, void *data)
3059{
3060 struct rq *rq = data;
3061 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3062
3063 cfs_rq->throttle_count--;
3064#ifdef CONFIG_SMP
3065 if (!cfs_rq->throttle_count) {
Paul Turnerf1b17282012-10-04 13:18:31 +02003066 /* adjust cfs_rq_clock_task() */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003067 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
Paul Turnerf1b17282012-10-04 13:18:31 +02003068 cfs_rq->throttled_clock_task;
Paul Turner64660c82011-07-21 09:43:36 -07003069 }
3070#endif
3071
3072 return 0;
3073}
3074
3075static int tg_throttle_down(struct task_group *tg, void *data)
3076{
3077 struct rq *rq = data;
3078 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3079
Paul Turner82958362012-10-04 13:18:31 +02003080 /* group is entering throttled state, stop time */
3081 if (!cfs_rq->throttle_count)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003082 cfs_rq->throttled_clock_task = rq_clock_task(rq);
Paul Turner64660c82011-07-21 09:43:36 -07003083 cfs_rq->throttle_count++;
3084
3085 return 0;
3086}
3087
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003088static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
Paul Turner85dac902011-07-21 09:43:33 -07003089{
3090 struct rq *rq = rq_of(cfs_rq);
3091 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3092 struct sched_entity *se;
3093 long task_delta, dequeue = 1;
3094
3095 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3096
Paul Turnerf1b17282012-10-04 13:18:31 +02003097 /* freeze hierarchy runnable averages while throttled */
Paul Turner64660c82011-07-21 09:43:36 -07003098 rcu_read_lock();
3099 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3100 rcu_read_unlock();
Paul Turner85dac902011-07-21 09:43:33 -07003101
3102 task_delta = cfs_rq->h_nr_running;
3103 for_each_sched_entity(se) {
3104 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3105 /* throttled entity or throttle-on-deactivate */
3106 if (!se->on_rq)
3107 break;
3108
3109 if (dequeue)
3110 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3111 qcfs_rq->h_nr_running -= task_delta;
3112
3113 if (qcfs_rq->load.weight)
3114 dequeue = 0;
3115 }
3116
3117 if (!se)
3118 rq->nr_running -= task_delta;
3119
3120 cfs_rq->throttled = 1;
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003121 cfs_rq->throttled_clock = rq_clock(rq);
Paul Turner85dac902011-07-21 09:43:33 -07003122 raw_spin_lock(&cfs_b->lock);
3123 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3124 raw_spin_unlock(&cfs_b->lock);
3125}
3126
Peter Zijlstra029632f2011-10-25 10:00:11 +02003127void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
Paul Turner671fd9d2011-07-21 09:43:34 -07003128{
3129 struct rq *rq = rq_of(cfs_rq);
3130 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3131 struct sched_entity *se;
3132 int enqueue = 1;
3133 long task_delta;
3134
Michael Wang22b958d2013-06-04 14:23:39 +08003135 se = cfs_rq->tg->se[cpu_of(rq)];
Paul Turner671fd9d2011-07-21 09:43:34 -07003136
3137 cfs_rq->throttled = 0;
Frederic Weisbecker1a55af22013-04-12 01:51:01 +02003138
3139 update_rq_clock(rq);
3140
Paul Turner671fd9d2011-07-21 09:43:34 -07003141 raw_spin_lock(&cfs_b->lock);
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003142 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
Paul Turner671fd9d2011-07-21 09:43:34 -07003143 list_del_rcu(&cfs_rq->throttled_list);
3144 raw_spin_unlock(&cfs_b->lock);
3145
Paul Turner64660c82011-07-21 09:43:36 -07003146 /* update hierarchical throttle state */
3147 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3148
Paul Turner671fd9d2011-07-21 09:43:34 -07003149 if (!cfs_rq->load.weight)
3150 return;
3151
3152 task_delta = cfs_rq->h_nr_running;
3153 for_each_sched_entity(se) {
3154 if (se->on_rq)
3155 enqueue = 0;
3156
3157 cfs_rq = cfs_rq_of(se);
3158 if (enqueue)
3159 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3160 cfs_rq->h_nr_running += task_delta;
3161
3162 if (cfs_rq_throttled(cfs_rq))
3163 break;
3164 }
3165
3166 if (!se)
3167 rq->nr_running += task_delta;
3168
3169 /* determine whether we need to wake up potentially idle cpu */
3170 if (rq->curr == rq->idle && rq->cfs.nr_running)
3171 resched_task(rq->curr);
3172}
3173
3174static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3175 u64 remaining, u64 expires)
3176{
3177 struct cfs_rq *cfs_rq;
3178 u64 runtime = remaining;
3179
3180 rcu_read_lock();
3181 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3182 throttled_list) {
3183 struct rq *rq = rq_of(cfs_rq);
3184
3185 raw_spin_lock(&rq->lock);
3186 if (!cfs_rq_throttled(cfs_rq))
3187 goto next;
3188
3189 runtime = -cfs_rq->runtime_remaining + 1;
3190 if (runtime > remaining)
3191 runtime = remaining;
3192 remaining -= runtime;
3193
3194 cfs_rq->runtime_remaining += runtime;
3195 cfs_rq->runtime_expires = expires;
3196
3197 /* we check whether we're throttled above */
3198 if (cfs_rq->runtime_remaining > 0)
3199 unthrottle_cfs_rq(cfs_rq);
3200
3201next:
3202 raw_spin_unlock(&rq->lock);
3203
3204 if (!remaining)
3205 break;
3206 }
3207 rcu_read_unlock();
3208
3209 return remaining;
3210}
3211
Paul Turner58088ad2011-07-21 09:43:31 -07003212/*
3213 * Responsible for refilling a task_group's bandwidth and unthrottling its
3214 * cfs_rqs as appropriate. If there has been no activity within the last
3215 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3216 * used to track this state.
3217 */
3218static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3219{
Paul Turner671fd9d2011-07-21 09:43:34 -07003220 u64 runtime, runtime_expires;
3221 int idle = 1, throttled;
Paul Turner58088ad2011-07-21 09:43:31 -07003222
3223 raw_spin_lock(&cfs_b->lock);
3224 /* no need to continue the timer with no bandwidth constraint */
3225 if (cfs_b->quota == RUNTIME_INF)
3226 goto out_unlock;
3227
Paul Turner671fd9d2011-07-21 09:43:34 -07003228 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3229 /* idle depends on !throttled (for the case of a large deficit) */
3230 idle = cfs_b->idle && !throttled;
Nikhil Raoe8da1b12011-07-21 09:43:40 -07003231 cfs_b->nr_periods += overrun;
Paul Turner671fd9d2011-07-21 09:43:34 -07003232
Paul Turnera9cf55b2011-07-21 09:43:32 -07003233 /* if we're going inactive then everything else can be deferred */
3234 if (idle)
3235 goto out_unlock;
3236
3237 __refill_cfs_bandwidth_runtime(cfs_b);
3238
Paul Turner671fd9d2011-07-21 09:43:34 -07003239 if (!throttled) {
3240 /* mark as potentially idle for the upcoming period */
3241 cfs_b->idle = 1;
3242 goto out_unlock;
3243 }
Paul Turner58088ad2011-07-21 09:43:31 -07003244
Nikhil Raoe8da1b12011-07-21 09:43:40 -07003245 /* account preceding periods in which throttling occurred */
3246 cfs_b->nr_throttled += overrun;
3247
Paul Turner671fd9d2011-07-21 09:43:34 -07003248 /*
3249 * There are throttled entities so we must first use the new bandwidth
3250 * to unthrottle them before making it generally available. This
3251 * ensures that all existing debts will be paid before a new cfs_rq is
3252 * allowed to run.
3253 */
3254 runtime = cfs_b->runtime;
3255 runtime_expires = cfs_b->runtime_expires;
3256 cfs_b->runtime = 0;
3257
3258 /*
3259 * This check is repeated as we are holding onto the new bandwidth
3260 * while we unthrottle. This can potentially race with an unthrottled
3261 * group trying to acquire new bandwidth from the global pool.
3262 */
3263 while (throttled && runtime > 0) {
3264 raw_spin_unlock(&cfs_b->lock);
3265 /* we can't nest cfs_b->lock while distributing bandwidth */
3266 runtime = distribute_cfs_runtime(cfs_b, runtime,
3267 runtime_expires);
3268 raw_spin_lock(&cfs_b->lock);
3269
3270 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3271 }
3272
3273 /* return (any) remaining runtime */
3274 cfs_b->runtime = runtime;
3275 /*
3276 * While we are ensured activity in the period following an
3277 * unthrottle, this also covers the case in which the new bandwidth is
3278 * insufficient to cover the existing bandwidth deficit. (Forcing the
3279 * timer to remain active while there are any throttled entities.)
3280 */
3281 cfs_b->idle = 0;
Paul Turner58088ad2011-07-21 09:43:31 -07003282out_unlock:
3283 if (idle)
3284 cfs_b->timer_active = 0;
3285 raw_spin_unlock(&cfs_b->lock);
3286
3287 return idle;
3288}
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003289
Paul Turnerd8b49862011-07-21 09:43:41 -07003290/* a cfs_rq won't donate quota below this amount */
3291static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3292/* minimum remaining period time to redistribute slack quota */
3293static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3294/* how long we wait to gather additional slack before distributing */
3295static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3296
3297/* are we near the end of the current quota period? */
3298static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3299{
3300 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3301 u64 remaining;
3302
3303 /* if the call-back is running a quota refresh is already occurring */
3304 if (hrtimer_callback_running(refresh_timer))
3305 return 1;
3306
3307 /* is a quota refresh about to occur? */
3308 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3309 if (remaining < min_expire)
3310 return 1;
3311
3312 return 0;
3313}
3314
3315static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3316{
3317 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3318
3319 /* if there's a quota refresh soon don't bother with slack */
3320 if (runtime_refresh_within(cfs_b, min_left))
3321 return;
3322
3323 start_bandwidth_timer(&cfs_b->slack_timer,
3324 ns_to_ktime(cfs_bandwidth_slack_period));
3325}
3326
3327/* we know any runtime found here is valid as update_curr() precedes return */
3328static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3329{
3330 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3331 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3332
3333 if (slack_runtime <= 0)
3334 return;
3335
3336 raw_spin_lock(&cfs_b->lock);
3337 if (cfs_b->quota != RUNTIME_INF &&
3338 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3339 cfs_b->runtime += slack_runtime;
3340
3341 /* we are under rq->lock, defer unthrottling using a timer */
3342 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3343 !list_empty(&cfs_b->throttled_cfs_rq))
3344 start_cfs_slack_bandwidth(cfs_b);
3345 }
3346 raw_spin_unlock(&cfs_b->lock);
3347
3348 /* even if it's not valid for return we don't want to try again */
3349 cfs_rq->runtime_remaining -= slack_runtime;
3350}
3351
3352static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3353{
Paul Turner56f570e2011-11-07 20:26:33 -08003354 if (!cfs_bandwidth_used())
3355 return;
3356
Paul Turnerfccfdc62011-11-07 20:26:34 -08003357 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
Paul Turnerd8b49862011-07-21 09:43:41 -07003358 return;
3359
3360 __return_cfs_rq_runtime(cfs_rq);
3361}
3362
3363/*
3364 * This is done with a timer (instead of inline with bandwidth return) since
3365 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3366 */
3367static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3368{
3369 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3370 u64 expires;
3371
3372 /* confirm we're still not at a refresh boundary */
3373 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
3374 return;
3375
3376 raw_spin_lock(&cfs_b->lock);
3377 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3378 runtime = cfs_b->runtime;
3379 cfs_b->runtime = 0;
3380 }
3381 expires = cfs_b->runtime_expires;
3382 raw_spin_unlock(&cfs_b->lock);
3383
3384 if (!runtime)
3385 return;
3386
3387 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3388
3389 raw_spin_lock(&cfs_b->lock);
3390 if (expires == cfs_b->runtime_expires)
3391 cfs_b->runtime = runtime;
3392 raw_spin_unlock(&cfs_b->lock);
3393}
3394
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003395/*
3396 * When a group wakes up we want to make sure that its quota is not already
3397 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3398 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3399 */
3400static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3401{
Paul Turner56f570e2011-11-07 20:26:33 -08003402 if (!cfs_bandwidth_used())
3403 return;
3404
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003405 /* an active group must be handled by the update_curr()->put() path */
3406 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3407 return;
3408
3409 /* ensure the group is not already throttled */
3410 if (cfs_rq_throttled(cfs_rq))
3411 return;
3412
3413 /* update runtime allocation */
3414 account_cfs_rq_runtime(cfs_rq, 0);
3415 if (cfs_rq->runtime_remaining <= 0)
3416 throttle_cfs_rq(cfs_rq);
3417}
3418
3419/* conditionally throttle active cfs_rq's from put_prev_entity() */
3420static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3421{
Paul Turner56f570e2011-11-07 20:26:33 -08003422 if (!cfs_bandwidth_used())
3423 return;
3424
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003425 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3426 return;
3427
3428 /*
3429 * it's possible for a throttled entity to be forced into a running
3430 * state (e.g. set_curr_task), in this case we're finished.
3431 */
3432 if (cfs_rq_throttled(cfs_rq))
3433 return;
3434
3435 throttle_cfs_rq(cfs_rq);
3436}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003437
Peter Zijlstra029632f2011-10-25 10:00:11 +02003438static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3439{
3440 struct cfs_bandwidth *cfs_b =
3441 container_of(timer, struct cfs_bandwidth, slack_timer);
3442 do_sched_cfs_slack_timer(cfs_b);
3443
3444 return HRTIMER_NORESTART;
3445}
3446
3447static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3448{
3449 struct cfs_bandwidth *cfs_b =
3450 container_of(timer, struct cfs_bandwidth, period_timer);
3451 ktime_t now;
3452 int overrun;
3453 int idle = 0;
3454
3455 for (;;) {
3456 now = hrtimer_cb_get_time(timer);
3457 overrun = hrtimer_forward(timer, now, cfs_b->period);
3458
3459 if (!overrun)
3460 break;
3461
3462 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3463 }
3464
3465 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3466}
3467
3468void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3469{
3470 raw_spin_lock_init(&cfs_b->lock);
3471 cfs_b->runtime = 0;
3472 cfs_b->quota = RUNTIME_INF;
3473 cfs_b->period = ns_to_ktime(default_cfs_period());
3474
3475 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3476 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3477 cfs_b->period_timer.function = sched_cfs_period_timer;
3478 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3479 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3480}
3481
3482static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3483{
3484 cfs_rq->runtime_enabled = 0;
3485 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3486}
3487
3488/* requires cfs_b->lock, may release to reprogram timer */
3489void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3490{
3491 /*
3492 * The timer may be active because we're trying to set a new bandwidth
3493 * period or because we're racing with the tear-down path
3494 * (timer_active==0 becomes visible before the hrtimer call-back
3495 * terminates). In either case we ensure that it's re-programmed
3496 */
3497 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
3498 raw_spin_unlock(&cfs_b->lock);
3499 /* ensure cfs_b->lock is available while we wait */
3500 hrtimer_cancel(&cfs_b->period_timer);
3501
3502 raw_spin_lock(&cfs_b->lock);
3503 /* if someone else restarted the timer then we're done */
3504 if (cfs_b->timer_active)
3505 return;
3506 }
3507
3508 cfs_b->timer_active = 1;
3509 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3510}
3511
3512static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3513{
3514 hrtimer_cancel(&cfs_b->period_timer);
3515 hrtimer_cancel(&cfs_b->slack_timer);
3516}
3517
Arnd Bergmann38dc3342013-01-25 14:14:22 +00003518static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
Peter Zijlstra029632f2011-10-25 10:00:11 +02003519{
3520 struct cfs_rq *cfs_rq;
3521
3522 for_each_leaf_cfs_rq(rq, cfs_rq) {
3523 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3524
3525 if (!cfs_rq->runtime_enabled)
3526 continue;
3527
3528 /*
3529 * clock_task is not advancing so we just need to make sure
3530 * there's some valid quota amount
3531 */
3532 cfs_rq->runtime_remaining = cfs_b->quota;
3533 if (cfs_rq_throttled(cfs_rq))
3534 unthrottle_cfs_rq(cfs_rq);
3535 }
3536}
3537
3538#else /* CONFIG_CFS_BANDWIDTH */
Paul Turnerf1b17282012-10-04 13:18:31 +02003539static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3540{
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003541 return rq_clock_task(rq_of(cfs_rq));
Paul Turnerf1b17282012-10-04 13:18:31 +02003542}
3543
3544static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3545 unsigned long delta_exec) {}
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003546static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3547static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07003548static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
Paul Turner85dac902011-07-21 09:43:33 -07003549
3550static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3551{
3552 return 0;
3553}
Paul Turner64660c82011-07-21 09:43:36 -07003554
3555static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3556{
3557 return 0;
3558}
3559
3560static inline int throttled_lb_pair(struct task_group *tg,
3561 int src_cpu, int dest_cpu)
3562{
3563 return 0;
3564}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003565
3566void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3567
3568#ifdef CONFIG_FAIR_GROUP_SCHED
3569static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
Paul Turnerab84d312011-07-21 09:43:28 -07003570#endif
3571
Peter Zijlstra029632f2011-10-25 10:00:11 +02003572static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3573{
3574 return NULL;
3575}
3576static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
Peter Boonstoppela4c96ae2012-08-09 15:34:47 -07003577static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003578
3579#endif /* CONFIG_CFS_BANDWIDTH */
3580
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003581/**************************************************
3582 * CFS operations on tasks:
3583 */
3584
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003585#ifdef CONFIG_SCHED_HRTICK
3586static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3587{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003588 struct sched_entity *se = &p->se;
3589 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3590
3591 WARN_ON(task_rq(p) != rq);
3592
Mike Galbraithb39e66e2011-11-22 15:20:07 +01003593 if (cfs_rq->nr_running > 1) {
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003594 u64 slice = sched_slice(cfs_rq, se);
3595 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3596 s64 delta = slice - ran;
3597
3598 if (delta < 0) {
3599 if (rq->curr == p)
3600 resched_task(p);
3601 return;
3602 }
3603
3604 /*
3605 * Don't schedule slices shorter than 10000ns, that just
3606 * doesn't make sense. Rely on vruntime for fairness.
3607 */
Peter Zijlstra31656512008-07-18 18:01:23 +02003608 if (rq->curr != p)
Peter Zijlstra157124c2008-07-28 11:53:11 +02003609 delta = max_t(s64, 10000LL, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003610
Peter Zijlstra31656512008-07-18 18:01:23 +02003611 hrtick_start(rq, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003612 }
3613}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003614
3615/*
3616 * called from enqueue/dequeue and updates the hrtick when the
3617 * current task is from our class and nr_running is low enough
3618 * to matter.
3619 */
3620static void hrtick_update(struct rq *rq)
3621{
3622 struct task_struct *curr = rq->curr;
3623
Mike Galbraithb39e66e2011-11-22 15:20:07 +01003624 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003625 return;
3626
3627 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3628 hrtick_start_fair(rq, curr);
3629}
Dhaval Giani55e12e52008-06-24 23:39:43 +05303630#else /* !CONFIG_SCHED_HRTICK */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003631static inline void
3632hrtick_start_fair(struct rq *rq, struct task_struct *p)
3633{
3634}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003635
3636static inline void hrtick_update(struct rq *rq)
3637{
3638}
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003639#endif
3640
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003641/*
3642 * The enqueue_task method is called before nr_running is
3643 * increased. Here we update the fair scheduling stats and
3644 * then put the task into the rbtree:
3645 */
Thomas Gleixnerea87bb72010-01-20 20:58:57 +00003646static void
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003647enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003648{
3649 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003650 struct sched_entity *se = &p->se;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003651
3652 for_each_sched_entity(se) {
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003653 if (se->on_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003654 break;
3655 cfs_rq = cfs_rq_of(se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003656 enqueue_entity(cfs_rq, se, flags);
Paul Turner85dac902011-07-21 09:43:33 -07003657
3658 /*
3659 * end evaluation on encountering a throttled cfs_rq
3660 *
3661 * note: in the case of encountering a throttled cfs_rq we will
3662 * post the final h_nr_running increment below.
3663 */
3664 if (cfs_rq_throttled(cfs_rq))
3665 break;
Paul Turner953bfcd2011-07-21 09:43:27 -07003666 cfs_rq->h_nr_running++;
Paul Turner85dac902011-07-21 09:43:33 -07003667
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003668 flags = ENQUEUE_WAKEUP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003669 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003670
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003671 for_each_sched_entity(se) {
Lin Ming0f317142011-07-22 09:14:31 +08003672 cfs_rq = cfs_rq_of(se);
Paul Turner953bfcd2011-07-21 09:43:27 -07003673 cfs_rq->h_nr_running++;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003674
Paul Turner85dac902011-07-21 09:43:33 -07003675 if (cfs_rq_throttled(cfs_rq))
3676 break;
3677
Linus Torvalds17bc14b2012-12-14 07:20:43 -08003678 update_cfs_shares(cfs_rq);
Paul Turner9ee474f2012-10-04 13:18:30 +02003679 update_entity_load_avg(se, 1);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003680 }
3681
Ben Segall18bf2802012-10-04 12:51:20 +02003682 if (!se) {
3683 update_rq_runnable_avg(rq, rq->nr_running);
Paul Turner85dac902011-07-21 09:43:33 -07003684 inc_nr_running(rq);
Ben Segall18bf2802012-10-04 12:51:20 +02003685 }
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003686 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003687}
3688
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003689static void set_next_buddy(struct sched_entity *se);
3690
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003691/*
3692 * The dequeue_task method is called before nr_running is
3693 * decreased. We remove the task from the rbtree and
3694 * update the fair scheduling stats:
3695 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003696static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003697{
3698 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003699 struct sched_entity *se = &p->se;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003700 int task_sleep = flags & DEQUEUE_SLEEP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003701
3702 for_each_sched_entity(se) {
3703 cfs_rq = cfs_rq_of(se);
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003704 dequeue_entity(cfs_rq, se, flags);
Paul Turner85dac902011-07-21 09:43:33 -07003705
3706 /*
3707 * end evaluation on encountering a throttled cfs_rq
3708 *
3709 * note: in the case of encountering a throttled cfs_rq we will
3710 * post the final h_nr_running decrement below.
3711 */
3712 if (cfs_rq_throttled(cfs_rq))
3713 break;
Paul Turner953bfcd2011-07-21 09:43:27 -07003714 cfs_rq->h_nr_running--;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003715
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003716 /* Don't dequeue parent if it has other entities besides us */
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003717 if (cfs_rq->load.weight) {
3718 /*
3719 * Bias pick_next to pick a task from this cfs_rq, as
3720 * p is sleeping when it is within its sched_slice.
3721 */
3722 if (task_sleep && parent_entity(se))
3723 set_next_buddy(parent_entity(se));
Paul Turner9598c822011-07-06 22:30:37 -07003724
3725 /* avoid re-evaluating load for this entity */
3726 se = parent_entity(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003727 break;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003728 }
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003729 flags |= DEQUEUE_SLEEP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003730 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003731
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003732 for_each_sched_entity(se) {
Lin Ming0f317142011-07-22 09:14:31 +08003733 cfs_rq = cfs_rq_of(se);
Paul Turner953bfcd2011-07-21 09:43:27 -07003734 cfs_rq->h_nr_running--;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003735
Paul Turner85dac902011-07-21 09:43:33 -07003736 if (cfs_rq_throttled(cfs_rq))
3737 break;
3738
Linus Torvalds17bc14b2012-12-14 07:20:43 -08003739 update_cfs_shares(cfs_rq);
Paul Turner9ee474f2012-10-04 13:18:30 +02003740 update_entity_load_avg(se, 1);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003741 }
3742
Ben Segall18bf2802012-10-04 12:51:20 +02003743 if (!se) {
Paul Turner85dac902011-07-21 09:43:33 -07003744 dec_nr_running(rq);
Ben Segall18bf2802012-10-04 12:51:20 +02003745 update_rq_runnable_avg(rq, 1);
3746 }
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003747 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003748}
3749
Gregory Haskinse7693a32008-01-25 21:08:09 +01003750#ifdef CONFIG_SMP
Peter Zijlstra029632f2011-10-25 10:00:11 +02003751/* Used instead of source_load when we know the type == 0 */
3752static unsigned long weighted_cpuload(const int cpu)
3753{
Alex Shib92486c2013-06-20 10:18:50 +08003754 return cpu_rq(cpu)->cfs.runnable_load_avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003755}
3756
3757/*
3758 * Return a low guess at the load of a migration-source cpu weighted
3759 * according to the scheduling class and "nice" value.
3760 *
3761 * We want to under-estimate the load of migration sources, to
3762 * balance conservatively.
3763 */
3764static unsigned long source_load(int cpu, int type)
3765{
3766 struct rq *rq = cpu_rq(cpu);
3767 unsigned long total = weighted_cpuload(cpu);
3768
3769 if (type == 0 || !sched_feat(LB_BIAS))
3770 return total;
3771
3772 return min(rq->cpu_load[type-1], total);
3773}
3774
3775/*
3776 * Return a high guess at the load of a migration-target cpu weighted
3777 * according to the scheduling class and "nice" value.
3778 */
3779static unsigned long target_load(int cpu, int type)
3780{
3781 struct rq *rq = cpu_rq(cpu);
3782 unsigned long total = weighted_cpuload(cpu);
3783
3784 if (type == 0 || !sched_feat(LB_BIAS))
3785 return total;
3786
3787 return max(rq->cpu_load[type-1], total);
3788}
3789
3790static unsigned long power_of(int cpu)
3791{
3792 return cpu_rq(cpu)->cpu_power;
3793}
3794
3795static unsigned long cpu_avg_load_per_task(int cpu)
3796{
3797 struct rq *rq = cpu_rq(cpu);
3798 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
Alex Shib92486c2013-06-20 10:18:50 +08003799 unsigned long load_avg = rq->cfs.runnable_load_avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003800
3801 if (nr_running)
Alex Shib92486c2013-06-20 10:18:50 +08003802 return load_avg / nr_running;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003803
3804 return 0;
3805}
3806
Michael Wang62470412013-07-04 12:55:51 +08003807static void record_wakee(struct task_struct *p)
3808{
3809 /*
3810 * Rough decay (wiping) for cost saving, don't worry
3811 * about the boundary, really active task won't care
3812 * about the loss.
3813 */
3814 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3815 current->wakee_flips = 0;
3816 current->wakee_flip_decay_ts = jiffies;
3817 }
3818
3819 if (current->last_wakee != p) {
3820 current->last_wakee = p;
3821 current->wakee_flips++;
3822 }
3823}
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003824
Peter Zijlstra74f8e4b2011-04-05 17:23:47 +02003825static void task_waking_fair(struct task_struct *p)
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003826{
3827 struct sched_entity *se = &p->se;
3828 struct cfs_rq *cfs_rq = cfs_rq_of(se);
Peter Zijlstra3fe16982011-04-05 17:23:48 +02003829 u64 min_vruntime;
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003830
Peter Zijlstra3fe16982011-04-05 17:23:48 +02003831#ifndef CONFIG_64BIT
3832 u64 min_vruntime_copy;
Peter Zijlstra74f8e4b2011-04-05 17:23:47 +02003833
Peter Zijlstra3fe16982011-04-05 17:23:48 +02003834 do {
3835 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3836 smp_rmb();
3837 min_vruntime = cfs_rq->min_vruntime;
3838 } while (min_vruntime != min_vruntime_copy);
3839#else
3840 min_vruntime = cfs_rq->min_vruntime;
3841#endif
3842
3843 se->vruntime -= min_vruntime;
Michael Wang62470412013-07-04 12:55:51 +08003844 record_wakee(p);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003845}
3846
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003847#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02003848/*
3849 * effective_load() calculates the load change as seen from the root_task_group
3850 *
3851 * Adding load to a group doesn't make a group heavier, but can cause movement
3852 * of group shares between cpus. Assuming the shares were perfectly aligned one
3853 * can calculate the shift in shares.
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003854 *
3855 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3856 * on this @cpu and results in a total addition (subtraction) of @wg to the
3857 * total group weight.
3858 *
3859 * Given a runqueue weight distribution (rw_i) we can compute a shares
3860 * distribution (s_i) using:
3861 *
3862 * s_i = rw_i / \Sum rw_j (1)
3863 *
3864 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3865 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3866 * shares distribution (s_i):
3867 *
3868 * rw_i = { 2, 4, 1, 0 }
3869 * s_i = { 2/7, 4/7, 1/7, 0 }
3870 *
3871 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3872 * task used to run on and the CPU the waker is running on), we need to
3873 * compute the effect of waking a task on either CPU and, in case of a sync
3874 * wakeup, compute the effect of the current task going to sleep.
3875 *
3876 * So for a change of @wl to the local @cpu with an overall group weight change
3877 * of @wl we can compute the new shares distribution (s'_i) using:
3878 *
3879 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3880 *
3881 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3882 * differences in waking a task to CPU 0. The additional task changes the
3883 * weight and shares distributions like:
3884 *
3885 * rw'_i = { 3, 4, 1, 0 }
3886 * s'_i = { 3/8, 4/8, 1/8, 0 }
3887 *
3888 * We can then compute the difference in effective weight by using:
3889 *
3890 * dw_i = S * (s'_i - s_i) (3)
3891 *
3892 * Where 'S' is the group weight as seen by its parent.
3893 *
3894 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3895 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3896 * 4/7) times the weight of the group.
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02003897 */
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003898static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003899{
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003900 struct sched_entity *se = tg->se[cpu];
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02003901
Mel Gorman58d081b2013-10-07 11:29:10 +01003902 if (!tg->parent || !wl) /* the trivial, non-cgroup case */
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02003903 return wl;
3904
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003905 for_each_sched_entity(se) {
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003906 long w, W;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003907
Paul Turner977dda72011-01-14 17:57:50 -08003908 tg = se->my_q->tg;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003909
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003910 /*
3911 * W = @wg + \Sum rw_j
3912 */
3913 W = wg + calc_tg_weight(tg, se->my_q);
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003914
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003915 /*
3916 * w = rw_i + @wl
3917 */
3918 w = se->my_q->load.weight + wl;
Peter Zijlstra940959e2008-09-23 15:33:42 +02003919
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003920 /*
3921 * wl = S * s'_i; see (2)
3922 */
3923 if (W > 0 && w < W)
3924 wl = (w * tg->shares) / W;
Paul Turner977dda72011-01-14 17:57:50 -08003925 else
3926 wl = tg->shares;
Peter Zijlstra940959e2008-09-23 15:33:42 +02003927
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003928 /*
3929 * Per the above, wl is the new se->load.weight value; since
3930 * those are clipped to [MIN_SHARES, ...) do so now. See
3931 * calc_cfs_shares().
3932 */
Paul Turner977dda72011-01-14 17:57:50 -08003933 if (wl < MIN_SHARES)
3934 wl = MIN_SHARES;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003935
3936 /*
3937 * wl = dw_i = S * (s'_i - s_i); see (3)
3938 */
Paul Turner977dda72011-01-14 17:57:50 -08003939 wl -= se->load.weight;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003940
3941 /*
3942 * Recursively apply this logic to all parent groups to compute
3943 * the final effective load change on the root group. Since
3944 * only the @tg group gets extra weight, all parent groups can
3945 * only redistribute existing shares. @wl is the shift in shares
3946 * resulting from this level per the above.
3947 */
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003948 wg = 0;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003949 }
3950
3951 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003952}
3953#else
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003954
Mel Gorman58d081b2013-10-07 11:29:10 +01003955static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003956{
Peter Zijlstra83378262008-06-27 13:41:37 +02003957 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003958}
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003959
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003960#endif
3961
Michael Wang62470412013-07-04 12:55:51 +08003962static int wake_wide(struct task_struct *p)
3963{
Peter Zijlstra7d9ffa82013-07-04 12:56:46 +08003964 int factor = this_cpu_read(sd_llc_size);
Michael Wang62470412013-07-04 12:55:51 +08003965
3966 /*
3967 * Yeah, it's the switching-frequency, could means many wakee or
3968 * rapidly switch, use factor here will just help to automatically
3969 * adjust the loose-degree, so bigger node will lead to more pull.
3970 */
3971 if (p->wakee_flips > factor) {
3972 /*
3973 * wakee is somewhat hot, it needs certain amount of cpu
3974 * resource, so if waker is far more hot, prefer to leave
3975 * it alone.
3976 */
3977 if (current->wakee_flips > (factor * p->wakee_flips))
3978 return 1;
3979 }
3980
3981 return 0;
3982}
3983
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003984static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003985{
Paul Turnere37b6a72011-01-21 20:44:59 -08003986 s64 this_load, load;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003987 int idx, this_cpu, prev_cpu;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003988 unsigned long tl_per_task;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003989 struct task_group *tg;
Peter Zijlstra83378262008-06-27 13:41:37 +02003990 unsigned long weight;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02003991 int balanced;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003992
Michael Wang62470412013-07-04 12:55:51 +08003993 /*
3994 * If we wake multiple tasks be careful to not bounce
3995 * ourselves around too much.
3996 */
3997 if (wake_wide(p))
3998 return 0;
3999
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004000 idx = sd->wake_idx;
4001 this_cpu = smp_processor_id();
4002 prev_cpu = task_cpu(p);
4003 load = source_load(prev_cpu, idx);
4004 this_load = target_load(this_cpu, idx);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004005
4006 /*
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004007 * If sync wakeup then subtract the (maximum possible)
4008 * effect of the currently running task from the load
4009 * of the current CPU:
4010 */
Peter Zijlstra83378262008-06-27 13:41:37 +02004011 if (sync) {
4012 tg = task_group(current);
4013 weight = current->se.load.weight;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004014
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004015 this_load += effective_load(tg, this_cpu, -weight, -weight);
Peter Zijlstra83378262008-06-27 13:41:37 +02004016 load += effective_load(tg, prev_cpu, 0, -weight);
4017 }
4018
4019 tg = task_group(p);
4020 weight = p->se.load.weight;
4021
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02004022 /*
4023 * In low-load situations, where prev_cpu is idle and this_cpu is idle
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004024 * due to the sync cause above having dropped this_load to 0, we'll
4025 * always have an imbalance, but there's really nothing you can do
4026 * about that, so that's good too.
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02004027 *
4028 * Otherwise check if either cpus are near enough in load to allow this
4029 * task to be woken on this_cpu.
4030 */
Paul Turnere37b6a72011-01-21 20:44:59 -08004031 if (this_load > 0) {
4032 s64 this_eff_load, prev_eff_load;
Peter Zijlstrae51fd5e2010-05-31 12:37:30 +02004033
4034 this_eff_load = 100;
4035 this_eff_load *= power_of(prev_cpu);
4036 this_eff_load *= this_load +
4037 effective_load(tg, this_cpu, weight, weight);
4038
4039 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4040 prev_eff_load *= power_of(this_cpu);
4041 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4042
4043 balanced = this_eff_load <= prev_eff_load;
4044 } else
4045 balanced = true;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02004046
4047 /*
4048 * If the currently running task will sleep within
4049 * a reasonable amount of time then attract this newly
4050 * woken task:
4051 */
Peter Zijlstra2fb76352008-10-08 09:16:04 +02004052 if (sync && balanced)
4053 return 1;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02004054
Lucas De Marchi41acab82010-03-10 23:37:45 -03004055 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
Mike Galbraithb3137bc2008-05-29 11:11:41 +02004056 tl_per_task = cpu_avg_load_per_task(this_cpu);
4057
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004058 if (balanced ||
4059 (this_load <= load &&
4060 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004061 /*
4062 * This domain has SD_WAKE_AFFINE and
4063 * p is cache cold in this domain, and
4064 * there is no bad imbalance.
4065 */
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004066 schedstat_inc(sd, ttwu_move_affine);
Lucas De Marchi41acab82010-03-10 23:37:45 -03004067 schedstat_inc(p, se.statistics.nr_wakeups_affine);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004068
4069 return 1;
4070 }
4071 return 0;
4072}
4073
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004074/*
4075 * find_idlest_group finds and returns the least busy CPU group within the
4076 * domain.
4077 */
4078static struct sched_group *
Peter Zijlstra78e7ed52009-09-03 13:16:51 +02004079find_idlest_group(struct sched_domain *sd, struct task_struct *p,
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004080 int this_cpu, int load_idx)
Gregory Haskinse7693a32008-01-25 21:08:09 +01004081{
Andi Kleenb3bd3de2010-08-10 14:17:51 -07004082 struct sched_group *idlest = NULL, *group = sd->groups;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004083 unsigned long min_load = ULONG_MAX, this_load = 0;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004084 int imbalance = 100 + (sd->imbalance_pct-100)/2;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004085
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004086 do {
4087 unsigned long load, avg_load;
4088 int local_group;
4089 int i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004090
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004091 /* Skip over this group if it has no CPUs allowed */
4092 if (!cpumask_intersects(sched_group_cpus(group),
Peter Zijlstrafa17b502011-06-16 12:23:22 +02004093 tsk_cpus_allowed(p)))
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004094 continue;
4095
4096 local_group = cpumask_test_cpu(this_cpu,
4097 sched_group_cpus(group));
4098
4099 /* Tally up the load of all CPUs in the group */
4100 avg_load = 0;
4101
4102 for_each_cpu(i, sched_group_cpus(group)) {
4103 /* Bias balancing toward cpus of our domain */
4104 if (local_group)
4105 load = source_load(i, load_idx);
4106 else
4107 load = target_load(i, load_idx);
4108
4109 avg_load += load;
4110 }
4111
4112 /* Adjust by relative CPU power of the group */
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004113 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004114
4115 if (local_group) {
4116 this_load = avg_load;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004117 } else if (avg_load < min_load) {
4118 min_load = avg_load;
4119 idlest = group;
4120 }
4121 } while (group = group->next, group != sd->groups);
4122
4123 if (!idlest || 100*this_load < imbalance*min_load)
4124 return NULL;
4125 return idlest;
4126}
4127
4128/*
4129 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4130 */
4131static int
4132find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4133{
4134 unsigned long load, min_load = ULONG_MAX;
4135 int idlest = -1;
4136 int i;
4137
4138 /* Traverse only the allowed CPUs */
Peter Zijlstrafa17b502011-06-16 12:23:22 +02004139 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004140 load = weighted_cpuload(i);
4141
4142 if (load < min_load || (load == min_load && i == this_cpu)) {
4143 min_load = load;
4144 idlest = i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004145 }
4146 }
4147
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004148 return idlest;
4149}
Gregory Haskinse7693a32008-01-25 21:08:09 +01004150
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004151/*
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004152 * Try and locate an idle CPU in the sched_domain.
4153 */
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004154static int select_idle_sibling(struct task_struct *p, int target)
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004155{
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004156 struct sched_domain *sd;
Linus Torvalds37407ea2012-09-16 12:29:43 -07004157 struct sched_group *sg;
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004158 int i = task_cpu(p);
4159
4160 if (idle_cpu(target))
4161 return target;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004162
4163 /*
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004164 * If the prevous cpu is cache affine and idle, don't be stupid.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004165 */
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004166 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4167 return i;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004168
4169 /*
Linus Torvalds37407ea2012-09-16 12:29:43 -07004170 * Otherwise, iterate the domains and find an elegible idle cpu.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004171 */
Peter Zijlstra518cd622011-12-07 15:07:31 +01004172 sd = rcu_dereference(per_cpu(sd_llc, target));
Suresh Siddha77e81362011-11-17 11:08:23 -08004173 for_each_lower_domain(sd) {
Linus Torvalds37407ea2012-09-16 12:29:43 -07004174 sg = sd->groups;
4175 do {
4176 if (!cpumask_intersects(sched_group_cpus(sg),
4177 tsk_cpus_allowed(p)))
4178 goto next;
Mike Galbraith970e1782012-06-12 05:18:32 +02004179
Linus Torvalds37407ea2012-09-16 12:29:43 -07004180 for_each_cpu(i, sched_group_cpus(sg)) {
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004181 if (i == target || !idle_cpu(i))
Linus Torvalds37407ea2012-09-16 12:29:43 -07004182 goto next;
4183 }
4184
4185 target = cpumask_first_and(sched_group_cpus(sg),
4186 tsk_cpus_allowed(p));
4187 goto done;
4188next:
4189 sg = sg->next;
4190 } while (sg != sd->groups);
4191 }
4192done:
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004193 return target;
4194}
4195
4196/*
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004197 * sched_balance_self: balance the current task (running on cpu) in domains
4198 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
4199 * SD_BALANCE_EXEC.
4200 *
4201 * Balance, ie. select the least loaded group.
4202 *
4203 * Returns the target CPU number, or the same CPU if no balancing is needed.
4204 *
4205 * preempt must be disabled.
4206 */
Peter Zijlstra0017d732010-03-24 18:34:10 +01004207static int
Peter Zijlstraac66f542013-10-07 11:29:16 +01004208select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004209{
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02004210 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004211 int cpu = smp_processor_id();
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004212 int new_cpu = cpu;
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004213 int want_affine = 0;
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004214 int sync = wake_flags & WF_SYNC;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004215
Peter Zijlstra29baa742012-04-23 12:11:21 +02004216 if (p->nr_cpus_allowed == 1)
Mike Galbraith76854c72011-11-22 15:18:24 +01004217 return prev_cpu;
4218
Peter Zijlstra0763a662009-09-14 19:37:39 +02004219 if (sd_flag & SD_BALANCE_WAKE) {
Peter Zijlstrafa17b502011-06-16 12:23:22 +02004220 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004221 want_affine = 1;
4222 new_cpu = prev_cpu;
4223 }
Gregory Haskinse7693a32008-01-25 21:08:09 +01004224
Peter Zijlstradce840a2011-04-07 14:09:50 +02004225 rcu_read_lock();
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004226 for_each_domain(cpu, tmp) {
Peter Zijlstrae4f42882009-12-16 18:04:34 +01004227 if (!(tmp->flags & SD_LOAD_BALANCE))
4228 continue;
4229
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004230 /*
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004231 * If both cpu and prev_cpu are part of this domain,
4232 * cpu is a valid SD_WAKE_AFFINE target.
Peter Zijlstrafe3bcfe2009-11-12 15:55:29 +01004233 */
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004234 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4235 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4236 affine_sd = tmp;
Alex Shif03542a2012-07-26 08:55:34 +08004237 break;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004238 }
4239
Alex Shif03542a2012-07-26 08:55:34 +08004240 if (tmp->flags & sd_flag)
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02004241 sd = tmp;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004242 }
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004243
Mike Galbraith8b911ac2010-03-11 17:17:16 +01004244 if (affine_sd) {
Alex Shif03542a2012-07-26 08:55:34 +08004245 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
Peter Zijlstradce840a2011-04-07 14:09:50 +02004246 prev_cpu = cpu;
4247
4248 new_cpu = select_idle_sibling(p, prev_cpu);
4249 goto unlock;
Mike Galbraith8b911ac2010-03-11 17:17:16 +01004250 }
Peter Zijlstra3b640892009-09-16 13:44:33 +02004251
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004252 while (sd) {
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004253 int load_idx = sd->forkexec_idx;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004254 struct sched_group *group;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004255 int weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004256
Peter Zijlstra0763a662009-09-14 19:37:39 +02004257 if (!(sd->flags & sd_flag)) {
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004258 sd = sd->child;
4259 continue;
4260 }
4261
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004262 if (sd_flag & SD_BALANCE_WAKE)
4263 load_idx = sd->wake_idx;
4264
4265 group = find_idlest_group(sd, p, cpu, load_idx);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004266 if (!group) {
4267 sd = sd->child;
4268 continue;
4269 }
4270
Peter Zijlstrad7c33c42009-09-11 12:45:38 +02004271 new_cpu = find_idlest_cpu(group, p, cpu);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004272 if (new_cpu == -1 || new_cpu == cpu) {
4273 /* Now try balancing at a lower domain level of cpu */
4274 sd = sd->child;
4275 continue;
4276 }
4277
4278 /* Now try balancing at a lower domain level of new_cpu */
4279 cpu = new_cpu;
Peter Zijlstra669c55e2010-04-16 14:59:29 +02004280 weight = sd->span_weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004281 sd = NULL;
4282 for_each_domain(cpu, tmp) {
Peter Zijlstra669c55e2010-04-16 14:59:29 +02004283 if (weight <= tmp->span_weight)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004284 break;
Peter Zijlstra0763a662009-09-14 19:37:39 +02004285 if (tmp->flags & sd_flag)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004286 sd = tmp;
4287 }
4288 /* while loop will break here if sd == NULL */
Gregory Haskinse7693a32008-01-25 21:08:09 +01004289 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02004290unlock:
4291 rcu_read_unlock();
Gregory Haskinse7693a32008-01-25 21:08:09 +01004292
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004293 return new_cpu;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004294}
Paul Turner0a74bef2012-10-04 13:18:30 +02004295
4296/*
4297 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4298 * cfs_rq_of(p) references at time of call are still valid and identify the
4299 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4300 * other assumptions, including the state of rq->lock, should be made.
4301 */
4302static void
4303migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4304{
Paul Turneraff3e492012-10-04 13:18:30 +02004305 struct sched_entity *se = &p->se;
4306 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4307
4308 /*
4309 * Load tracking: accumulate removed load so that it can be processed
4310 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4311 * to blocked load iff they have a positive decay-count. It can never
4312 * be negative here since on-rq tasks have decay-count == 0.
4313 */
4314 if (se->avg.decay_count) {
4315 se->avg.decay_count = -__synchronize_entity_decay(se);
Alex Shi25099402013-06-20 10:18:55 +08004316 atomic_long_add(se->avg.load_avg_contrib,
4317 &cfs_rq->removed_load);
Paul Turneraff3e492012-10-04 13:18:30 +02004318 }
Paul Turner0a74bef2012-10-04 13:18:30 +02004319}
Gregory Haskinse7693a32008-01-25 21:08:09 +01004320#endif /* CONFIG_SMP */
4321
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004322static unsigned long
4323wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004324{
4325 unsigned long gran = sysctl_sched_wakeup_granularity;
4326
4327 /*
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004328 * Since its curr running now, convert the gran from real-time
4329 * to virtual-time in his units.
Mike Galbraith13814d42010-03-11 17:17:04 +01004330 *
4331 * By using 'se' instead of 'curr' we penalize light tasks, so
4332 * they get preempted easier. That is, if 'se' < 'curr' then
4333 * the resulting gran will be larger, therefore penalizing the
4334 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4335 * be smaller, again penalizing the lighter task.
4336 *
4337 * This is especially important for buddies when the leftmost
4338 * task is higher priority than the buddy.
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004339 */
Shaohua Lif4ad9bd2011-04-08 12:53:09 +08004340 return calc_delta_fair(gran, se);
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004341}
4342
4343/*
Peter Zijlstra464b7522008-10-24 11:06:15 +02004344 * Should 'se' preempt 'curr'.
4345 *
4346 * |s1
4347 * |s2
4348 * |s3
4349 * g
4350 * |<--->|c
4351 *
4352 * w(c, s1) = -1
4353 * w(c, s2) = 0
4354 * w(c, s3) = 1
4355 *
4356 */
4357static int
4358wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4359{
4360 s64 gran, vdiff = curr->vruntime - se->vruntime;
4361
4362 if (vdiff <= 0)
4363 return -1;
4364
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004365 gran = wakeup_gran(curr, se);
Peter Zijlstra464b7522008-10-24 11:06:15 +02004366 if (vdiff > gran)
4367 return 1;
4368
4369 return 0;
4370}
4371
Peter Zijlstra02479092008-11-04 21:25:10 +01004372static void set_last_buddy(struct sched_entity *se)
4373{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004374 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4375 return;
4376
4377 for_each_sched_entity(se)
4378 cfs_rq_of(se)->last = se;
Peter Zijlstra02479092008-11-04 21:25:10 +01004379}
4380
4381static void set_next_buddy(struct sched_entity *se)
4382{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004383 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4384 return;
4385
4386 for_each_sched_entity(se)
4387 cfs_rq_of(se)->next = se;
Peter Zijlstra02479092008-11-04 21:25:10 +01004388}
4389
Rik van Rielac53db52011-02-01 09:51:03 -05004390static void set_skip_buddy(struct sched_entity *se)
4391{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004392 for_each_sched_entity(se)
4393 cfs_rq_of(se)->skip = se;
Rik van Rielac53db52011-02-01 09:51:03 -05004394}
4395
Peter Zijlstra464b7522008-10-24 11:06:15 +02004396/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004397 * Preempt the current task with a newly woken task if needed:
4398 */
Peter Zijlstra5a9b86f2009-09-16 13:47:58 +02004399static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004400{
4401 struct task_struct *curr = rq->curr;
Srivatsa Vaddagiri8651a862007-10-15 17:00:12 +02004402 struct sched_entity *se = &curr->se, *pse = &p->se;
Mike Galbraith03e89e42008-12-16 08:45:30 +01004403 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +02004404 int scale = cfs_rq->nr_running >= sched_nr_latency;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004405 int next_buddy_marked = 0;
Mike Galbraith03e89e42008-12-16 08:45:30 +01004406
Ingo Molnar4ae7d5c2008-03-19 01:42:00 +01004407 if (unlikely(se == pse))
4408 return;
4409
Paul Turner5238cdd2011-07-21 09:43:37 -07004410 /*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004411 * This is possible from callers such as move_task(), in which we
Paul Turner5238cdd2011-07-21 09:43:37 -07004412 * unconditionally check_prempt_curr() after an enqueue (which may have
4413 * lead to a throttle). This both saves work and prevents false
4414 * next-buddy nomination below.
4415 */
4416 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4417 return;
4418
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004419 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
Mike Galbraith3cb63d52009-09-11 12:01:17 +02004420 set_next_buddy(pse);
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004421 next_buddy_marked = 1;
4422 }
Peter Zijlstra57fdc262008-09-23 15:33:45 +02004423
Bharata B Raoaec0a512008-08-28 14:42:49 +05304424 /*
4425 * We can come here with TIF_NEED_RESCHED already set from new task
4426 * wake up path.
Paul Turner5238cdd2011-07-21 09:43:37 -07004427 *
4428 * Note: this also catches the edge-case of curr being in a throttled
4429 * group (e.g. via set_curr_task), since update_curr() (in the
4430 * enqueue of curr) will have resulted in resched being set. This
4431 * prevents us from potentially nominating it as a false LAST_BUDDY
4432 * below.
Bharata B Raoaec0a512008-08-28 14:42:49 +05304433 */
4434 if (test_tsk_need_resched(curr))
4435 return;
4436
Darren Harta2f5c9a2011-02-22 13:04:33 -08004437 /* Idle tasks are by definition preempted by non-idle tasks. */
4438 if (unlikely(curr->policy == SCHED_IDLE) &&
4439 likely(p->policy != SCHED_IDLE))
4440 goto preempt;
4441
Ingo Molnar91c234b2007-10-15 17:00:18 +02004442 /*
Darren Harta2f5c9a2011-02-22 13:04:33 -08004443 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4444 * is driven by the tick):
Ingo Molnar91c234b2007-10-15 17:00:18 +02004445 */
Ingo Molnar8ed92e52012-10-14 14:28:50 +02004446 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
Ingo Molnar91c234b2007-10-15 17:00:18 +02004447 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004448
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004449 find_matching_se(&se, &pse);
Paul Turner9bbd7372011-07-05 19:07:21 -07004450 update_curr(cfs_rq_of(se));
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004451 BUG_ON(!pse);
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004452 if (wakeup_preempt_entity(se, pse) == 1) {
4453 /*
4454 * Bias pick_next to pick the sched entity that is
4455 * triggering this preemption.
4456 */
4457 if (!next_buddy_marked)
4458 set_next_buddy(pse);
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004459 goto preempt;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004460 }
Jupyung Leea65ac742009-11-17 18:51:40 +09004461
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004462 return;
4463
4464preempt:
4465 resched_task(curr);
4466 /*
4467 * Only set the backward buddy when the current task is still
4468 * on the rq. This can happen when a wakeup gets interleaved
4469 * with schedule on the ->pre_schedule() or idle_balance()
4470 * point, either of which can * drop the rq lock.
4471 *
4472 * Also, during early boot the idle thread is in the fair class,
4473 * for obvious reasons its a bad idea to schedule back to it.
4474 */
4475 if (unlikely(!se->on_rq || curr == rq->idle))
4476 return;
4477
4478 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4479 set_last_buddy(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004480}
4481
Ingo Molnarfb8d4722007-08-09 11:16:48 +02004482static struct task_struct *pick_next_task_fair(struct rq *rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004483{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004484 struct task_struct *p;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004485 struct cfs_rq *cfs_rq = &rq->cfs;
4486 struct sched_entity *se;
4487
Tim Blechmann36ace272009-11-24 11:55:45 +01004488 if (!cfs_rq->nr_running)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004489 return NULL;
4490
4491 do {
Ingo Molnar9948f4b2007-08-09 11:16:48 +02004492 se = pick_next_entity(cfs_rq);
Peter Zijlstraf4b67552008-11-04 21:25:07 +01004493 set_next_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004494 cfs_rq = group_cfs_rq(se);
4495 } while (cfs_rq);
4496
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004497 p = task_of(se);
Mike Galbraithb39e66e2011-11-22 15:20:07 +01004498 if (hrtick_enabled(rq))
4499 hrtick_start_fair(rq, p);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004500
4501 return p;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004502}
4503
4504/*
4505 * Account for a descheduled task:
4506 */
Ingo Molnar31ee5292007-08-09 11:16:49 +02004507static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004508{
4509 struct sched_entity *se = &prev->se;
4510 struct cfs_rq *cfs_rq;
4511
4512 for_each_sched_entity(se) {
4513 cfs_rq = cfs_rq_of(se);
Ingo Molnarab6cde22007-08-09 11:16:48 +02004514 put_prev_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004515 }
4516}
4517
Rik van Rielac53db52011-02-01 09:51:03 -05004518/*
4519 * sched_yield() is very simple
4520 *
4521 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4522 */
4523static void yield_task_fair(struct rq *rq)
4524{
4525 struct task_struct *curr = rq->curr;
4526 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4527 struct sched_entity *se = &curr->se;
4528
4529 /*
4530 * Are we the only task in the tree?
4531 */
4532 if (unlikely(rq->nr_running == 1))
4533 return;
4534
4535 clear_buddies(cfs_rq, se);
4536
4537 if (curr->policy != SCHED_BATCH) {
4538 update_rq_clock(rq);
4539 /*
4540 * Update run-time statistics of the 'current'.
4541 */
4542 update_curr(cfs_rq);
Mike Galbraith916671c2011-11-22 15:21:26 +01004543 /*
4544 * Tell update_rq_clock() that we've just updated,
4545 * so we don't do microscopic update in schedule()
4546 * and double the fastpath cost.
4547 */
4548 rq->skip_clock_update = 1;
Rik van Rielac53db52011-02-01 09:51:03 -05004549 }
4550
4551 set_skip_buddy(se);
4552}
4553
Mike Galbraithd95f4122011-02-01 09:50:51 -05004554static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4555{
4556 struct sched_entity *se = &p->se;
4557
Paul Turner5238cdd2011-07-21 09:43:37 -07004558 /* throttled hierarchies are not runnable */
4559 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
Mike Galbraithd95f4122011-02-01 09:50:51 -05004560 return false;
4561
4562 /* Tell the scheduler that we'd really like pse to run next. */
4563 set_next_buddy(se);
4564
Mike Galbraithd95f4122011-02-01 09:50:51 -05004565 yield_task_fair(rq);
4566
4567 return true;
4568}
4569
Peter Williams681f3e62007-10-24 18:23:51 +02004570#ifdef CONFIG_SMP
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004571/**************************************************
Peter Zijlstrae9c84cb2012-07-03 13:53:26 +02004572 * Fair scheduling class load-balancing methods.
4573 *
4574 * BASICS
4575 *
4576 * The purpose of load-balancing is to achieve the same basic fairness the
4577 * per-cpu scheduler provides, namely provide a proportional amount of compute
4578 * time to each task. This is expressed in the following equation:
4579 *
4580 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4581 *
4582 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4583 * W_i,0 is defined as:
4584 *
4585 * W_i,0 = \Sum_j w_i,j (2)
4586 *
4587 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4588 * is derived from the nice value as per prio_to_weight[].
4589 *
4590 * The weight average is an exponential decay average of the instantaneous
4591 * weight:
4592 *
4593 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4594 *
4595 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4596 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4597 * can also include other factors [XXX].
4598 *
4599 * To achieve this balance we define a measure of imbalance which follows
4600 * directly from (1):
4601 *
4602 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4603 *
4604 * We them move tasks around to minimize the imbalance. In the continuous
4605 * function space it is obvious this converges, in the discrete case we get
4606 * a few fun cases generally called infeasible weight scenarios.
4607 *
4608 * [XXX expand on:
4609 * - infeasible weights;
4610 * - local vs global optima in the discrete case. ]
4611 *
4612 *
4613 * SCHED DOMAINS
4614 *
4615 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4616 * for all i,j solution, we create a tree of cpus that follows the hardware
4617 * topology where each level pairs two lower groups (or better). This results
4618 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4619 * tree to only the first of the previous level and we decrease the frequency
4620 * of load-balance at each level inv. proportional to the number of cpus in
4621 * the groups.
4622 *
4623 * This yields:
4624 *
4625 * log_2 n 1 n
4626 * \Sum { --- * --- * 2^i } = O(n) (5)
4627 * i = 0 2^i 2^i
4628 * `- size of each group
4629 * | | `- number of cpus doing load-balance
4630 * | `- freq
4631 * `- sum over all levels
4632 *
4633 * Coupled with a limit on how many tasks we can migrate every balance pass,
4634 * this makes (5) the runtime complexity of the balancer.
4635 *
4636 * An important property here is that each CPU is still (indirectly) connected
4637 * to every other cpu in at most O(log n) steps:
4638 *
4639 * The adjacency matrix of the resulting graph is given by:
4640 *
4641 * log_2 n
4642 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4643 * k = 0
4644 *
4645 * And you'll find that:
4646 *
4647 * A^(log_2 n)_i,j != 0 for all i,j (7)
4648 *
4649 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4650 * The task movement gives a factor of O(m), giving a convergence complexity
4651 * of:
4652 *
4653 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4654 *
4655 *
4656 * WORK CONSERVING
4657 *
4658 * In order to avoid CPUs going idle while there's still work to do, new idle
4659 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4660 * tree itself instead of relying on other CPUs to bring it work.
4661 *
4662 * This adds some complexity to both (5) and (8) but it reduces the total idle
4663 * time.
4664 *
4665 * [XXX more?]
4666 *
4667 *
4668 * CGROUPS
4669 *
4670 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4671 *
4672 * s_k,i
4673 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4674 * S_k
4675 *
4676 * Where
4677 *
4678 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4679 *
4680 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4681 *
4682 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4683 * property.
4684 *
4685 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4686 * rewrite all of this once again.]
4687 */
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004688
Hiroshi Shimamotoed387b72012-01-31 11:40:32 +09004689static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4690
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01004691enum fbq_type { regular, remote, all };
4692
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004693#define LBF_ALL_PINNED 0x01
Peter Zijlstra367456c2012-02-20 21:49:09 +01004694#define LBF_NEED_BREAK 0x02
Peter Zijlstra62633222013-08-19 12:41:09 +02004695#define LBF_DST_PINNED 0x04
4696#define LBF_SOME_PINNED 0x08
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004697
4698struct lb_env {
4699 struct sched_domain *sd;
4700
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004701 struct rq *src_rq;
Prashanth Nageshappa85c1e7d2012-06-19 17:47:34 +05304702 int src_cpu;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004703
4704 int dst_cpu;
4705 struct rq *dst_rq;
4706
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304707 struct cpumask *dst_grpmask;
4708 int new_dst_cpu;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004709 enum cpu_idle_type idle;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004710 long imbalance;
Michael Wangb9403132012-07-12 16:10:13 +08004711 /* The set of CPUs under consideration for load-balancing */
4712 struct cpumask *cpus;
4713
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004714 unsigned int flags;
Peter Zijlstra367456c2012-02-20 21:49:09 +01004715
4716 unsigned int loop;
4717 unsigned int loop_break;
4718 unsigned int loop_max;
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01004719
4720 enum fbq_type fbq_type;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004721};
4722
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004723/*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004724 * move_task - move a task from one runqueue to another runqueue.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004725 * Both runqueues must be locked.
4726 */
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004727static void move_task(struct task_struct *p, struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004728{
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004729 deactivate_task(env->src_rq, p, 0);
4730 set_task_cpu(p, env->dst_cpu);
4731 activate_task(env->dst_rq, p, 0);
4732 check_preempt_curr(env->dst_rq, p, 0);
Rik van Riel6fe6b2d2013-10-07 11:29:08 +01004733#ifdef CONFIG_NUMA_BALANCING
4734 if (p->numa_preferred_nid != -1) {
4735 int src_nid = cpu_to_node(env->src_cpu);
4736 int dst_nid = cpu_to_node(env->dst_cpu);
4737
4738 /*
4739 * If the load balancer has moved the task then limit
4740 * migrations from taking place in the short term in
4741 * case this is a short-lived migration.
4742 */
4743 if (src_nid != dst_nid && dst_nid != p->numa_preferred_nid)
4744 p->numa_migrate_seq = 0;
4745 }
4746#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004747}
4748
4749/*
Peter Zijlstra029632f2011-10-25 10:00:11 +02004750 * Is this task likely cache-hot:
4751 */
4752static int
4753task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4754{
4755 s64 delta;
4756
4757 if (p->sched_class != &fair_sched_class)
4758 return 0;
4759
4760 if (unlikely(p->policy == SCHED_IDLE))
4761 return 0;
4762
4763 /*
4764 * Buddy candidates are cache hot:
4765 */
4766 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4767 (&p->se == cfs_rq_of(&p->se)->next ||
4768 &p->se == cfs_rq_of(&p->se)->last))
4769 return 1;
4770
4771 if (sysctl_sched_migration_cost == -1)
4772 return 1;
4773 if (sysctl_sched_migration_cost == 0)
4774 return 0;
4775
4776 delta = now - p->se.exec_start;
4777
4778 return delta < (s64)sysctl_sched_migration_cost;
4779}
4780
Mel Gorman3a7053b2013-10-07 11:29:00 +01004781#ifdef CONFIG_NUMA_BALANCING
4782/* Returns true if the destination node has incurred more faults */
4783static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4784{
4785 int src_nid, dst_nid;
4786
4787 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4788 !(env->sd->flags & SD_NUMA)) {
4789 return false;
4790 }
4791
4792 src_nid = cpu_to_node(env->src_cpu);
4793 dst_nid = cpu_to_node(env->dst_cpu);
4794
Mel Gorman83e1d2c2013-10-07 11:29:27 +01004795 if (src_nid == dst_nid)
Mel Gorman3a7053b2013-10-07 11:29:00 +01004796 return false;
4797
Mel Gorman83e1d2c2013-10-07 11:29:27 +01004798 /* Always encourage migration to the preferred node. */
4799 if (dst_nid == p->numa_preferred_nid)
4800 return true;
4801
Rik van Riel887c2902013-10-07 11:29:31 +01004802 /* If both task and group weight improve, this move is a winner. */
4803 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
4804 group_weight(p, dst_nid) > group_weight(p, src_nid))
Mel Gorman3a7053b2013-10-07 11:29:00 +01004805 return true;
4806
4807 return false;
4808}
Mel Gorman7a0f3082013-10-07 11:29:01 +01004809
4810
4811static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4812{
4813 int src_nid, dst_nid;
4814
4815 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4816 return false;
4817
4818 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4819 return false;
4820
4821 src_nid = cpu_to_node(env->src_cpu);
4822 dst_nid = cpu_to_node(env->dst_cpu);
4823
Mel Gorman83e1d2c2013-10-07 11:29:27 +01004824 if (src_nid == dst_nid)
Mel Gorman7a0f3082013-10-07 11:29:01 +01004825 return false;
4826
Mel Gorman83e1d2c2013-10-07 11:29:27 +01004827 /* Migrating away from the preferred node is always bad. */
4828 if (src_nid == p->numa_preferred_nid)
4829 return true;
4830
Rik van Riel887c2902013-10-07 11:29:31 +01004831 /* If either task or group weight get worse, don't do it. */
4832 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
4833 group_weight(p, dst_nid) < group_weight(p, src_nid))
Mel Gorman7a0f3082013-10-07 11:29:01 +01004834 return true;
4835
4836 return false;
4837}
4838
Mel Gorman3a7053b2013-10-07 11:29:00 +01004839#else
4840static inline bool migrate_improves_locality(struct task_struct *p,
4841 struct lb_env *env)
4842{
4843 return false;
4844}
Mel Gorman7a0f3082013-10-07 11:29:01 +01004845
4846static inline bool migrate_degrades_locality(struct task_struct *p,
4847 struct lb_env *env)
4848{
4849 return false;
4850}
Mel Gorman3a7053b2013-10-07 11:29:00 +01004851#endif
4852
Peter Zijlstra029632f2011-10-25 10:00:11 +02004853/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004854 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4855 */
4856static
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004857int can_migrate_task(struct task_struct *p, struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004858{
4859 int tsk_cache_hot = 0;
4860 /*
4861 * We do not migrate tasks that are:
Joonsoo Kimd3198082013-04-23 17:27:40 +09004862 * 1) throttled_lb_pair, or
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004863 * 2) cannot be migrated to this CPU due to cpus_allowed, or
Joonsoo Kimd3198082013-04-23 17:27:40 +09004864 * 3) running (obviously), or
4865 * 4) are cache-hot on their current CPU.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004866 */
Joonsoo Kimd3198082013-04-23 17:27:40 +09004867 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4868 return 0;
4869
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004870 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004871 int cpu;
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304872
Lucas De Marchi41acab82010-03-10 23:37:45 -03004873 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304874
Peter Zijlstra62633222013-08-19 12:41:09 +02004875 env->flags |= LBF_SOME_PINNED;
4876
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304877 /*
4878 * Remember if this task can be migrated to any other cpu in
4879 * our sched_group. We may want to revisit it if we couldn't
4880 * meet load balance goals by pulling other tasks on src_cpu.
4881 *
4882 * Also avoid computing new_dst_cpu if we have already computed
4883 * one in current iteration.
4884 */
Peter Zijlstra62633222013-08-19 12:41:09 +02004885 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304886 return 0;
4887
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004888 /* Prevent to re-select dst_cpu via env's cpus */
4889 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4890 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
Peter Zijlstra62633222013-08-19 12:41:09 +02004891 env->flags |= LBF_DST_PINNED;
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004892 env->new_dst_cpu = cpu;
4893 break;
4894 }
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304895 }
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004896
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004897 return 0;
4898 }
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304899
4900 /* Record that we found atleast one task that could run on dst_cpu */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004901 env->flags &= ~LBF_ALL_PINNED;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004902
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004903 if (task_running(env->src_rq, p)) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03004904 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004905 return 0;
4906 }
4907
4908 /*
4909 * Aggressive migration if:
Mel Gorman3a7053b2013-10-07 11:29:00 +01004910 * 1) destination numa is preferred
4911 * 2) task is cache cold, or
4912 * 3) too many balance attempts have failed.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004913 */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02004914 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
Mel Gorman7a0f3082013-10-07 11:29:01 +01004915 if (!tsk_cache_hot)
4916 tsk_cache_hot = migrate_degrades_locality(p, env);
Mel Gorman3a7053b2013-10-07 11:29:00 +01004917
4918 if (migrate_improves_locality(p, env)) {
4919#ifdef CONFIG_SCHEDSTATS
4920 if (tsk_cache_hot) {
4921 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4922 schedstat_inc(p, se.statistics.nr_forced_migrations);
4923 }
4924#endif
4925 return 1;
4926 }
4927
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004928 if (!tsk_cache_hot ||
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004929 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
Zhang Hang4e2dcb72013-04-10 14:04:55 +08004930
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004931 if (tsk_cache_hot) {
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004932 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
Lucas De Marchi41acab82010-03-10 23:37:45 -03004933 schedstat_inc(p, se.statistics.nr_forced_migrations);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004934 }
Zhang Hang4e2dcb72013-04-10 14:04:55 +08004935
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004936 return 1;
4937 }
4938
Zhang Hang4e2dcb72013-04-10 14:04:55 +08004939 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4940 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004941}
4942
Peter Zijlstra897c3952009-12-17 17:45:42 +01004943/*
4944 * move_one_task tries to move exactly one task from busiest to this_rq, as
4945 * part of active balancing operations within "domain".
4946 * Returns 1 if successful and 0 otherwise.
4947 *
4948 * Called with both runqueues locked.
4949 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004950static int move_one_task(struct lb_env *env)
Peter Zijlstra897c3952009-12-17 17:45:42 +01004951{
4952 struct task_struct *p, *n;
Peter Zijlstra897c3952009-12-17 17:45:42 +01004953
Peter Zijlstra367456c2012-02-20 21:49:09 +01004954 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
Peter Zijlstra367456c2012-02-20 21:49:09 +01004955 if (!can_migrate_task(p, env))
4956 continue;
Peter Zijlstra897c3952009-12-17 17:45:42 +01004957
Peter Zijlstra367456c2012-02-20 21:49:09 +01004958 move_task(p, env);
4959 /*
4960 * Right now, this is only the second place move_task()
4961 * is called, so we can safely collect move_task()
4962 * stats here rather than inside move_task().
4963 */
4964 schedstat_inc(env->sd, lb_gained[env->idle]);
4965 return 1;
Peter Zijlstra897c3952009-12-17 17:45:42 +01004966 }
Peter Zijlstra897c3952009-12-17 17:45:42 +01004967 return 0;
4968}
4969
Peter Zijlstraeb953082012-04-17 13:38:40 +02004970static const unsigned int sched_nr_migrate_break = 32;
4971
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004972/*
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004973 * move_tasks tries to move up to imbalance weighted load from busiest to
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004974 * this_rq, as part of a balancing operation within domain "sd".
4975 * Returns 1 if successful and 0 otherwise.
4976 *
4977 * Called with both runqueues locked.
4978 */
4979static int move_tasks(struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004980{
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004981 struct list_head *tasks = &env->src_rq->cfs_tasks;
4982 struct task_struct *p;
Peter Zijlstra367456c2012-02-20 21:49:09 +01004983 unsigned long load;
4984 int pulled = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004985
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004986 if (env->imbalance <= 0)
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004987 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004988
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004989 while (!list_empty(tasks)) {
4990 p = list_first_entry(tasks, struct task_struct, se.group_node);
4991
Peter Zijlstra367456c2012-02-20 21:49:09 +01004992 env->loop++;
4993 /* We've more or less seen every task there is, call it quits */
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004994 if (env->loop > env->loop_max)
Peter Zijlstra367456c2012-02-20 21:49:09 +01004995 break;
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004996
4997 /* take a breather every nr_migrate tasks */
Peter Zijlstra367456c2012-02-20 21:49:09 +01004998 if (env->loop > env->loop_break) {
Peter Zijlstraeb953082012-04-17 13:38:40 +02004999 env->loop_break += sched_nr_migrate_break;
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005000 env->flags |= LBF_NEED_BREAK;
Peter Zijlstraee00e662009-12-17 17:25:20 +01005001 break;
Peter Zijlstraa195f002011-09-22 15:30:18 +02005002 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005003
Joonsoo Kimd3198082013-04-23 17:27:40 +09005004 if (!can_migrate_task(p, env))
Peter Zijlstra367456c2012-02-20 21:49:09 +01005005 goto next;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005006
Peter Zijlstra367456c2012-02-20 21:49:09 +01005007 load = task_h_load(p);
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005008
Peter Zijlstraeb953082012-04-17 13:38:40 +02005009 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
Peter Zijlstra367456c2012-02-20 21:49:09 +01005010 goto next;
5011
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005012 if ((load / 2) > env->imbalance)
Peter Zijlstra367456c2012-02-20 21:49:09 +01005013 goto next;
5014
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005015 move_task(p, env);
Peter Zijlstraee00e662009-12-17 17:25:20 +01005016 pulled++;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005017 env->imbalance -= load;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005018
5019#ifdef CONFIG_PREEMPT
Peter Zijlstraee00e662009-12-17 17:25:20 +01005020 /*
5021 * NEWIDLE balancing is a source of latency, so preemptible
5022 * kernels will stop after the first task is pulled to minimize
5023 * the critical section.
5024 */
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005025 if (env->idle == CPU_NEWLY_IDLE)
Peter Zijlstraee00e662009-12-17 17:25:20 +01005026 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005027#endif
5028
Peter Zijlstraee00e662009-12-17 17:25:20 +01005029 /*
5030 * We only want to steal up to the prescribed amount of
5031 * weighted load.
5032 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005033 if (env->imbalance <= 0)
Peter Zijlstraee00e662009-12-17 17:25:20 +01005034 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005035
Peter Zijlstra367456c2012-02-20 21:49:09 +01005036 continue;
5037next:
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005038 list_move_tail(&p->se.group_node, tasks);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005039 }
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005040
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005041 /*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005042 * Right now, this is one of only two places move_task() is called,
5043 * so we can safely collect move_task() stats here rather than
5044 * inside move_task().
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005045 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005046 schedstat_add(env->sd, lb_gained[env->idle], pulled);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005047
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005048 return pulled;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005049}
5050
Peter Zijlstra230059de2009-12-17 17:47:12 +01005051#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005052/*
5053 * update tg->load_weight by folding this cpu's load_avg
5054 */
Paul Turner48a16752012-10-04 13:18:31 +02005055static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005056{
Paul Turner48a16752012-10-04 13:18:31 +02005057 struct sched_entity *se = tg->se[cpu];
5058 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005059
Paul Turner48a16752012-10-04 13:18:31 +02005060 /* throttled entities do not contribute to load */
5061 if (throttled_hierarchy(cfs_rq))
5062 return;
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005063
Paul Turneraff3e492012-10-04 13:18:30 +02005064 update_cfs_rq_blocked_load(cfs_rq, 1);
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005065
Paul Turner82958362012-10-04 13:18:31 +02005066 if (se) {
5067 update_entity_load_avg(se, 1);
5068 /*
5069 * We pivot on our runnable average having decayed to zero for
5070 * list removal. This generally implies that all our children
5071 * have also been removed (modulo rounding error or bandwidth
5072 * control); however, such cases are rare and we can fix these
5073 * at enqueue.
5074 *
5075 * TODO: fix up out-of-order children on enqueue.
5076 */
5077 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5078 list_del_leaf_cfs_rq(cfs_rq);
5079 } else {
Paul Turner48a16752012-10-04 13:18:31 +02005080 struct rq *rq = rq_of(cfs_rq);
Paul Turner82958362012-10-04 13:18:31 +02005081 update_rq_runnable_avg(rq, rq->nr_running);
5082 }
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005083}
5084
Paul Turner48a16752012-10-04 13:18:31 +02005085static void update_blocked_averages(int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005086{
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005087 struct rq *rq = cpu_rq(cpu);
Paul Turner48a16752012-10-04 13:18:31 +02005088 struct cfs_rq *cfs_rq;
5089 unsigned long flags;
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005090
Paul Turner48a16752012-10-04 13:18:31 +02005091 raw_spin_lock_irqsave(&rq->lock, flags);
5092 update_rq_clock(rq);
Peter Zijlstra9763b672011-07-13 13:09:25 +02005093 /*
5094 * Iterates the task_group tree in a bottom up fashion, see
5095 * list_add_leaf_cfs_rq() for details.
5096 */
Paul Turner64660c82011-07-21 09:43:36 -07005097 for_each_leaf_cfs_rq(rq, cfs_rq) {
Paul Turner48a16752012-10-04 13:18:31 +02005098 /*
5099 * Note: We may want to consider periodically releasing
5100 * rq->lock about these updates so that creating many task
5101 * groups does not result in continually extending hold time.
5102 */
5103 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
Paul Turner64660c82011-07-21 09:43:36 -07005104 }
Paul Turner48a16752012-10-04 13:18:31 +02005105
5106 raw_spin_unlock_irqrestore(&rq->lock, flags);
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005107}
5108
Peter Zijlstra9763b672011-07-13 13:09:25 +02005109/*
Vladimir Davydov68520792013-07-15 17:49:19 +04005110 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
Peter Zijlstra9763b672011-07-13 13:09:25 +02005111 * This needs to be done in a top-down fashion because the load of a child
5112 * group is a fraction of its parents load.
5113 */
Vladimir Davydov68520792013-07-15 17:49:19 +04005114static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
Peter Zijlstra9763b672011-07-13 13:09:25 +02005115{
Vladimir Davydov68520792013-07-15 17:49:19 +04005116 struct rq *rq = rq_of(cfs_rq);
5117 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005118 unsigned long now = jiffies;
Vladimir Davydov68520792013-07-15 17:49:19 +04005119 unsigned long load;
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005120
Vladimir Davydov68520792013-07-15 17:49:19 +04005121 if (cfs_rq->last_h_load_update == now)
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005122 return;
5123
Vladimir Davydov68520792013-07-15 17:49:19 +04005124 cfs_rq->h_load_next = NULL;
5125 for_each_sched_entity(se) {
5126 cfs_rq = cfs_rq_of(se);
5127 cfs_rq->h_load_next = se;
5128 if (cfs_rq->last_h_load_update == now)
5129 break;
5130 }
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005131
Vladimir Davydov68520792013-07-15 17:49:19 +04005132 if (!se) {
Vladimir Davydov7e3115e2013-09-14 19:39:46 +04005133 cfs_rq->h_load = cfs_rq->runnable_load_avg;
Vladimir Davydov68520792013-07-15 17:49:19 +04005134 cfs_rq->last_h_load_update = now;
5135 }
5136
5137 while ((se = cfs_rq->h_load_next) != NULL) {
5138 load = cfs_rq->h_load;
5139 load = div64_ul(load * se->avg.load_avg_contrib,
5140 cfs_rq->runnable_load_avg + 1);
5141 cfs_rq = group_cfs_rq(se);
5142 cfs_rq->h_load = load;
5143 cfs_rq->last_h_load_update = now;
5144 }
Peter Zijlstra9763b672011-07-13 13:09:25 +02005145}
5146
Peter Zijlstra367456c2012-02-20 21:49:09 +01005147static unsigned long task_h_load(struct task_struct *p)
Peter Zijlstra230059de2009-12-17 17:47:12 +01005148{
Peter Zijlstra367456c2012-02-20 21:49:09 +01005149 struct cfs_rq *cfs_rq = task_cfs_rq(p);
Peter Zijlstra230059de2009-12-17 17:47:12 +01005150
Vladimir Davydov68520792013-07-15 17:49:19 +04005151 update_cfs_rq_h_load(cfs_rq);
Alex Shia003a252013-06-20 10:18:51 +08005152 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5153 cfs_rq->runnable_load_avg + 1);
Peter Zijlstra230059de2009-12-17 17:47:12 +01005154}
5155#else
Paul Turner48a16752012-10-04 13:18:31 +02005156static inline void update_blocked_averages(int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005157{
5158}
5159
Peter Zijlstra367456c2012-02-20 21:49:09 +01005160static unsigned long task_h_load(struct task_struct *p)
5161{
Alex Shia003a252013-06-20 10:18:51 +08005162 return p->se.avg.load_avg_contrib;
Peter Zijlstra230059de2009-12-17 17:47:12 +01005163}
5164#endif
5165
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005166/********** Helpers for find_busiest_group ************************/
5167/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005168 * sg_lb_stats - stats of a sched_group required for load_balancing
5169 */
5170struct sg_lb_stats {
5171 unsigned long avg_load; /*Avg load across the CPUs of the group */
5172 unsigned long group_load; /* Total load over the CPUs of the group */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005173 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005174 unsigned long load_per_task;
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005175 unsigned long group_power;
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005176 unsigned int sum_nr_running; /* Nr tasks running in the group */
5177 unsigned int group_capacity;
5178 unsigned int idle_cpus;
5179 unsigned int group_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005180 int group_imb; /* Is there an imbalance in the group ? */
Nikhil Raofab47622010-10-15 13:12:29 -07005181 int group_has_capacity; /* Is there extra capacity in the group? */
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005182#ifdef CONFIG_NUMA_BALANCING
5183 unsigned int nr_numa_running;
5184 unsigned int nr_preferred_running;
5185#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005186};
5187
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005188/*
5189 * sd_lb_stats - Structure to store the statistics of a sched_domain
5190 * during load balancing.
5191 */
5192struct sd_lb_stats {
5193 struct sched_group *busiest; /* Busiest group in this sd */
5194 struct sched_group *local; /* Local group in this sd */
5195 unsigned long total_load; /* Total load of all groups in sd */
5196 unsigned long total_pwr; /* Total power of all groups in sd */
5197 unsigned long avg_load; /* Average load across all groups in sd */
5198
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005199 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005200 struct sg_lb_stats local_stat; /* Statistics of the local group */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005201};
5202
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005203static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5204{
5205 /*
5206 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5207 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5208 * We must however clear busiest_stat::avg_load because
5209 * update_sd_pick_busiest() reads this before assignment.
5210 */
5211 *sds = (struct sd_lb_stats){
5212 .busiest = NULL,
5213 .local = NULL,
5214 .total_load = 0UL,
5215 .total_pwr = 0UL,
5216 .busiest_stat = {
5217 .avg_load = 0UL,
5218 },
5219 };
5220}
5221
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005222/**
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005223 * get_sd_load_idx - Obtain the load index for a given sched domain.
5224 * @sd: The sched_domain whose load_idx is to be obtained.
5225 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
Yacine Belkadie69f6182013-07-12 20:45:47 +02005226 *
5227 * Return: The load index.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005228 */
5229static inline int get_sd_load_idx(struct sched_domain *sd,
5230 enum cpu_idle_type idle)
5231{
5232 int load_idx;
5233
5234 switch (idle) {
5235 case CPU_NOT_IDLE:
5236 load_idx = sd->busy_idx;
5237 break;
5238
5239 case CPU_NEWLY_IDLE:
5240 load_idx = sd->newidle_idx;
5241 break;
5242 default:
5243 load_idx = sd->idle_idx;
5244 break;
5245 }
5246
5247 return load_idx;
5248}
5249
Li Zefan15f803c2013-03-05 16:07:11 +08005250static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005251{
Nikhil Rao1399fa72011-05-18 10:09:39 -07005252 return SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005253}
5254
5255unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5256{
5257 return default_scale_freq_power(sd, cpu);
5258}
5259
Li Zefan15f803c2013-03-05 16:07:11 +08005260static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005261{
Peter Zijlstra669c55e2010-04-16 14:59:29 +02005262 unsigned long weight = sd->span_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005263 unsigned long smt_gain = sd->smt_gain;
5264
5265 smt_gain /= weight;
5266
5267 return smt_gain;
5268}
5269
5270unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5271{
5272 return default_scale_smt_power(sd, cpu);
5273}
5274
Li Zefan15f803c2013-03-05 16:07:11 +08005275static unsigned long scale_rt_power(int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005276{
5277 struct rq *rq = cpu_rq(cpu);
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005278 u64 total, available, age_stamp, avg;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005279
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005280 /*
5281 * Since we're reading these variables without serialization make sure
5282 * we read them once before doing sanity checks on them.
5283 */
5284 age_stamp = ACCESS_ONCE(rq->age_stamp);
5285 avg = ACCESS_ONCE(rq->rt_avg);
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005286
Frederic Weisbecker78becc22013-04-12 01:51:02 +02005287 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005288
5289 if (unlikely(total < avg)) {
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005290 /* Ensures that power won't end up being negative */
5291 available = 0;
5292 } else {
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005293 available = total - avg;
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005294 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005295
Nikhil Rao1399fa72011-05-18 10:09:39 -07005296 if (unlikely((s64)total < SCHED_POWER_SCALE))
5297 total = SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005298
Nikhil Rao1399fa72011-05-18 10:09:39 -07005299 total >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005300
5301 return div_u64(available, total);
5302}
5303
5304static void update_cpu_power(struct sched_domain *sd, int cpu)
5305{
Peter Zijlstra669c55e2010-04-16 14:59:29 +02005306 unsigned long weight = sd->span_weight;
Nikhil Rao1399fa72011-05-18 10:09:39 -07005307 unsigned long power = SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005308 struct sched_group *sdg = sd->groups;
5309
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005310 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5311 if (sched_feat(ARCH_POWER))
5312 power *= arch_scale_smt_power(sd, cpu);
5313 else
5314 power *= default_scale_smt_power(sd, cpu);
5315
Nikhil Rao1399fa72011-05-18 10:09:39 -07005316 power >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005317 }
5318
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005319 sdg->sgp->power_orig = power;
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005320
5321 if (sched_feat(ARCH_POWER))
5322 power *= arch_scale_freq_power(sd, cpu);
5323 else
5324 power *= default_scale_freq_power(sd, cpu);
5325
Nikhil Rao1399fa72011-05-18 10:09:39 -07005326 power >>= SCHED_POWER_SHIFT;
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005327
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005328 power *= scale_rt_power(cpu);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005329 power >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005330
5331 if (!power)
5332 power = 1;
5333
Peter Zijlstrae51fd5e2010-05-31 12:37:30 +02005334 cpu_rq(cpu)->cpu_power = power;
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005335 sdg->sgp->power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005336}
5337
Peter Zijlstra029632f2011-10-25 10:00:11 +02005338void update_group_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005339{
5340 struct sched_domain *child = sd->child;
5341 struct sched_group *group, *sdg = sd->groups;
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005342 unsigned long power, power_orig;
Vincent Guittot4ec44122011-12-12 20:21:08 +01005343 unsigned long interval;
5344
5345 interval = msecs_to_jiffies(sd->balance_interval);
5346 interval = clamp(interval, 1UL, max_load_balance_interval);
5347 sdg->sgp->next_update = jiffies + interval;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005348
5349 if (!child) {
5350 update_cpu_power(sd, cpu);
5351 return;
5352 }
5353
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005354 power_orig = power = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005355
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005356 if (child->flags & SD_OVERLAP) {
5357 /*
5358 * SD_OVERLAP domains cannot assume that child groups
5359 * span the current group.
5360 */
5361
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005362 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5363 struct sched_group *sg = cpu_rq(cpu)->sd->groups;
5364
5365 power_orig += sg->sgp->power_orig;
5366 power += sg->sgp->power;
5367 }
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005368 } else {
5369 /*
5370 * !SD_OVERLAP domains can assume that child groups
5371 * span the current group.
5372 */
5373
5374 group = child->groups;
5375 do {
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005376 power_orig += group->sgp->power_orig;
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005377 power += group->sgp->power;
5378 group = group->next;
5379 } while (group != child->groups);
5380 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005381
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005382 sdg->sgp->power_orig = power_orig;
5383 sdg->sgp->power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005384}
5385
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005386/*
5387 * Try and fix up capacity for tiny siblings, this is needed when
5388 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5389 * which on its own isn't powerful enough.
5390 *
5391 * See update_sd_pick_busiest() and check_asym_packing().
5392 */
5393static inline int
5394fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5395{
5396 /*
Nikhil Rao1399fa72011-05-18 10:09:39 -07005397 * Only siblings can have significantly less than SCHED_POWER_SCALE
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005398 */
Peter Zijlstraa6c75f22011-04-07 14:09:52 +02005399 if (!(sd->flags & SD_SHARE_CPUPOWER))
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005400 return 0;
5401
5402 /*
5403 * If ~90% of the cpu_power is still there, we're good.
5404 */
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005405 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005406 return 1;
5407
5408 return 0;
5409}
5410
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005411/*
5412 * Group imbalance indicates (and tries to solve) the problem where balancing
5413 * groups is inadequate due to tsk_cpus_allowed() constraints.
5414 *
5415 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5416 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5417 * Something like:
5418 *
5419 * { 0 1 2 3 } { 4 5 6 7 }
5420 * * * * *
5421 *
5422 * If we were to balance group-wise we'd place two tasks in the first group and
5423 * two tasks in the second group. Clearly this is undesired as it will overload
5424 * cpu 3 and leave one of the cpus in the second group unused.
5425 *
5426 * The current solution to this issue is detecting the skew in the first group
Peter Zijlstra62633222013-08-19 12:41:09 +02005427 * by noticing the lower domain failed to reach balance and had difficulty
5428 * moving tasks due to affinity constraints.
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005429 *
5430 * When this is so detected; this group becomes a candidate for busiest; see
5431 * update_sd_pick_busiest(). And calculcate_imbalance() and
Peter Zijlstra62633222013-08-19 12:41:09 +02005432 * find_busiest_group() avoid some of the usual balance conditions to allow it
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005433 * to create an effective group imbalance.
5434 *
5435 * This is a somewhat tricky proposition since the next run might not find the
5436 * group imbalance and decide the groups need to be balanced again. A most
5437 * subtle and fragile situation.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005438 */
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005439
Peter Zijlstra62633222013-08-19 12:41:09 +02005440static inline int sg_imbalanced(struct sched_group *group)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005441{
Peter Zijlstra62633222013-08-19 12:41:09 +02005442 return group->sgp->imbalance;
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005443}
5444
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005445/*
5446 * Compute the group capacity.
5447 *
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005448 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5449 * first dividing out the smt factor and computing the actual number of cores
5450 * and limit power unit capacity with that.
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005451 */
5452static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5453{
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005454 unsigned int capacity, smt, cpus;
5455 unsigned int power, power_orig;
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005456
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005457 power = group->sgp->power;
5458 power_orig = group->sgp->power_orig;
5459 cpus = group->group_weight;
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005460
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005461 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5462 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5463 capacity = cpus / smt; /* cores */
5464
5465 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005466 if (!capacity)
5467 capacity = fix_small_capacity(env->sd, group);
5468
5469 return capacity;
5470}
5471
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005472/**
5473 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5474 * @env: The load balancing environment.
5475 * @group: sched_group whose statistics are to be updated.
5476 * @load_idx: Load index of sched_domain of this_cpu for load calc.
5477 * @local_group: Does group contain this_cpu.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005478 * @sgs: variable to hold the statistics for this group.
5479 */
5480static inline void update_sg_lb_stats(struct lb_env *env,
5481 struct sched_group *group, int load_idx,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005482 int local_group, struct sg_lb_stats *sgs)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005483{
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005484 unsigned long nr_running;
5485 unsigned long load;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005486 int i;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005487
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005488 memset(sgs, 0, sizeof(*sgs));
5489
Michael Wangb9403132012-07-12 16:10:13 +08005490 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005491 struct rq *rq = cpu_rq(i);
5492
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02005493 nr_running = rq->nr_running;
5494
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005495 /* Bias balancing toward cpus of our domain */
Peter Zijlstra62633222013-08-19 12:41:09 +02005496 if (local_group)
Peter Zijlstra04f733b2012-05-11 00:12:02 +02005497 load = target_load(i, load_idx);
Peter Zijlstra62633222013-08-19 12:41:09 +02005498 else
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005499 load = source_load(i, load_idx);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005500
5501 sgs->group_load += load;
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02005502 sgs->sum_nr_running += nr_running;
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005503#ifdef CONFIG_NUMA_BALANCING
5504 sgs->nr_numa_running += rq->nr_numa_running;
5505 sgs->nr_preferred_running += rq->nr_preferred_running;
5506#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005507 sgs->sum_weighted_load += weighted_cpuload(i);
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005508 if (idle_cpu(i))
5509 sgs->idle_cpus++;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005510 }
5511
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005512 /* Adjust by relative CPU power of the group */
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005513 sgs->group_power = group->sgp->power;
5514 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005515
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005516 if (sgs->sum_nr_running)
Peter Zijlstra38d0f772013-08-15 19:47:56 +02005517 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005518
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005519 sgs->group_weight = group->group_weight;
Nikhil Raofab47622010-10-15 13:12:29 -07005520
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005521 sgs->group_imb = sg_imbalanced(group);
5522 sgs->group_capacity = sg_capacity(env, group);
5523
Nikhil Raofab47622010-10-15 13:12:29 -07005524 if (sgs->group_capacity > sgs->sum_nr_running)
5525 sgs->group_has_capacity = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005526}
5527
5528/**
Michael Neuling532cb4c2010-06-08 14:57:02 +10005529 * update_sd_pick_busiest - return 1 on busiest group
Randy Dunlapcd968912012-06-08 13:18:33 -07005530 * @env: The load balancing environment.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005531 * @sds: sched_domain statistics
5532 * @sg: sched_group candidate to be checked for being the busiest
Michael Neulingb6b12292010-06-10 12:06:21 +10005533 * @sgs: sched_group statistics
Michael Neuling532cb4c2010-06-08 14:57:02 +10005534 *
5535 * Determine if @sg is a busier group than the previously selected
5536 * busiest group.
Yacine Belkadie69f6182013-07-12 20:45:47 +02005537 *
5538 * Return: %true if @sg is a busier group than the previously selected
5539 * busiest group. %false otherwise.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005540 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005541static bool update_sd_pick_busiest(struct lb_env *env,
Michael Neuling532cb4c2010-06-08 14:57:02 +10005542 struct sd_lb_stats *sds,
5543 struct sched_group *sg,
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005544 struct sg_lb_stats *sgs)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005545{
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005546 if (sgs->avg_load <= sds->busiest_stat.avg_load)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005547 return false;
5548
5549 if (sgs->sum_nr_running > sgs->group_capacity)
5550 return true;
5551
5552 if (sgs->group_imb)
5553 return true;
5554
5555 /*
5556 * ASYM_PACKING needs to move all the work to the lowest
5557 * numbered CPUs in the group, therefore mark all groups
5558 * higher than ourself as busy.
5559 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005560 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5561 env->dst_cpu < group_first_cpu(sg)) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10005562 if (!sds->busiest)
5563 return true;
5564
5565 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5566 return true;
5567 }
5568
5569 return false;
5570}
5571
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005572#ifdef CONFIG_NUMA_BALANCING
5573static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5574{
5575 if (sgs->sum_nr_running > sgs->nr_numa_running)
5576 return regular;
5577 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5578 return remote;
5579 return all;
5580}
5581
5582static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5583{
5584 if (rq->nr_running > rq->nr_numa_running)
5585 return regular;
5586 if (rq->nr_running > rq->nr_preferred_running)
5587 return remote;
5588 return all;
5589}
5590#else
5591static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5592{
5593 return all;
5594}
5595
5596static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5597{
5598 return regular;
5599}
5600#endif /* CONFIG_NUMA_BALANCING */
5601
Michael Neuling532cb4c2010-06-08 14:57:02 +10005602/**
Hui Kang461819a2011-10-11 23:00:59 -04005603 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
Randy Dunlapcd968912012-06-08 13:18:33 -07005604 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005605 * @balance: Should we balance.
5606 * @sds: variable to hold the statistics for this sched_domain.
5607 */
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005608static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005609{
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005610 struct sched_domain *child = env->sd->child;
5611 struct sched_group *sg = env->sd->groups;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005612 struct sg_lb_stats tmp_sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005613 int load_idx, prefer_sibling = 0;
5614
5615 if (child && child->flags & SD_PREFER_SIBLING)
5616 prefer_sibling = 1;
5617
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005618 load_idx = get_sd_load_idx(env->sd, env->idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005619
5620 do {
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005621 struct sg_lb_stats *sgs = &tmp_sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005622 int local_group;
5623
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005624 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005625 if (local_group) {
5626 sds->local = sg;
5627 sgs = &sds->local_stat;
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005628
5629 if (env->idle != CPU_NEWLY_IDLE ||
5630 time_after_eq(jiffies, sg->sgp->next_update))
5631 update_group_power(env->sd, env->dst_cpu);
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005632 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005633
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005634 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005635
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005636 if (local_group)
5637 goto next_group;
5638
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005639 /*
5640 * In case the child domain prefers tasks go to siblings
Michael Neuling532cb4c2010-06-08 14:57:02 +10005641 * first, lower the sg capacity to one so that we'll try
Nikhil Rao75dd3212010-10-15 13:12:30 -07005642 * and move all the excess tasks away. We lower the capacity
5643 * of a group only if the local group has the capacity to fit
5644 * these excess tasks, i.e. nr_running < group_capacity. The
5645 * extra check prevents the case where you always pull from the
5646 * heaviest group when it is already under-utilized (possible
5647 * with a large weight task outweighs the tasks on the system).
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005648 */
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005649 if (prefer_sibling && sds->local &&
5650 sds->local_stat.group_has_capacity)
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005651 sgs->group_capacity = min(sgs->group_capacity, 1U);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005652
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005653 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10005654 sds->busiest = sg;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005655 sds->busiest_stat = *sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005656 }
5657
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005658next_group:
5659 /* Now, start updating sd_lb_stats */
5660 sds->total_load += sgs->group_load;
5661 sds->total_pwr += sgs->group_power;
5662
Michael Neuling532cb4c2010-06-08 14:57:02 +10005663 sg = sg->next;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005664 } while (sg != env->sd->groups);
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005665
5666 if (env->sd->flags & SD_NUMA)
5667 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
Michael Neuling532cb4c2010-06-08 14:57:02 +10005668}
5669
Michael Neuling532cb4c2010-06-08 14:57:02 +10005670/**
5671 * check_asym_packing - Check to see if the group is packed into the
5672 * sched doman.
5673 *
5674 * This is primarily intended to used at the sibling level. Some
5675 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5676 * case of POWER7, it can move to lower SMT modes only when higher
5677 * threads are idle. When in lower SMT modes, the threads will
5678 * perform better since they share less core resources. Hence when we
5679 * have idle threads, we want them to be the higher ones.
5680 *
5681 * This packing function is run on idle threads. It checks to see if
5682 * the busiest CPU in this domain (core in the P7 case) has a higher
5683 * CPU number than the packing function is being run on. Here we are
5684 * assuming lower CPU number will be equivalent to lower a SMT thread
5685 * number.
5686 *
Yacine Belkadie69f6182013-07-12 20:45:47 +02005687 * Return: 1 when packing is required and a task should be moved to
Michael Neulingb6b12292010-06-10 12:06:21 +10005688 * this CPU. The amount of the imbalance is returned in *imbalance.
5689 *
Randy Dunlapcd968912012-06-08 13:18:33 -07005690 * @env: The load balancing environment.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005691 * @sds: Statistics of the sched_domain which is to be packed
Michael Neuling532cb4c2010-06-08 14:57:02 +10005692 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005693static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005694{
5695 int busiest_cpu;
5696
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005697 if (!(env->sd->flags & SD_ASYM_PACKING))
Michael Neuling532cb4c2010-06-08 14:57:02 +10005698 return 0;
5699
5700 if (!sds->busiest)
5701 return 0;
5702
5703 busiest_cpu = group_first_cpu(sds->busiest);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005704 if (env->dst_cpu > busiest_cpu)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005705 return 0;
5706
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005707 env->imbalance = DIV_ROUND_CLOSEST(
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005708 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5709 SCHED_POWER_SCALE);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005710
Michael Neuling532cb4c2010-06-08 14:57:02 +10005711 return 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005712}
5713
5714/**
5715 * fix_small_imbalance - Calculate the minor imbalance that exists
5716 * amongst the groups of a sched_domain, during
5717 * load balancing.
Randy Dunlapcd968912012-06-08 13:18:33 -07005718 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005719 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005720 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005721static inline
5722void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005723{
5724 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5725 unsigned int imbn = 2;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005726 unsigned long scaled_busy_load_per_task;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005727 struct sg_lb_stats *local, *busiest;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005728
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005729 local = &sds->local_stat;
5730 busiest = &sds->busiest_stat;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005731
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005732 if (!local->sum_nr_running)
5733 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5734 else if (busiest->load_per_task > local->load_per_task)
5735 imbn = 1;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005736
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005737 scaled_busy_load_per_task =
5738 (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005739 busiest->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005740
Vladimir Davydov3029ede2013-09-15 17:49:14 +04005741 if (busiest->avg_load + scaled_busy_load_per_task >=
5742 local->avg_load + (scaled_busy_load_per_task * imbn)) {
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005743 env->imbalance = busiest->load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005744 return;
5745 }
5746
5747 /*
5748 * OK, we don't have enough imbalance to justify moving tasks,
5749 * however we may be able to increase total CPU power used by
5750 * moving them.
5751 */
5752
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005753 pwr_now += busiest->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005754 min(busiest->load_per_task, busiest->avg_load);
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005755 pwr_now += local->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005756 min(local->load_per_task, local->avg_load);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005757 pwr_now /= SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005758
5759 /* Amount of load we'd subtract */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005760 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005761 busiest->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005762 if (busiest->avg_load > tmp) {
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005763 pwr_move += busiest->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005764 min(busiest->load_per_task,
5765 busiest->avg_load - tmp);
5766 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005767
5768 /* Amount of load we'd add */
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005769 if (busiest->avg_load * busiest->group_power <
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005770 busiest->load_per_task * SCHED_POWER_SCALE) {
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005771 tmp = (busiest->avg_load * busiest->group_power) /
5772 local->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005773 } else {
5774 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005775 local->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005776 }
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005777 pwr_move += local->group_power *
5778 min(local->load_per_task, local->avg_load + tmp);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005779 pwr_move /= SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005780
5781 /* Move if we gain throughput */
5782 if (pwr_move > pwr_now)
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005783 env->imbalance = busiest->load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005784}
5785
5786/**
5787 * calculate_imbalance - Calculate the amount of imbalance present within the
5788 * groups of a given sched_domain during load balance.
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005789 * @env: load balance environment
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005790 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005791 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005792static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005793{
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005794 unsigned long max_pull, load_above_capacity = ~0UL;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005795 struct sg_lb_stats *local, *busiest;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005796
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005797 local = &sds->local_stat;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005798 busiest = &sds->busiest_stat;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005799
5800 if (busiest->group_imb) {
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005801 /*
5802 * In the group_imb case we cannot rely on group-wide averages
5803 * to ensure cpu-load equilibrium, look at wider averages. XXX
5804 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005805 busiest->load_per_task =
5806 min(busiest->load_per_task, sds->avg_load);
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005807 }
5808
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005809 /*
5810 * In the presence of smp nice balancing, certain scenarios can have
5811 * max load less than avg load(as we skip the groups at or below
5812 * its cpu_power, while calculating max_load..)
5813 */
Vladimir Davydovb1885552013-09-15 17:49:13 +04005814 if (busiest->avg_load <= sds->avg_load ||
5815 local->avg_load >= sds->avg_load) {
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005816 env->imbalance = 0;
5817 return fix_small_imbalance(env, sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005818 }
5819
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005820 if (!busiest->group_imb) {
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005821 /*
5822 * Don't want to pull so many tasks that a group would go idle.
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005823 * Except of course for the group_imb case, since then we might
5824 * have to drop below capacity to reach cpu-load equilibrium.
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005825 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005826 load_above_capacity =
5827 (busiest->sum_nr_running - busiest->group_capacity);
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005828
Nikhil Rao1399fa72011-05-18 10:09:39 -07005829 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005830 load_above_capacity /= busiest->group_power;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005831 }
5832
5833 /*
5834 * We're trying to get all the cpus to the average_load, so we don't
5835 * want to push ourselves above the average load, nor do we wish to
5836 * reduce the max loaded cpu below the average load. At the same time,
5837 * we also don't want to reduce the group load below the group capacity
5838 * (so that we can implement power-savings policies etc). Thus we look
5839 * for the minimum possible imbalance.
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005840 */
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005841 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005842
5843 /* How much load to actually move to equalise the imbalance */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005844 env->imbalance = min(
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005845 max_pull * busiest->group_power,
5846 (sds->avg_load - local->avg_load) * local->group_power
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005847 ) / SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005848
5849 /*
5850 * if *imbalance is less than the average load per runnable task
Lucas De Marchi25985ed2011-03-30 22:57:33 -03005851 * there is no guarantee that any tasks will be moved so we'll have
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005852 * a think about bumping its value to force at least one task to be
5853 * moved
5854 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005855 if (env->imbalance < busiest->load_per_task)
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005856 return fix_small_imbalance(env, sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005857}
Nikhil Raofab47622010-10-15 13:12:29 -07005858
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005859/******* find_busiest_group() helpers end here *********************/
5860
5861/**
5862 * find_busiest_group - Returns the busiest group within the sched_domain
5863 * if there is an imbalance. If there isn't an imbalance, and
5864 * the user has opted for power-savings, it returns a group whose
5865 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5866 * such a group exists.
5867 *
5868 * Also calculates the amount of weighted load which should be moved
5869 * to restore balance.
5870 *
Randy Dunlapcd968912012-06-08 13:18:33 -07005871 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005872 *
Yacine Belkadie69f6182013-07-12 20:45:47 +02005873 * Return: - The busiest group if imbalance exists.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005874 * - If no imbalance and user has opted for power-savings balance,
5875 * return the least loaded group whose CPUs can be
5876 * put to idle by rebalancing its tasks onto our group.
5877 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005878static struct sched_group *find_busiest_group(struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005879{
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005880 struct sg_lb_stats *local, *busiest;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005881 struct sd_lb_stats sds;
5882
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005883 init_sd_lb_stats(&sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005884
5885 /*
5886 * Compute the various statistics relavent for load balancing at
5887 * this level.
5888 */
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005889 update_sd_lb_stats(env, &sds);
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005890 local = &sds.local_stat;
5891 busiest = &sds.busiest_stat;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005892
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005893 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5894 check_asym_packing(env, &sds))
Michael Neuling532cb4c2010-06-08 14:57:02 +10005895 return sds.busiest;
5896
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005897 /* There is no busy sibling group to pull tasks from */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005898 if (!sds.busiest || busiest->sum_nr_running == 0)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005899 goto out_balanced;
5900
Nikhil Rao1399fa72011-05-18 10:09:39 -07005901 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
Ken Chenb0432d82011-04-07 17:23:22 -07005902
Peter Zijlstra866ab432011-02-21 18:56:47 +01005903 /*
5904 * If the busiest group is imbalanced the below checks don't
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005905 * work because they assume all things are equal, which typically
Peter Zijlstra866ab432011-02-21 18:56:47 +01005906 * isn't true due to cpus_allowed constraints and the like.
5907 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005908 if (busiest->group_imb)
Peter Zijlstra866ab432011-02-21 18:56:47 +01005909 goto force_balance;
5910
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005911 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005912 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5913 !busiest->group_has_capacity)
Nikhil Raofab47622010-10-15 13:12:29 -07005914 goto force_balance;
5915
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005916 /*
5917 * If the local group is more busy than the selected busiest group
5918 * don't try and pull any tasks.
5919 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005920 if (local->avg_load >= busiest->avg_load)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005921 goto out_balanced;
5922
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005923 /*
5924 * Don't pull any tasks if this group is already above the domain
5925 * average load.
5926 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005927 if (local->avg_load >= sds.avg_load)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005928 goto out_balanced;
5929
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005930 if (env->idle == CPU_IDLE) {
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005931 /*
5932 * This cpu is idle. If the busiest group load doesn't
5933 * have more tasks than the number of available cpu's and
5934 * there is no imbalance between this and busiest group
5935 * wrt to idle cpu's, it is balanced.
5936 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005937 if ((local->idle_cpus < busiest->idle_cpus) &&
5938 busiest->sum_nr_running <= busiest->group_weight)
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005939 goto out_balanced;
Peter Zijlstrac186faf2011-02-21 18:52:53 +01005940 } else {
5941 /*
5942 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5943 * imbalance_pct to be conservative.
5944 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005945 if (100 * busiest->avg_load <=
5946 env->sd->imbalance_pct * local->avg_load)
Peter Zijlstrac186faf2011-02-21 18:52:53 +01005947 goto out_balanced;
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005948 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005949
Nikhil Raofab47622010-10-15 13:12:29 -07005950force_balance:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005951 /* Looks like there is an imbalance. Compute it */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005952 calculate_imbalance(env, &sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005953 return sds.busiest;
5954
5955out_balanced:
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005956 env->imbalance = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005957 return NULL;
5958}
5959
5960/*
5961 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5962 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005963static struct rq *find_busiest_queue(struct lb_env *env,
Michael Wangb9403132012-07-12 16:10:13 +08005964 struct sched_group *group)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005965{
5966 struct rq *busiest = NULL, *rq;
Joonsoo Kim95a79b82013-08-06 17:36:41 +09005967 unsigned long busiest_load = 0, busiest_power = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005968 int i;
5969
Peter Zijlstra6906a402013-08-19 15:20:21 +02005970 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005971 unsigned long power, capacity, wl;
5972 enum fbq_type rt;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005973
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005974 rq = cpu_rq(i);
5975 rt = fbq_classify_rq(rq);
5976
5977 /*
5978 * We classify groups/runqueues into three groups:
5979 * - regular: there are !numa tasks
5980 * - remote: there are numa tasks that run on the 'wrong' node
5981 * - all: there is no distinction
5982 *
5983 * In order to avoid migrating ideally placed numa tasks,
5984 * ignore those when there's better options.
5985 *
5986 * If we ignore the actual busiest queue to migrate another
5987 * task, the next balance pass can still reduce the busiest
5988 * queue by moving tasks around inside the node.
5989 *
5990 * If we cannot move enough load due to this classification
5991 * the next pass will adjust the group classification and
5992 * allow migration of more tasks.
5993 *
5994 * Both cases only affect the total convergence complexity.
5995 */
5996 if (rt > env->fbq_type)
5997 continue;
5998
5999 power = power_of(i);
6000 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10006001 if (!capacity)
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006002 capacity = fix_small_capacity(env->sd, group);
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10006003
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01006004 wl = weighted_cpuload(i);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006005
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01006006 /*
6007 * When comparing with imbalance, use weighted_cpuload()
6008 * which is not scaled with the cpu power.
6009 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006010 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006011 continue;
6012
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01006013 /*
6014 * For the load comparisons with the other cpu's, consider
6015 * the weighted_cpuload() scaled with the cpu power, so that
6016 * the load can be moved away from the cpu that is potentially
6017 * running at a lower capacity.
Joonsoo Kim95a79b82013-08-06 17:36:41 +09006018 *
6019 * Thus we're looking for max(wl_i / power_i), crosswise
6020 * multiplication to rid ourselves of the division works out
6021 * to: wl_i * power_j > wl_j * power_i; where j is our
6022 * previous maximum.
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01006023 */
Joonsoo Kim95a79b82013-08-06 17:36:41 +09006024 if (wl * busiest_power > busiest_load * power) {
6025 busiest_load = wl;
6026 busiest_power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006027 busiest = rq;
6028 }
6029 }
6030
6031 return busiest;
6032}
6033
6034/*
6035 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6036 * so long as it is large enough.
6037 */
6038#define MAX_PINNED_INTERVAL 512
6039
6040/* Working cpumask for load_balance and load_balance_newidle. */
Joonsoo Kime6252c32013-04-23 17:27:41 +09006041DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006042
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006043static int need_active_balance(struct lb_env *env)
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01006044{
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006045 struct sched_domain *sd = env->sd;
6046
6047 if (env->idle == CPU_NEWLY_IDLE) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10006048
6049 /*
6050 * ASYM_PACKING needs to force migrate tasks from busy but
6051 * higher numbered CPUs in order to pack all tasks in the
6052 * lowest numbered CPUs.
6053 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006054 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
Michael Neuling532cb4c2010-06-08 14:57:02 +10006055 return 1;
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01006056 }
6057
6058 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6059}
6060
Tejun Heo969c7922010-05-06 18:49:21 +02006061static int active_load_balance_cpu_stop(void *data);
6062
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006063static int should_we_balance(struct lb_env *env)
6064{
6065 struct sched_group *sg = env->sd->groups;
6066 struct cpumask *sg_cpus, *sg_mask;
6067 int cpu, balance_cpu = -1;
6068
6069 /*
6070 * In the newly idle case, we will allow all the cpu's
6071 * to do the newly idle load balance.
6072 */
6073 if (env->idle == CPU_NEWLY_IDLE)
6074 return 1;
6075
6076 sg_cpus = sched_group_cpus(sg);
6077 sg_mask = sched_group_mask(sg);
6078 /* Try to find first idle cpu */
6079 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6080 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6081 continue;
6082
6083 balance_cpu = cpu;
6084 break;
6085 }
6086
6087 if (balance_cpu == -1)
6088 balance_cpu = group_balance_cpu(sg);
6089
6090 /*
6091 * First idle cpu or the first cpu(busiest) in this sched group
6092 * is eligible for doing load balancing at this and above domains.
6093 */
Joonsoo Kimb0cff9d2013-09-10 15:54:49 +09006094 return balance_cpu == env->dst_cpu;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006095}
6096
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006097/*
6098 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6099 * tasks if there is an imbalance.
6100 */
6101static int load_balance(int this_cpu, struct rq *this_rq,
6102 struct sched_domain *sd, enum cpu_idle_type idle,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006103 int *continue_balancing)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006104{
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306105 int ld_moved, cur_ld_moved, active_balance = 0;
Peter Zijlstra62633222013-08-19 12:41:09 +02006106 struct sched_domain *sd_parent = sd->parent;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006107 struct sched_group *group;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006108 struct rq *busiest;
6109 unsigned long flags;
Joonsoo Kime6252c32013-04-23 17:27:41 +09006110 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006111
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006112 struct lb_env env = {
6113 .sd = sd,
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01006114 .dst_cpu = this_cpu,
6115 .dst_rq = this_rq,
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306116 .dst_grpmask = sched_group_cpus(sd->groups),
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006117 .idle = idle,
Peter Zijlstraeb953082012-04-17 13:38:40 +02006118 .loop_break = sched_nr_migrate_break,
Michael Wangb9403132012-07-12 16:10:13 +08006119 .cpus = cpus,
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01006120 .fbq_type = all,
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006121 };
6122
Joonsoo Kimcfc03112013-04-23 17:27:39 +09006123 /*
6124 * For NEWLY_IDLE load_balancing, we don't need to consider
6125 * other cpus in our group
6126 */
Joonsoo Kime02e60c2013-04-23 17:27:42 +09006127 if (idle == CPU_NEWLY_IDLE)
Joonsoo Kimcfc03112013-04-23 17:27:39 +09006128 env.dst_grpmask = NULL;
Joonsoo Kimcfc03112013-04-23 17:27:39 +09006129
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006130 cpumask_copy(cpus, cpu_active_mask);
6131
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006132 schedstat_inc(sd, lb_count[idle]);
6133
6134redo:
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006135 if (!should_we_balance(&env)) {
6136 *continue_balancing = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006137 goto out_balanced;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006138 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006139
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006140 group = find_busiest_group(&env);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006141 if (!group) {
6142 schedstat_inc(sd, lb_nobusyg[idle]);
6143 goto out_balanced;
6144 }
6145
Michael Wangb9403132012-07-12 16:10:13 +08006146 busiest = find_busiest_queue(&env, group);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006147 if (!busiest) {
6148 schedstat_inc(sd, lb_nobusyq[idle]);
6149 goto out_balanced;
6150 }
6151
Michael Wang78feefc2012-08-06 16:41:59 +08006152 BUG_ON(busiest == env.dst_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006153
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006154 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006155
6156 ld_moved = 0;
6157 if (busiest->nr_running > 1) {
6158 /*
6159 * Attempt to move tasks. If find_busiest_group has found
6160 * an imbalance but busiest->nr_running <= 1, the group is
6161 * still unbalanced. ld_moved simply stays zero, so it is
6162 * correctly treated as an imbalance.
6163 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006164 env.flags |= LBF_ALL_PINNED;
Peter Zijlstrac82513e2012-04-26 13:12:27 +02006165 env.src_cpu = busiest->cpu;
6166 env.src_rq = busiest;
6167 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006168
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01006169more_balance:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006170 local_irq_save(flags);
Michael Wang78feefc2012-08-06 16:41:59 +08006171 double_rq_lock(env.dst_rq, busiest);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306172
6173 /*
6174 * cur_ld_moved - load moved in current iteration
6175 * ld_moved - cumulative load moved across iterations
6176 */
6177 cur_ld_moved = move_tasks(&env);
6178 ld_moved += cur_ld_moved;
Michael Wang78feefc2012-08-06 16:41:59 +08006179 double_rq_unlock(env.dst_rq, busiest);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006180 local_irq_restore(flags);
6181
6182 /*
6183 * some other cpu did the load balance for us.
6184 */
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306185 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6186 resched_cpu(env.dst_cpu);
6187
Joonsoo Kimf1cd0852013-04-23 17:27:37 +09006188 if (env.flags & LBF_NEED_BREAK) {
6189 env.flags &= ~LBF_NEED_BREAK;
6190 goto more_balance;
6191 }
6192
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306193 /*
6194 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6195 * us and move them to an alternate dst_cpu in our sched_group
6196 * where they can run. The upper limit on how many times we
6197 * iterate on same src_cpu is dependent on number of cpus in our
6198 * sched_group.
6199 *
6200 * This changes load balance semantics a bit on who can move
6201 * load to a given_cpu. In addition to the given_cpu itself
6202 * (or a ilb_cpu acting on its behalf where given_cpu is
6203 * nohz-idle), we now have balance_cpu in a position to move
6204 * load to given_cpu. In rare situations, this may cause
6205 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6206 * _independently_ and at _same_ time to move some load to
6207 * given_cpu) causing exceess load to be moved to given_cpu.
6208 * This however should not happen so much in practice and
6209 * moreover subsequent load balance cycles should correct the
6210 * excess load moved.
6211 */
Peter Zijlstra62633222013-08-19 12:41:09 +02006212 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306213
Vladimir Davydov7aff2e32013-09-15 21:30:13 +04006214 /* Prevent to re-select dst_cpu via env's cpus */
6215 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6216
Michael Wang78feefc2012-08-06 16:41:59 +08006217 env.dst_rq = cpu_rq(env.new_dst_cpu);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306218 env.dst_cpu = env.new_dst_cpu;
Peter Zijlstra62633222013-08-19 12:41:09 +02006219 env.flags &= ~LBF_DST_PINNED;
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306220 env.loop = 0;
6221 env.loop_break = sched_nr_migrate_break;
Joonsoo Kime02e60c2013-04-23 17:27:42 +09006222
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306223 /*
6224 * Go back to "more_balance" rather than "redo" since we
6225 * need to continue with same src_cpu.
6226 */
6227 goto more_balance;
6228 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006229
Peter Zijlstra62633222013-08-19 12:41:09 +02006230 /*
6231 * We failed to reach balance because of affinity.
6232 */
6233 if (sd_parent) {
6234 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6235
6236 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6237 *group_imbalance = 1;
6238 } else if (*group_imbalance)
6239 *group_imbalance = 0;
6240 }
6241
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006242 /* All tasks on this runqueue were pinned by CPU affinity */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006243 if (unlikely(env.flags & LBF_ALL_PINNED)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006244 cpumask_clear_cpu(cpu_of(busiest), cpus);
Prashanth Nageshappabbf18b12012-06-19 17:52:07 +05306245 if (!cpumask_empty(cpus)) {
6246 env.loop = 0;
6247 env.loop_break = sched_nr_migrate_break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006248 goto redo;
Prashanth Nageshappabbf18b12012-06-19 17:52:07 +05306249 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006250 goto out_balanced;
6251 }
6252 }
6253
6254 if (!ld_moved) {
6255 schedstat_inc(sd, lb_failed[idle]);
Venkatesh Pallipadi58b26c42010-09-10 18:19:17 -07006256 /*
6257 * Increment the failure counter only on periodic balance.
6258 * We do not want newidle balance, which can be very
6259 * frequent, pollute the failure counter causing
6260 * excessive cache_hot migrations and active balances.
6261 */
6262 if (idle != CPU_NEWLY_IDLE)
6263 sd->nr_balance_failed++;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006264
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006265 if (need_active_balance(&env)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006266 raw_spin_lock_irqsave(&busiest->lock, flags);
6267
Tejun Heo969c7922010-05-06 18:49:21 +02006268 /* don't kick the active_load_balance_cpu_stop,
6269 * if the curr task on busiest cpu can't be
6270 * moved to this_cpu
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006271 */
6272 if (!cpumask_test_cpu(this_cpu,
Peter Zijlstrafa17b502011-06-16 12:23:22 +02006273 tsk_cpus_allowed(busiest->curr))) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006274 raw_spin_unlock_irqrestore(&busiest->lock,
6275 flags);
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006276 env.flags |= LBF_ALL_PINNED;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006277 goto out_one_pinned;
6278 }
6279
Tejun Heo969c7922010-05-06 18:49:21 +02006280 /*
6281 * ->active_balance synchronizes accesses to
6282 * ->active_balance_work. Once set, it's cleared
6283 * only after active load balance is finished.
6284 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006285 if (!busiest->active_balance) {
6286 busiest->active_balance = 1;
6287 busiest->push_cpu = this_cpu;
6288 active_balance = 1;
6289 }
6290 raw_spin_unlock_irqrestore(&busiest->lock, flags);
Tejun Heo969c7922010-05-06 18:49:21 +02006291
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006292 if (active_balance) {
Tejun Heo969c7922010-05-06 18:49:21 +02006293 stop_one_cpu_nowait(cpu_of(busiest),
6294 active_load_balance_cpu_stop, busiest,
6295 &busiest->active_balance_work);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006296 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006297
6298 /*
6299 * We've kicked active balancing, reset the failure
6300 * counter.
6301 */
6302 sd->nr_balance_failed = sd->cache_nice_tries+1;
6303 }
6304 } else
6305 sd->nr_balance_failed = 0;
6306
6307 if (likely(!active_balance)) {
6308 /* We were unbalanced, so reset the balancing interval */
6309 sd->balance_interval = sd->min_interval;
6310 } else {
6311 /*
6312 * If we've begun active balancing, start to back off. This
6313 * case may not be covered by the all_pinned logic if there
6314 * is only 1 task on the busy runqueue (because we don't call
6315 * move_tasks).
6316 */
6317 if (sd->balance_interval < sd->max_interval)
6318 sd->balance_interval *= 2;
6319 }
6320
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006321 goto out;
6322
6323out_balanced:
6324 schedstat_inc(sd, lb_balanced[idle]);
6325
6326 sd->nr_balance_failed = 0;
6327
6328out_one_pinned:
6329 /* tune up the balancing interval */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006330 if (((env.flags & LBF_ALL_PINNED) &&
Peter Zijlstra5b54b562011-09-22 15:23:13 +02006331 sd->balance_interval < MAX_PINNED_INTERVAL) ||
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006332 (sd->balance_interval < sd->max_interval))
6333 sd->balance_interval *= 2;
6334
Venkatesh Pallipadi46e49b32011-02-14 14:38:50 -08006335 ld_moved = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006336out:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006337 return ld_moved;
6338}
6339
6340/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006341 * idle_balance is called by schedule() if this_cpu is about to become
6342 * idle. Attempts to pull tasks from other CPUs.
6343 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006344void idle_balance(int this_cpu, struct rq *this_rq)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006345{
6346 struct sched_domain *sd;
6347 int pulled_task = 0;
6348 unsigned long next_balance = jiffies + HZ;
Jason Low9bd721c2013-09-13 11:26:52 -07006349 u64 curr_cost = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006350
Frederic Weisbecker78becc22013-04-12 01:51:02 +02006351 this_rq->idle_stamp = rq_clock(this_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006352
6353 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6354 return;
6355
Peter Zijlstraf492e122009-12-23 15:29:42 +01006356 /*
6357 * Drop the rq->lock, but keep IRQ/preempt disabled.
6358 */
6359 raw_spin_unlock(&this_rq->lock);
6360
Paul Turner48a16752012-10-04 13:18:31 +02006361 update_blocked_averages(this_cpu);
Peter Zijlstradce840a2011-04-07 14:09:50 +02006362 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006363 for_each_domain(this_cpu, sd) {
6364 unsigned long interval;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006365 int continue_balancing = 1;
Jason Low9bd721c2013-09-13 11:26:52 -07006366 u64 t0, domain_cost;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006367
6368 if (!(sd->flags & SD_LOAD_BALANCE))
6369 continue;
6370
Jason Low9bd721c2013-09-13 11:26:52 -07006371 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6372 break;
6373
Peter Zijlstraf492e122009-12-23 15:29:42 +01006374 if (sd->flags & SD_BALANCE_NEWIDLE) {
Jason Low9bd721c2013-09-13 11:26:52 -07006375 t0 = sched_clock_cpu(this_cpu);
6376
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006377 /* If we've pulled tasks over stop searching: */
Peter Zijlstraf492e122009-12-23 15:29:42 +01006378 pulled_task = load_balance(this_cpu, this_rq,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006379 sd, CPU_NEWLY_IDLE,
6380 &continue_balancing);
Jason Low9bd721c2013-09-13 11:26:52 -07006381
6382 domain_cost = sched_clock_cpu(this_cpu) - t0;
6383 if (domain_cost > sd->max_newidle_lb_cost)
6384 sd->max_newidle_lb_cost = domain_cost;
6385
6386 curr_cost += domain_cost;
Peter Zijlstraf492e122009-12-23 15:29:42 +01006387 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006388
6389 interval = msecs_to_jiffies(sd->balance_interval);
6390 if (time_after(next_balance, sd->last_balance + interval))
6391 next_balance = sd->last_balance + interval;
Nikhil Raod5ad1402010-11-17 11:42:04 -08006392 if (pulled_task) {
6393 this_rq->idle_stamp = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006394 break;
Nikhil Raod5ad1402010-11-17 11:42:04 -08006395 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006396 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006397 rcu_read_unlock();
Peter Zijlstraf492e122009-12-23 15:29:42 +01006398
6399 raw_spin_lock(&this_rq->lock);
6400
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006401 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6402 /*
6403 * We are going idle. next_balance may be set based on
6404 * a busy processor. So reset next_balance.
6405 */
6406 this_rq->next_balance = next_balance;
6407 }
Jason Low9bd721c2013-09-13 11:26:52 -07006408
6409 if (curr_cost > this_rq->max_idle_balance_cost)
6410 this_rq->max_idle_balance_cost = curr_cost;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006411}
6412
6413/*
Tejun Heo969c7922010-05-06 18:49:21 +02006414 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6415 * running tasks off the busiest CPU onto idle CPUs. It requires at
6416 * least 1 task to be running on each physical CPU where possible, and
6417 * avoids physical / logical imbalances.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006418 */
Tejun Heo969c7922010-05-06 18:49:21 +02006419static int active_load_balance_cpu_stop(void *data)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006420{
Tejun Heo969c7922010-05-06 18:49:21 +02006421 struct rq *busiest_rq = data;
6422 int busiest_cpu = cpu_of(busiest_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006423 int target_cpu = busiest_rq->push_cpu;
Tejun Heo969c7922010-05-06 18:49:21 +02006424 struct rq *target_rq = cpu_rq(target_cpu);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006425 struct sched_domain *sd;
Tejun Heo969c7922010-05-06 18:49:21 +02006426
6427 raw_spin_lock_irq(&busiest_rq->lock);
6428
6429 /* make sure the requested cpu hasn't gone down in the meantime */
6430 if (unlikely(busiest_cpu != smp_processor_id() ||
6431 !busiest_rq->active_balance))
6432 goto out_unlock;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006433
6434 /* Is there any task to move? */
6435 if (busiest_rq->nr_running <= 1)
Tejun Heo969c7922010-05-06 18:49:21 +02006436 goto out_unlock;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006437
6438 /*
6439 * This condition is "impossible", if it occurs
6440 * we need to fix it. Originally reported by
6441 * Bjorn Helgaas on a 128-cpu setup.
6442 */
6443 BUG_ON(busiest_rq == target_rq);
6444
6445 /* move a task from busiest_rq to target_rq */
6446 double_lock_balance(busiest_rq, target_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006447
6448 /* Search for an sd spanning us and the target CPU. */
Peter Zijlstradce840a2011-04-07 14:09:50 +02006449 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006450 for_each_domain(target_cpu, sd) {
6451 if ((sd->flags & SD_LOAD_BALANCE) &&
6452 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6453 break;
6454 }
6455
6456 if (likely(sd)) {
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006457 struct lb_env env = {
6458 .sd = sd,
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01006459 .dst_cpu = target_cpu,
6460 .dst_rq = target_rq,
6461 .src_cpu = busiest_rq->cpu,
6462 .src_rq = busiest_rq,
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006463 .idle = CPU_IDLE,
6464 };
6465
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006466 schedstat_inc(sd, alb_count);
6467
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006468 if (move_one_task(&env))
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006469 schedstat_inc(sd, alb_pushed);
6470 else
6471 schedstat_inc(sd, alb_failed);
6472 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006473 rcu_read_unlock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006474 double_unlock_balance(busiest_rq, target_rq);
Tejun Heo969c7922010-05-06 18:49:21 +02006475out_unlock:
6476 busiest_rq->active_balance = 0;
6477 raw_spin_unlock_irq(&busiest_rq->lock);
6478 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006479}
6480
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006481#ifdef CONFIG_NO_HZ_COMMON
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006482/*
6483 * idle load balancing details
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006484 * - When one of the busy CPUs notice that there may be an idle rebalancing
6485 * needed, they will kick the idle load balancer, which then does idle
6486 * load balancing for all the idle CPUs.
6487 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006488static struct {
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006489 cpumask_var_t idle_cpus_mask;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006490 atomic_t nr_cpus;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006491 unsigned long next_balance; /* in jiffy units */
6492} nohz ____cacheline_aligned;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006493
Peter Zijlstra8e7fbcb2012-01-09 11:28:35 +01006494static inline int find_new_ilb(int call_cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006495{
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006496 int ilb = cpumask_first(nohz.idle_cpus_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006497
Suresh Siddha786d6dc2011-12-01 17:07:35 -08006498 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6499 return ilb;
6500
6501 return nr_cpu_ids;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006502}
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006503
6504/*
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006505 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6506 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6507 * CPU (if there is one).
6508 */
6509static void nohz_balancer_kick(int cpu)
6510{
6511 int ilb_cpu;
6512
6513 nohz.next_balance++;
6514
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006515 ilb_cpu = find_new_ilb(cpu);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006516
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006517 if (ilb_cpu >= nr_cpu_ids)
6518 return;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006519
Suresh Siddhacd490c52011-12-06 11:26:34 -08006520 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
Suresh Siddha1c792db2011-12-01 17:07:32 -08006521 return;
6522 /*
6523 * Use smp_send_reschedule() instead of resched_cpu().
6524 * This way we generate a sched IPI on the target cpu which
6525 * is idle. And the softirq performing nohz idle load balance
6526 * will be run before returning from the IPI.
6527 */
6528 smp_send_reschedule(ilb_cpu);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006529 return;
6530}
6531
Alex Shic1cc0172012-09-10 15:10:58 +08006532static inline void nohz_balance_exit_idle(int cpu)
Suresh Siddha71325962012-01-19 18:28:57 -08006533{
6534 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6535 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6536 atomic_dec(&nohz.nr_cpus);
6537 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6538 }
6539}
6540
Suresh Siddha69e1e812011-12-01 17:07:33 -08006541static inline void set_cpu_sd_state_busy(void)
6542{
6543 struct sched_domain *sd;
Suresh Siddha69e1e812011-12-01 17:07:33 -08006544
Suresh Siddha69e1e812011-12-01 17:07:33 -08006545 rcu_read_lock();
Nathan Zimmer424c93f2013-05-09 11:24:03 -05006546 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006547
6548 if (!sd || !sd->nohz_idle)
6549 goto unlock;
6550 sd->nohz_idle = 0;
6551
6552 for (; sd; sd = sd->parent)
Suresh Siddha69e1e812011-12-01 17:07:33 -08006553 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006554unlock:
Suresh Siddha69e1e812011-12-01 17:07:33 -08006555 rcu_read_unlock();
6556}
6557
6558void set_cpu_sd_state_idle(void)
6559{
6560 struct sched_domain *sd;
Suresh Siddha69e1e812011-12-01 17:07:33 -08006561
Suresh Siddha69e1e812011-12-01 17:07:33 -08006562 rcu_read_lock();
Nathan Zimmer424c93f2013-05-09 11:24:03 -05006563 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006564
6565 if (!sd || sd->nohz_idle)
6566 goto unlock;
6567 sd->nohz_idle = 1;
6568
6569 for (; sd; sd = sd->parent)
Suresh Siddha69e1e812011-12-01 17:07:33 -08006570 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006571unlock:
Suresh Siddha69e1e812011-12-01 17:07:33 -08006572 rcu_read_unlock();
6573}
6574
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006575/*
Alex Shic1cc0172012-09-10 15:10:58 +08006576 * This routine will record that the cpu is going idle with tick stopped.
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006577 * This info will be used in performing idle load balancing in the future.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006578 */
Alex Shic1cc0172012-09-10 15:10:58 +08006579void nohz_balance_enter_idle(int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006580{
Suresh Siddha71325962012-01-19 18:28:57 -08006581 /*
6582 * If this cpu is going down, then nothing needs to be done.
6583 */
6584 if (!cpu_active(cpu))
6585 return;
6586
Alex Shic1cc0172012-09-10 15:10:58 +08006587 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6588 return;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006589
Alex Shic1cc0172012-09-10 15:10:58 +08006590 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6591 atomic_inc(&nohz.nr_cpus);
6592 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006593}
Suresh Siddha71325962012-01-19 18:28:57 -08006594
Paul Gortmaker0db06282013-06-19 14:53:51 -04006595static int sched_ilb_notifier(struct notifier_block *nfb,
Suresh Siddha71325962012-01-19 18:28:57 -08006596 unsigned long action, void *hcpu)
6597{
6598 switch (action & ~CPU_TASKS_FROZEN) {
6599 case CPU_DYING:
Alex Shic1cc0172012-09-10 15:10:58 +08006600 nohz_balance_exit_idle(smp_processor_id());
Suresh Siddha71325962012-01-19 18:28:57 -08006601 return NOTIFY_OK;
6602 default:
6603 return NOTIFY_DONE;
6604 }
6605}
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006606#endif
6607
6608static DEFINE_SPINLOCK(balancing);
6609
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006610/*
6611 * Scale the max load_balance interval with the number of CPUs in the system.
6612 * This trades load-balance latency on larger machines for less cross talk.
6613 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006614void update_max_interval(void)
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006615{
6616 max_load_balance_interval = HZ*num_online_cpus()/10;
6617}
6618
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006619/*
6620 * It checks each scheduling domain to see if it is due to be balanced,
6621 * and initiates a balancing operation if so.
6622 *
Libinb9b08532013-04-01 19:14:01 +08006623 * Balancing parameters are set up in init_sched_domains.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006624 */
6625static void rebalance_domains(int cpu, enum cpu_idle_type idle)
6626{
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006627 int continue_balancing = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006628 struct rq *rq = cpu_rq(cpu);
6629 unsigned long interval;
Peter Zijlstra04f733b2012-05-11 00:12:02 +02006630 struct sched_domain *sd;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006631 /* Earliest time when we have to do rebalance again */
6632 unsigned long next_balance = jiffies + 60*HZ;
6633 int update_next_balance = 0;
Jason Lowf48627e2013-09-13 11:26:53 -07006634 int need_serialize, need_decay = 0;
6635 u64 max_cost = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006636
Paul Turner48a16752012-10-04 13:18:31 +02006637 update_blocked_averages(cpu);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08006638
Peter Zijlstradce840a2011-04-07 14:09:50 +02006639 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006640 for_each_domain(cpu, sd) {
Jason Lowf48627e2013-09-13 11:26:53 -07006641 /*
6642 * Decay the newidle max times here because this is a regular
6643 * visit to all the domains. Decay ~1% per second.
6644 */
6645 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6646 sd->max_newidle_lb_cost =
6647 (sd->max_newidle_lb_cost * 253) / 256;
6648 sd->next_decay_max_lb_cost = jiffies + HZ;
6649 need_decay = 1;
6650 }
6651 max_cost += sd->max_newidle_lb_cost;
6652
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006653 if (!(sd->flags & SD_LOAD_BALANCE))
6654 continue;
6655
Jason Lowf48627e2013-09-13 11:26:53 -07006656 /*
6657 * Stop the load balance at this level. There is another
6658 * CPU in our sched group which is doing load balancing more
6659 * actively.
6660 */
6661 if (!continue_balancing) {
6662 if (need_decay)
6663 continue;
6664 break;
6665 }
6666
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006667 interval = sd->balance_interval;
6668 if (idle != CPU_IDLE)
6669 interval *= sd->busy_factor;
6670
6671 /* scale ms to jiffies */
6672 interval = msecs_to_jiffies(interval);
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006673 interval = clamp(interval, 1UL, max_load_balance_interval);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006674
6675 need_serialize = sd->flags & SD_SERIALIZE;
6676
6677 if (need_serialize) {
6678 if (!spin_trylock(&balancing))
6679 goto out;
6680 }
6681
6682 if (time_after_eq(jiffies, sd->last_balance + interval)) {
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006683 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006684 /*
Peter Zijlstra62633222013-08-19 12:41:09 +02006685 * The LBF_DST_PINNED logic could have changed
Joonsoo Kimde5eb2d2013-04-23 17:27:38 +09006686 * env->dst_cpu, so we can't know our idle
6687 * state even if we migrated tasks. Update it.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006688 */
Joonsoo Kimde5eb2d2013-04-23 17:27:38 +09006689 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006690 }
6691 sd->last_balance = jiffies;
6692 }
6693 if (need_serialize)
6694 spin_unlock(&balancing);
6695out:
6696 if (time_after(next_balance, sd->last_balance + interval)) {
6697 next_balance = sd->last_balance + interval;
6698 update_next_balance = 1;
6699 }
Jason Lowf48627e2013-09-13 11:26:53 -07006700 }
6701 if (need_decay) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006702 /*
Jason Lowf48627e2013-09-13 11:26:53 -07006703 * Ensure the rq-wide value also decays but keep it at a
6704 * reasonable floor to avoid funnies with rq->avg_idle.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006705 */
Jason Lowf48627e2013-09-13 11:26:53 -07006706 rq->max_idle_balance_cost =
6707 max((u64)sysctl_sched_migration_cost, max_cost);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006708 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006709 rcu_read_unlock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006710
6711 /*
6712 * next_balance will be updated only when there is a need.
6713 * When the cpu is attached to null domain for ex, it will not be
6714 * updated.
6715 */
6716 if (likely(update_next_balance))
6717 rq->next_balance = next_balance;
6718}
6719
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006720#ifdef CONFIG_NO_HZ_COMMON
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006721/*
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006722 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006723 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6724 */
6725static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
6726{
6727 struct rq *this_rq = cpu_rq(this_cpu);
6728 struct rq *rq;
6729 int balance_cpu;
6730
Suresh Siddha1c792db2011-12-01 17:07:32 -08006731 if (idle != CPU_IDLE ||
6732 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6733 goto end;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006734
6735 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
Suresh Siddha8a6d42d2011-12-06 11:19:37 -08006736 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006737 continue;
6738
6739 /*
6740 * If this cpu gets work to do, stop the load balancing
6741 * work being done for other cpus. Next load
6742 * balancing owner will pick it up.
6743 */
Suresh Siddha1c792db2011-12-01 17:07:32 -08006744 if (need_resched())
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006745 break;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006746
Vincent Guittot5ed4f1d2012-09-13 06:11:26 +02006747 rq = cpu_rq(balance_cpu);
6748
6749 raw_spin_lock_irq(&rq->lock);
6750 update_rq_clock(rq);
6751 update_idle_cpu_load(rq);
6752 raw_spin_unlock_irq(&rq->lock);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006753
6754 rebalance_domains(balance_cpu, CPU_IDLE);
6755
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006756 if (time_after(this_rq->next_balance, rq->next_balance))
6757 this_rq->next_balance = rq->next_balance;
6758 }
6759 nohz.next_balance = this_rq->next_balance;
Suresh Siddha1c792db2011-12-01 17:07:32 -08006760end:
6761 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006762}
6763
6764/*
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006765 * Current heuristic for kicking the idle load balancer in the presence
6766 * of an idle cpu is the system.
6767 * - This rq has more than one task.
6768 * - At any scheduler domain level, this cpu's scheduler group has multiple
6769 * busy cpu's exceeding the group's power.
6770 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6771 * domain span are idle.
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006772 */
6773static inline int nohz_kick_needed(struct rq *rq, int cpu)
6774{
6775 unsigned long now = jiffies;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006776 struct sched_domain *sd;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006777
Suresh Siddha1c792db2011-12-01 17:07:32 -08006778 if (unlikely(idle_cpu(cpu)))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006779 return 0;
6780
Suresh Siddha1c792db2011-12-01 17:07:32 -08006781 /*
6782 * We may be recently in ticked or tickless idle mode. At the first
6783 * busy tick after returning from idle, we will update the busy stats.
6784 */
Suresh Siddha69e1e812011-12-01 17:07:33 -08006785 set_cpu_sd_state_busy();
Alex Shic1cc0172012-09-10 15:10:58 +08006786 nohz_balance_exit_idle(cpu);
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006787
6788 /*
6789 * None are in tickless mode and hence no need for NOHZ idle load
6790 * balancing.
6791 */
6792 if (likely(!atomic_read(&nohz.nr_cpus)))
6793 return 0;
Suresh Siddha1c792db2011-12-01 17:07:32 -08006794
6795 if (time_before(now, nohz.next_balance))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006796 return 0;
6797
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006798 if (rq->nr_running >= 2)
6799 goto need_kick;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006800
Peter Zijlstra067491b2011-12-07 14:32:08 +01006801 rcu_read_lock();
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006802 for_each_domain(cpu, sd) {
6803 struct sched_group *sg = sd->groups;
6804 struct sched_group_power *sgp = sg->sgp;
6805 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006806
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006807 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
Peter Zijlstra067491b2011-12-07 14:32:08 +01006808 goto need_kick_unlock;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006809
6810 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
6811 && (cpumask_first_and(nohz.idle_cpus_mask,
6812 sched_domain_span(sd)) < cpu))
Peter Zijlstra067491b2011-12-07 14:32:08 +01006813 goto need_kick_unlock;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006814
6815 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
6816 break;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006817 }
Peter Zijlstra067491b2011-12-07 14:32:08 +01006818 rcu_read_unlock();
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006819 return 0;
Peter Zijlstra067491b2011-12-07 14:32:08 +01006820
6821need_kick_unlock:
6822 rcu_read_unlock();
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006823need_kick:
6824 return 1;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006825}
6826#else
6827static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
6828#endif
6829
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006830/*
6831 * run_rebalance_domains is triggered when needed from the scheduler tick.
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006832 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006833 */
6834static void run_rebalance_domains(struct softirq_action *h)
6835{
6836 int this_cpu = smp_processor_id();
6837 struct rq *this_rq = cpu_rq(this_cpu);
Suresh Siddha6eb57e02011-10-03 15:09:01 -07006838 enum cpu_idle_type idle = this_rq->idle_balance ?
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006839 CPU_IDLE : CPU_NOT_IDLE;
6840
6841 rebalance_domains(this_cpu, idle);
6842
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006843 /*
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006844 * If this cpu has a pending nohz_balance_kick, then do the
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006845 * balancing on behalf of the other idle cpus whose ticks are
6846 * stopped.
6847 */
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006848 nohz_idle_balance(this_cpu, idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006849}
6850
6851static inline int on_null_domain(int cpu)
6852{
Paul E. McKenney90a65012010-02-28 08:32:18 -08006853 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006854}
6855
6856/*
6857 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006858 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006859void trigger_load_balance(struct rq *rq, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006860{
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006861 /* Don't need to rebalance while attached to NULL domain */
6862 if (time_after_eq(jiffies, rq->next_balance) &&
6863 likely(!on_null_domain(cpu)))
6864 raise_softirq(SCHED_SOFTIRQ);
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006865#ifdef CONFIG_NO_HZ_COMMON
Suresh Siddha1c792db2011-12-01 17:07:32 -08006866 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006867 nohz_balancer_kick(cpu);
6868#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006869}
6870
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01006871static void rq_online_fair(struct rq *rq)
6872{
6873 update_sysctl();
6874}
6875
6876static void rq_offline_fair(struct rq *rq)
6877{
6878 update_sysctl();
Peter Boonstoppela4c96ae2012-08-09 15:34:47 -07006879
6880 /* Ensure any throttled groups are reachable by pick_next_task */
6881 unthrottle_offline_cfs_rqs(rq);
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01006882}
6883
Dhaval Giani55e12e52008-06-24 23:39:43 +05306884#endif /* CONFIG_SMP */
Peter Williamse1d14842007-10-24 18:23:51 +02006885
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006886/*
6887 * scheduler tick hitting a task of our scheduling class:
6888 */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01006889static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006890{
6891 struct cfs_rq *cfs_rq;
6892 struct sched_entity *se = &curr->se;
6893
6894 for_each_sched_entity(se) {
6895 cfs_rq = cfs_rq_of(se);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01006896 entity_tick(cfs_rq, se, queued);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006897 }
Ben Segall18bf2802012-10-04 12:51:20 +02006898
Dave Kleikamp10e84b92013-07-31 13:53:35 -07006899 if (numabalancing_enabled)
Peter Zijlstracbee9f82012-10-25 14:16:43 +02006900 task_tick_numa(rq, curr);
Linus Torvalds3d59eeb2012-12-16 14:33:25 -08006901
Ben Segall18bf2802012-10-04 12:51:20 +02006902 update_rq_runnable_avg(rq, 1);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006903}
6904
6905/*
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006906 * called on fork with the child task as argument from the parent's context
6907 * - child not yet on the tasklist
6908 * - preemption disabled
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006909 */
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006910static void task_fork_fair(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006911{
Daisuke Nishimura4fc420c2011-12-15 14:36:55 +09006912 struct cfs_rq *cfs_rq;
6913 struct sched_entity *se = &p->se, *curr;
Ingo Molnar00bf7bf2007-10-15 17:00:14 +02006914 int this_cpu = smp_processor_id();
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006915 struct rq *rq = this_rq();
6916 unsigned long flags;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006917
Thomas Gleixner05fa7852009-11-17 14:28:38 +01006918 raw_spin_lock_irqsave(&rq->lock, flags);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006919
Peter Zijlstra861d0342010-08-19 13:31:43 +02006920 update_rq_clock(rq);
6921
Daisuke Nishimura4fc420c2011-12-15 14:36:55 +09006922 cfs_rq = task_cfs_rq(current);
6923 curr = cfs_rq->curr;
6924
Daisuke Nishimura6c9a27f2013-09-10 18:16:36 +09006925 /*
6926 * Not only the cpu but also the task_group of the parent might have
6927 * been changed after parent->se.parent,cfs_rq were copied to
6928 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6929 * of child point to valid ones.
6930 */
6931 rcu_read_lock();
6932 __set_task_cpu(p, this_cpu);
6933 rcu_read_unlock();
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006934
Ting Yang7109c442007-08-28 12:53:24 +02006935 update_curr(cfs_rq);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006936
Mike Galbraithb5d9d732009-09-08 11:12:28 +02006937 if (curr)
6938 se->vruntime = curr->vruntime;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02006939 place_entity(cfs_rq, se, 1);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02006940
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006941 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
Dmitry Adamushko87fefa32007-10-15 17:00:08 +02006942 /*
Ingo Molnaredcb60a2007-10-15 17:00:08 +02006943 * Upon rescheduling, sched_class::put_prev_task() will place
6944 * 'current' within the tree based on its new key value.
6945 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02006946 swap(curr->vruntime, se->vruntime);
Bharata B Raoaec0a512008-08-28 14:42:49 +05306947 resched_task(rq->curr);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02006948 }
6949
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01006950 se->vruntime -= cfs_rq->min_vruntime;
6951
Thomas Gleixner05fa7852009-11-17 14:28:38 +01006952 raw_spin_unlock_irqrestore(&rq->lock, flags);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006953}
6954
Steven Rostedtcb469842008-01-25 21:08:22 +01006955/*
6956 * Priority of the task has changed. Check to see if we preempt
6957 * the current task.
6958 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006959static void
6960prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
Steven Rostedtcb469842008-01-25 21:08:22 +01006961{
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006962 if (!p->se.on_rq)
6963 return;
6964
Steven Rostedtcb469842008-01-25 21:08:22 +01006965 /*
6966 * Reschedule if we are currently running on this runqueue and
6967 * our priority decreased, or if we are not currently running on
6968 * this runqueue and our priority is higher than the current's
6969 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006970 if (rq->curr == p) {
Steven Rostedtcb469842008-01-25 21:08:22 +01006971 if (p->prio > oldprio)
6972 resched_task(rq->curr);
6973 } else
Peter Zijlstra15afe092008-09-20 23:38:02 +02006974 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01006975}
6976
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006977static void switched_from_fair(struct rq *rq, struct task_struct *p)
6978{
6979 struct sched_entity *se = &p->se;
6980 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6981
6982 /*
6983 * Ensure the task's vruntime is normalized, so that when its
6984 * switched back to the fair class the enqueue_entity(.flags=0) will
6985 * do the right thing.
6986 *
6987 * If it was on_rq, then the dequeue_entity(.flags=0) will already
6988 * have normalized the vruntime, if it was !on_rq, then only when
6989 * the task is sleeping will it still have non-normalized vruntime.
6990 */
6991 if (!se->on_rq && p->state != TASK_RUNNING) {
6992 /*
6993 * Fix up our vruntime so that the current sleep doesn't
6994 * cause 'unlimited' sleep bonus.
6995 */
6996 place_entity(cfs_rq, se, 0);
6997 se->vruntime -= cfs_rq->min_vruntime;
6998 }
Paul Turner9ee474f2012-10-04 13:18:30 +02006999
Alex Shi141965c2013-06-26 13:05:39 +08007000#ifdef CONFIG_SMP
Paul Turner9ee474f2012-10-04 13:18:30 +02007001 /*
7002 * Remove our load from contribution when we leave sched_fair
7003 * and ensure we don't carry in an old decay_count if we
7004 * switch back.
7005 */
Kirill Tkhai87e3c8a2013-07-21 04:32:07 +04007006 if (se->avg.decay_count) {
7007 __synchronize_entity_decay(se);
7008 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
Paul Turner9ee474f2012-10-04 13:18:30 +02007009 }
7010#endif
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007011}
7012
Steven Rostedtcb469842008-01-25 21:08:22 +01007013/*
7014 * We switched to the sched_fair class.
7015 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007016static void switched_to_fair(struct rq *rq, struct task_struct *p)
Steven Rostedtcb469842008-01-25 21:08:22 +01007017{
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007018 if (!p->se.on_rq)
7019 return;
7020
Steven Rostedtcb469842008-01-25 21:08:22 +01007021 /*
7022 * We were most likely switched from sched_rt, so
7023 * kick off the schedule if running, otherwise just see
7024 * if we can still preempt the current task.
7025 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007026 if (rq->curr == p)
Steven Rostedtcb469842008-01-25 21:08:22 +01007027 resched_task(rq->curr);
7028 else
Peter Zijlstra15afe092008-09-20 23:38:02 +02007029 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01007030}
7031
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02007032/* Account for a task changing its policy or group.
7033 *
7034 * This routine is mostly called to set cfs_rq->curr field when a task
7035 * migrates between groups/classes.
7036 */
7037static void set_curr_task_fair(struct rq *rq)
7038{
7039 struct sched_entity *se = &rq->curr->se;
7040
Paul Turnerec12cb72011-07-21 09:43:30 -07007041 for_each_sched_entity(se) {
7042 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7043
7044 set_next_entity(cfs_rq, se);
7045 /* ensure bandwidth has been allocated on our new cfs_rq */
7046 account_cfs_rq_runtime(cfs_rq, 0);
7047 }
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02007048}
7049
Peter Zijlstra029632f2011-10-25 10:00:11 +02007050void init_cfs_rq(struct cfs_rq *cfs_rq)
7051{
7052 cfs_rq->tasks_timeline = RB_ROOT;
Peter Zijlstra029632f2011-10-25 10:00:11 +02007053 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7054#ifndef CONFIG_64BIT
7055 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7056#endif
Alex Shi141965c2013-06-26 13:05:39 +08007057#ifdef CONFIG_SMP
Paul Turner9ee474f2012-10-04 13:18:30 +02007058 atomic64_set(&cfs_rq->decay_counter, 1);
Alex Shi25099402013-06-20 10:18:55 +08007059 atomic_long_set(&cfs_rq->removed_load, 0);
Paul Turner9ee474f2012-10-04 13:18:30 +02007060#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02007061}
7062
Peter Zijlstra810b3812008-02-29 15:21:01 -05007063#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007064static void task_move_group_fair(struct task_struct *p, int on_rq)
Peter Zijlstra810b3812008-02-29 15:21:01 -05007065{
Paul Turneraff3e492012-10-04 13:18:30 +02007066 struct cfs_rq *cfs_rq;
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007067 /*
7068 * If the task was not on the rq at the time of this cgroup movement
7069 * it must have been asleep, sleeping tasks keep their ->vruntime
7070 * absolute on their old rq until wakeup (needed for the fair sleeper
7071 * bonus in place_entity()).
7072 *
7073 * If it was on the rq, we've just 'preempted' it, which does convert
7074 * ->vruntime to a relative base.
7075 *
7076 * Make sure both cases convert their relative position when migrating
7077 * to another cgroup's rq. This does somewhat interfere with the
7078 * fair sleeper stuff for the first placement, but who cares.
7079 */
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09007080 /*
7081 * When !on_rq, vruntime of the task has usually NOT been normalized.
7082 * But there are some cases where it has already been normalized:
7083 *
7084 * - Moving a forked child which is waiting for being woken up by
7085 * wake_up_new_task().
Daisuke Nishimura62af3782011-12-15 14:37:41 +09007086 * - Moving a task which has been woken up by try_to_wake_up() and
7087 * waiting for actually being woken up by sched_ttwu_pending().
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09007088 *
7089 * To prevent boost or penalty in the new cfs_rq caused by delta
7090 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7091 */
Daisuke Nishimura62af3782011-12-15 14:37:41 +09007092 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09007093 on_rq = 1;
7094
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01007095 if (!on_rq)
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007096 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
7097 set_task_rq(p, task_cpu(p));
Paul Turneraff3e492012-10-04 13:18:30 +02007098 if (!on_rq) {
7099 cfs_rq = cfs_rq_of(&p->se);
7100 p->se.vruntime += cfs_rq->min_vruntime;
7101#ifdef CONFIG_SMP
7102 /*
7103 * migrate_task_rq_fair() will have removed our previous
7104 * contribution, but we must synchronize for ongoing future
7105 * decay.
7106 */
7107 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7108 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
7109#endif
7110 }
Peter Zijlstra810b3812008-02-29 15:21:01 -05007111}
Peter Zijlstra029632f2011-10-25 10:00:11 +02007112
7113void free_fair_sched_group(struct task_group *tg)
7114{
7115 int i;
7116
7117 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7118
7119 for_each_possible_cpu(i) {
7120 if (tg->cfs_rq)
7121 kfree(tg->cfs_rq[i]);
7122 if (tg->se)
7123 kfree(tg->se[i]);
7124 }
7125
7126 kfree(tg->cfs_rq);
7127 kfree(tg->se);
7128}
7129
7130int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7131{
7132 struct cfs_rq *cfs_rq;
7133 struct sched_entity *se;
7134 int i;
7135
7136 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7137 if (!tg->cfs_rq)
7138 goto err;
7139 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7140 if (!tg->se)
7141 goto err;
7142
7143 tg->shares = NICE_0_LOAD;
7144
7145 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7146
7147 for_each_possible_cpu(i) {
7148 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7149 GFP_KERNEL, cpu_to_node(i));
7150 if (!cfs_rq)
7151 goto err;
7152
7153 se = kzalloc_node(sizeof(struct sched_entity),
7154 GFP_KERNEL, cpu_to_node(i));
7155 if (!se)
7156 goto err_free_rq;
7157
7158 init_cfs_rq(cfs_rq);
7159 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7160 }
7161
7162 return 1;
7163
7164err_free_rq:
7165 kfree(cfs_rq);
7166err:
7167 return 0;
7168}
7169
7170void unregister_fair_sched_group(struct task_group *tg, int cpu)
7171{
7172 struct rq *rq = cpu_rq(cpu);
7173 unsigned long flags;
7174
7175 /*
7176 * Only empty task groups can be destroyed; so we can speculatively
7177 * check on_list without danger of it being re-added.
7178 */
7179 if (!tg->cfs_rq[cpu]->on_list)
7180 return;
7181
7182 raw_spin_lock_irqsave(&rq->lock, flags);
7183 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7184 raw_spin_unlock_irqrestore(&rq->lock, flags);
7185}
7186
7187void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7188 struct sched_entity *se, int cpu,
7189 struct sched_entity *parent)
7190{
7191 struct rq *rq = cpu_rq(cpu);
7192
7193 cfs_rq->tg = tg;
7194 cfs_rq->rq = rq;
Peter Zijlstra029632f2011-10-25 10:00:11 +02007195 init_cfs_rq_runtime(cfs_rq);
7196
7197 tg->cfs_rq[cpu] = cfs_rq;
7198 tg->se[cpu] = se;
7199
7200 /* se could be NULL for root_task_group */
7201 if (!se)
7202 return;
7203
7204 if (!parent)
7205 se->cfs_rq = &rq->cfs;
7206 else
7207 se->cfs_rq = parent->my_q;
7208
7209 se->my_q = cfs_rq;
7210 update_load_set(&se->load, 0);
7211 se->parent = parent;
7212}
7213
7214static DEFINE_MUTEX(shares_mutex);
7215
7216int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7217{
7218 int i;
7219 unsigned long flags;
7220
7221 /*
7222 * We can't change the weight of the root cgroup.
7223 */
7224 if (!tg->se[0])
7225 return -EINVAL;
7226
7227 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7228
7229 mutex_lock(&shares_mutex);
7230 if (tg->shares == shares)
7231 goto done;
7232
7233 tg->shares = shares;
7234 for_each_possible_cpu(i) {
7235 struct rq *rq = cpu_rq(i);
7236 struct sched_entity *se;
7237
7238 se = tg->se[i];
7239 /* Propagate contribution to hierarchy */
7240 raw_spin_lock_irqsave(&rq->lock, flags);
Frederic Weisbecker71b1da42013-04-12 01:50:59 +02007241
7242 /* Possible calls to update_curr() need rq clock */
7243 update_rq_clock(rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08007244 for_each_sched_entity(se)
Peter Zijlstra029632f2011-10-25 10:00:11 +02007245 update_cfs_shares(group_cfs_rq(se));
7246 raw_spin_unlock_irqrestore(&rq->lock, flags);
7247 }
7248
7249done:
7250 mutex_unlock(&shares_mutex);
7251 return 0;
7252}
7253#else /* CONFIG_FAIR_GROUP_SCHED */
7254
7255void free_fair_sched_group(struct task_group *tg) { }
7256
7257int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7258{
7259 return 1;
7260}
7261
7262void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7263
7264#endif /* CONFIG_FAIR_GROUP_SCHED */
7265
Peter Zijlstra810b3812008-02-29 15:21:01 -05007266
H Hartley Sweeten6d686f42010-01-13 20:21:52 -07007267static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
Peter Williams0d721ce2009-09-21 01:31:53 +00007268{
7269 struct sched_entity *se = &task->se;
Peter Williams0d721ce2009-09-21 01:31:53 +00007270 unsigned int rr_interval = 0;
7271
7272 /*
7273 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7274 * idle runqueue:
7275 */
Peter Williams0d721ce2009-09-21 01:31:53 +00007276 if (rq->cfs.load.weight)
Zhu Yanhaia59f4e02013-01-08 12:56:52 +08007277 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
Peter Williams0d721ce2009-09-21 01:31:53 +00007278
7279 return rr_interval;
7280}
7281
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007282/*
7283 * All the scheduling class methods:
7284 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02007285const struct sched_class fair_sched_class = {
Ingo Molnar5522d5d2007-10-15 17:00:12 +02007286 .next = &idle_sched_class,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007287 .enqueue_task = enqueue_task_fair,
7288 .dequeue_task = dequeue_task_fair,
7289 .yield_task = yield_task_fair,
Mike Galbraithd95f4122011-02-01 09:50:51 -05007290 .yield_to_task = yield_to_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007291
Ingo Molnar2e09bf52007-10-15 17:00:05 +02007292 .check_preempt_curr = check_preempt_wakeup,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007293
7294 .pick_next_task = pick_next_task_fair,
7295 .put_prev_task = put_prev_task_fair,
7296
Peter Williams681f3e62007-10-24 18:23:51 +02007297#ifdef CONFIG_SMP
Li Zefan4ce72a22008-10-22 15:25:26 +08007298 .select_task_rq = select_task_rq_fair,
Paul Turner0a74bef2012-10-04 13:18:30 +02007299 .migrate_task_rq = migrate_task_rq_fair,
Alex Shi141965c2013-06-26 13:05:39 +08007300
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01007301 .rq_online = rq_online_fair,
7302 .rq_offline = rq_offline_fair,
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01007303
7304 .task_waking = task_waking_fair,
Peter Williams681f3e62007-10-24 18:23:51 +02007305#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007306
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02007307 .set_curr_task = set_curr_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007308 .task_tick = task_tick_fair,
Peter Zijlstracd29fe62009-11-27 17:32:46 +01007309 .task_fork = task_fork_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01007310
7311 .prio_changed = prio_changed_fair,
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007312 .switched_from = switched_from_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01007313 .switched_to = switched_to_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05007314
Peter Williams0d721ce2009-09-21 01:31:53 +00007315 .get_rr_interval = get_rr_interval_fair,
7316
Peter Zijlstra810b3812008-02-29 15:21:01 -05007317#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007318 .task_move_group = task_move_group_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05007319#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007320};
7321
7322#ifdef CONFIG_SCHED_DEBUG
Peter Zijlstra029632f2011-10-25 10:00:11 +02007323void print_cfs_stats(struct seq_file *m, int cpu)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007324{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007325 struct cfs_rq *cfs_rq;
7326
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01007327 rcu_read_lock();
Ingo Molnarc3b64f12007-08-09 11:16:51 +02007328 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
Ingo Molnar5cef9ec2007-08-09 11:16:47 +02007329 print_cfs_rq(m, cpu, cfs_rq);
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01007330 rcu_read_unlock();
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007331}
7332#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02007333
7334__init void init_sched_fair_class(void)
7335{
7336#ifdef CONFIG_SMP
7337 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7338
Frederic Weisbecker3451d022011-08-10 23:21:01 +02007339#ifdef CONFIG_NO_HZ_COMMON
Diwakar Tundlam554ceca2012-03-07 14:44:26 -08007340 nohz.next_balance = jiffies;
Peter Zijlstra029632f2011-10-25 10:00:11 +02007341 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
Suresh Siddha71325962012-01-19 18:28:57 -08007342 cpu_notifier(sched_ilb_notifier, 0);
Peter Zijlstra029632f2011-10-25 10:00:11 +02007343#endif
7344#endif /* SMP */
7345
7346}