blob: fe169e934d4250c6045e4bce78c0fcfcfb4b20e8 [file] [log] [blame]
Jon Medhurst9eed1792011-08-28 16:02:38 +01001/*
2 * arch/arm/kernel/kprobes-test.c
3 *
4 * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
Jon Medhursta43bc692011-08-28 16:18:43 +010011/*
12 * TESTING METHODOLOGY
13 * -------------------
14 *
15 * The methodology used to test an ARM instruction 'test_insn' is to use
16 * inline assembler like:
17 *
18 * test_before: nop
19 * test_case: test_insn
20 * test_after: nop
21 *
22 * When the test case is run a kprobe is placed of each nop. The
23 * post-handler of the test_before probe is used to modify the saved CPU
24 * register context to that which we require for the test case. The
25 * pre-handler of the of the test_after probe saves a copy of the CPU
26 * register context. In this way we can execute test_insn with a specific
27 * register context and see the results afterwards.
28 *
29 * To actually test the kprobes instruction emulation we perform the above
30 * step a second time but with an additional kprobe on the test_case
31 * instruction itself. If the emulation is accurate then the results seen
32 * by the test_after probe will be identical to the first run which didn't
33 * have a probe on test_case.
34 *
35 * Each test case is run several times with a variety of variations in the
36 * flags value of stored in CPSR, and for Thumb code, different ITState.
37 *
38 * For instructions which can modify PC, a second test_after probe is used
39 * like this:
40 *
41 * test_before: nop
42 * test_case: test_insn
43 * test_after: nop
44 * b test_done
45 * test_after2: nop
46 * test_done:
47 *
48 * The test case is constructed such that test_insn branches to
49 * test_after2, or, if testing a conditional instruction, it may just
50 * continue to test_after. The probes inserted at both locations let us
51 * determine which happened. A similar approach is used for testing
52 * backwards branches...
53 *
54 * b test_before
55 * b test_done @ helps to cope with off by 1 branches
56 * test_after2: nop
57 * b test_done
58 * test_before: nop
59 * test_case: test_insn
60 * test_after: nop
61 * test_done:
62 *
63 * The macros used to generate the assembler instructions describe above
64 * are TEST_INSTRUCTION, TEST_BRANCH_F (branch forwards) and TEST_BRANCH_B
65 * (branch backwards). In these, the local variables numbered 1, 50, 2 and
66 * 99 represent: test_before, test_case, test_after2 and test_done.
67 *
68 * FRAMEWORK
69 * ---------
70 *
71 * Each test case is wrapped between the pair of macros TESTCASE_START and
72 * TESTCASE_END. As well as performing the inline assembler boilerplate,
73 * these call out to the kprobes_test_case_start() and
74 * kprobes_test_case_end() functions which drive the execution of the test
75 * case. The specific arguments to use for each test case are stored as
76 * inline data constructed using the various TEST_ARG_* macros. Putting
77 * this all together, a simple test case may look like:
78 *
79 * TESTCASE_START("Testing mov r0, r7")
80 * TEST_ARG_REG(7, 0x12345678) // Set r7=0x12345678
81 * TEST_ARG_END("")
82 * TEST_INSTRUCTION("mov r0, r7")
83 * TESTCASE_END
84 *
85 * Note, in practice the single convenience macro TEST_R would be used for this
86 * instead.
87 *
88 * The above would expand to assembler looking something like:
89 *
90 * @ TESTCASE_START
91 * bl __kprobes_test_case_start
92 * @ start of inline data...
93 * .ascii "mov r0, r7" @ text title for test case
94 * .byte 0
95 * .align 2
96 *
97 * @ TEST_ARG_REG
98 * .byte ARG_TYPE_REG
99 * .byte 7
100 * .short 0
101 * .word 0x1234567
102 *
103 * @ TEST_ARG_END
104 * .byte ARG_TYPE_END
105 * .byte TEST_ISA @ flags, including ISA being tested
106 * .short 50f-0f @ offset of 'test_before'
107 * .short 2f-0f @ offset of 'test_after2' (if relevent)
108 * .short 99f-0f @ offset of 'test_done'
109 * @ start of test case code...
110 * 0:
111 * .code TEST_ISA @ switch to ISA being tested
112 *
113 * @ TEST_INSTRUCTION
114 * 50: nop @ location for 'test_before' probe
115 * 1: mov r0, r7 @ the test case instruction 'test_insn'
116 * nop @ location for 'test_after' probe
117 *
118 * // TESTCASE_END
119 * 2:
120 * 99: bl __kprobes_test_case_end_##TEST_ISA
121 * .code NONMAL_ISA
122 *
123 * When the above is execute the following happens...
124 *
125 * __kprobes_test_case_start() is an assembler wrapper which sets up space
126 * for a stack buffer and calls the C function kprobes_test_case_start().
127 * This C function will do some initial processing of the inline data and
128 * setup some global state. It then inserts the test_before and test_after
129 * kprobes and returns a value which causes the assembler wrapper to jump
130 * to the start of the test case code, (local label '0').
131 *
132 * When the test case code executes, the test_before probe will be hit and
133 * test_before_post_handler will call setup_test_context(). This fills the
134 * stack buffer and CPU registers with a test pattern and then processes
135 * the test case arguments. In our example there is one TEST_ARG_REG which
136 * indicates that R7 should be loaded with the value 0x12345678.
137 *
138 * When the test_before probe ends, the test case continues and executes
139 * the "mov r0, r7" instruction. It then hits the test_after probe and the
140 * pre-handler for this (test_after_pre_handler) will save a copy of the
141 * CPU register context. This should now have R0 holding the same value as
142 * R7.
143 *
144 * Finally we get to the call to __kprobes_test_case_end_{32,16}. This is
145 * an assembler wrapper which switches back to the ISA used by the test
146 * code and calls the C function kprobes_test_case_end().
147 *
148 * For each run through the test case, test_case_run_count is incremented
149 * by one. For even runs, kprobes_test_case_end() saves a copy of the
150 * register and stack buffer contents from the test case just run. It then
151 * inserts a kprobe on the test case instruction 'test_insn' and returns a
152 * value to cause the test case code to be re-run.
153 *
154 * For odd numbered runs, kprobes_test_case_end() compares the register and
155 * stack buffer contents to those that were saved on the previous even
156 * numbered run (the one without the kprobe on test_insn). These should be
157 * the same if the kprobe instruction simulation routine is correct.
158 *
159 * The pair of test case runs is repeated with different combinations of
160 * flag values in CPSR and, for Thumb, different ITState. This is
161 * controlled by test_context_cpsr().
162 *
163 * BUILDING TEST CASES
164 * -------------------
165 *
166 *
167 * As an aid to building test cases, the stack buffer is initialised with
168 * some special values:
169 *
170 * [SP+13*4] Contains SP+120. This can be used to test instructions
171 * which load a value into SP.
172 *
173 * [SP+15*4] When testing branching instructions using TEST_BRANCH_{F,B},
174 * this holds the target address of the branch, 'test_after2'.
175 * This can be used to test instructions which load a PC value
176 * from memory.
177 */
178
Jon Medhurst9eed1792011-08-28 16:02:38 +0100179#include <linux/kernel.h>
180#include <linux/module.h>
Jon Medhurst963780d2011-08-28 16:38:35 +0100181#include <linux/slab.h>
Jon Medhurst9eed1792011-08-28 16:02:38 +0100182#include <linux/kprobes.h>
183
184#include "kprobes.h"
Jon Medhursta43bc692011-08-28 16:18:43 +0100185#include "kprobes-test.h"
Jon Medhurst9eed1792011-08-28 16:02:38 +0100186
187
188/*
189 * Test basic API
190 */
191
192static bool test_regs_ok;
193static int test_func_instance;
194static int pre_handler_called;
195static int post_handler_called;
196static int jprobe_func_called;
197static int kretprobe_handler_called;
198
199#define FUNC_ARG1 0x12345678
200#define FUNC_ARG2 0xabcdef
201
202
203#ifndef CONFIG_THUMB2_KERNEL
204
205long arm_func(long r0, long r1);
206
207static void __used __naked __arm_kprobes_test_func(void)
208{
209 __asm__ __volatile__ (
210 ".arm \n\t"
211 ".type arm_func, %%function \n\t"
212 "arm_func: \n\t"
213 "adds r0, r0, r1 \n\t"
214 "bx lr \n\t"
215 ".code "NORMAL_ISA /* Back to Thumb if necessary */
216 : : : "r0", "r1", "cc"
217 );
218}
219
220#else /* CONFIG_THUMB2_KERNEL */
221
222long thumb16_func(long r0, long r1);
223long thumb32even_func(long r0, long r1);
224long thumb32odd_func(long r0, long r1);
225
226static void __used __naked __thumb_kprobes_test_funcs(void)
227{
228 __asm__ __volatile__ (
229 ".type thumb16_func, %%function \n\t"
230 "thumb16_func: \n\t"
231 "adds.n r0, r0, r1 \n\t"
232 "bx lr \n\t"
233
234 ".align \n\t"
235 ".type thumb32even_func, %%function \n\t"
236 "thumb32even_func: \n\t"
237 "adds.w r0, r0, r1 \n\t"
238 "bx lr \n\t"
239
240 ".align \n\t"
241 "nop.n \n\t"
242 ".type thumb32odd_func, %%function \n\t"
243 "thumb32odd_func: \n\t"
244 "adds.w r0, r0, r1 \n\t"
245 "bx lr \n\t"
246
247 : : : "r0", "r1", "cc"
248 );
249}
250
251#endif /* CONFIG_THUMB2_KERNEL */
252
253
254static int call_test_func(long (*func)(long, long), bool check_test_regs)
255{
256 long ret;
257
258 ++test_func_instance;
259 test_regs_ok = false;
260
261 ret = (*func)(FUNC_ARG1, FUNC_ARG2);
262 if (ret != FUNC_ARG1 + FUNC_ARG2) {
263 pr_err("FAIL: call_test_func: func returned %lx\n", ret);
264 return false;
265 }
266
267 if (check_test_regs && !test_regs_ok) {
268 pr_err("FAIL: test regs not OK\n");
269 return false;
270 }
271
272 return true;
273}
274
275static int __kprobes pre_handler(struct kprobe *p, struct pt_regs *regs)
276{
277 pre_handler_called = test_func_instance;
278 if (regs->ARM_r0 == FUNC_ARG1 && regs->ARM_r1 == FUNC_ARG2)
279 test_regs_ok = true;
280 return 0;
281}
282
283static void __kprobes post_handler(struct kprobe *p, struct pt_regs *regs,
284 unsigned long flags)
285{
286 post_handler_called = test_func_instance;
287 if (regs->ARM_r0 != FUNC_ARG1 + FUNC_ARG2 || regs->ARM_r1 != FUNC_ARG2)
288 test_regs_ok = false;
289}
290
291static struct kprobe the_kprobe = {
292 .addr = 0,
293 .pre_handler = pre_handler,
294 .post_handler = post_handler
295};
296
297static int test_kprobe(long (*func)(long, long))
298{
299 int ret;
300
301 the_kprobe.addr = (kprobe_opcode_t *)func;
302 ret = register_kprobe(&the_kprobe);
303 if (ret < 0) {
304 pr_err("FAIL: register_kprobe failed with %d\n", ret);
305 return ret;
306 }
307
308 ret = call_test_func(func, true);
309
310 unregister_kprobe(&the_kprobe);
311 the_kprobe.flags = 0; /* Clear disable flag to allow reuse */
312
313 if (!ret)
314 return -EINVAL;
315 if (pre_handler_called != test_func_instance) {
316 pr_err("FAIL: kprobe pre_handler not called\n");
317 return -EINVAL;
318 }
319 if (post_handler_called != test_func_instance) {
320 pr_err("FAIL: kprobe post_handler not called\n");
321 return -EINVAL;
322 }
323 if (!call_test_func(func, false))
324 return -EINVAL;
325 if (pre_handler_called == test_func_instance ||
326 post_handler_called == test_func_instance) {
327 pr_err("FAIL: probe called after unregistering\n");
328 return -EINVAL;
329 }
330
331 return 0;
332}
333
334static void __kprobes jprobe_func(long r0, long r1)
335{
336 jprobe_func_called = test_func_instance;
337 if (r0 == FUNC_ARG1 && r1 == FUNC_ARG2)
338 test_regs_ok = true;
339 jprobe_return();
340}
341
342static struct jprobe the_jprobe = {
343 .entry = jprobe_func,
344};
345
346static int test_jprobe(long (*func)(long, long))
347{
348 int ret;
349
350 the_jprobe.kp.addr = (kprobe_opcode_t *)func;
351 ret = register_jprobe(&the_jprobe);
352 if (ret < 0) {
353 pr_err("FAIL: register_jprobe failed with %d\n", ret);
354 return ret;
355 }
356
357 ret = call_test_func(func, true);
358
359 unregister_jprobe(&the_jprobe);
360 the_jprobe.kp.flags = 0; /* Clear disable flag to allow reuse */
361
362 if (!ret)
363 return -EINVAL;
364 if (jprobe_func_called != test_func_instance) {
365 pr_err("FAIL: jprobe handler function not called\n");
366 return -EINVAL;
367 }
368 if (!call_test_func(func, false))
369 return -EINVAL;
370 if (jprobe_func_called == test_func_instance) {
371 pr_err("FAIL: probe called after unregistering\n");
372 return -EINVAL;
373 }
374
375 return 0;
376}
377
378static int __kprobes
379kretprobe_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
380{
381 kretprobe_handler_called = test_func_instance;
382 if (regs_return_value(regs) == FUNC_ARG1 + FUNC_ARG2)
383 test_regs_ok = true;
384 return 0;
385}
386
387static struct kretprobe the_kretprobe = {
388 .handler = kretprobe_handler,
389};
390
391static int test_kretprobe(long (*func)(long, long))
392{
393 int ret;
394
395 the_kretprobe.kp.addr = (kprobe_opcode_t *)func;
396 ret = register_kretprobe(&the_kretprobe);
397 if (ret < 0) {
398 pr_err("FAIL: register_kretprobe failed with %d\n", ret);
399 return ret;
400 }
401
402 ret = call_test_func(func, true);
403
404 unregister_kretprobe(&the_kretprobe);
405 the_kretprobe.kp.flags = 0; /* Clear disable flag to allow reuse */
406
407 if (!ret)
408 return -EINVAL;
409 if (kretprobe_handler_called != test_func_instance) {
410 pr_err("FAIL: kretprobe handler not called\n");
411 return -EINVAL;
412 }
413 if (!call_test_func(func, false))
414 return -EINVAL;
415 if (jprobe_func_called == test_func_instance) {
416 pr_err("FAIL: kretprobe called after unregistering\n");
417 return -EINVAL;
418 }
419
420 return 0;
421}
422
423static int run_api_tests(long (*func)(long, long))
424{
425 int ret;
426
427 pr_info(" kprobe\n");
428 ret = test_kprobe(func);
429 if (ret < 0)
430 return ret;
431
432 pr_info(" jprobe\n");
433 ret = test_jprobe(func);
434 if (ret < 0)
435 return ret;
436
437 pr_info(" kretprobe\n");
438 ret = test_kretprobe(func);
439 if (ret < 0)
440 return ret;
441
442 return 0;
443}
444
445
446/*
Jon Medhurst68f360e2011-08-28 16:35:11 +0100447 * Decoding table self-consistency tests
448 */
449
450static const int decode_struct_sizes[NUM_DECODE_TYPES] = {
451 [DECODE_TYPE_TABLE] = sizeof(struct decode_table),
452 [DECODE_TYPE_CUSTOM] = sizeof(struct decode_custom),
453 [DECODE_TYPE_SIMULATE] = sizeof(struct decode_simulate),
454 [DECODE_TYPE_EMULATE] = sizeof(struct decode_emulate),
455 [DECODE_TYPE_OR] = sizeof(struct decode_or),
456 [DECODE_TYPE_REJECT] = sizeof(struct decode_reject)
457};
458
459static int table_iter(const union decode_item *table,
460 int (*fn)(const struct decode_header *, void *),
461 void *args)
462{
463 const struct decode_header *h = (struct decode_header *)table;
464 int result;
465
466 for (;;) {
467 enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
468
469 if (type == DECODE_TYPE_END)
470 return 0;
471
472 result = fn(h, args);
473 if (result)
474 return result;
475
476 h = (struct decode_header *)
477 ((uintptr_t)h + decode_struct_sizes[type]);
478
479 }
480}
481
482static int table_test_fail(const struct decode_header *h, const char* message)
483{
484
485 pr_err("FAIL: kprobes test failure \"%s\" (mask %08x, value %08x)\n",
486 message, h->mask.bits, h->value.bits);
487 return -EINVAL;
488}
489
490struct table_test_args {
491 const union decode_item *root_table;
492 u32 parent_mask;
493 u32 parent_value;
494};
495
496static int table_test_fn(const struct decode_header *h, void *args)
497{
498 struct table_test_args *a = (struct table_test_args *)args;
499 enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
500
501 if (h->value.bits & ~h->mask.bits)
502 return table_test_fail(h, "Match value has bits not in mask");
503
504 if ((h->mask.bits & a->parent_mask) != a->parent_mask)
505 return table_test_fail(h, "Mask has bits not in parent mask");
506
507 if ((h->value.bits ^ a->parent_value) & a->parent_mask)
508 return table_test_fail(h, "Value is inconsistent with parent");
509
510 if (type == DECODE_TYPE_TABLE) {
511 struct decode_table *d = (struct decode_table *)h;
512 struct table_test_args args2 = *a;
513 args2.parent_mask = h->mask.bits;
514 args2.parent_value = h->value.bits;
515 return table_iter(d->table.table, table_test_fn, &args2);
516 }
517
518 return 0;
519}
520
521static int table_test(const union decode_item *table)
522{
523 struct table_test_args args = {
524 .root_table = table,
525 .parent_mask = 0,
526 .parent_value = 0
527 };
528 return table_iter(args.root_table, table_test_fn, &args);
529}
530
531
532/*
Jon Medhurst963780d2011-08-28 16:38:35 +0100533 * Decoding table test coverage analysis
534 *
535 * coverage_start() builds a coverage_table which contains a list of
536 * coverage_entry's to match each entry in the specified kprobes instruction
537 * decoding table.
538 *
539 * When test cases are run, coverage_add() is called to process each case.
540 * This looks up the corresponding entry in the coverage_table and sets it as
541 * being matched, as well as clearing the regs flag appropriate for the test.
542 *
543 * After all test cases have been run, coverage_end() is called to check that
544 * all entries in coverage_table have been matched and that all regs flags are
545 * cleared. I.e. that all possible combinations of instructions described by
546 * the kprobes decoding tables have had a test case executed for them.
547 */
548
549bool coverage_fail;
550
551#define MAX_COVERAGE_ENTRIES 256
552
553struct coverage_entry {
554 const struct decode_header *header;
555 unsigned regs;
556 unsigned nesting;
557 char matched;
558};
559
560struct coverage_table {
561 struct coverage_entry *base;
562 unsigned num_entries;
563 unsigned nesting;
564};
565
566struct coverage_table coverage;
567
568#define COVERAGE_ANY_REG (1<<0)
569#define COVERAGE_SP (1<<1)
570#define COVERAGE_PC (1<<2)
571#define COVERAGE_PCWB (1<<3)
572
573static const char coverage_register_lookup[16] = {
574 [REG_TYPE_ANY] = COVERAGE_ANY_REG | COVERAGE_SP | COVERAGE_PC,
575 [REG_TYPE_SAMEAS16] = COVERAGE_ANY_REG,
576 [REG_TYPE_SP] = COVERAGE_SP,
577 [REG_TYPE_PC] = COVERAGE_PC,
578 [REG_TYPE_NOSP] = COVERAGE_ANY_REG | COVERAGE_SP,
579 [REG_TYPE_NOSPPC] = COVERAGE_ANY_REG | COVERAGE_SP | COVERAGE_PC,
580 [REG_TYPE_NOPC] = COVERAGE_ANY_REG | COVERAGE_PC,
581 [REG_TYPE_NOPCWB] = COVERAGE_ANY_REG | COVERAGE_PC | COVERAGE_PCWB,
582 [REG_TYPE_NOPCX] = COVERAGE_ANY_REG,
583 [REG_TYPE_NOSPPCX] = COVERAGE_ANY_REG | COVERAGE_SP,
584};
585
586unsigned coverage_start_registers(const struct decode_header *h)
587{
588 unsigned regs = 0;
589 int i;
590 for (i = 0; i < 20; i += 4) {
591 int r = (h->type_regs.bits >> (DECODE_TYPE_BITS + i)) & 0xf;
592 regs |= coverage_register_lookup[r] << i;
593 }
594 return regs;
595}
596
597static int coverage_start_fn(const struct decode_header *h, void *args)
598{
599 struct coverage_table *coverage = (struct coverage_table *)args;
600 enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
601 struct coverage_entry *entry = coverage->base + coverage->num_entries;
602
603 if (coverage->num_entries == MAX_COVERAGE_ENTRIES - 1) {
604 pr_err("FAIL: Out of space for test coverage data");
605 return -ENOMEM;
606 }
607
608 ++coverage->num_entries;
609
610 entry->header = h;
611 entry->regs = coverage_start_registers(h);
612 entry->nesting = coverage->nesting;
613 entry->matched = false;
614
615 if (type == DECODE_TYPE_TABLE) {
616 struct decode_table *d = (struct decode_table *)h;
617 int ret;
618 ++coverage->nesting;
619 ret = table_iter(d->table.table, coverage_start_fn, coverage);
620 --coverage->nesting;
621 return ret;
622 }
623
624 return 0;
625}
626
627static int coverage_start(const union decode_item *table)
628{
629 coverage.base = kmalloc(MAX_COVERAGE_ENTRIES *
630 sizeof(struct coverage_entry), GFP_KERNEL);
631 coverage.num_entries = 0;
632 coverage.nesting = 0;
633 return table_iter(table, coverage_start_fn, &coverage);
634}
635
636static void
637coverage_add_registers(struct coverage_entry *entry, kprobe_opcode_t insn)
638{
639 int regs = entry->header->type_regs.bits >> DECODE_TYPE_BITS;
640 int i;
641 for (i = 0; i < 20; i += 4) {
642 enum decode_reg_type reg_type = (regs >> i) & 0xf;
643 int reg = (insn >> i) & 0xf;
644 int flag;
645
646 if (!reg_type)
647 continue;
648
649 if (reg == 13)
650 flag = COVERAGE_SP;
651 else if (reg == 15)
652 flag = COVERAGE_PC;
653 else
654 flag = COVERAGE_ANY_REG;
655 entry->regs &= ~(flag << i);
656
657 switch (reg_type) {
658
659 case REG_TYPE_NONE:
660 case REG_TYPE_ANY:
661 case REG_TYPE_SAMEAS16:
662 break;
663
664 case REG_TYPE_SP:
665 if (reg != 13)
666 return;
667 break;
668
669 case REG_TYPE_PC:
670 if (reg != 15)
671 return;
672 break;
673
674 case REG_TYPE_NOSP:
675 if (reg == 13)
676 return;
677 break;
678
679 case REG_TYPE_NOSPPC:
680 case REG_TYPE_NOSPPCX:
681 if (reg == 13 || reg == 15)
682 return;
683 break;
684
685 case REG_TYPE_NOPCWB:
686 if (!is_writeback(insn))
687 break;
688 if (reg == 15) {
689 entry->regs &= ~(COVERAGE_PCWB << i);
690 return;
691 }
692 break;
693
694 case REG_TYPE_NOPC:
695 case REG_TYPE_NOPCX:
696 if (reg == 15)
697 return;
698 break;
699 }
700
701 }
702}
703
704static void coverage_add(kprobe_opcode_t insn)
705{
706 struct coverage_entry *entry = coverage.base;
707 struct coverage_entry *end = coverage.base + coverage.num_entries;
708 bool matched = false;
709 unsigned nesting = 0;
710
711 for (; entry < end; ++entry) {
712 const struct decode_header *h = entry->header;
713 enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
714
715 if (entry->nesting > nesting)
716 continue; /* Skip sub-table we didn't match */
717
718 if (entry->nesting < nesting)
719 break; /* End of sub-table we were scanning */
720
721 if (!matched) {
722 if ((insn & h->mask.bits) != h->value.bits)
723 continue;
724 entry->matched = true;
725 }
726
727 switch (type) {
728
729 case DECODE_TYPE_TABLE:
730 ++nesting;
731 break;
732
733 case DECODE_TYPE_CUSTOM:
734 case DECODE_TYPE_SIMULATE:
735 case DECODE_TYPE_EMULATE:
736 coverage_add_registers(entry, insn);
737 return;
738
739 case DECODE_TYPE_OR:
740 matched = true;
741 break;
742
743 case DECODE_TYPE_REJECT:
744 default:
745 return;
746 }
747
748 }
749}
750
751static void coverage_end(void)
752{
753 struct coverage_entry *entry = coverage.base;
754 struct coverage_entry *end = coverage.base + coverage.num_entries;
755
756 for (; entry < end; ++entry) {
757 u32 mask = entry->header->mask.bits;
758 u32 value = entry->header->value.bits;
759
760 if (entry->regs) {
761 pr_err("FAIL: Register test coverage missing for %08x %08x (%05x)\n",
762 mask, value, entry->regs);
763 coverage_fail = true;
764 }
765 if (!entry->matched) {
766 pr_err("FAIL: Test coverage entry missing for %08x %08x\n",
767 mask, value);
768 coverage_fail = true;
769 }
770 }
771
772 kfree(coverage.base);
773}
774
775
776/*
Jon Medhursta43bc692011-08-28 16:18:43 +0100777 * Framework for instruction set test cases
778 */
779
780void __naked __kprobes_test_case_start(void)
781{
782 __asm__ __volatile__ (
783 "stmdb sp!, {r4-r11} \n\t"
784 "sub sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
785 "bic r0, lr, #1 @ r0 = inline title string \n\t"
786 "mov r1, sp \n\t"
787 "bl kprobes_test_case_start \n\t"
788 "bx r0 \n\t"
789 );
790}
791
792#ifndef CONFIG_THUMB2_KERNEL
793
794void __naked __kprobes_test_case_end_32(void)
795{
796 __asm__ __volatile__ (
797 "mov r4, lr \n\t"
798 "bl kprobes_test_case_end \n\t"
799 "cmp r0, #0 \n\t"
800 "movne pc, r0 \n\t"
801 "mov r0, r4 \n\t"
802 "add sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
803 "ldmia sp!, {r4-r11} \n\t"
804 "mov pc, r0 \n\t"
805 );
806}
807
808#else /* CONFIG_THUMB2_KERNEL */
809
810void __naked __kprobes_test_case_end_16(void)
811{
812 __asm__ __volatile__ (
813 "mov r4, lr \n\t"
814 "bl kprobes_test_case_end \n\t"
815 "cmp r0, #0 \n\t"
816 "bxne r0 \n\t"
817 "mov r0, r4 \n\t"
818 "add sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
819 "ldmia sp!, {r4-r11} \n\t"
820 "bx r0 \n\t"
821 );
822}
823
824void __naked __kprobes_test_case_end_32(void)
825{
826 __asm__ __volatile__ (
827 ".arm \n\t"
828 "orr lr, lr, #1 @ will return to Thumb code \n\t"
829 "ldr pc, 1f \n\t"
830 "1: \n\t"
831 ".word __kprobes_test_case_end_16 \n\t"
832 );
833}
834
835#endif
836
837
838int kprobe_test_flags;
839int kprobe_test_cc_position;
840
841static int test_try_count;
842static int test_pass_count;
843static int test_fail_count;
844
845static struct pt_regs initial_regs;
846static struct pt_regs expected_regs;
847static struct pt_regs result_regs;
848
849static u32 expected_memory[TEST_MEMORY_SIZE/sizeof(u32)];
850
851static const char *current_title;
852static struct test_arg *current_args;
853static u32 *current_stack;
854static uintptr_t current_branch_target;
855
856static uintptr_t current_code_start;
857static kprobe_opcode_t current_instruction;
858
859
860#define TEST_CASE_PASSED -1
861#define TEST_CASE_FAILED -2
862
863static int test_case_run_count;
864static bool test_case_is_thumb;
865static int test_instance;
866
867/*
868 * We ignore the state of the imprecise abort disable flag (CPSR.A) because this
869 * can change randomly as the kernel doesn't take care to preserve or initialise
870 * this across context switches. Also, with Security Extentions, the flag may
871 * not be under control of the kernel; for this reason we ignore the state of
872 * the FIQ disable flag CPSR.F as well.
873 */
874#define PSR_IGNORE_BITS (PSR_A_BIT | PSR_F_BIT)
875
876static unsigned long test_check_cc(int cc, unsigned long cpsr)
877{
878 unsigned long temp;
879
880 switch (cc) {
881 case 0x0: /* eq */
882 return cpsr & PSR_Z_BIT;
883
884 case 0x1: /* ne */
885 return (~cpsr) & PSR_Z_BIT;
886
887 case 0x2: /* cs */
888 return cpsr & PSR_C_BIT;
889
890 case 0x3: /* cc */
891 return (~cpsr) & PSR_C_BIT;
892
893 case 0x4: /* mi */
894 return cpsr & PSR_N_BIT;
895
896 case 0x5: /* pl */
897 return (~cpsr) & PSR_N_BIT;
898
899 case 0x6: /* vs */
900 return cpsr & PSR_V_BIT;
901
902 case 0x7: /* vc */
903 return (~cpsr) & PSR_V_BIT;
904
905 case 0x8: /* hi */
906 cpsr &= ~(cpsr >> 1); /* PSR_C_BIT &= ~PSR_Z_BIT */
907 return cpsr & PSR_C_BIT;
908
909 case 0x9: /* ls */
910 cpsr &= ~(cpsr >> 1); /* PSR_C_BIT &= ~PSR_Z_BIT */
911 return (~cpsr) & PSR_C_BIT;
912
913 case 0xa: /* ge */
914 cpsr ^= (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */
915 return (~cpsr) & PSR_N_BIT;
916
917 case 0xb: /* lt */
918 cpsr ^= (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */
919 return cpsr & PSR_N_BIT;
920
921 case 0xc: /* gt */
922 temp = cpsr ^ (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */
923 temp |= (cpsr << 1); /* PSR_N_BIT |= PSR_Z_BIT */
924 return (~temp) & PSR_N_BIT;
925
926 case 0xd: /* le */
927 temp = cpsr ^ (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */
928 temp |= (cpsr << 1); /* PSR_N_BIT |= PSR_Z_BIT */
929 return temp & PSR_N_BIT;
930
931 case 0xe: /* al */
932 case 0xf: /* unconditional */
933 return true;
934 }
935 BUG();
936 return false;
937}
938
939static int is_last_scenario;
940static int probe_should_run; /* 0 = no, 1 = yes, -1 = unknown */
941static int memory_needs_checking;
942
943static unsigned long test_context_cpsr(int scenario)
944{
945 unsigned long cpsr;
946
947 probe_should_run = 1;
948
949 /* Default case is that we cycle through 16 combinations of flags */
950 cpsr = (scenario & 0xf) << 28; /* N,Z,C,V flags */
951 cpsr |= (scenario & 0xf) << 16; /* GE flags */
952 cpsr |= (scenario & 0x1) << 27; /* Toggle Q flag */
953
954 if (!test_case_is_thumb) {
955 /* Testing ARM code */
956 probe_should_run = test_check_cc(current_instruction >> 28, cpsr) != 0;
957 if (scenario == 15)
958 is_last_scenario = true;
959
960 } else if (kprobe_test_flags & TEST_FLAG_NO_ITBLOCK) {
961 /* Testing Thumb code without setting ITSTATE */
962 if (kprobe_test_cc_position) {
963 int cc = (current_instruction >> kprobe_test_cc_position) & 0xf;
964 probe_should_run = test_check_cc(cc, cpsr) != 0;
965 }
966
967 if (scenario == 15)
968 is_last_scenario = true;
969
970 } else if (kprobe_test_flags & TEST_FLAG_FULL_ITBLOCK) {
971 /* Testing Thumb code with all combinations of ITSTATE */
972 unsigned x = (scenario >> 4);
973 unsigned cond_base = x % 7; /* ITSTATE<7:5> */
974 unsigned mask = x / 7 + 2; /* ITSTATE<4:0>, bits reversed */
975
976 if (mask > 0x1f) {
977 /* Finish by testing state from instruction 'itt al' */
978 cond_base = 7;
979 mask = 0x4;
980 if ((scenario & 0xf) == 0xf)
981 is_last_scenario = true;
982 }
983
984 cpsr |= cond_base << 13; /* ITSTATE<7:5> */
985 cpsr |= (mask & 0x1) << 12; /* ITSTATE<4> */
986 cpsr |= (mask & 0x2) << 10; /* ITSTATE<3> */
987 cpsr |= (mask & 0x4) << 8; /* ITSTATE<2> */
988 cpsr |= (mask & 0x8) << 23; /* ITSTATE<1> */
989 cpsr |= (mask & 0x10) << 21; /* ITSTATE<0> */
990
991 probe_should_run = test_check_cc((cpsr >> 12) & 0xf, cpsr) != 0;
992
993 } else {
994 /* Testing Thumb code with several combinations of ITSTATE */
995 switch (scenario) {
996 case 16: /* Clear NZCV flags and 'it eq' state (false as Z=0) */
997 cpsr = 0x00000800;
998 probe_should_run = 0;
999 break;
1000 case 17: /* Set NZCV flags and 'it vc' state (false as V=1) */
1001 cpsr = 0xf0007800;
1002 probe_should_run = 0;
1003 break;
1004 case 18: /* Clear NZCV flags and 'it ls' state (true as C=0) */
1005 cpsr = 0x00009800;
1006 break;
1007 case 19: /* Set NZCV flags and 'it cs' state (true as C=1) */
1008 cpsr = 0xf0002800;
1009 is_last_scenario = true;
1010 break;
1011 }
1012 }
1013
1014 return cpsr;
1015}
1016
1017static void setup_test_context(struct pt_regs *regs)
1018{
1019 int scenario = test_case_run_count>>1;
1020 unsigned long val;
1021 struct test_arg *args;
1022 int i;
1023
1024 is_last_scenario = false;
1025 memory_needs_checking = false;
1026
1027 /* Initialise test memory on stack */
1028 val = (scenario & 1) ? VALM : ~VALM;
1029 for (i = 0; i < TEST_MEMORY_SIZE / sizeof(current_stack[0]); ++i)
1030 current_stack[i] = val + (i << 8);
1031 /* Put target of branch on stack for tests which load PC from memory */
1032 if (current_branch_target)
1033 current_stack[15] = current_branch_target;
1034 /* Put a value for SP on stack for tests which load SP from memory */
1035 current_stack[13] = (u32)current_stack + 120;
1036
1037 /* Initialise register values to their default state */
1038 val = (scenario & 2) ? VALR : ~VALR;
1039 for (i = 0; i < 13; ++i)
1040 regs->uregs[i] = val ^ (i << 8);
1041 regs->ARM_lr = val ^ (14 << 8);
1042 regs->ARM_cpsr &= ~(APSR_MASK | PSR_IT_MASK);
1043 regs->ARM_cpsr |= test_context_cpsr(scenario);
1044
1045 /* Perform testcase specific register setup */
1046 args = current_args;
1047 for (; args[0].type != ARG_TYPE_END; ++args)
1048 switch (args[0].type) {
1049 case ARG_TYPE_REG: {
1050 struct test_arg_regptr *arg =
1051 (struct test_arg_regptr *)args;
1052 regs->uregs[arg->reg] = arg->val;
1053 break;
1054 }
1055 case ARG_TYPE_PTR: {
1056 struct test_arg_regptr *arg =
1057 (struct test_arg_regptr *)args;
1058 regs->uregs[arg->reg] =
1059 (unsigned long)current_stack + arg->val;
1060 memory_needs_checking = true;
1061 break;
1062 }
1063 case ARG_TYPE_MEM: {
1064 struct test_arg_mem *arg = (struct test_arg_mem *)args;
1065 current_stack[arg->index] = arg->val;
1066 break;
1067 }
1068 default:
1069 break;
1070 }
1071}
1072
1073struct test_probe {
1074 struct kprobe kprobe;
1075 bool registered;
1076 int hit;
1077};
1078
1079static void unregister_test_probe(struct test_probe *probe)
1080{
1081 if (probe->registered) {
1082 unregister_kprobe(&probe->kprobe);
1083 probe->kprobe.flags = 0; /* Clear disable flag to allow reuse */
1084 }
1085 probe->registered = false;
1086}
1087
1088static int register_test_probe(struct test_probe *probe)
1089{
1090 int ret;
1091
1092 if (probe->registered)
1093 BUG();
1094
1095 ret = register_kprobe(&probe->kprobe);
1096 if (ret >= 0) {
1097 probe->registered = true;
1098 probe->hit = -1;
1099 }
1100 return ret;
1101}
1102
1103static int __kprobes
1104test_before_pre_handler(struct kprobe *p, struct pt_regs *regs)
1105{
1106 container_of(p, struct test_probe, kprobe)->hit = test_instance;
1107 return 0;
1108}
1109
1110static void __kprobes
1111test_before_post_handler(struct kprobe *p, struct pt_regs *regs,
1112 unsigned long flags)
1113{
1114 setup_test_context(regs);
1115 initial_regs = *regs;
1116 initial_regs.ARM_cpsr &= ~PSR_IGNORE_BITS;
1117}
1118
1119static int __kprobes
1120test_case_pre_handler(struct kprobe *p, struct pt_regs *regs)
1121{
1122 container_of(p, struct test_probe, kprobe)->hit = test_instance;
1123 return 0;
1124}
1125
1126static int __kprobes
1127test_after_pre_handler(struct kprobe *p, struct pt_regs *regs)
1128{
1129 if (container_of(p, struct test_probe, kprobe)->hit == test_instance)
1130 return 0; /* Already run for this test instance */
1131
1132 result_regs = *regs;
1133 result_regs.ARM_cpsr &= ~PSR_IGNORE_BITS;
1134
1135 /* Undo any changes done to SP by the test case */
1136 regs->ARM_sp = (unsigned long)current_stack;
1137
1138 container_of(p, struct test_probe, kprobe)->hit = test_instance;
1139 return 0;
1140}
1141
1142static struct test_probe test_before_probe = {
1143 .kprobe.pre_handler = test_before_pre_handler,
1144 .kprobe.post_handler = test_before_post_handler,
1145};
1146
1147static struct test_probe test_case_probe = {
1148 .kprobe.pre_handler = test_case_pre_handler,
1149};
1150
1151static struct test_probe test_after_probe = {
1152 .kprobe.pre_handler = test_after_pre_handler,
1153};
1154
1155static struct test_probe test_after2_probe = {
1156 .kprobe.pre_handler = test_after_pre_handler,
1157};
1158
1159static void test_case_cleanup(void)
1160{
1161 unregister_test_probe(&test_before_probe);
1162 unregister_test_probe(&test_case_probe);
1163 unregister_test_probe(&test_after_probe);
1164 unregister_test_probe(&test_after2_probe);
1165}
1166
1167static void print_registers(struct pt_regs *regs)
1168{
1169 pr_err("r0 %08lx | r1 %08lx | r2 %08lx | r3 %08lx\n",
1170 regs->ARM_r0, regs->ARM_r1, regs->ARM_r2, regs->ARM_r3);
1171 pr_err("r4 %08lx | r5 %08lx | r6 %08lx | r7 %08lx\n",
1172 regs->ARM_r4, regs->ARM_r5, regs->ARM_r6, regs->ARM_r7);
1173 pr_err("r8 %08lx | r9 %08lx | r10 %08lx | r11 %08lx\n",
1174 regs->ARM_r8, regs->ARM_r9, regs->ARM_r10, regs->ARM_fp);
1175 pr_err("r12 %08lx | sp %08lx | lr %08lx | pc %08lx\n",
1176 regs->ARM_ip, regs->ARM_sp, regs->ARM_lr, regs->ARM_pc);
1177 pr_err("cpsr %08lx\n", regs->ARM_cpsr);
1178}
1179
1180static void print_memory(u32 *mem, size_t size)
1181{
1182 int i;
1183 for (i = 0; i < size / sizeof(u32); i += 4)
1184 pr_err("%08x %08x %08x %08x\n", mem[i], mem[i+1],
1185 mem[i+2], mem[i+3]);
1186}
1187
1188static size_t expected_memory_size(u32 *sp)
1189{
1190 size_t size = sizeof(expected_memory);
1191 int offset = (uintptr_t)sp - (uintptr_t)current_stack;
1192 if (offset > 0)
1193 size -= offset;
1194 return size;
1195}
1196
1197static void test_case_failed(const char *message)
1198{
1199 test_case_cleanup();
1200
1201 pr_err("FAIL: %s\n", message);
1202 pr_err("FAIL: Test %s\n", current_title);
1203 pr_err("FAIL: Scenario %d\n", test_case_run_count >> 1);
1204}
1205
1206static unsigned long next_instruction(unsigned long pc)
1207{
1208#ifdef CONFIG_THUMB2_KERNEL
1209 if ((pc & 1) && !is_wide_instruction(*(u16 *)(pc - 1)))
1210 return pc + 2;
1211 else
1212#endif
1213 return pc + 4;
1214}
1215
1216static uintptr_t __used kprobes_test_case_start(const char *title, void *stack)
1217{
1218 struct test_arg *args;
1219 struct test_arg_end *end_arg;
1220 unsigned long test_code;
1221
1222 args = (struct test_arg *)PTR_ALIGN(title + strlen(title) + 1, 4);
1223
1224 current_title = title;
1225 current_args = args;
1226 current_stack = stack;
1227
1228 ++test_try_count;
1229
1230 while (args->type != ARG_TYPE_END)
1231 ++args;
1232 end_arg = (struct test_arg_end *)args;
1233
1234 test_code = (unsigned long)(args + 1); /* Code starts after args */
1235
1236 test_case_is_thumb = end_arg->flags & ARG_FLAG_THUMB;
1237 if (test_case_is_thumb)
1238 test_code |= 1;
1239
1240 current_code_start = test_code;
1241
1242 current_branch_target = 0;
1243 if (end_arg->branch_offset != end_arg->end_offset)
1244 current_branch_target = test_code + end_arg->branch_offset;
1245
1246 test_code += end_arg->code_offset;
1247 test_before_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
1248
1249 test_code = next_instruction(test_code);
1250 test_case_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
1251
1252 if (test_case_is_thumb) {
1253 u16 *p = (u16 *)(test_code & ~1);
1254 current_instruction = p[0];
1255 if (is_wide_instruction(current_instruction)) {
1256 current_instruction <<= 16;
1257 current_instruction |= p[1];
1258 }
1259 } else {
1260 current_instruction = *(u32 *)test_code;
1261 }
1262
1263 if (current_title[0] == '.')
1264 verbose("%s\n", current_title);
1265 else
1266 verbose("%s\t@ %0*x\n", current_title,
1267 test_case_is_thumb ? 4 : 8,
1268 current_instruction);
1269
1270 test_code = next_instruction(test_code);
1271 test_after_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
1272
1273 if (kprobe_test_flags & TEST_FLAG_NARROW_INSTR) {
1274 if (!test_case_is_thumb ||
1275 is_wide_instruction(current_instruction)) {
1276 test_case_failed("expected 16-bit instruction");
1277 goto fail;
1278 }
1279 } else {
1280 if (test_case_is_thumb &&
1281 !is_wide_instruction(current_instruction)) {
1282 test_case_failed("expected 32-bit instruction");
1283 goto fail;
1284 }
1285 }
1286
Jon Medhurst963780d2011-08-28 16:38:35 +01001287 coverage_add(current_instruction);
1288
Jon Medhursta43bc692011-08-28 16:18:43 +01001289 if (end_arg->flags & ARG_FLAG_UNSUPPORTED) {
1290 if (register_test_probe(&test_case_probe) < 0)
1291 goto pass;
1292 test_case_failed("registered probe for unsupported instruction");
1293 goto fail;
1294 }
1295
1296 if (end_arg->flags & ARG_FLAG_SUPPORTED) {
1297 if (register_test_probe(&test_case_probe) >= 0)
1298 goto pass;
1299 test_case_failed("couldn't register probe for supported instruction");
1300 goto fail;
1301 }
1302
1303 if (register_test_probe(&test_before_probe) < 0) {
1304 test_case_failed("register test_before_probe failed");
1305 goto fail;
1306 }
1307 if (register_test_probe(&test_after_probe) < 0) {
1308 test_case_failed("register test_after_probe failed");
1309 goto fail;
1310 }
1311 if (current_branch_target) {
1312 test_after2_probe.kprobe.addr =
1313 (kprobe_opcode_t *)current_branch_target;
1314 if (register_test_probe(&test_after2_probe) < 0) {
1315 test_case_failed("register test_after2_probe failed");
1316 goto fail;
1317 }
1318 }
1319
1320 /* Start first run of test case */
1321 test_case_run_count = 0;
1322 ++test_instance;
1323 return current_code_start;
1324pass:
1325 test_case_run_count = TEST_CASE_PASSED;
1326 return (uintptr_t)test_after_probe.kprobe.addr;
1327fail:
1328 test_case_run_count = TEST_CASE_FAILED;
1329 return (uintptr_t)test_after_probe.kprobe.addr;
1330}
1331
1332static bool check_test_results(void)
1333{
1334 size_t mem_size = 0;
1335 u32 *mem = 0;
1336
1337 if (memcmp(&expected_regs, &result_regs, sizeof(expected_regs))) {
1338 test_case_failed("registers differ");
1339 goto fail;
1340 }
1341
1342 if (memory_needs_checking) {
1343 mem = (u32 *)result_regs.ARM_sp;
1344 mem_size = expected_memory_size(mem);
1345 if (memcmp(expected_memory, mem, mem_size)) {
1346 test_case_failed("test memory differs");
1347 goto fail;
1348 }
1349 }
1350
1351 return true;
1352
1353fail:
1354 pr_err("initial_regs:\n");
1355 print_registers(&initial_regs);
1356 pr_err("expected_regs:\n");
1357 print_registers(&expected_regs);
1358 pr_err("result_regs:\n");
1359 print_registers(&result_regs);
1360
1361 if (mem) {
1362 pr_err("current_stack=%p\n", current_stack);
1363 pr_err("expected_memory:\n");
1364 print_memory(expected_memory, mem_size);
1365 pr_err("result_memory:\n");
1366 print_memory(mem, mem_size);
1367 }
1368
1369 return false;
1370}
1371
1372static uintptr_t __used kprobes_test_case_end(void)
1373{
1374 if (test_case_run_count < 0) {
1375 if (test_case_run_count == TEST_CASE_PASSED)
1376 /* kprobes_test_case_start did all the needed testing */
1377 goto pass;
1378 else
1379 /* kprobes_test_case_start failed */
1380 goto fail;
1381 }
1382
1383 if (test_before_probe.hit != test_instance) {
1384 test_case_failed("test_before_handler not run");
1385 goto fail;
1386 }
1387
1388 if (test_after_probe.hit != test_instance &&
1389 test_after2_probe.hit != test_instance) {
1390 test_case_failed("test_after_handler not run");
1391 goto fail;
1392 }
1393
1394 /*
1395 * Even numbered test runs ran without a probe on the test case so
1396 * we can gather reference results. The subsequent odd numbered run
1397 * will have the probe inserted.
1398 */
1399 if ((test_case_run_count & 1) == 0) {
1400 /* Save results from run without probe */
1401 u32 *mem = (u32 *)result_regs.ARM_sp;
1402 expected_regs = result_regs;
1403 memcpy(expected_memory, mem, expected_memory_size(mem));
1404
1405 /* Insert probe onto test case instruction */
1406 if (register_test_probe(&test_case_probe) < 0) {
1407 test_case_failed("register test_case_probe failed");
1408 goto fail;
1409 }
1410 } else {
1411 /* Check probe ran as expected */
1412 if (probe_should_run == 1) {
1413 if (test_case_probe.hit != test_instance) {
1414 test_case_failed("test_case_handler not run");
1415 goto fail;
1416 }
1417 } else if (probe_should_run == 0) {
1418 if (test_case_probe.hit == test_instance) {
1419 test_case_failed("test_case_handler ran");
1420 goto fail;
1421 }
1422 }
1423
1424 /* Remove probe for any subsequent reference run */
1425 unregister_test_probe(&test_case_probe);
1426
1427 if (!check_test_results())
1428 goto fail;
1429
1430 if (is_last_scenario)
1431 goto pass;
1432 }
1433
1434 /* Do next test run */
1435 ++test_case_run_count;
1436 ++test_instance;
1437 return current_code_start;
1438fail:
1439 ++test_fail_count;
1440 goto end;
1441pass:
1442 ++test_pass_count;
1443end:
1444 test_case_cleanup();
1445 return 0;
1446}
1447
1448
1449/*
Jon Medhurst9eed1792011-08-28 16:02:38 +01001450 * Top level test functions
1451 */
1452
Jon Medhurst68f360e2011-08-28 16:35:11 +01001453static int run_test_cases(void (*tests)(void), const union decode_item *table)
Jon Medhurstc7054aa2011-08-27 12:40:30 +01001454{
Jon Medhurst68f360e2011-08-28 16:35:11 +01001455 int ret;
1456
1457 pr_info(" Check decoding tables\n");
1458 ret = table_test(table);
1459 if (ret)
1460 return ret;
1461
Jon Medhurstc7054aa2011-08-27 12:40:30 +01001462 pr_info(" Run test cases\n");
Jon Medhurst963780d2011-08-28 16:38:35 +01001463 ret = coverage_start(table);
1464 if (ret)
1465 return ret;
1466
Jon Medhurstc7054aa2011-08-27 12:40:30 +01001467 tests();
1468
Jon Medhurst963780d2011-08-28 16:38:35 +01001469 coverage_end();
Jon Medhurstc7054aa2011-08-27 12:40:30 +01001470 return 0;
1471}
1472
1473
Jon Medhurst9eed1792011-08-28 16:02:38 +01001474static int __init run_all_tests(void)
1475{
1476 int ret = 0;
1477
1478 pr_info("Begining kprobe tests...\n");
1479
1480#ifndef CONFIG_THUMB2_KERNEL
1481
1482 pr_info("Probe ARM code\n");
1483 ret = run_api_tests(arm_func);
1484 if (ret)
1485 goto out;
1486
Jon Medhurstc0cc6df2011-08-27 12:41:05 +01001487 pr_info("ARM instruction simulation\n");
Jon Medhurst68f360e2011-08-28 16:35:11 +01001488 ret = run_test_cases(kprobe_arm_test_cases, kprobe_decode_arm_table);
Jon Medhurstc0cc6df2011-08-27 12:41:05 +01001489 if (ret)
1490 goto out;
1491
Jon Medhurst9eed1792011-08-28 16:02:38 +01001492#else /* CONFIG_THUMB2_KERNEL */
1493
1494 pr_info("Probe 16-bit Thumb code\n");
1495 ret = run_api_tests(thumb16_func);
1496 if (ret)
1497 goto out;
1498
1499 pr_info("Probe 32-bit Thumb code, even halfword\n");
1500 ret = run_api_tests(thumb32even_func);
1501 if (ret)
1502 goto out;
1503
1504 pr_info("Probe 32-bit Thumb code, odd halfword\n");
1505 ret = run_api_tests(thumb32odd_func);
1506 if (ret)
1507 goto out;
1508
Jon Medhurstc7054aa2011-08-27 12:40:30 +01001509 pr_info("16-bit Thumb instruction simulation\n");
Jon Medhurst68f360e2011-08-28 16:35:11 +01001510 ret = run_test_cases(kprobe_thumb16_test_cases,
1511 kprobe_decode_thumb16_table);
Jon Medhurstc7054aa2011-08-27 12:40:30 +01001512 if (ret)
1513 goto out;
1514
1515 pr_info("32-bit Thumb instruction simulation\n");
Jon Medhurst68f360e2011-08-28 16:35:11 +01001516 ret = run_test_cases(kprobe_thumb32_test_cases,
1517 kprobe_decode_thumb32_table);
Jon Medhurstc7054aa2011-08-27 12:40:30 +01001518 if (ret)
1519 goto out;
Jon Medhurst9eed1792011-08-28 16:02:38 +01001520#endif
1521
Jon Medhurstc7054aa2011-08-27 12:40:30 +01001522 pr_info("Total instruction simulation tests=%d, pass=%d fail=%d\n",
1523 test_try_count, test_pass_count, test_fail_count);
1524 if (test_fail_count) {
1525 ret = -EINVAL;
1526 goto out;
1527 }
1528
Jon Medhurst963780d2011-08-28 16:38:35 +01001529#if __LINUX_ARM_ARCH__ >= 7
1530 /* We are able to run all test cases so coverage should be complete */
1531 if (coverage_fail) {
1532 pr_err("FAIL: Test coverage checks failed\n");
1533 ret = -EINVAL;
1534 goto out;
1535 }
1536#endif
1537
Jon Medhurst9eed1792011-08-28 16:02:38 +01001538out:
1539 if (ret == 0)
1540 pr_info("Finished kprobe tests OK\n");
1541 else
1542 pr_err("kprobe tests failed\n");
1543
1544 return ret;
1545}
1546
1547
1548/*
1549 * Module setup
1550 */
1551
1552#ifdef MODULE
1553
1554static void __exit kprobe_test_exit(void)
1555{
1556}
1557
1558module_init(run_all_tests)
1559module_exit(kprobe_test_exit)
1560MODULE_LICENSE("GPL");
1561
1562#else /* !MODULE */
1563
1564late_initcall(run_all_tests);
1565
1566#endif