| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  * Setup routines for AGP 3.5 compliant bridges. | 
 | 3 |  */ | 
 | 4 |  | 
 | 5 | #include <linux/list.h> | 
 | 6 | #include <linux/pci.h> | 
 | 7 | #include <linux/agp_backend.h> | 
 | 8 | #include <linux/module.h> | 
| Tim Schmielau | 4e57b68 | 2005-10-30 15:03:48 -0800 | [diff] [blame] | 9 | #include <linux/slab.h> | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 10 |  | 
 | 11 | #include "agp.h" | 
 | 12 |  | 
 | 13 | /* Generic AGP 3.5 enabling routines */ | 
 | 14 |  | 
 | 15 | struct agp_3_5_dev { | 
 | 16 | 	struct list_head list; | 
 | 17 | 	u8 capndx; | 
 | 18 | 	u32 maxbw; | 
 | 19 | 	struct pci_dev *dev; | 
 | 20 | }; | 
 | 21 |  | 
 | 22 | static void agp_3_5_dev_list_insert(struct list_head *head, struct list_head *new) | 
 | 23 | { | 
 | 24 | 	struct agp_3_5_dev *cur, *n = list_entry(new, struct agp_3_5_dev, list); | 
 | 25 | 	struct list_head *pos; | 
 | 26 |  | 
 | 27 | 	list_for_each(pos, head) { | 
 | 28 | 		cur = list_entry(pos, struct agp_3_5_dev, list); | 
| Dave Jones | 6a92a4e | 2006-02-28 00:54:25 -0500 | [diff] [blame] | 29 | 		if (cur->maxbw > n->maxbw) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 30 | 			break; | 
 | 31 | 	} | 
 | 32 | 	list_add_tail(new, pos); | 
 | 33 | } | 
 | 34 |  | 
 | 35 | static void agp_3_5_dev_list_sort(struct agp_3_5_dev *list, unsigned int ndevs) | 
 | 36 | { | 
 | 37 | 	struct agp_3_5_dev *cur; | 
 | 38 | 	struct pci_dev *dev; | 
 | 39 | 	struct list_head *pos, *tmp, *head = &list->list, *start = head->next; | 
 | 40 | 	u32 nistat; | 
 | 41 |  | 
 | 42 | 	INIT_LIST_HEAD(head); | 
 | 43 |  | 
 | 44 | 	for (pos=start; pos!=head; ) { | 
 | 45 | 		cur = list_entry(pos, struct agp_3_5_dev, list); | 
 | 46 | 		dev = cur->dev; | 
 | 47 |  | 
 | 48 | 		pci_read_config_dword(dev, cur->capndx+AGPNISTAT, &nistat); | 
 | 49 | 		cur->maxbw = (nistat >> 16) & 0xff; | 
 | 50 |  | 
 | 51 | 		tmp = pos; | 
 | 52 | 		pos = pos->next; | 
 | 53 | 		agp_3_5_dev_list_insert(head, tmp); | 
 | 54 | 	} | 
 | 55 | } | 
 | 56 |  | 
| Dave Jones | 6a92a4e | 2006-02-28 00:54:25 -0500 | [diff] [blame] | 57 | /* | 
 | 58 |  * Initialize all isochronous transfer parameters for an AGP 3.0 | 
 | 59 |  * node (i.e. a host bridge in combination with the adapters | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 60 |  * lying behind it...) | 
 | 61 |  */ | 
 | 62 |  | 
 | 63 | static int agp_3_5_isochronous_node_enable(struct agp_bridge_data *bridge, | 
 | 64 | 		struct agp_3_5_dev *dev_list, unsigned int ndevs) | 
 | 65 | { | 
 | 66 | 	/* | 
 | 67 | 	 * Convenience structure to make the calculations clearer | 
 | 68 | 	 * here.  The field names come straight from the AGP 3.0 spec. | 
 | 69 | 	 */ | 
 | 70 | 	struct isoch_data { | 
 | 71 | 		u32 maxbw; | 
 | 72 | 		u32 n; | 
 | 73 | 		u32 y; | 
 | 74 | 		u32 l; | 
 | 75 | 		u32 rq; | 
 | 76 | 		struct agp_3_5_dev *dev; | 
 | 77 | 	}; | 
 | 78 |  | 
 | 79 | 	struct pci_dev *td = bridge->dev, *dev; | 
 | 80 | 	struct list_head *head = &dev_list->list, *pos; | 
 | 81 | 	struct agp_3_5_dev *cur; | 
 | 82 | 	struct isoch_data *master, target; | 
 | 83 | 	unsigned int cdev = 0; | 
 | 84 | 	u32 mnistat, tnistat, tstatus, mcmd; | 
 | 85 | 	u16 tnicmd, mnicmd; | 
 | 86 | 	u8 mcapndx; | 
 | 87 | 	u32 tot_bw = 0, tot_n = 0, tot_rq = 0, y_max, rq_isoch, rq_async; | 
 | 88 | 	u32 step, rem, rem_isoch, rem_async; | 
 | 89 | 	int ret = 0; | 
 | 90 |  | 
 | 91 | 	/* | 
 | 92 | 	 * We'll work with an array of isoch_data's (one for each | 
 | 93 | 	 * device in dev_list) throughout this function. | 
 | 94 | 	 */ | 
 | 95 | 	if ((master = kmalloc(ndevs * sizeof(*master), GFP_KERNEL)) == NULL) { | 
 | 96 | 		ret = -ENOMEM; | 
 | 97 | 		goto get_out; | 
 | 98 | 	} | 
 | 99 |  | 
 | 100 | 	/* | 
 | 101 | 	 * Sort the device list by maxbw.  We need to do this because the | 
 | 102 | 	 * spec suggests that the devices with the smallest requirements | 
 | 103 | 	 * have their resources allocated first, with all remaining resources | 
 | 104 | 	 * falling to the device with the largest requirement. | 
 | 105 | 	 * | 
 | 106 | 	 * We don't exactly do this, we divide target resources by ndevs | 
 | 107 | 	 * and split them amongst the AGP 3.0 devices.  The remainder of such | 
 | 108 | 	 * division operations are dropped on the last device, sort of like | 
 | 109 | 	 * the spec mentions it should be done. | 
 | 110 | 	 * | 
 | 111 | 	 * We can't do this sort when we initially construct the dev_list | 
 | 112 | 	 * because we don't know until this function whether isochronous | 
 | 113 | 	 * transfers are enabled and consequently whether maxbw will mean | 
 | 114 | 	 * anything. | 
 | 115 | 	 */ | 
 | 116 | 	agp_3_5_dev_list_sort(dev_list, ndevs); | 
 | 117 |  | 
 | 118 | 	pci_read_config_dword(td, bridge->capndx+AGPNISTAT, &tnistat); | 
 | 119 | 	pci_read_config_dword(td, bridge->capndx+AGPSTAT, &tstatus); | 
 | 120 |  | 
 | 121 | 	/* Extract power-on defaults from the target */ | 
 | 122 | 	target.maxbw = (tnistat >> 16) & 0xff; | 
 | 123 | 	target.n     = (tnistat >> 8)  & 0xff; | 
 | 124 | 	target.y     = (tnistat >> 6)  & 0x3; | 
 | 125 | 	target.l     = (tnistat >> 3)  & 0x7; | 
 | 126 | 	target.rq    = (tstatus >> 24) & 0xff; | 
 | 127 |  | 
 | 128 | 	y_max = target.y; | 
 | 129 |  | 
 | 130 | 	/* | 
 | 131 | 	 * Extract power-on defaults for each device in dev_list.  Along | 
 | 132 | 	 * the way, calculate the total isochronous bandwidth required | 
 | 133 | 	 * by these devices and the largest requested payload size. | 
 | 134 | 	 */ | 
 | 135 | 	list_for_each(pos, head) { | 
 | 136 | 		cur = list_entry(pos, struct agp_3_5_dev, list); | 
 | 137 | 		dev = cur->dev; | 
 | 138 |  | 
 | 139 | 		mcapndx = cur->capndx; | 
 | 140 |  | 
 | 141 | 		pci_read_config_dword(dev, cur->capndx+AGPNISTAT, &mnistat); | 
 | 142 |  | 
 | 143 | 		master[cdev].maxbw = (mnistat >> 16) & 0xff; | 
 | 144 | 		master[cdev].n     = (mnistat >> 8)  & 0xff; | 
 | 145 | 		master[cdev].y     = (mnistat >> 6)  & 0x3; | 
 | 146 | 		master[cdev].dev   = cur; | 
 | 147 |  | 
 | 148 | 		tot_bw += master[cdev].maxbw; | 
 | 149 | 		y_max = max(y_max, master[cdev].y); | 
 | 150 |  | 
 | 151 | 		cdev++; | 
 | 152 | 	} | 
 | 153 |  | 
 | 154 | 	/* Check if this configuration has any chance of working */ | 
 | 155 | 	if (tot_bw > target.maxbw) { | 
 | 156 | 		printk(KERN_ERR PFX "isochronous bandwidth required " | 
 | 157 | 			"by AGP 3.0 devices exceeds that which is supported by " | 
 | 158 | 			"the AGP 3.0 bridge!\n"); | 
 | 159 | 		ret = -ENODEV; | 
 | 160 | 		goto free_and_exit; | 
 | 161 | 	} | 
 | 162 |  | 
 | 163 | 	target.y = y_max; | 
 | 164 |  | 
 | 165 | 	/* | 
 | 166 | 	 * Write the calculated payload size into the target's NICMD | 
 | 167 | 	 * register.  Doing this directly effects the ISOCH_N value | 
 | 168 | 	 * in the target's NISTAT register, so we need to do this now | 
 | 169 | 	 * to get an accurate value for ISOCH_N later. | 
 | 170 | 	 */ | 
 | 171 | 	pci_read_config_word(td, bridge->capndx+AGPNICMD, &tnicmd); | 
 | 172 | 	tnicmd &= ~(0x3 << 6); | 
 | 173 | 	tnicmd |= target.y << 6; | 
 | 174 | 	pci_write_config_word(td, bridge->capndx+AGPNICMD, tnicmd); | 
 | 175 |  | 
 | 176 | 	/* Reread the target's ISOCH_N */ | 
 | 177 | 	pci_read_config_dword(td, bridge->capndx+AGPNISTAT, &tnistat); | 
 | 178 | 	target.n = (tnistat >> 8) & 0xff; | 
 | 179 |  | 
 | 180 | 	/* Calculate the minimum ISOCH_N needed by each master */ | 
 | 181 | 	for (cdev=0; cdev<ndevs; cdev++) { | 
 | 182 | 		master[cdev].y = target.y; | 
 | 183 | 		master[cdev].n = master[cdev].maxbw / (master[cdev].y + 1); | 
 | 184 |  | 
 | 185 | 		tot_n += master[cdev].n; | 
 | 186 | 	} | 
 | 187 |  | 
 | 188 | 	/* Exit if the minimal ISOCH_N allocation among the masters is more | 
 | 189 | 	 * than the target can handle. */ | 
 | 190 | 	if (tot_n > target.n) { | 
 | 191 | 		printk(KERN_ERR PFX "number of isochronous " | 
 | 192 | 			"transactions per period required by AGP 3.0 devices " | 
 | 193 | 			"exceeds that which is supported by the AGP 3.0 " | 
 | 194 | 			"bridge!\n"); | 
 | 195 | 		ret = -ENODEV; | 
 | 196 | 		goto free_and_exit; | 
 | 197 | 	} | 
 | 198 |  | 
 | 199 | 	/* Calculate left over ISOCH_N capability in the target.  We'll give | 
 | 200 | 	 * this to the hungriest device (as per the spec) */ | 
 | 201 | 	rem  = target.n - tot_n; | 
 | 202 |  | 
| Dave Jones | 6a92a4e | 2006-02-28 00:54:25 -0500 | [diff] [blame] | 203 | 	/* | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 204 | 	 * Calculate the minimum isochronous RQ depth needed by each master. | 
 | 205 | 	 * Along the way, distribute the extra ISOCH_N capability calculated | 
 | 206 | 	 * above. | 
 | 207 | 	 */ | 
 | 208 | 	for (cdev=0; cdev<ndevs; cdev++) { | 
 | 209 | 		/* | 
 | 210 | 		 * This is a little subtle.  If ISOCH_Y > 64B, then ISOCH_Y | 
 | 211 | 		 * byte isochronous writes will be broken into 64B pieces. | 
 | 212 | 		 * This means we need to budget more RQ depth to account for | 
 | 213 | 		 * these kind of writes (each isochronous write is actually | 
 | 214 | 		 * many writes on the AGP bus). | 
 | 215 | 		 */ | 
 | 216 | 		master[cdev].rq = master[cdev].n; | 
| Dave Jones | 6a92a4e | 2006-02-28 00:54:25 -0500 | [diff] [blame] | 217 | 		if (master[cdev].y > 0x1) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 218 | 			master[cdev].rq *= (1 << (master[cdev].y - 1)); | 
 | 219 |  | 
 | 220 | 		tot_rq += master[cdev].rq; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 221 | 	} | 
| Daniel =?ISO-8859-1?Q?Marjam=E4ki | 496ebd3 | 2005-12-23 16:18:54 +0000 | [diff] [blame] | 222 | 	master[ndevs-1].n += rem; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 223 |  | 
 | 224 | 	/* Figure the number of isochronous and asynchronous RQ slots the | 
 | 225 | 	 * target is providing. */ | 
 | 226 | 	rq_isoch = (target.y > 0x1) ? target.n * (1 << (target.y - 1)) : target.n; | 
 | 227 | 	rq_async = target.rq - rq_isoch; | 
 | 228 |  | 
 | 229 | 	/* Exit if the minimal RQ needs of the masters exceeds what the target | 
 | 230 | 	 * can provide. */ | 
 | 231 | 	if (tot_rq > rq_isoch) { | 
 | 232 | 		printk(KERN_ERR PFX "number of request queue slots " | 
 | 233 | 			"required by the isochronous bandwidth requested by " | 
 | 234 | 			"AGP 3.0 devices exceeds the number provided by the " | 
 | 235 | 			"AGP 3.0 bridge!\n"); | 
 | 236 | 		ret = -ENODEV; | 
 | 237 | 		goto free_and_exit; | 
 | 238 | 	} | 
 | 239 |  | 
 | 240 | 	/* Calculate asynchronous RQ capability in the target (per master) as | 
 | 241 | 	 * well as the total number of leftover isochronous RQ slots. */ | 
 | 242 | 	step      = rq_async / ndevs; | 
 | 243 | 	rem_async = step + (rq_async % ndevs); | 
 | 244 | 	rem_isoch = rq_isoch - tot_rq; | 
 | 245 |  | 
 | 246 | 	/* Distribute the extra RQ slots calculated above and write our | 
 | 247 | 	 * isochronous settings out to the actual devices. */ | 
 | 248 | 	for (cdev=0; cdev<ndevs; cdev++) { | 
 | 249 | 		cur = master[cdev].dev; | 
 | 250 | 		dev = cur->dev; | 
 | 251 |  | 
 | 252 | 		mcapndx = cur->capndx; | 
 | 253 |  | 
 | 254 | 		master[cdev].rq += (cdev == ndevs - 1) | 
 | 255 | 		              ? (rem_async + rem_isoch) : step; | 
 | 256 |  | 
 | 257 | 		pci_read_config_word(dev, cur->capndx+AGPNICMD, &mnicmd); | 
 | 258 | 		pci_read_config_dword(dev, cur->capndx+AGPCMD, &mcmd); | 
 | 259 |  | 
 | 260 | 		mnicmd &= ~(0xff << 8); | 
 | 261 | 		mnicmd &= ~(0x3  << 6); | 
 | 262 | 		mcmd   &= ~(0xff << 24); | 
 | 263 |  | 
 | 264 | 		mnicmd |= master[cdev].n  << 8; | 
 | 265 | 		mnicmd |= master[cdev].y  << 6; | 
 | 266 | 		mcmd   |= master[cdev].rq << 24; | 
 | 267 |  | 
 | 268 | 		pci_write_config_dword(dev, cur->capndx+AGPCMD, mcmd); | 
 | 269 | 		pci_write_config_word(dev, cur->capndx+AGPNICMD, mnicmd); | 
 | 270 | 	} | 
 | 271 |  | 
 | 272 | free_and_exit: | 
 | 273 | 	kfree(master); | 
 | 274 |  | 
 | 275 | get_out: | 
 | 276 | 	return ret; | 
 | 277 | } | 
 | 278 |  | 
 | 279 | /* | 
 | 280 |  * This function basically allocates request queue slots among the | 
 | 281 |  * AGP 3.0 systems in nonisochronous nodes.  The algorithm is | 
 | 282 |  * pretty stupid, divide the total number of RQ slots provided by the | 
 | 283 |  * target by ndevs.  Distribute this many slots to each AGP 3.0 device, | 
 | 284 |  * giving any left over slots to the last device in dev_list. | 
 | 285 |  */ | 
 | 286 | static void agp_3_5_nonisochronous_node_enable(struct agp_bridge_data *bridge, | 
 | 287 | 		struct agp_3_5_dev *dev_list, unsigned int ndevs) | 
 | 288 | { | 
 | 289 | 	struct agp_3_5_dev *cur; | 
 | 290 | 	struct list_head *head = &dev_list->list, *pos; | 
 | 291 | 	u32 tstatus, mcmd; | 
 | 292 | 	u32 trq, mrq, rem; | 
 | 293 | 	unsigned int cdev = 0; | 
 | 294 |  | 
 | 295 | 	pci_read_config_dword(bridge->dev, bridge->capndx+AGPSTAT, &tstatus); | 
 | 296 |  | 
 | 297 | 	trq = (tstatus >> 24) & 0xff; | 
 | 298 | 	mrq = trq / ndevs; | 
 | 299 |  | 
 | 300 | 	rem = mrq + (trq % ndevs); | 
 | 301 |  | 
 | 302 | 	for (pos=head->next; cdev<ndevs; cdev++, pos=pos->next) { | 
 | 303 | 		cur = list_entry(pos, struct agp_3_5_dev, list); | 
 | 304 |  | 
 | 305 | 		pci_read_config_dword(cur->dev, cur->capndx+AGPCMD, &mcmd); | 
 | 306 | 		mcmd &= ~(0xff << 24); | 
 | 307 | 		mcmd |= ((cdev == ndevs - 1) ? rem : mrq) << 24; | 
 | 308 | 		pci_write_config_dword(cur->dev, cur->capndx+AGPCMD, mcmd); | 
 | 309 | 	} | 
 | 310 | } | 
 | 311 |  | 
 | 312 | /* | 
 | 313 |  * Fully configure and enable an AGP 3.0 host bridge and all the devices | 
 | 314 |  * lying behind it. | 
 | 315 |  */ | 
 | 316 | int agp_3_5_enable(struct agp_bridge_data *bridge) | 
 | 317 | { | 
 | 318 | 	struct pci_dev *td = bridge->dev, *dev = NULL; | 
 | 319 | 	u8 mcapndx; | 
 | 320 | 	u32 isoch, arqsz; | 
 | 321 | 	u32 tstatus, mstatus, ncapid; | 
 | 322 | 	u32 mmajor; | 
 | 323 | 	u16 mpstat; | 
 | 324 | 	struct agp_3_5_dev *dev_list, *cur; | 
 | 325 | 	struct list_head *head, *pos; | 
 | 326 | 	unsigned int ndevs = 0; | 
 | 327 | 	int ret = 0; | 
 | 328 |  | 
 | 329 | 	/* Extract some power-on defaults from the target */ | 
 | 330 | 	pci_read_config_dword(td, bridge->capndx+AGPSTAT, &tstatus); | 
 | 331 | 	isoch     = (tstatus >> 17) & 0x1; | 
 | 332 | 	if (isoch == 0)	/* isoch xfers not available, bail out. */ | 
 | 333 | 		return -ENODEV; | 
 | 334 |  | 
 | 335 | 	arqsz     = (tstatus >> 13) & 0x7; | 
 | 336 |  | 
| Dave Jones | 6a92a4e | 2006-02-28 00:54:25 -0500 | [diff] [blame] | 337 | 	/* | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 338 | 	 * Allocate a head for our AGP 3.5 device list | 
| Dave Jones | 6a92a4e | 2006-02-28 00:54:25 -0500 | [diff] [blame] | 339 | 	 * (multiple AGP v3 devices are allowed behind a single bridge). | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 340 | 	 */ | 
 | 341 | 	if ((dev_list = kmalloc(sizeof(*dev_list), GFP_KERNEL)) == NULL) { | 
 | 342 | 		ret = -ENOMEM; | 
 | 343 | 		goto get_out; | 
 | 344 | 	} | 
 | 345 | 	head = &dev_list->list; | 
 | 346 | 	INIT_LIST_HEAD(head); | 
 | 347 |  | 
 | 348 | 	/* Find all AGP devices, and add them to dev_list. */ | 
 | 349 | 	for_each_pci_dev(dev) { | 
 | 350 | 		mcapndx = pci_find_capability(dev, PCI_CAP_ID_AGP); | 
 | 351 | 		if (mcapndx == 0) | 
 | 352 | 			continue; | 
 | 353 |  | 
 | 354 | 		switch ((dev->class >>8) & 0xff00) { | 
 | 355 | 			case 0x0600:    /* Bridge */ | 
 | 356 | 				/* Skip bridges. We should call this function for each one. */ | 
 | 357 | 				continue; | 
 | 358 |  | 
 | 359 | 			case 0x0001:    /* Unclassified device */ | 
 | 360 | 				/* Don't know what this is, but log it for investigation. */ | 
 | 361 | 				if (mcapndx != 0) { | 
 | 362 | 					printk (KERN_INFO PFX "Wacky, found unclassified AGP device. %x:%x\n", | 
 | 363 | 						dev->vendor, dev->device); | 
 | 364 | 				} | 
 | 365 | 				continue; | 
 | 366 |  | 
 | 367 | 			case 0x0300:    /* Display controller */ | 
 | 368 | 			case 0x0400:    /* Multimedia controller */ | 
| Dave Jones | 6a92a4e | 2006-02-28 00:54:25 -0500 | [diff] [blame] | 369 | 				if ((cur = kmalloc(sizeof(*cur), GFP_KERNEL)) == NULL) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 370 | 					ret = -ENOMEM; | 
 | 371 | 					goto free_and_exit; | 
 | 372 | 				} | 
 | 373 | 				cur->dev = dev; | 
 | 374 |  | 
 | 375 | 				pos = &cur->list; | 
 | 376 | 				list_add(pos, head); | 
 | 377 | 				ndevs++; | 
 | 378 | 				continue; | 
 | 379 |  | 
 | 380 | 			default: | 
 | 381 | 				continue; | 
 | 382 | 		} | 
 | 383 | 	} | 
 | 384 |  | 
 | 385 | 	/* | 
 | 386 | 	 * Take an initial pass through the devices lying behind our host | 
 | 387 | 	 * bridge.  Make sure each one is actually an AGP 3.0 device, otherwise | 
 | 388 | 	 * exit with an error message.  Along the way store the AGP 3.0 | 
 | 389 | 	 * cap_ptr for each device | 
 | 390 | 	 */ | 
 | 391 | 	list_for_each(pos, head) { | 
 | 392 | 		cur = list_entry(pos, struct agp_3_5_dev, list); | 
 | 393 | 		dev = cur->dev; | 
| Dave Jones | 6a92a4e | 2006-02-28 00:54:25 -0500 | [diff] [blame] | 394 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 395 | 		pci_read_config_word(dev, PCI_STATUS, &mpstat); | 
 | 396 | 		if ((mpstat & PCI_STATUS_CAP_LIST) == 0) | 
 | 397 | 			continue; | 
 | 398 |  | 
 | 399 | 		pci_read_config_byte(dev, PCI_CAPABILITY_LIST, &mcapndx); | 
 | 400 | 		if (mcapndx != 0) { | 
 | 401 | 			do { | 
 | 402 | 				pci_read_config_dword(dev, mcapndx, &ncapid); | 
 | 403 | 				if ((ncapid & 0xff) != 2) | 
 | 404 | 					mcapndx = (ncapid >> 8) & 0xff; | 
 | 405 | 			} | 
 | 406 | 			while (((ncapid & 0xff) != 2) && (mcapndx != 0)); | 
 | 407 | 		} | 
 | 408 |  | 
 | 409 | 		if (mcapndx == 0) { | 
 | 410 | 			printk(KERN_ERR PFX "woah!  Non-AGP device " | 
 | 411 | 				"found on the secondary bus of an AGP 3.5 bridge!\n"); | 
 | 412 | 			ret = -ENODEV; | 
 | 413 | 			goto free_and_exit; | 
 | 414 | 		} | 
 | 415 |  | 
 | 416 | 		mmajor = (ncapid >> AGP_MAJOR_VERSION_SHIFT) & 0xf; | 
 | 417 | 		if (mmajor < 3) { | 
 | 418 | 			printk(KERN_ERR PFX "woah!  AGP 2.0 device " | 
 | 419 | 				"found on the secondary bus of an AGP 3.5 " | 
 | 420 | 				"bridge operating with AGP 3.0 electricals!\n"); | 
 | 421 | 			ret = -ENODEV; | 
 | 422 | 			goto free_and_exit; | 
 | 423 | 		} | 
 | 424 |  | 
 | 425 | 		cur->capndx = mcapndx; | 
 | 426 |  | 
 | 427 | 		pci_read_config_dword(dev, cur->capndx+AGPSTAT, &mstatus); | 
 | 428 |  | 
 | 429 | 		if (((mstatus >> 3) & 0x1) == 0) { | 
 | 430 | 			printk(KERN_ERR PFX "woah!  AGP 3.x device " | 
 | 431 | 				"not operating in AGP 3.x mode found on the " | 
 | 432 | 				"secondary bus of an AGP 3.5 bridge operating " | 
 | 433 | 				"with AGP 3.0 electricals!\n"); | 
 | 434 | 			ret = -ENODEV; | 
 | 435 | 			goto free_and_exit; | 
 | 436 | 		} | 
 | 437 | 	}		 | 
 | 438 |  | 
 | 439 | 	/* | 
 | 440 | 	 * Call functions to divide target resources amongst the AGP 3.0 | 
 | 441 | 	 * masters.  This process is dramatically different depending on | 
 | 442 | 	 * whether isochronous transfers are supported. | 
 | 443 | 	 */ | 
 | 444 | 	if (isoch) { | 
 | 445 | 		ret = agp_3_5_isochronous_node_enable(bridge, dev_list, ndevs); | 
 | 446 | 		if (ret) { | 
 | 447 | 			printk(KERN_INFO PFX "Something bad happened setting " | 
 | 448 | 			       "up isochronous xfers.  Falling back to " | 
 | 449 | 			       "non-isochronous xfer mode.\n"); | 
 | 450 | 		} else { | 
 | 451 | 			goto free_and_exit; | 
 | 452 | 		} | 
 | 453 | 	} | 
 | 454 | 	agp_3_5_nonisochronous_node_enable(bridge, dev_list, ndevs); | 
 | 455 |  | 
 | 456 | free_and_exit: | 
 | 457 | 	/* Be sure to free the dev_list */ | 
 | 458 | 	for (pos=head->next; pos!=head; ) { | 
 | 459 | 		cur = list_entry(pos, struct agp_3_5_dev, list); | 
 | 460 |  | 
 | 461 | 		pos = pos->next; | 
 | 462 | 		kfree(cur); | 
 | 463 | 	} | 
 | 464 | 	kfree(dev_list); | 
 | 465 |  | 
 | 466 | get_out: | 
 | 467 | 	return ret; | 
 | 468 | } | 
 | 469 |  |