| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | | | 
 | 2 | |	setox.sa 3.1 12/10/90 | 
 | 3 | | | 
 | 4 | |	The entry point setox computes the exponential of a value. | 
 | 5 | |	setoxd does the same except the input value is a denormalized | 
 | 6 | |	number.	setoxm1 computes exp(X)-1, and setoxm1d computes | 
 | 7 | |	exp(X)-1 for denormalized X. | 
 | 8 | | | 
 | 9 | |	INPUT | 
 | 10 | |	----- | 
 | 11 | |	Double-extended value in memory location pointed to by address | 
 | 12 | |	register a0. | 
 | 13 | | | 
 | 14 | |	OUTPUT | 
 | 15 | |	------ | 
 | 16 | |	exp(X) or exp(X)-1 returned in floating-point register fp0. | 
 | 17 | | | 
 | 18 | |	ACCURACY and MONOTONICITY | 
 | 19 | |	------------------------- | 
 | 20 | |	The returned result is within 0.85 ulps in 64 significant bit, i.e. | 
 | 21 | |	within 0.5001 ulp to 53 bits if the result is subsequently rounded | 
 | 22 | |	to double precision. The result is provably monotonic in double | 
 | 23 | |	precision. | 
 | 24 | | | 
 | 25 | |	SPEED | 
 | 26 | |	----- | 
 | 27 | |	Two timings are measured, both in the copy-back mode. The | 
 | 28 | |	first one is measured when the function is invoked the first time | 
 | 29 | |	(so the instructions and data are not in cache), and the | 
 | 30 | |	second one is measured when the function is reinvoked at the same | 
 | 31 | |	input argument. | 
 | 32 | | | 
 | 33 | |	The program setox takes approximately 210/190 cycles for input | 
 | 34 | |	argument X whose magnitude is less than 16380 log2, which | 
 | 35 | |	is the usual situation.	For the less common arguments, | 
 | 36 | |	depending on their values, the program may run faster or slower -- | 
 | 37 | |	but no worse than 10% slower even in the extreme cases. | 
 | 38 | | | 
 | 39 | |	The program setoxm1 takes approximately ???/??? cycles for input | 
 | 40 | |	argument X, 0.25 <= |X| < 70log2. For |X| < 0.25, it takes | 
 | 41 | |	approximately ???/??? cycles. For the less common arguments, | 
 | 42 | |	depending on their values, the program may run faster or slower -- | 
 | 43 | |	but no worse than 10% slower even in the extreme cases. | 
 | 44 | | | 
 | 45 | |	ALGORITHM and IMPLEMENTATION NOTES | 
 | 46 | |	---------------------------------- | 
 | 47 | | | 
 | 48 | |	setoxd | 
 | 49 | |	------ | 
 | 50 | |	Step 1.	Set ans := 1.0 | 
 | 51 | | | 
 | 52 | |	Step 2.	Return	ans := ans + sign(X)*2^(-126). Exit. | 
 | 53 | |	Notes:	This will always generate one exception -- inexact. | 
 | 54 | | | 
 | 55 | | | 
 | 56 | |	setox | 
 | 57 | |	----- | 
 | 58 | | | 
 | 59 | |	Step 1.	Filter out extreme cases of input argument. | 
 | 60 | |		1.1	If |X| >= 2^(-65), go to Step 1.3. | 
 | 61 | |		1.2	Go to Step 7. | 
 | 62 | |		1.3	If |X| < 16380 log(2), go to Step 2. | 
 | 63 | |		1.4	Go to Step 8. | 
 | 64 | |	Notes:	The usual case should take the branches 1.1 -> 1.3 -> 2. | 
 | 65 | |		 To avoid the use of floating-point comparisons, a | 
 | 66 | |		 compact representation of |X| is used. This format is a | 
 | 67 | |		 32-bit integer, the upper (more significant) 16 bits are | 
 | 68 | |		 the sign and biased exponent field of |X|; the lower 16 | 
 | 69 | |		 bits are the 16 most significant fraction (including the | 
 | 70 | |		 explicit bit) bits of |X|. Consequently, the comparisons | 
 | 71 | |		 in Steps 1.1 and 1.3 can be performed by integer comparison. | 
 | 72 | |		 Note also that the constant 16380 log(2) used in Step 1.3 | 
 | 73 | |		 is also in the compact form. Thus taking the branch | 
 | 74 | |		 to Step 2 guarantees |X| < 16380 log(2). There is no harm | 
 | 75 | |		 to have a small number of cases where |X| is less than, | 
 | 76 | |		 but close to, 16380 log(2) and the branch to Step 9 is | 
 | 77 | |		 taken. | 
 | 78 | | | 
 | 79 | |	Step 2.	Calculate N = round-to-nearest-int( X * 64/log2 ). | 
 | 80 | |		2.1	Set AdjFlag := 0 (indicates the branch 1.3 -> 2 was taken) | 
 | 81 | |		2.2	N := round-to-nearest-integer( X * 64/log2 ). | 
 | 82 | |		2.3	Calculate	J = N mod 64; so J = 0,1,2,..., or 63. | 
 | 83 | |		2.4	Calculate	M = (N - J)/64; so N = 64M + J. | 
 | 84 | |		2.5	Calculate the address of the stored value of 2^(J/64). | 
 | 85 | |		2.6	Create the value Scale = 2^M. | 
 | 86 | |	Notes:	The calculation in 2.2 is really performed by | 
 | 87 | | | 
 | 88 | |			Z := X * constant | 
 | 89 | |			N := round-to-nearest-integer(Z) | 
 | 90 | | | 
 | 91 | |		 where | 
 | 92 | | | 
 | 93 | |			constant := single-precision( 64/log 2 ). | 
 | 94 | | | 
 | 95 | |		 Using a single-precision constant avoids memory access. | 
 | 96 | |		 Another effect of using a single-precision "constant" is | 
 | 97 | |		 that the calculated value Z is | 
 | 98 | | | 
 | 99 | |			Z = X*(64/log2)*(1+eps), |eps| <= 2^(-24). | 
 | 100 | | | 
 | 101 | |		 This error has to be considered later in Steps 3 and 4. | 
 | 102 | | | 
 | 103 | |	Step 3.	Calculate X - N*log2/64. | 
 | 104 | |		3.1	R := X + N*L1, where L1 := single-precision(-log2/64). | 
 | 105 | |		3.2	R := R + N*L2, L2 := extended-precision(-log2/64 - L1). | 
 | 106 | |	Notes:	a) The way L1 and L2 are chosen ensures L1+L2 approximate | 
 | 107 | |		 the value	-log2/64	to 88 bits of accuracy. | 
 | 108 | |		 b) N*L1 is exact because N is no longer than 22 bits and | 
 | 109 | |		 L1 is no longer than 24 bits. | 
 | 110 | |		 c) The calculation X+N*L1 is also exact due to cancellation. | 
 | 111 | |		 Thus, R is practically X+N(L1+L2) to full 64 bits. | 
 | 112 | |		 d) It is important to estimate how large can |R| be after | 
 | 113 | |		 Step 3.2. | 
 | 114 | | | 
 | 115 | |			N = rnd-to-int( X*64/log2 (1+eps) ), |eps|<=2^(-24) | 
 | 116 | |			X*64/log2 (1+eps)	=	N + f,	|f| <= 0.5 | 
 | 117 | |			X*64/log2 - N	=	f - eps*X 64/log2 | 
 | 118 | |			X - N*log2/64	=	f*log2/64 - eps*X | 
 | 119 | | | 
 | 120 | | | 
 | 121 | |		 Now |X| <= 16446 log2, thus | 
 | 122 | | | 
 | 123 | |			|X - N*log2/64| <= (0.5 + 16446/2^(18))*log2/64 | 
 | 124 | |					<= 0.57 log2/64. | 
 | 125 | |		 This bound will be used in Step 4. | 
 | 126 | | | 
 | 127 | |	Step 4.	Approximate exp(R)-1 by a polynomial | 
 | 128 | |			p = R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5)))) | 
 | 129 | |	Notes:	a) In order to reduce memory access, the coefficients are | 
 | 130 | |		 made as "short" as possible: A1 (which is 1/2), A4 and A5 | 
 | 131 | |		 are single precision; A2 and A3 are double precision. | 
 | 132 | |		 b) Even with the restrictions above, | 
 | 133 | |			|p - (exp(R)-1)| < 2^(-68.8) for all |R| <= 0.0062. | 
 | 134 | |		 Note that 0.0062 is slightly bigger than 0.57 log2/64. | 
 | 135 | |		 c) To fully utilize the pipeline, p is separated into | 
 | 136 | |		 two independent pieces of roughly equal complexities | 
 | 137 | |			p = [ R + R*S*(A2 + S*A4) ]	+ | 
 | 138 | |				[ S*(A1 + S*(A3 + S*A5)) ] | 
 | 139 | |		 where S = R*R. | 
 | 140 | | | 
 | 141 | |	Step 5.	Compute 2^(J/64)*exp(R) = 2^(J/64)*(1+p) by | 
 | 142 | |				ans := T + ( T*p + t) | 
 | 143 | |		 where T and t are the stored values for 2^(J/64). | 
 | 144 | |	Notes:	2^(J/64) is stored as T and t where T+t approximates | 
 | 145 | |		 2^(J/64) to roughly 85 bits; T is in extended precision | 
 | 146 | |		 and t is in single precision. Note also that T is rounded | 
 | 147 | |		 to 62 bits so that the last two bits of T are zero. The | 
 | 148 | |		 reason for such a special form is that T-1, T-2, and T-8 | 
 | 149 | |		 will all be exact --- a property that will give much | 
 | 150 | |		 more accurate computation of the function EXPM1. | 
 | 151 | | | 
 | 152 | |	Step 6.	Reconstruction of exp(X) | 
 | 153 | |			exp(X) = 2^M * 2^(J/64) * exp(R). | 
 | 154 | |		6.1	If AdjFlag = 0, go to 6.3 | 
 | 155 | |		6.2	ans := ans * AdjScale | 
 | 156 | |		6.3	Restore the user FPCR | 
 | 157 | |		6.4	Return ans := ans * Scale. Exit. | 
 | 158 | |	Notes:	If AdjFlag = 0, we have X = Mlog2 + Jlog2/64 + R, | 
 | 159 | |		 |M| <= 16380, and Scale = 2^M. Moreover, exp(X) will | 
 | 160 | |		 neither overflow nor underflow. If AdjFlag = 1, that | 
 | 161 | |		 means that | 
 | 162 | |			X = (M1+M)log2 + Jlog2/64 + R, |M1+M| >= 16380. | 
 | 163 | |		 Hence, exp(X) may overflow or underflow or neither. | 
 | 164 | |		 When that is the case, AdjScale = 2^(M1) where M1 is | 
 | 165 | |		 approximately M. Thus 6.2 will never cause over/underflow. | 
 | 166 | |		 Possible exception in 6.4 is overflow or underflow. | 
 | 167 | |		 The inexact exception is not generated in 6.4. Although | 
 | 168 | |		 one can argue that the inexact flag should always be | 
 | 169 | |		 raised, to simulate that exception cost to much than the | 
 | 170 | |		 flag is worth in practical uses. | 
 | 171 | | | 
 | 172 | |	Step 7.	Return 1 + X. | 
 | 173 | |		7.1	ans := X | 
 | 174 | |		7.2	Restore user FPCR. | 
 | 175 | |		7.3	Return ans := 1 + ans. Exit | 
 | 176 | |	Notes:	For non-zero X, the inexact exception will always be | 
 | 177 | |		 raised by 7.3. That is the only exception raised by 7.3. | 
 | 178 | |		 Note also that we use the FMOVEM instruction to move X | 
 | 179 | |		 in Step 7.1 to avoid unnecessary trapping. (Although | 
 | 180 | |		 the FMOVEM may not seem relevant since X is normalized, | 
 | 181 | |		 the precaution will be useful in the library version of | 
 | 182 | |		 this code where the separate entry for denormalized inputs | 
 | 183 | |		 will be done away with.) | 
 | 184 | | | 
 | 185 | |	Step 8.	Handle exp(X) where |X| >= 16380log2. | 
 | 186 | |		8.1	If |X| > 16480 log2, go to Step 9. | 
 | 187 | |		(mimic 2.2 - 2.6) | 
 | 188 | |		8.2	N := round-to-integer( X * 64/log2 ) | 
 | 189 | |		8.3	Calculate J = N mod 64, J = 0,1,...,63 | 
 | 190 | |		8.4	K := (N-J)/64, M1 := truncate(K/2), M = K-M1, AdjFlag := 1. | 
 | 191 | |		8.5	Calculate the address of the stored value 2^(J/64). | 
 | 192 | |		8.6	Create the values Scale = 2^M, AdjScale = 2^M1. | 
 | 193 | |		8.7	Go to Step 3. | 
 | 194 | |	Notes:	Refer to notes for 2.2 - 2.6. | 
 | 195 | | | 
 | 196 | |	Step 9.	Handle exp(X), |X| > 16480 log2. | 
 | 197 | |		9.1	If X < 0, go to 9.3 | 
 | 198 | |		9.2	ans := Huge, go to 9.4 | 
 | 199 | |		9.3	ans := Tiny. | 
 | 200 | |		9.4	Restore user FPCR. | 
 | 201 | |		9.5	Return ans := ans * ans. Exit. | 
 | 202 | |	Notes:	Exp(X) will surely overflow or underflow, depending on | 
 | 203 | |		 X's sign. "Huge" and "Tiny" are respectively large/tiny | 
 | 204 | |		 extended-precision numbers whose square over/underflow | 
 | 205 | |		 with an inexact result. Thus, 9.5 always raises the | 
 | 206 | |		 inexact together with either overflow or underflow. | 
 | 207 | | | 
 | 208 | | | 
 | 209 | |	setoxm1d | 
 | 210 | |	-------- | 
 | 211 | | | 
 | 212 | |	Step 1.	Set ans := 0 | 
 | 213 | | | 
 | 214 | |	Step 2.	Return	ans := X + ans. Exit. | 
 | 215 | |	Notes:	This will return X with the appropriate rounding | 
 | 216 | |		 precision prescribed by the user FPCR. | 
 | 217 | | | 
 | 218 | |	setoxm1 | 
 | 219 | |	------- | 
 | 220 | | | 
 | 221 | |	Step 1.	Check |X| | 
 | 222 | |		1.1	If |X| >= 1/4, go to Step 1.3. | 
 | 223 | |		1.2	Go to Step 7. | 
 | 224 | |		1.3	If |X| < 70 log(2), go to Step 2. | 
 | 225 | |		1.4	Go to Step 10. | 
 | 226 | |	Notes:	The usual case should take the branches 1.1 -> 1.3 -> 2. | 
 | 227 | |		 However, it is conceivable |X| can be small very often | 
 | 228 | |		 because EXPM1 is intended to evaluate exp(X)-1 accurately | 
 | 229 | |		 when |X| is small. For further details on the comparisons, | 
 | 230 | |		 see the notes on Step 1 of setox. | 
 | 231 | | | 
 | 232 | |	Step 2.	Calculate N = round-to-nearest-int( X * 64/log2 ). | 
 | 233 | |		2.1	N := round-to-nearest-integer( X * 64/log2 ). | 
 | 234 | |		2.2	Calculate	J = N mod 64; so J = 0,1,2,..., or 63. | 
 | 235 | |		2.3	Calculate	M = (N - J)/64; so N = 64M + J. | 
 | 236 | |		2.4	Calculate the address of the stored value of 2^(J/64). | 
 | 237 | |		2.5	Create the values Sc = 2^M and OnebySc := -2^(-M). | 
 | 238 | |	Notes:	See the notes on Step 2 of setox. | 
 | 239 | | | 
 | 240 | |	Step 3.	Calculate X - N*log2/64. | 
 | 241 | |		3.1	R := X + N*L1, where L1 := single-precision(-log2/64). | 
 | 242 | |		3.2	R := R + N*L2, L2 := extended-precision(-log2/64 - L1). | 
 | 243 | |	Notes:	Applying the analysis of Step 3 of setox in this case | 
 | 244 | |		 shows that |R| <= 0.0055 (note that |X| <= 70 log2 in | 
 | 245 | |		 this case). | 
 | 246 | | | 
 | 247 | |	Step 4.	Approximate exp(R)-1 by a polynomial | 
 | 248 | |			p = R+R*R*(A1+R*(A2+R*(A3+R*(A4+R*(A5+R*A6))))) | 
 | 249 | |	Notes:	a) In order to reduce memory access, the coefficients are | 
 | 250 | |		 made as "short" as possible: A1 (which is 1/2), A5 and A6 | 
 | 251 | |		 are single precision; A2, A3 and A4 are double precision. | 
 | 252 | |		 b) Even with the restriction above, | 
 | 253 | |			|p - (exp(R)-1)| <	|R| * 2^(-72.7) | 
 | 254 | |		 for all |R| <= 0.0055. | 
 | 255 | |		 c) To fully utilize the pipeline, p is separated into | 
 | 256 | |		 two independent pieces of roughly equal complexity | 
 | 257 | |			p = [ R*S*(A2 + S*(A4 + S*A6)) ]	+ | 
 | 258 | |				[ R + S*(A1 + S*(A3 + S*A5)) ] | 
 | 259 | |		 where S = R*R. | 
 | 260 | | | 
 | 261 | |	Step 5.	Compute 2^(J/64)*p by | 
 | 262 | |				p := T*p | 
 | 263 | |		 where T and t are the stored values for 2^(J/64). | 
 | 264 | |	Notes:	2^(J/64) is stored as T and t where T+t approximates | 
 | 265 | |		 2^(J/64) to roughly 85 bits; T is in extended precision | 
 | 266 | |		 and t is in single precision. Note also that T is rounded | 
 | 267 | |		 to 62 bits so that the last two bits of T are zero. The | 
 | 268 | |		 reason for such a special form is that T-1, T-2, and T-8 | 
 | 269 | |		 will all be exact --- a property that will be exploited | 
 | 270 | |		 in Step 6 below. The total relative error in p is no | 
 | 271 | |		 bigger than 2^(-67.7) compared to the final result. | 
 | 272 | | | 
 | 273 | |	Step 6.	Reconstruction of exp(X)-1 | 
 | 274 | |			exp(X)-1 = 2^M * ( 2^(J/64) + p - 2^(-M) ). | 
 | 275 | |		6.1	If M <= 63, go to Step 6.3. | 
 | 276 | |		6.2	ans := T + (p + (t + OnebySc)). Go to 6.6 | 
 | 277 | |		6.3	If M >= -3, go to 6.5. | 
 | 278 | |		6.4	ans := (T + (p + t)) + OnebySc. Go to 6.6 | 
 | 279 | |		6.5	ans := (T + OnebySc) + (p + t). | 
 | 280 | |		6.6	Restore user FPCR. | 
 | 281 | |		6.7	Return ans := Sc * ans. Exit. | 
 | 282 | |	Notes:	The various arrangements of the expressions give accurate | 
 | 283 | |		 evaluations. | 
 | 284 | | | 
 | 285 | |	Step 7.	exp(X)-1 for |X| < 1/4. | 
 | 286 | |		7.1	If |X| >= 2^(-65), go to Step 9. | 
 | 287 | |		7.2	Go to Step 8. | 
 | 288 | | | 
 | 289 | |	Step 8.	Calculate exp(X)-1, |X| < 2^(-65). | 
 | 290 | |		8.1	If |X| < 2^(-16312), goto 8.3 | 
 | 291 | |		8.2	Restore FPCR; return ans := X - 2^(-16382). Exit. | 
 | 292 | |		8.3	X := X * 2^(140). | 
 | 293 | |		8.4	Restore FPCR; ans := ans - 2^(-16382). | 
 | 294 | |		 Return ans := ans*2^(140). Exit | 
 | 295 | |	Notes:	The idea is to return "X - tiny" under the user | 
 | 296 | |		 precision and rounding modes. To avoid unnecessary | 
 | 297 | |		 inefficiency, we stay away from denormalized numbers the | 
 | 298 | |		 best we can. For |X| >= 2^(-16312), the straightforward | 
 | 299 | |		 8.2 generates the inexact exception as the case warrants. | 
 | 300 | | | 
 | 301 | |	Step 9.	Calculate exp(X)-1, |X| < 1/4, by a polynomial | 
 | 302 | |			p = X + X*X*(B1 + X*(B2 + ... + X*B12)) | 
 | 303 | |	Notes:	a) In order to reduce memory access, the coefficients are | 
 | 304 | |		 made as "short" as possible: B1 (which is 1/2), B9 to B12 | 
 | 305 | |		 are single precision; B3 to B8 are double precision; and | 
 | 306 | |		 B2 is double extended. | 
 | 307 | |		 b) Even with the restriction above, | 
 | 308 | |			|p - (exp(X)-1)| < |X| 2^(-70.6) | 
 | 309 | |		 for all |X| <= 0.251. | 
 | 310 | |		 Note that 0.251 is slightly bigger than 1/4. | 
 | 311 | |		 c) To fully preserve accuracy, the polynomial is computed | 
 | 312 | |		 as	X + ( S*B1 +	Q ) where S = X*X and | 
 | 313 | |			Q	=	X*S*(B2 + X*(B3 + ... + X*B12)) | 
 | 314 | |		 d) To fully utilize the pipeline, Q is separated into | 
 | 315 | |		 two independent pieces of roughly equal complexity | 
 | 316 | |			Q = [ X*S*(B2 + S*(B4 + ... + S*B12)) ] + | 
 | 317 | |				[ S*S*(B3 + S*(B5 + ... + S*B11)) ] | 
 | 318 | | | 
 | 319 | |	Step 10.	Calculate exp(X)-1 for |X| >= 70 log 2. | 
 | 320 | |		10.1 If X >= 70log2 , exp(X) - 1 = exp(X) for all practical | 
 | 321 | |		 purposes. Therefore, go to Step 1 of setox. | 
 | 322 | |		10.2 If X <= -70log2, exp(X) - 1 = -1 for all practical purposes. | 
 | 323 | |		 ans := -1 | 
 | 324 | |		 Restore user FPCR | 
 | 325 | |		 Return ans := ans + 2^(-126). Exit. | 
 | 326 | |	Notes:	10.2 will always create an inexact and return -1 + tiny | 
 | 327 | |		 in the user rounding precision and mode. | 
 | 328 | | | 
 | 329 | | | 
 | 330 |  | 
 | 331 | |		Copyright (C) Motorola, Inc. 1990 | 
 | 332 | |			All Rights Reserved | 
 | 333 | | | 
 | 334 | |	THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA | 
 | 335 | |	The copyright notice above does not evidence any | 
 | 336 | |	actual or intended publication of such source code. | 
 | 337 |  | 
 | 338 | |setox	idnt	2,1 | Motorola 040 Floating Point Software Package | 
 | 339 |  | 
 | 340 | 	|section	8 | 
 | 341 |  | 
 | 342 | #include "fpsp.h" | 
 | 343 |  | 
 | 344 | L2:	.long	0x3FDC0000,0x82E30865,0x4361C4C6,0x00000000 | 
 | 345 |  | 
 | 346 | EXPA3:	.long	0x3FA55555,0x55554431 | 
 | 347 | EXPA2:	.long	0x3FC55555,0x55554018 | 
 | 348 |  | 
 | 349 | HUGE:	.long	0x7FFE0000,0xFFFFFFFF,0xFFFFFFFF,0x00000000 | 
 | 350 | TINY:	.long	0x00010000,0xFFFFFFFF,0xFFFFFFFF,0x00000000 | 
 | 351 |  | 
 | 352 | EM1A4:	.long	0x3F811111,0x11174385 | 
 | 353 | EM1A3:	.long	0x3FA55555,0x55554F5A | 
 | 354 |  | 
 | 355 | EM1A2:	.long	0x3FC55555,0x55555555,0x00000000,0x00000000 | 
 | 356 |  | 
 | 357 | EM1B8:	.long	0x3EC71DE3,0xA5774682 | 
 | 358 | EM1B7:	.long	0x3EFA01A0,0x19D7CB68 | 
 | 359 |  | 
 | 360 | EM1B6:	.long	0x3F2A01A0,0x1A019DF3 | 
 | 361 | EM1B5:	.long	0x3F56C16C,0x16C170E2 | 
 | 362 |  | 
 | 363 | EM1B4:	.long	0x3F811111,0x11111111 | 
 | 364 | EM1B3:	.long	0x3FA55555,0x55555555 | 
 | 365 |  | 
 | 366 | EM1B2:	.long	0x3FFC0000,0xAAAAAAAA,0xAAAAAAAB | 
 | 367 | 	.long	0x00000000 | 
 | 368 |  | 
 | 369 | TWO140:	.long	0x48B00000,0x00000000 | 
 | 370 | TWON140:	.long	0x37300000,0x00000000 | 
 | 371 |  | 
 | 372 | EXPTBL: | 
 | 373 | 	.long	0x3FFF0000,0x80000000,0x00000000,0x00000000 | 
 | 374 | 	.long	0x3FFF0000,0x8164D1F3,0xBC030774,0x9F841A9B | 
 | 375 | 	.long	0x3FFF0000,0x82CD8698,0xAC2BA1D8,0x9FC1D5B9 | 
 | 376 | 	.long	0x3FFF0000,0x843A28C3,0xACDE4048,0xA0728369 | 
 | 377 | 	.long	0x3FFF0000,0x85AAC367,0xCC487B14,0x1FC5C95C | 
 | 378 | 	.long	0x3FFF0000,0x871F6196,0x9E8D1010,0x1EE85C9F | 
 | 379 | 	.long	0x3FFF0000,0x88980E80,0x92DA8528,0x9FA20729 | 
 | 380 | 	.long	0x3FFF0000,0x8A14D575,0x496EFD9C,0xA07BF9AF | 
 | 381 | 	.long	0x3FFF0000,0x8B95C1E3,0xEA8BD6E8,0xA0020DCF | 
 | 382 | 	.long	0x3FFF0000,0x8D1ADF5B,0x7E5BA9E4,0x205A63DA | 
 | 383 | 	.long	0x3FFF0000,0x8EA4398B,0x45CD53C0,0x1EB70051 | 
 | 384 | 	.long	0x3FFF0000,0x9031DC43,0x1466B1DC,0x1F6EB029 | 
 | 385 | 	.long	0x3FFF0000,0x91C3D373,0xAB11C338,0xA0781494 | 
 | 386 | 	.long	0x3FFF0000,0x935A2B2F,0x13E6E92C,0x9EB319B0 | 
 | 387 | 	.long	0x3FFF0000,0x94F4EFA8,0xFEF70960,0x2017457D | 
 | 388 | 	.long	0x3FFF0000,0x96942D37,0x20185A00,0x1F11D537 | 
 | 389 | 	.long	0x3FFF0000,0x9837F051,0x8DB8A970,0x9FB952DD | 
 | 390 | 	.long	0x3FFF0000,0x99E04593,0x20B7FA64,0x1FE43087 | 
 | 391 | 	.long	0x3FFF0000,0x9B8D39B9,0xD54E5538,0x1FA2A818 | 
 | 392 | 	.long	0x3FFF0000,0x9D3ED9A7,0x2CFFB750,0x1FDE494D | 
 | 393 | 	.long	0x3FFF0000,0x9EF53260,0x91A111AC,0x20504890 | 
 | 394 | 	.long	0x3FFF0000,0xA0B0510F,0xB9714FC4,0xA073691C | 
 | 395 | 	.long	0x3FFF0000,0xA2704303,0x0C496818,0x1F9B7A05 | 
 | 396 | 	.long	0x3FFF0000,0xA43515AE,0x09E680A0,0xA0797126 | 
 | 397 | 	.long	0x3FFF0000,0xA5FED6A9,0xB15138EC,0xA071A140 | 
 | 398 | 	.long	0x3FFF0000,0xA7CD93B4,0xE9653568,0x204F62DA | 
 | 399 | 	.long	0x3FFF0000,0xA9A15AB4,0xEA7C0EF8,0x1F283C4A | 
 | 400 | 	.long	0x3FFF0000,0xAB7A39B5,0xA93ED338,0x9F9A7FDC | 
 | 401 | 	.long	0x3FFF0000,0xAD583EEA,0x42A14AC8,0xA05B3FAC | 
 | 402 | 	.long	0x3FFF0000,0xAF3B78AD,0x690A4374,0x1FDF2610 | 
 | 403 | 	.long	0x3FFF0000,0xB123F581,0xD2AC2590,0x9F705F90 | 
 | 404 | 	.long	0x3FFF0000,0xB311C412,0xA9112488,0x201F678A | 
 | 405 | 	.long	0x3FFF0000,0xB504F333,0xF9DE6484,0x1F32FB13 | 
 | 406 | 	.long	0x3FFF0000,0xB6FD91E3,0x28D17790,0x20038B30 | 
 | 407 | 	.long	0x3FFF0000,0xB8FBAF47,0x62FB9EE8,0x200DC3CC | 
 | 408 | 	.long	0x3FFF0000,0xBAFF5AB2,0x133E45FC,0x9F8B2AE6 | 
 | 409 | 	.long	0x3FFF0000,0xBD08A39F,0x580C36C0,0xA02BBF70 | 
 | 410 | 	.long	0x3FFF0000,0xBF1799B6,0x7A731084,0xA00BF518 | 
 | 411 | 	.long	0x3FFF0000,0xC12C4CCA,0x66709458,0xA041DD41 | 
 | 412 | 	.long	0x3FFF0000,0xC346CCDA,0x24976408,0x9FDF137B | 
 | 413 | 	.long	0x3FFF0000,0xC5672A11,0x5506DADC,0x201F1568 | 
 | 414 | 	.long	0x3FFF0000,0xC78D74C8,0xABB9B15C,0x1FC13A2E | 
 | 415 | 	.long	0x3FFF0000,0xC9B9BD86,0x6E2F27A4,0xA03F8F03 | 
 | 416 | 	.long	0x3FFF0000,0xCBEC14FE,0xF2727C5C,0x1FF4907D | 
 | 417 | 	.long	0x3FFF0000,0xCE248C15,0x1F8480E4,0x9E6E53E4 | 
 | 418 | 	.long	0x3FFF0000,0xD06333DA,0xEF2B2594,0x1FD6D45C | 
 | 419 | 	.long	0x3FFF0000,0xD2A81D91,0xF12AE45C,0xA076EDB9 | 
 | 420 | 	.long	0x3FFF0000,0xD4F35AAB,0xCFEDFA20,0x9FA6DE21 | 
 | 421 | 	.long	0x3FFF0000,0xD744FCCA,0xD69D6AF4,0x1EE69A2F | 
 | 422 | 	.long	0x3FFF0000,0xD99D15C2,0x78AFD7B4,0x207F439F | 
 | 423 | 	.long	0x3FFF0000,0xDBFBB797,0xDAF23754,0x201EC207 | 
 | 424 | 	.long	0x3FFF0000,0xDE60F482,0x5E0E9124,0x9E8BE175 | 
 | 425 | 	.long	0x3FFF0000,0xE0CCDEEC,0x2A94E110,0x20032C4B | 
 | 426 | 	.long	0x3FFF0000,0xE33F8972,0xBE8A5A50,0x2004DFF5 | 
 | 427 | 	.long	0x3FFF0000,0xE5B906E7,0x7C8348A8,0x1E72F47A | 
 | 428 | 	.long	0x3FFF0000,0xE8396A50,0x3C4BDC68,0x1F722F22 | 
 | 429 | 	.long	0x3FFF0000,0xEAC0C6E7,0xDD243930,0xA017E945 | 
 | 430 | 	.long	0x3FFF0000,0xED4F301E,0xD9942B84,0x1F401A5B | 
 | 431 | 	.long	0x3FFF0000,0xEFE4B99B,0xDCDAF5CC,0x9FB9A9E3 | 
 | 432 | 	.long	0x3FFF0000,0xF281773C,0x59FFB138,0x20744C05 | 
 | 433 | 	.long	0x3FFF0000,0xF5257D15,0x2486CC2C,0x1F773A19 | 
 | 434 | 	.long	0x3FFF0000,0xF7D0DF73,0x0AD13BB8,0x1FFE90D5 | 
 | 435 | 	.long	0x3FFF0000,0xFA83B2DB,0x722A033C,0xA041ED22 | 
 | 436 | 	.long	0x3FFF0000,0xFD3E0C0C,0xF486C174,0x1F853F3A | 
 | 437 |  | 
 | 438 | 	.set	ADJFLAG,L_SCR2 | 
 | 439 | 	.set	SCALE,FP_SCR1 | 
 | 440 | 	.set	ADJSCALE,FP_SCR2 | 
 | 441 | 	.set	SC,FP_SCR3 | 
 | 442 | 	.set	ONEBYSC,FP_SCR4 | 
 | 443 |  | 
 | 444 | 	| xref	t_frcinx | 
 | 445 | 	|xref	t_extdnrm | 
 | 446 | 	|xref	t_unfl | 
 | 447 | 	|xref	t_ovfl | 
 | 448 |  | 
 | 449 | 	.global	setoxd | 
 | 450 | setoxd: | 
 | 451 | |--entry point for EXP(X), X is denormalized | 
 | 452 | 	movel		(%a0),%d0 | 
 | 453 | 	andil		#0x80000000,%d0 | 
 | 454 | 	oril		#0x00800000,%d0		| ...sign(X)*2^(-126) | 
 | 455 | 	movel		%d0,-(%sp) | 
 | 456 | 	fmoves		#0x3F800000,%fp0 | 
 | 457 | 	fmovel		%d1,%fpcr | 
 | 458 | 	fadds		(%sp)+,%fp0 | 
 | 459 | 	bra		t_frcinx | 
 | 460 |  | 
 | 461 | 	.global	setox | 
 | 462 | setox: | 
 | 463 | |--entry point for EXP(X), here X is finite, non-zero, and not NaN's | 
 | 464 |  | 
 | 465 | |--Step 1. | 
 | 466 | 	movel		(%a0),%d0	 | ...load part of input X | 
 | 467 | 	andil		#0x7FFF0000,%d0	| ...biased expo. of X | 
 | 468 | 	cmpil		#0x3FBE0000,%d0	| ...2^(-65) | 
 | 469 | 	bges		EXPC1		| ...normal case | 
 | 470 | 	bra		EXPSM | 
 | 471 |  | 
 | 472 | EXPC1: | 
 | 473 | |--The case |X| >= 2^(-65) | 
 | 474 | 	movew		4(%a0),%d0	| ...expo. and partial sig. of |X| | 
 | 475 | 	cmpil		#0x400CB167,%d0	| ...16380 log2 trunc. 16 bits | 
 | 476 | 	blts		EXPMAIN	 | ...normal case | 
 | 477 | 	bra		EXPBIG | 
 | 478 |  | 
 | 479 | EXPMAIN: | 
 | 480 | |--Step 2. | 
 | 481 | |--This is the normal branch:	2^(-65) <= |X| < 16380 log2. | 
 | 482 | 	fmovex		(%a0),%fp0	| ...load input from (a0) | 
 | 483 |  | 
 | 484 | 	fmovex		%fp0,%fp1 | 
 | 485 | 	fmuls		#0x42B8AA3B,%fp0	| ...64/log2 * X | 
 | 486 | 	fmovemx	%fp2-%fp2/%fp3,-(%a7)		| ...save fp2 | 
 | 487 | 	movel		#0,ADJFLAG(%a6) | 
 | 488 | 	fmovel		%fp0,%d0		| ...N = int( X * 64/log2 ) | 
 | 489 | 	lea		EXPTBL,%a1 | 
 | 490 | 	fmovel		%d0,%fp0		| ...convert to floating-format | 
 | 491 |  | 
 | 492 | 	movel		%d0,L_SCR1(%a6)	| ...save N temporarily | 
 | 493 | 	andil		#0x3F,%d0		| ...D0 is J = N mod 64 | 
 | 494 | 	lsll		#4,%d0 | 
 | 495 | 	addal		%d0,%a1		| ...address of 2^(J/64) | 
 | 496 | 	movel		L_SCR1(%a6),%d0 | 
 | 497 | 	asrl		#6,%d0		| ...D0 is M | 
 | 498 | 	addiw		#0x3FFF,%d0	| ...biased expo. of 2^(M) | 
 | 499 | 	movew		L2,L_SCR1(%a6)	| ...prefetch L2, no need in CB | 
 | 500 |  | 
 | 501 | EXPCONT1: | 
 | 502 | |--Step 3. | 
 | 503 | |--fp1,fp2 saved on the stack. fp0 is N, fp1 is X, | 
 | 504 | |--a0 points to 2^(J/64), D0 is biased expo. of 2^(M) | 
 | 505 | 	fmovex		%fp0,%fp2 | 
 | 506 | 	fmuls		#0xBC317218,%fp0	| ...N * L1, L1 = lead(-log2/64) | 
 | 507 | 	fmulx		L2,%fp2		| ...N * L2, L1+L2 = -log2/64 | 
 | 508 | 	faddx		%fp1,%fp0		| ...X + N*L1 | 
 | 509 | 	faddx		%fp2,%fp0		| ...fp0 is R, reduced arg. | 
 | 510 | |	MOVE.W		#$3FA5,EXPA3	...load EXPA3 in cache | 
 | 511 |  | 
 | 512 | |--Step 4. | 
 | 513 | |--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL | 
 | 514 | |-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5)))) | 
 | 515 | |--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R | 
 | 516 | |--[R+R*S*(A2+S*A4)] + [S*(A1+S*(A3+S*A5))] | 
 | 517 |  | 
 | 518 | 	fmovex		%fp0,%fp1 | 
 | 519 | 	fmulx		%fp1,%fp1		| ...fp1 IS S = R*R | 
 | 520 |  | 
 | 521 | 	fmoves		#0x3AB60B70,%fp2	| ...fp2 IS A5 | 
 | 522 | |	MOVE.W		#0,2(%a1)	...load 2^(J/64) in cache | 
 | 523 |  | 
 | 524 | 	fmulx		%fp1,%fp2		| ...fp2 IS S*A5 | 
 | 525 | 	fmovex		%fp1,%fp3 | 
 | 526 | 	fmuls		#0x3C088895,%fp3	| ...fp3 IS S*A4 | 
 | 527 |  | 
 | 528 | 	faddd		EXPA3,%fp2	| ...fp2 IS A3+S*A5 | 
 | 529 | 	faddd		EXPA2,%fp3	| ...fp3 IS A2+S*A4 | 
 | 530 |  | 
 | 531 | 	fmulx		%fp1,%fp2		| ...fp2 IS S*(A3+S*A5) | 
 | 532 | 	movew		%d0,SCALE(%a6)	| ...SCALE is 2^(M) in extended | 
 | 533 | 	clrw		SCALE+2(%a6) | 
 | 534 | 	movel		#0x80000000,SCALE+4(%a6) | 
 | 535 | 	clrl		SCALE+8(%a6) | 
 | 536 |  | 
 | 537 | 	fmulx		%fp1,%fp3		| ...fp3 IS S*(A2+S*A4) | 
 | 538 |  | 
 | 539 | 	fadds		#0x3F000000,%fp2	| ...fp2 IS A1+S*(A3+S*A5) | 
 | 540 | 	fmulx		%fp0,%fp3		| ...fp3 IS R*S*(A2+S*A4) | 
 | 541 |  | 
 | 542 | 	fmulx		%fp1,%fp2		| ...fp2 IS S*(A1+S*(A3+S*A5)) | 
 | 543 | 	faddx		%fp3,%fp0		| ...fp0 IS R+R*S*(A2+S*A4), | 
 | 544 | |					...fp3 released | 
 | 545 |  | 
 | 546 | 	fmovex		(%a1)+,%fp1	| ...fp1 is lead. pt. of 2^(J/64) | 
 | 547 | 	faddx		%fp2,%fp0		| ...fp0 is EXP(R) - 1 | 
 | 548 | |					...fp2 released | 
 | 549 |  | 
 | 550 | |--Step 5 | 
 | 551 | |--final reconstruction process | 
 | 552 | |--EXP(X) = 2^M * ( 2^(J/64) + 2^(J/64)*(EXP(R)-1) ) | 
 | 553 |  | 
 | 554 | 	fmulx		%fp1,%fp0		| ...2^(J/64)*(Exp(R)-1) | 
 | 555 | 	fmovemx	(%a7)+,%fp2-%fp2/%fp3	| ...fp2 restored | 
 | 556 | 	fadds		(%a1),%fp0	| ...accurate 2^(J/64) | 
 | 557 |  | 
 | 558 | 	faddx		%fp1,%fp0		| ...2^(J/64) + 2^(J/64)*... | 
 | 559 | 	movel		ADJFLAG(%a6),%d0 | 
 | 560 |  | 
 | 561 | |--Step 6 | 
 | 562 | 	tstl		%d0 | 
 | 563 | 	beqs		NORMAL | 
 | 564 | ADJUST: | 
 | 565 | 	fmulx		ADJSCALE(%a6),%fp0 | 
 | 566 | NORMAL: | 
 | 567 | 	fmovel		%d1,%FPCR		| ...restore user FPCR | 
 | 568 | 	fmulx		SCALE(%a6),%fp0	| ...multiply 2^(M) | 
 | 569 | 	bra		t_frcinx | 
 | 570 |  | 
 | 571 | EXPSM: | 
 | 572 | |--Step 7 | 
 | 573 | 	fmovemx	(%a0),%fp0-%fp0	| ...in case X is denormalized | 
 | 574 | 	fmovel		%d1,%FPCR | 
 | 575 | 	fadds		#0x3F800000,%fp0	| ...1+X in user mode | 
 | 576 | 	bra		t_frcinx | 
 | 577 |  | 
 | 578 | EXPBIG: | 
 | 579 | |--Step 8 | 
 | 580 | 	cmpil		#0x400CB27C,%d0	| ...16480 log2 | 
 | 581 | 	bgts		EXP2BIG | 
 | 582 | |--Steps 8.2 -- 8.6 | 
 | 583 | 	fmovex		(%a0),%fp0	| ...load input from (a0) | 
 | 584 |  | 
 | 585 | 	fmovex		%fp0,%fp1 | 
 | 586 | 	fmuls		#0x42B8AA3B,%fp0	| ...64/log2 * X | 
 | 587 | 	fmovemx	 %fp2-%fp2/%fp3,-(%a7)		| ...save fp2 | 
 | 588 | 	movel		#1,ADJFLAG(%a6) | 
 | 589 | 	fmovel		%fp0,%d0		| ...N = int( X * 64/log2 ) | 
 | 590 | 	lea		EXPTBL,%a1 | 
 | 591 | 	fmovel		%d0,%fp0		| ...convert to floating-format | 
 | 592 | 	movel		%d0,L_SCR1(%a6)			| ...save N temporarily | 
 | 593 | 	andil		#0x3F,%d0		 | ...D0 is J = N mod 64 | 
 | 594 | 	lsll		#4,%d0 | 
 | 595 | 	addal		%d0,%a1			| ...address of 2^(J/64) | 
 | 596 | 	movel		L_SCR1(%a6),%d0 | 
 | 597 | 	asrl		#6,%d0			| ...D0 is K | 
 | 598 | 	movel		%d0,L_SCR1(%a6)			| ...save K temporarily | 
 | 599 | 	asrl		#1,%d0			| ...D0 is M1 | 
 | 600 | 	subl		%d0,L_SCR1(%a6)			| ...a1 is M | 
 | 601 | 	addiw		#0x3FFF,%d0		| ...biased expo. of 2^(M1) | 
 | 602 | 	movew		%d0,ADJSCALE(%a6)		| ...ADJSCALE := 2^(M1) | 
 | 603 | 	clrw		ADJSCALE+2(%a6) | 
 | 604 | 	movel		#0x80000000,ADJSCALE+4(%a6) | 
 | 605 | 	clrl		ADJSCALE+8(%a6) | 
 | 606 | 	movel		L_SCR1(%a6),%d0			| ...D0 is M | 
 | 607 | 	addiw		#0x3FFF,%d0		| ...biased expo. of 2^(M) | 
 | 608 | 	bra		EXPCONT1		| ...go back to Step 3 | 
 | 609 |  | 
 | 610 | EXP2BIG: | 
 | 611 | |--Step 9 | 
 | 612 | 	fmovel		%d1,%FPCR | 
 | 613 | 	movel		(%a0),%d0 | 
 | 614 | 	bclrb		#sign_bit,(%a0)		| ...setox always returns positive | 
 | 615 | 	cmpil		#0,%d0 | 
 | 616 | 	blt		t_unfl | 
 | 617 | 	bra		t_ovfl | 
 | 618 |  | 
 | 619 | 	.global	setoxm1d | 
 | 620 | setoxm1d: | 
 | 621 | |--entry point for EXPM1(X), here X is denormalized | 
 | 622 | |--Step 0. | 
 | 623 | 	bra		t_extdnrm | 
 | 624 |  | 
 | 625 |  | 
 | 626 | 	.global	setoxm1 | 
 | 627 | setoxm1: | 
 | 628 | |--entry point for EXPM1(X), here X is finite, non-zero, non-NaN | 
 | 629 |  | 
 | 630 | |--Step 1. | 
 | 631 | |--Step 1.1 | 
 | 632 | 	movel		(%a0),%d0	 | ...load part of input X | 
 | 633 | 	andil		#0x7FFF0000,%d0	| ...biased expo. of X | 
 | 634 | 	cmpil		#0x3FFD0000,%d0	| ...1/4 | 
 | 635 | 	bges		EM1CON1	 | ...|X| >= 1/4 | 
 | 636 | 	bra		EM1SM | 
 | 637 |  | 
 | 638 | EM1CON1: | 
 | 639 | |--Step 1.3 | 
 | 640 | |--The case |X| >= 1/4 | 
 | 641 | 	movew		4(%a0),%d0	| ...expo. and partial sig. of |X| | 
 | 642 | 	cmpil		#0x4004C215,%d0	| ...70log2 rounded up to 16 bits | 
 | 643 | 	bles		EM1MAIN	 | ...1/4 <= |X| <= 70log2 | 
 | 644 | 	bra		EM1BIG | 
 | 645 |  | 
 | 646 | EM1MAIN: | 
 | 647 | |--Step 2. | 
 | 648 | |--This is the case:	1/4 <= |X| <= 70 log2. | 
 | 649 | 	fmovex		(%a0),%fp0	| ...load input from (a0) | 
 | 650 |  | 
 | 651 | 	fmovex		%fp0,%fp1 | 
 | 652 | 	fmuls		#0x42B8AA3B,%fp0	| ...64/log2 * X | 
 | 653 | 	fmovemx	%fp2-%fp2/%fp3,-(%a7)		| ...save fp2 | 
 | 654 | |	MOVE.W		#$3F81,EM1A4		...prefetch in CB mode | 
 | 655 | 	fmovel		%fp0,%d0		| ...N = int( X * 64/log2 ) | 
 | 656 | 	lea		EXPTBL,%a1 | 
 | 657 | 	fmovel		%d0,%fp0		| ...convert to floating-format | 
 | 658 |  | 
 | 659 | 	movel		%d0,L_SCR1(%a6)			| ...save N temporarily | 
 | 660 | 	andil		#0x3F,%d0		 | ...D0 is J = N mod 64 | 
 | 661 | 	lsll		#4,%d0 | 
 | 662 | 	addal		%d0,%a1			| ...address of 2^(J/64) | 
 | 663 | 	movel		L_SCR1(%a6),%d0 | 
 | 664 | 	asrl		#6,%d0			| ...D0 is M | 
 | 665 | 	movel		%d0,L_SCR1(%a6)			| ...save a copy of M | 
 | 666 | |	MOVE.W		#$3FDC,L2		...prefetch L2 in CB mode | 
 | 667 |  | 
 | 668 | |--Step 3. | 
 | 669 | |--fp1,fp2 saved on the stack. fp0 is N, fp1 is X, | 
 | 670 | |--a0 points to 2^(J/64), D0 and a1 both contain M | 
 | 671 | 	fmovex		%fp0,%fp2 | 
 | 672 | 	fmuls		#0xBC317218,%fp0	| ...N * L1, L1 = lead(-log2/64) | 
 | 673 | 	fmulx		L2,%fp2		| ...N * L2, L1+L2 = -log2/64 | 
 | 674 | 	faddx		%fp1,%fp0	 | ...X + N*L1 | 
 | 675 | 	faddx		%fp2,%fp0	 | ...fp0 is R, reduced arg. | 
 | 676 | |	MOVE.W		#$3FC5,EM1A2		...load EM1A2 in cache | 
 | 677 | 	addiw		#0x3FFF,%d0		| ...D0 is biased expo. of 2^M | 
 | 678 |  | 
 | 679 | |--Step 4. | 
 | 680 | |--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL | 
 | 681 | |-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*(A5 + R*A6))))) | 
 | 682 | |--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R | 
 | 683 | |--[R*S*(A2+S*(A4+S*A6))] + [R+S*(A1+S*(A3+S*A5))] | 
 | 684 |  | 
 | 685 | 	fmovex		%fp0,%fp1 | 
 | 686 | 	fmulx		%fp1,%fp1		| ...fp1 IS S = R*R | 
 | 687 |  | 
 | 688 | 	fmoves		#0x3950097B,%fp2	| ...fp2 IS a6 | 
 | 689 | |	MOVE.W		#0,2(%a1)	...load 2^(J/64) in cache | 
 | 690 |  | 
 | 691 | 	fmulx		%fp1,%fp2		| ...fp2 IS S*A6 | 
 | 692 | 	fmovex		%fp1,%fp3 | 
 | 693 | 	fmuls		#0x3AB60B6A,%fp3	| ...fp3 IS S*A5 | 
 | 694 |  | 
 | 695 | 	faddd		EM1A4,%fp2	| ...fp2 IS A4+S*A6 | 
 | 696 | 	faddd		EM1A3,%fp3	| ...fp3 IS A3+S*A5 | 
 | 697 | 	movew		%d0,SC(%a6)		| ...SC is 2^(M) in extended | 
 | 698 | 	clrw		SC+2(%a6) | 
 | 699 | 	movel		#0x80000000,SC+4(%a6) | 
 | 700 | 	clrl		SC+8(%a6) | 
 | 701 |  | 
 | 702 | 	fmulx		%fp1,%fp2		| ...fp2 IS S*(A4+S*A6) | 
 | 703 | 	movel		L_SCR1(%a6),%d0		| ...D0 is	M | 
 | 704 | 	negw		%d0		| ...D0 is -M | 
 | 705 | 	fmulx		%fp1,%fp3		| ...fp3 IS S*(A3+S*A5) | 
 | 706 | 	addiw		#0x3FFF,%d0	| ...biased expo. of 2^(-M) | 
 | 707 | 	faddd		EM1A2,%fp2	| ...fp2 IS A2+S*(A4+S*A6) | 
 | 708 | 	fadds		#0x3F000000,%fp3	| ...fp3 IS A1+S*(A3+S*A5) | 
 | 709 |  | 
 | 710 | 	fmulx		%fp1,%fp2		| ...fp2 IS S*(A2+S*(A4+S*A6)) | 
 | 711 | 	oriw		#0x8000,%d0	| ...signed/expo. of -2^(-M) | 
 | 712 | 	movew		%d0,ONEBYSC(%a6)	| ...OnebySc is -2^(-M) | 
 | 713 | 	clrw		ONEBYSC+2(%a6) | 
 | 714 | 	movel		#0x80000000,ONEBYSC+4(%a6) | 
 | 715 | 	clrl		ONEBYSC+8(%a6) | 
 | 716 | 	fmulx		%fp3,%fp1		| ...fp1 IS S*(A1+S*(A3+S*A5)) | 
 | 717 | |					...fp3 released | 
 | 718 |  | 
 | 719 | 	fmulx		%fp0,%fp2		| ...fp2 IS R*S*(A2+S*(A4+S*A6)) | 
 | 720 | 	faddx		%fp1,%fp0		| ...fp0 IS R+S*(A1+S*(A3+S*A5)) | 
 | 721 | |					...fp1 released | 
 | 722 |  | 
 | 723 | 	faddx		%fp2,%fp0		| ...fp0 IS EXP(R)-1 | 
 | 724 | |					...fp2 released | 
 | 725 | 	fmovemx	(%a7)+,%fp2-%fp2/%fp3	| ...fp2 restored | 
 | 726 |  | 
 | 727 | |--Step 5 | 
 | 728 | |--Compute 2^(J/64)*p | 
 | 729 |  | 
 | 730 | 	fmulx		(%a1),%fp0	| ...2^(J/64)*(Exp(R)-1) | 
 | 731 |  | 
 | 732 | |--Step 6 | 
 | 733 | |--Step 6.1 | 
 | 734 | 	movel		L_SCR1(%a6),%d0		| ...retrieve M | 
 | 735 | 	cmpil		#63,%d0 | 
 | 736 | 	bles		MLE63 | 
 | 737 | |--Step 6.2	M >= 64 | 
 | 738 | 	fmoves		12(%a1),%fp1	| ...fp1 is t | 
 | 739 | 	faddx		ONEBYSC(%a6),%fp1	| ...fp1 is t+OnebySc | 
 | 740 | 	faddx		%fp1,%fp0		| ...p+(t+OnebySc), fp1 released | 
 | 741 | 	faddx		(%a1),%fp0	| ...T+(p+(t+OnebySc)) | 
 | 742 | 	bras		EM1SCALE | 
 | 743 | MLE63: | 
 | 744 | |--Step 6.3	M <= 63 | 
 | 745 | 	cmpil		#-3,%d0 | 
 | 746 | 	bges		MGEN3 | 
 | 747 | MLTN3: | 
 | 748 | |--Step 6.4	M <= -4 | 
 | 749 | 	fadds		12(%a1),%fp0	| ...p+t | 
 | 750 | 	faddx		(%a1),%fp0	| ...T+(p+t) | 
 | 751 | 	faddx		ONEBYSC(%a6),%fp0	| ...OnebySc + (T+(p+t)) | 
 | 752 | 	bras		EM1SCALE | 
 | 753 | MGEN3: | 
 | 754 | |--Step 6.5	-3 <= M <= 63 | 
 | 755 | 	fmovex		(%a1)+,%fp1	| ...fp1 is T | 
 | 756 | 	fadds		(%a1),%fp0	| ...fp0 is p+t | 
 | 757 | 	faddx		ONEBYSC(%a6),%fp1	| ...fp1 is T+OnebySc | 
 | 758 | 	faddx		%fp1,%fp0		| ...(T+OnebySc)+(p+t) | 
 | 759 |  | 
 | 760 | EM1SCALE: | 
 | 761 | |--Step 6.6 | 
 | 762 | 	fmovel		%d1,%FPCR | 
 | 763 | 	fmulx		SC(%a6),%fp0 | 
 | 764 |  | 
 | 765 | 	bra		t_frcinx | 
 | 766 |  | 
 | 767 | EM1SM: | 
 | 768 | |--Step 7	|X| < 1/4. | 
 | 769 | 	cmpil		#0x3FBE0000,%d0	| ...2^(-65) | 
 | 770 | 	bges		EM1POLY | 
 | 771 |  | 
 | 772 | EM1TINY: | 
 | 773 | |--Step 8	|X| < 2^(-65) | 
 | 774 | 	cmpil		#0x00330000,%d0	| ...2^(-16312) | 
 | 775 | 	blts		EM12TINY | 
 | 776 | |--Step 8.2 | 
 | 777 | 	movel		#0x80010000,SC(%a6)	| ...SC is -2^(-16382) | 
 | 778 | 	movel		#0x80000000,SC+4(%a6) | 
 | 779 | 	clrl		SC+8(%a6) | 
 | 780 | 	fmovex		(%a0),%fp0 | 
 | 781 | 	fmovel		%d1,%FPCR | 
 | 782 | 	faddx		SC(%a6),%fp0 | 
 | 783 |  | 
 | 784 | 	bra		t_frcinx | 
 | 785 |  | 
 | 786 | EM12TINY: | 
 | 787 | |--Step 8.3 | 
 | 788 | 	fmovex		(%a0),%fp0 | 
 | 789 | 	fmuld		TWO140,%fp0 | 
 | 790 | 	movel		#0x80010000,SC(%a6) | 
 | 791 | 	movel		#0x80000000,SC+4(%a6) | 
 | 792 | 	clrl		SC+8(%a6) | 
 | 793 | 	faddx		SC(%a6),%fp0 | 
 | 794 | 	fmovel		%d1,%FPCR | 
 | 795 | 	fmuld		TWON140,%fp0 | 
 | 796 |  | 
 | 797 | 	bra		t_frcinx | 
 | 798 |  | 
 | 799 | EM1POLY: | 
 | 800 | |--Step 9	exp(X)-1 by a simple polynomial | 
 | 801 | 	fmovex		(%a0),%fp0	| ...fp0 is X | 
 | 802 | 	fmulx		%fp0,%fp0		| ...fp0 is S := X*X | 
 | 803 | 	fmovemx	%fp2-%fp2/%fp3,-(%a7)	| ...save fp2 | 
 | 804 | 	fmoves		#0x2F30CAA8,%fp1	| ...fp1 is B12 | 
 | 805 | 	fmulx		%fp0,%fp1		| ...fp1 is S*B12 | 
 | 806 | 	fmoves		#0x310F8290,%fp2	| ...fp2 is B11 | 
 | 807 | 	fadds		#0x32D73220,%fp1	| ...fp1 is B10+S*B12 | 
 | 808 |  | 
 | 809 | 	fmulx		%fp0,%fp2		| ...fp2 is S*B11 | 
 | 810 | 	fmulx		%fp0,%fp1		| ...fp1 is S*(B10 + ... | 
 | 811 |  | 
 | 812 | 	fadds		#0x3493F281,%fp2	| ...fp2 is B9+S*... | 
 | 813 | 	faddd		EM1B8,%fp1	| ...fp1 is B8+S*... | 
 | 814 |  | 
 | 815 | 	fmulx		%fp0,%fp2		| ...fp2 is S*(B9+... | 
 | 816 | 	fmulx		%fp0,%fp1		| ...fp1 is S*(B8+... | 
 | 817 |  | 
 | 818 | 	faddd		EM1B7,%fp2	| ...fp2 is B7+S*... | 
 | 819 | 	faddd		EM1B6,%fp1	| ...fp1 is B6+S*... | 
 | 820 |  | 
 | 821 | 	fmulx		%fp0,%fp2		| ...fp2 is S*(B7+... | 
 | 822 | 	fmulx		%fp0,%fp1		| ...fp1 is S*(B6+... | 
 | 823 |  | 
 | 824 | 	faddd		EM1B5,%fp2	| ...fp2 is B5+S*... | 
 | 825 | 	faddd		EM1B4,%fp1	| ...fp1 is B4+S*... | 
 | 826 |  | 
 | 827 | 	fmulx		%fp0,%fp2		| ...fp2 is S*(B5+... | 
 | 828 | 	fmulx		%fp0,%fp1		| ...fp1 is S*(B4+... | 
 | 829 |  | 
 | 830 | 	faddd		EM1B3,%fp2	| ...fp2 is B3+S*... | 
 | 831 | 	faddx		EM1B2,%fp1	| ...fp1 is B2+S*... | 
 | 832 |  | 
 | 833 | 	fmulx		%fp0,%fp2		| ...fp2 is S*(B3+... | 
 | 834 | 	fmulx		%fp0,%fp1		| ...fp1 is S*(B2+... | 
 | 835 |  | 
 | 836 | 	fmulx		%fp0,%fp2		| ...fp2 is S*S*(B3+...) | 
 | 837 | 	fmulx		(%a0),%fp1	| ...fp1 is X*S*(B2... | 
 | 838 |  | 
 | 839 | 	fmuls		#0x3F000000,%fp0	| ...fp0 is S*B1 | 
 | 840 | 	faddx		%fp2,%fp1		| ...fp1 is Q | 
 | 841 | |					...fp2 released | 
 | 842 |  | 
 | 843 | 	fmovemx	(%a7)+,%fp2-%fp2/%fp3	| ...fp2 restored | 
 | 844 |  | 
 | 845 | 	faddx		%fp1,%fp0		| ...fp0 is S*B1+Q | 
 | 846 | |					...fp1 released | 
 | 847 |  | 
 | 848 | 	fmovel		%d1,%FPCR | 
 | 849 | 	faddx		(%a0),%fp0 | 
 | 850 |  | 
 | 851 | 	bra		t_frcinx | 
 | 852 |  | 
 | 853 | EM1BIG: | 
 | 854 | |--Step 10	|X| > 70 log2 | 
 | 855 | 	movel		(%a0),%d0 | 
 | 856 | 	cmpil		#0,%d0 | 
 | 857 | 	bgt		EXPC1 | 
 | 858 | |--Step 10.2 | 
 | 859 | 	fmoves		#0xBF800000,%fp0	| ...fp0 is -1 | 
 | 860 | 	fmovel		%d1,%FPCR | 
 | 861 | 	fadds		#0x00800000,%fp0	| ...-1 + 2^(-126) | 
 | 862 |  | 
 | 863 | 	bra		t_frcinx | 
 | 864 |  | 
 | 865 | 	|end |