David VomLehn | a3a0f8c | 2009-08-30 17:15:11 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * Carsten Langgaard, carstenl@mips.com |
| 3 | * Copyright (C) 2000 MIPS Technologies, Inc. All rights reserved. |
| 4 | * Portions copyright (C) 2009 Cisco Systems, Inc. |
| 5 | * |
| 6 | * This program is free software; you can distribute it and/or modify it |
| 7 | * under the terms of the GNU General Public License (Version 2) as |
| 8 | * published by the Free Software Foundation. |
| 9 | * |
| 10 | * This program is distributed in the hope it will be useful, but WITHOUT |
| 11 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 12 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 13 | * for more details. |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License along |
| 16 | * with this program; if not, write to the Free Software Foundation, Inc., |
| 17 | * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA. |
| 18 | */ |
| 19 | #include <linux/init.h> |
| 20 | #include <linux/sched.h> |
| 21 | #include <linux/ioport.h> |
| 22 | #include <linux/pci.h> |
| 23 | #include <linux/screen_info.h> |
| 24 | #include <linux/notifier.h> |
| 25 | #include <linux/etherdevice.h> |
| 26 | #include <linux/if_ether.h> |
| 27 | #include <linux/ctype.h> |
| 28 | |
| 29 | #include <linux/cpu.h> |
| 30 | #include <asm/bootinfo.h> |
| 31 | #include <asm/irq.h> |
| 32 | #include <asm/mips-boards/generic.h> |
| 33 | #include <asm/mips-boards/prom.h> |
| 34 | #include <asm/dma.h> |
| 35 | #include <linux/time.h> |
| 36 | #include <asm/traps.h> |
| 37 | #include <asm/asm-offsets.h> |
| 38 | #include "reset.h" |
| 39 | |
| 40 | #define VAL(n) STR(n) |
| 41 | |
| 42 | /* |
| 43 | * Macros for loading addresses and storing registers: |
| 44 | * PTR_LA Load the address into a register |
| 45 | * LONG_S Store the full width of the given register. |
| 46 | * LONG_L Load the full width of the given register |
| 47 | * PTR_ADDIU Add a constant value to a register used as a pointer |
| 48 | * REG_SIZE Number of 8-bit bytes in a full width register |
| 49 | */ |
| 50 | #ifdef CONFIG_64BIT |
| 51 | #warning TODO: 64-bit code needs to be verified |
| 52 | #define PTR_LA "dla " |
| 53 | #define LONG_S "sd " |
| 54 | #define LONG_L "ld " |
| 55 | #define PTR_ADDIU "daddiu " |
| 56 | #define REG_SIZE "8" /* In bytes */ |
| 57 | #endif |
| 58 | |
| 59 | #ifdef CONFIG_32BIT |
| 60 | #define PTR_LA "la " |
| 61 | #define LONG_S "sw " |
| 62 | #define LONG_L "lw " |
| 63 | #define PTR_ADDIU "addiu " |
| 64 | #define REG_SIZE "4" /* In bytes */ |
| 65 | #endif |
| 66 | |
| 67 | static struct pt_regs die_regs; |
| 68 | static bool have_die_regs; |
| 69 | |
| 70 | static void register_panic_notifier(void); |
| 71 | static int panic_handler(struct notifier_block *notifier_block, |
| 72 | unsigned long event, void *cause_string); |
| 73 | |
| 74 | const char *get_system_type(void) |
| 75 | { |
| 76 | return "PowerTV"; |
| 77 | } |
| 78 | |
| 79 | void __init plat_mem_setup(void) |
| 80 | { |
| 81 | panic_on_oops = 1; |
| 82 | register_panic_notifier(); |
| 83 | |
| 84 | #if 0 |
| 85 | mips_pcibios_init(); |
| 86 | #endif |
| 87 | mips_reboot_setup(); |
| 88 | } |
| 89 | |
| 90 | /* |
| 91 | * Install a panic notifier for platform-specific diagnostics |
| 92 | */ |
| 93 | static void register_panic_notifier() |
| 94 | { |
| 95 | static struct notifier_block panic_notifier = { |
| 96 | .notifier_call = panic_handler, |
| 97 | .next = NULL, |
| 98 | .priority = INT_MAX |
| 99 | }; |
| 100 | atomic_notifier_chain_register(&panic_notifier_list, &panic_notifier); |
| 101 | } |
| 102 | |
| 103 | static int panic_handler(struct notifier_block *notifier_block, |
| 104 | unsigned long event, void *cause_string) |
| 105 | { |
| 106 | struct pt_regs my_regs; |
| 107 | |
| 108 | /* Save all of the registers */ |
| 109 | { |
| 110 | unsigned long at, v0, v1; /* Must be on the stack */ |
| 111 | |
| 112 | /* Start by saving $at and v0 on the stack. We use $at |
| 113 | * ourselves, but it looks like the compiler may use v0 or v1 |
| 114 | * to load the address of the pt_regs structure. We'll come |
| 115 | * back later to store the registers in the pt_regs |
| 116 | * structure. */ |
| 117 | __asm__ __volatile__ ( |
| 118 | ".set noat\n" |
| 119 | LONG_S "$at, %[at]\n" |
| 120 | LONG_S "$2, %[v0]\n" |
| 121 | LONG_S "$3, %[v1]\n" |
| 122 | : |
| 123 | [at] "=m" (at), |
| 124 | [v0] "=m" (v0), |
| 125 | [v1] "=m" (v1) |
| 126 | : |
| 127 | : "at" |
| 128 | ); |
| 129 | |
| 130 | __asm__ __volatile__ ( |
| 131 | ".set noat\n" |
| 132 | "move $at, %[pt_regs]\n" |
| 133 | |
| 134 | /* Argument registers */ |
| 135 | LONG_S "$4, " VAL(PT_R4) "($at)\n" |
| 136 | LONG_S "$5, " VAL(PT_R5) "($at)\n" |
| 137 | LONG_S "$6, " VAL(PT_R6) "($at)\n" |
| 138 | LONG_S "$7, " VAL(PT_R7) "($at)\n" |
| 139 | |
| 140 | /* Temporary regs */ |
| 141 | LONG_S "$8, " VAL(PT_R8) "($at)\n" |
| 142 | LONG_S "$9, " VAL(PT_R9) "($at)\n" |
| 143 | LONG_S "$10, " VAL(PT_R10) "($at)\n" |
| 144 | LONG_S "$11, " VAL(PT_R11) "($at)\n" |
| 145 | LONG_S "$12, " VAL(PT_R12) "($at)\n" |
| 146 | LONG_S "$13, " VAL(PT_R13) "($at)\n" |
| 147 | LONG_S "$14, " VAL(PT_R14) "($at)\n" |
| 148 | LONG_S "$15, " VAL(PT_R15) "($at)\n" |
| 149 | |
| 150 | /* "Saved" registers */ |
| 151 | LONG_S "$16, " VAL(PT_R16) "($at)\n" |
| 152 | LONG_S "$17, " VAL(PT_R17) "($at)\n" |
| 153 | LONG_S "$18, " VAL(PT_R18) "($at)\n" |
| 154 | LONG_S "$19, " VAL(PT_R19) "($at)\n" |
| 155 | LONG_S "$20, " VAL(PT_R20) "($at)\n" |
| 156 | LONG_S "$21, " VAL(PT_R21) "($at)\n" |
| 157 | LONG_S "$22, " VAL(PT_R22) "($at)\n" |
| 158 | LONG_S "$23, " VAL(PT_R23) "($at)\n" |
| 159 | |
| 160 | /* Add'l temp regs */ |
| 161 | LONG_S "$24, " VAL(PT_R24) "($at)\n" |
| 162 | LONG_S "$25, " VAL(PT_R25) "($at)\n" |
| 163 | |
| 164 | /* Kernel temp regs */ |
| 165 | LONG_S "$26, " VAL(PT_R26) "($at)\n" |
| 166 | LONG_S "$27, " VAL(PT_R27) "($at)\n" |
| 167 | |
| 168 | /* Global pointer, stack pointer, frame pointer and |
| 169 | * return address */ |
| 170 | LONG_S "$gp, " VAL(PT_R28) "($at)\n" |
| 171 | LONG_S "$sp, " VAL(PT_R29) "($at)\n" |
| 172 | LONG_S "$fp, " VAL(PT_R30) "($at)\n" |
| 173 | LONG_S "$ra, " VAL(PT_R31) "($at)\n" |
| 174 | |
| 175 | /* Now we can get the $at and v0 registers back and |
| 176 | * store them */ |
| 177 | LONG_L "$8, %[at]\n" |
| 178 | LONG_S "$8, " VAL(PT_R1) "($at)\n" |
| 179 | LONG_L "$8, %[v0]\n" |
| 180 | LONG_S "$8, " VAL(PT_R2) "($at)\n" |
| 181 | LONG_L "$8, %[v1]\n" |
| 182 | LONG_S "$8, " VAL(PT_R3) "($at)\n" |
| 183 | : |
| 184 | : |
| 185 | [at] "m" (at), |
| 186 | [v0] "m" (v0), |
| 187 | [v1] "m" (v1), |
| 188 | [pt_regs] "r" (&my_regs) |
| 189 | : "at", "t0" |
| 190 | ); |
| 191 | |
| 192 | /* Set the current EPC value to be the current location in this |
| 193 | * function */ |
| 194 | __asm__ __volatile__ ( |
| 195 | ".set noat\n" |
| 196 | "1:\n" |
| 197 | PTR_LA "$at, 1b\n" |
| 198 | LONG_S "$at, %[cp0_epc]\n" |
| 199 | : |
| 200 | [cp0_epc] "=m" (my_regs.cp0_epc) |
| 201 | : |
| 202 | : "at" |
| 203 | ); |
| 204 | |
| 205 | my_regs.cp0_cause = read_c0_cause(); |
| 206 | my_regs.cp0_status = read_c0_status(); |
| 207 | } |
| 208 | |
| 209 | #ifdef CONFIG_DIAGNOSTICS |
| 210 | failure_report((char *) cause_string, |
| 211 | have_die_regs ? &die_regs : &my_regs); |
| 212 | have_die_regs = false; |
| 213 | #else |
| 214 | pr_crit("I'm feeling a bit sleepy. hmmmmm... perhaps a nap would... " |
| 215 | "zzzz... \n"); |
| 216 | #endif |
| 217 | |
| 218 | return NOTIFY_DONE; |
| 219 | } |
| 220 | |
| 221 | /** |
| 222 | * Platform-specific handling of oops |
| 223 | * @str: Pointer to the oops string |
| 224 | * @regs: Pointer to the oops registers |
| 225 | * All we do here is to save the registers for subsequent printing through |
| 226 | * the panic notifier. |
| 227 | */ |
| 228 | void platform_die(const char *str, const struct pt_regs *regs) |
| 229 | { |
| 230 | /* If we already have saved registers, don't overwrite them as they |
| 231 | * they apply to the initial fault */ |
| 232 | |
| 233 | if (!have_die_regs) { |
| 234 | have_die_regs = true; |
| 235 | die_regs = *regs; |
| 236 | } |
| 237 | } |
| 238 | |
| 239 | /* Information about the RF MAC address, if one was supplied on the |
| 240 | * command line. */ |
| 241 | static bool have_rfmac; |
| 242 | static u8 rfmac[ETH_ALEN]; |
| 243 | |
| 244 | static int rfmac_param(char *p) |
| 245 | { |
| 246 | u8 *q; |
| 247 | bool is_high_nibble; |
| 248 | int c; |
| 249 | |
| 250 | /* Skip a leading "0x", if present */ |
| 251 | if (*p == '0' && *(p+1) == 'x') |
| 252 | p += 2; |
| 253 | |
| 254 | q = rfmac; |
| 255 | is_high_nibble = true; |
| 256 | |
| 257 | for (c = (unsigned char) *p++; |
| 258 | isxdigit(c) && q - rfmac < ETH_ALEN; |
| 259 | c = (unsigned char) *p++) { |
| 260 | int nibble; |
| 261 | |
| 262 | nibble = (isdigit(c) ? (c - '0') : |
| 263 | (isupper(c) ? c - 'A' + 10 : c - 'a' + 10)); |
| 264 | |
| 265 | if (is_high_nibble) |
| 266 | *q = nibble << 4; |
| 267 | else |
| 268 | *q++ |= nibble; |
| 269 | |
| 270 | is_high_nibble = !is_high_nibble; |
| 271 | } |
| 272 | |
| 273 | /* If we parsed all the way to the end of the parameter value and |
| 274 | * parsed all ETH_ALEN bytes, we have a usable RF MAC address */ |
| 275 | have_rfmac = (c == '\0' && q - rfmac == ETH_ALEN); |
| 276 | |
| 277 | return 0; |
| 278 | } |
| 279 | |
| 280 | early_param("rfmac", rfmac_param); |
| 281 | |
| 282 | /* |
| 283 | * Generate an Ethernet MAC address that has a good chance of being unique. |
| 284 | * @addr: Pointer to six-byte array containing the Ethernet address |
| 285 | * Generates an Ethernet MAC address that is highly likely to be unique for |
| 286 | * this particular system on a network with other systems of the same type. |
| 287 | * |
| 288 | * The problem we are solving is that, when random_ether_addr() is used to |
| 289 | * generate MAC addresses at startup, there isn't much entropy for the random |
| 290 | * number generator to use and the addresses it produces are fairly likely to |
| 291 | * be the same as those of other identical systems on the same local network. |
| 292 | * This is true even for relatively small numbers of systems (for the reason |
| 293 | * why, see the Wikipedia entry for "Birthday problem" at: |
| 294 | * http://en.wikipedia.org/wiki/Birthday_problem |
| 295 | * |
| 296 | * The good news is that we already have a MAC address known to be unique, the |
| 297 | * RF MAC address. The bad news is that this address is already in use on the |
| 298 | * RF interface. Worse, the obvious trick, taking the RF MAC address and |
| 299 | * turning on the locally managed bit, has already been used for other devices. |
| 300 | * Still, this does give us something to work with. |
| 301 | * |
| 302 | * The approach we take is: |
| 303 | * 1. If we can't get the RF MAC Address, just call random_ether_addr. |
| 304 | * 2. Use the 24-bit NIC-specific bits of the RF MAC address as the last 24 |
| 305 | * bits of the new address. This is very likely to be unique, except for |
| 306 | * the current box. |
| 307 | * 3. To avoid using addresses already on the current box, we set the top |
| 308 | * six bits of the address with a value different from any currently |
| 309 | * registered Scientific Atlanta organizationally unique identifyer |
| 310 | * (OUI). This avoids duplication with any addresses on the system that |
| 311 | * were generated from valid Scientific Atlanta-registered address by |
| 312 | * simply flipping the locally managed bit. |
| 313 | * 4. We aren't generating a multicast address, so we leave the multicast |
| 314 | * bit off. Since we aren't using a registered address, we have to set |
| 315 | * the locally managed bit. |
| 316 | * 5. We then randomly generate the remaining 16-bits. This does two |
| 317 | * things: |
| 318 | * a. It allows us to call this function for more than one device |
| 319 | * in this system |
| 320 | * b. It ensures that things will probably still work even if |
| 321 | * some device on the device network has a locally managed |
| 322 | * address that matches the top six bits from step 2. |
| 323 | */ |
| 324 | void platform_random_ether_addr(u8 addr[ETH_ALEN]) |
| 325 | { |
| 326 | const int num_random_bytes = 2; |
| 327 | const unsigned char non_sciatl_oui_bits = 0xc0u; |
| 328 | const unsigned char mac_addr_locally_managed = (1 << 1); |
| 329 | |
| 330 | if (!have_rfmac) { |
| 331 | pr_warning("rfmac not available on command line; " |
| 332 | "generating random MAC address\n"); |
| 333 | random_ether_addr(addr); |
| 334 | } |
| 335 | |
| 336 | else { |
| 337 | int i; |
| 338 | |
| 339 | /* Set the first byte to something that won't match a Scientific |
| 340 | * Atlanta OUI, is locally managed, and isn't a multicast |
| 341 | * address */ |
| 342 | addr[0] = non_sciatl_oui_bits | mac_addr_locally_managed; |
| 343 | |
| 344 | /* Get some bytes of random address information */ |
| 345 | get_random_bytes(&addr[1], num_random_bytes); |
| 346 | |
| 347 | /* Copy over the NIC-specific bits of the RF MAC address */ |
| 348 | for (i = 1 + num_random_bytes; i < ETH_ALEN; i++) |
| 349 | addr[i] = rfmac[i]; |
| 350 | } |
| 351 | } |