| Roland Stigge | 2944a44 | 2012-06-07 12:22:15 +0200 | [diff] [blame] | 1 | /* | 
 | 2 |  * NXP LPC32XX NAND SLC driver | 
 | 3 |  * | 
 | 4 |  * Authors: | 
 | 5 |  *    Kevin Wells <kevin.wells@nxp.com> | 
 | 6 |  *    Roland Stigge <stigge@antcom.de> | 
 | 7 |  * | 
 | 8 |  * Copyright © 2011 NXP Semiconductors | 
 | 9 |  * Copyright © 2012 Roland Stigge | 
 | 10 |  * | 
 | 11 |  * This program is free software; you can redistribute it and/or modify | 
 | 12 |  * it under the terms of the GNU General Public License as published by | 
 | 13 |  * the Free Software Foundation; either version 2 of the License, or | 
 | 14 |  * (at your option) any later version. | 
 | 15 |  * | 
 | 16 |  * This program is distributed in the hope that it will be useful, | 
 | 17 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 | 18 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 | 19 |  * GNU General Public License for more details. | 
 | 20 |  */ | 
 | 21 |  | 
 | 22 | #include <linux/slab.h> | 
 | 23 | #include <linux/module.h> | 
 | 24 | #include <linux/platform_device.h> | 
 | 25 | #include <linux/mtd/mtd.h> | 
 | 26 | #include <linux/mtd/nand.h> | 
 | 27 | #include <linux/mtd/partitions.h> | 
 | 28 | #include <linux/clk.h> | 
 | 29 | #include <linux/err.h> | 
 | 30 | #include <linux/delay.h> | 
 | 31 | #include <linux/io.h> | 
 | 32 | #include <linux/mm.h> | 
 | 33 | #include <linux/dma-mapping.h> | 
 | 34 | #include <linux/dmaengine.h> | 
 | 35 | #include <linux/mtd/nand_ecc.h> | 
 | 36 | #include <linux/gpio.h> | 
 | 37 | #include <linux/of.h> | 
 | 38 | #include <linux/of_mtd.h> | 
 | 39 | #include <linux/of_gpio.h> | 
 | 40 | #include <linux/amba/pl08x.h> | 
 | 41 |  | 
 | 42 | #define LPC32XX_MODNAME		"lpc32xx-nand" | 
 | 43 |  | 
 | 44 | /********************************************************************** | 
 | 45 | * SLC NAND controller register offsets | 
 | 46 | **********************************************************************/ | 
 | 47 |  | 
 | 48 | #define SLC_DATA(x)		(x + 0x000) | 
 | 49 | #define SLC_ADDR(x)		(x + 0x004) | 
 | 50 | #define SLC_CMD(x)		(x + 0x008) | 
 | 51 | #define SLC_STOP(x)		(x + 0x00C) | 
 | 52 | #define SLC_CTRL(x)		(x + 0x010) | 
 | 53 | #define SLC_CFG(x)		(x + 0x014) | 
 | 54 | #define SLC_STAT(x)		(x + 0x018) | 
 | 55 | #define SLC_INT_STAT(x)		(x + 0x01C) | 
 | 56 | #define SLC_IEN(x)		(x + 0x020) | 
 | 57 | #define SLC_ISR(x)		(x + 0x024) | 
 | 58 | #define SLC_ICR(x)		(x + 0x028) | 
 | 59 | #define SLC_TAC(x)		(x + 0x02C) | 
 | 60 | #define SLC_TC(x)		(x + 0x030) | 
 | 61 | #define SLC_ECC(x)		(x + 0x034) | 
 | 62 | #define SLC_DMA_DATA(x)		(x + 0x038) | 
 | 63 |  | 
 | 64 | /********************************************************************** | 
 | 65 | * slc_ctrl register definitions | 
 | 66 | **********************************************************************/ | 
 | 67 | #define SLCCTRL_SW_RESET	(1 << 2) /* Reset the NAND controller bit */ | 
 | 68 | #define SLCCTRL_ECC_CLEAR	(1 << 1) /* Reset ECC bit */ | 
 | 69 | #define SLCCTRL_DMA_START	(1 << 0) /* Start DMA channel bit */ | 
 | 70 |  | 
 | 71 | /********************************************************************** | 
 | 72 | * slc_cfg register definitions | 
 | 73 | **********************************************************************/ | 
 | 74 | #define SLCCFG_CE_LOW		(1 << 5) /* Force CE low bit */ | 
 | 75 | #define SLCCFG_DMA_ECC		(1 << 4) /* Enable DMA ECC bit */ | 
 | 76 | #define SLCCFG_ECC_EN		(1 << 3) /* ECC enable bit */ | 
 | 77 | #define SLCCFG_DMA_BURST	(1 << 2) /* DMA burst bit */ | 
 | 78 | #define SLCCFG_DMA_DIR		(1 << 1) /* DMA write(0)/read(1) bit */ | 
 | 79 | #define SLCCFG_WIDTH		(1 << 0) /* External device width, 0=8bit */ | 
 | 80 |  | 
 | 81 | /********************************************************************** | 
 | 82 | * slc_stat register definitions | 
 | 83 | **********************************************************************/ | 
 | 84 | #define SLCSTAT_DMA_FIFO	(1 << 2) /* DMA FIFO has data bit */ | 
 | 85 | #define SLCSTAT_SLC_FIFO	(1 << 1) /* SLC FIFO has data bit */ | 
 | 86 | #define SLCSTAT_NAND_READY	(1 << 0) /* NAND device is ready bit */ | 
 | 87 |  | 
 | 88 | /********************************************************************** | 
 | 89 | * slc_int_stat, slc_ien, slc_isr, and slc_icr register definitions | 
 | 90 | **********************************************************************/ | 
 | 91 | #define SLCSTAT_INT_TC		(1 << 1) /* Transfer count bit */ | 
 | 92 | #define SLCSTAT_INT_RDY_EN	(1 << 0) /* Ready interrupt bit */ | 
 | 93 |  | 
 | 94 | /********************************************************************** | 
 | 95 | * slc_tac register definitions | 
 | 96 | **********************************************************************/ | 
 | 97 | /* Clock setting for RDY write sample wait time in 2*n clocks */ | 
 | 98 | #define SLCTAC_WDR(n)		(((n) & 0xF) << 28) | 
 | 99 | /* Write pulse width in clock cycles, 1 to 16 clocks */ | 
 | 100 | #define SLCTAC_WWIDTH(n)	(((n) & 0xF) << 24) | 
 | 101 | /* Write hold time of control and data signals, 1 to 16 clocks */ | 
 | 102 | #define SLCTAC_WHOLD(n)		(((n) & 0xF) << 20) | 
 | 103 | /* Write setup time of control and data signals, 1 to 16 clocks */ | 
 | 104 | #define SLCTAC_WSETUP(n)	(((n) & 0xF) << 16) | 
 | 105 | /* Clock setting for RDY read sample wait time in 2*n clocks */ | 
 | 106 | #define SLCTAC_RDR(n)		(((n) & 0xF) << 12) | 
 | 107 | /* Read pulse width in clock cycles, 1 to 16 clocks */ | 
 | 108 | #define SLCTAC_RWIDTH(n)	(((n) & 0xF) << 8) | 
 | 109 | /* Read hold time of control and data signals, 1 to 16 clocks */ | 
 | 110 | #define SLCTAC_RHOLD(n)		(((n) & 0xF) << 4) | 
 | 111 | /* Read setup time of control and data signals, 1 to 16 clocks */ | 
 | 112 | #define SLCTAC_RSETUP(n)	(((n) & 0xF) << 0) | 
 | 113 |  | 
 | 114 | /********************************************************************** | 
 | 115 | * slc_ecc register definitions | 
 | 116 | **********************************************************************/ | 
 | 117 | /* ECC line party fetch macro */ | 
 | 118 | #define SLCECC_TO_LINEPAR(n)	(((n) >> 6) & 0x7FFF) | 
 | 119 | #define SLCECC_TO_COLPAR(n)	((n) & 0x3F) | 
 | 120 |  | 
 | 121 | /* | 
 | 122 |  * DMA requires storage space for the DMA local buffer and the hardware ECC | 
 | 123 |  * storage area. The DMA local buffer is only used if DMA mapping fails | 
 | 124 |  * during runtime. | 
 | 125 |  */ | 
 | 126 | #define LPC32XX_DMA_DATA_SIZE		4096 | 
 | 127 | #define LPC32XX_ECC_SAVE_SIZE		((4096 / 256) * 4) | 
 | 128 |  | 
 | 129 | /* Number of bytes used for ECC stored in NAND per 256 bytes */ | 
 | 130 | #define LPC32XX_SLC_DEV_ECC_BYTES	3 | 
 | 131 |  | 
 | 132 | /* | 
 | 133 |  * If the NAND base clock frequency can't be fetched, this frequency will be | 
 | 134 |  * used instead as the base. This rate is used to setup the timing registers | 
 | 135 |  * used for NAND accesses. | 
 | 136 |  */ | 
 | 137 | #define LPC32XX_DEF_BUS_RATE		133250000 | 
 | 138 |  | 
 | 139 | /* Milliseconds for DMA FIFO timeout (unlikely anyway) */ | 
 | 140 | #define LPC32XX_DMA_TIMEOUT		100 | 
 | 141 |  | 
 | 142 | /* | 
 | 143 |  * NAND ECC Layout for small page NAND devices | 
 | 144 |  * Note: For large and huge page devices, the default layouts are used | 
 | 145 |  */ | 
 | 146 | static struct nand_ecclayout lpc32xx_nand_oob_16 = { | 
 | 147 | 	.eccbytes = 6, | 
 | 148 | 	.eccpos = {10, 11, 12, 13, 14, 15}, | 
 | 149 | 	.oobfree = { | 
 | 150 | 		{ .offset = 0, .length = 4 }, | 
 | 151 | 		{ .offset = 6, .length = 4 }, | 
 | 152 | 	}, | 
 | 153 | }; | 
 | 154 |  | 
 | 155 | static u8 bbt_pattern[] = {'B', 'b', 't', '0' }; | 
 | 156 | static u8 mirror_pattern[] = {'1', 't', 'b', 'B' }; | 
 | 157 |  | 
 | 158 | /* | 
 | 159 |  * Small page FLASH BBT descriptors, marker at offset 0, version at offset 6 | 
 | 160 |  * Note: Large page devices used the default layout | 
 | 161 |  */ | 
 | 162 | static struct nand_bbt_descr bbt_smallpage_main_descr = { | 
 | 163 | 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | 
 | 164 | 		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, | 
 | 165 | 	.offs =	0, | 
 | 166 | 	.len = 4, | 
 | 167 | 	.veroffs = 6, | 
 | 168 | 	.maxblocks = 4, | 
 | 169 | 	.pattern = bbt_pattern | 
 | 170 | }; | 
 | 171 |  | 
 | 172 | static struct nand_bbt_descr bbt_smallpage_mirror_descr = { | 
 | 173 | 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | 
 | 174 | 		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, | 
 | 175 | 	.offs =	0, | 
 | 176 | 	.len = 4, | 
 | 177 | 	.veroffs = 6, | 
 | 178 | 	.maxblocks = 4, | 
 | 179 | 	.pattern = mirror_pattern | 
 | 180 | }; | 
 | 181 |  | 
 | 182 | /* | 
 | 183 |  * NAND platform configuration structure | 
 | 184 |  */ | 
 | 185 | struct lpc32xx_nand_cfg_slc { | 
 | 186 | 	uint32_t wdr_clks; | 
 | 187 | 	uint32_t wwidth; | 
 | 188 | 	uint32_t whold; | 
 | 189 | 	uint32_t wsetup; | 
 | 190 | 	uint32_t rdr_clks; | 
 | 191 | 	uint32_t rwidth; | 
 | 192 | 	uint32_t rhold; | 
 | 193 | 	uint32_t rsetup; | 
 | 194 | 	bool use_bbt; | 
 | 195 | 	unsigned wp_gpio; | 
 | 196 | 	struct mtd_partition *parts; | 
 | 197 | 	unsigned num_parts; | 
 | 198 | }; | 
 | 199 |  | 
 | 200 | struct lpc32xx_nand_host { | 
 | 201 | 	struct nand_chip	nand_chip; | 
 | 202 | 	struct clk		*clk; | 
 | 203 | 	struct mtd_info		mtd; | 
 | 204 | 	void __iomem		*io_base; | 
 | 205 | 	struct lpc32xx_nand_cfg_slc *ncfg; | 
 | 206 |  | 
 | 207 | 	struct completion	comp; | 
 | 208 | 	struct dma_chan		*dma_chan; | 
 | 209 | 	uint32_t		dma_buf_len; | 
 | 210 | 	struct dma_slave_config	dma_slave_config; | 
 | 211 | 	struct scatterlist	sgl; | 
 | 212 |  | 
 | 213 | 	/* | 
 | 214 | 	 * DMA and CPU addresses of ECC work area and data buffer | 
 | 215 | 	 */ | 
 | 216 | 	uint32_t		*ecc_buf; | 
 | 217 | 	uint8_t			*data_buf; | 
 | 218 | 	dma_addr_t		io_base_dma; | 
 | 219 | }; | 
 | 220 |  | 
 | 221 | static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host) | 
 | 222 | { | 
 | 223 | 	uint32_t clkrate, tmp; | 
 | 224 |  | 
 | 225 | 	/* Reset SLC controller */ | 
 | 226 | 	writel(SLCCTRL_SW_RESET, SLC_CTRL(host->io_base)); | 
 | 227 | 	udelay(1000); | 
 | 228 |  | 
 | 229 | 	/* Basic setup */ | 
 | 230 | 	writel(0, SLC_CFG(host->io_base)); | 
 | 231 | 	writel(0, SLC_IEN(host->io_base)); | 
 | 232 | 	writel((SLCSTAT_INT_TC | SLCSTAT_INT_RDY_EN), | 
 | 233 | 		SLC_ICR(host->io_base)); | 
 | 234 |  | 
 | 235 | 	/* Get base clock for SLC block */ | 
 | 236 | 	clkrate = clk_get_rate(host->clk); | 
 | 237 | 	if (clkrate == 0) | 
 | 238 | 		clkrate = LPC32XX_DEF_BUS_RATE; | 
 | 239 |  | 
 | 240 | 	/* Compute clock setup values */ | 
 | 241 | 	tmp = SLCTAC_WDR(host->ncfg->wdr_clks) | | 
 | 242 | 		SLCTAC_WWIDTH(1 + (clkrate / host->ncfg->wwidth)) | | 
 | 243 | 		SLCTAC_WHOLD(1 + (clkrate / host->ncfg->whold)) | | 
 | 244 | 		SLCTAC_WSETUP(1 + (clkrate / host->ncfg->wsetup)) | | 
 | 245 | 		SLCTAC_RDR(host->ncfg->rdr_clks) | | 
 | 246 | 		SLCTAC_RWIDTH(1 + (clkrate / host->ncfg->rwidth)) | | 
 | 247 | 		SLCTAC_RHOLD(1 + (clkrate / host->ncfg->rhold)) | | 
 | 248 | 		SLCTAC_RSETUP(1 + (clkrate / host->ncfg->rsetup)); | 
 | 249 | 	writel(tmp, SLC_TAC(host->io_base)); | 
 | 250 | } | 
 | 251 |  | 
 | 252 | /* | 
 | 253 |  * Hardware specific access to control lines | 
 | 254 |  */ | 
 | 255 | static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, | 
 | 256 | 	unsigned int ctrl) | 
 | 257 | { | 
 | 258 | 	uint32_t tmp; | 
 | 259 | 	struct nand_chip *chip = mtd->priv; | 
 | 260 | 	struct lpc32xx_nand_host *host = chip->priv; | 
 | 261 |  | 
 | 262 | 	/* Does CE state need to be changed? */ | 
 | 263 | 	tmp = readl(SLC_CFG(host->io_base)); | 
 | 264 | 	if (ctrl & NAND_NCE) | 
 | 265 | 		tmp |= SLCCFG_CE_LOW; | 
 | 266 | 	else | 
 | 267 | 		tmp &= ~SLCCFG_CE_LOW; | 
 | 268 | 	writel(tmp, SLC_CFG(host->io_base)); | 
 | 269 |  | 
 | 270 | 	if (cmd != NAND_CMD_NONE) { | 
 | 271 | 		if (ctrl & NAND_CLE) | 
 | 272 | 			writel(cmd, SLC_CMD(host->io_base)); | 
 | 273 | 		else | 
 | 274 | 			writel(cmd, SLC_ADDR(host->io_base)); | 
 | 275 | 	} | 
 | 276 | } | 
 | 277 |  | 
 | 278 | /* | 
 | 279 |  * Read the Device Ready pin | 
 | 280 |  */ | 
 | 281 | static int lpc32xx_nand_device_ready(struct mtd_info *mtd) | 
 | 282 | { | 
 | 283 | 	struct nand_chip *chip = mtd->priv; | 
 | 284 | 	struct lpc32xx_nand_host *host = chip->priv; | 
 | 285 | 	int rdy = 0; | 
 | 286 |  | 
 | 287 | 	if ((readl(SLC_STAT(host->io_base)) & SLCSTAT_NAND_READY) != 0) | 
 | 288 | 		rdy = 1; | 
 | 289 |  | 
 | 290 | 	return rdy; | 
 | 291 | } | 
 | 292 |  | 
 | 293 | /* | 
 | 294 |  * Enable NAND write protect | 
 | 295 |  */ | 
 | 296 | static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host) | 
 | 297 | { | 
 | 298 | 	gpio_set_value(host->ncfg->wp_gpio, 0); | 
 | 299 | } | 
 | 300 |  | 
 | 301 | /* | 
 | 302 |  * Disable NAND write protect | 
 | 303 |  */ | 
 | 304 | static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host) | 
 | 305 | { | 
 | 306 | 	gpio_set_value(host->ncfg->wp_gpio, 1); | 
 | 307 | } | 
 | 308 |  | 
 | 309 | /* | 
 | 310 |  * Prepares SLC for transfers with H/W ECC enabled | 
 | 311 |  */ | 
 | 312 | static void lpc32xx_nand_ecc_enable(struct mtd_info *mtd, int mode) | 
 | 313 | { | 
 | 314 | 	/* Hardware ECC is enabled automatically in hardware as needed */ | 
 | 315 | } | 
 | 316 |  | 
 | 317 | /* | 
 | 318 |  * Calculates the ECC for the data | 
 | 319 |  */ | 
 | 320 | static int lpc32xx_nand_ecc_calculate(struct mtd_info *mtd, | 
 | 321 | 				      const unsigned char *buf, | 
 | 322 | 				      unsigned char *code) | 
 | 323 | { | 
 | 324 | 	/* | 
 | 325 | 	 * ECC is calculated automatically in hardware during syndrome read | 
 | 326 | 	 * and write operations, so it doesn't need to be calculated here. | 
 | 327 | 	 */ | 
 | 328 | 	return 0; | 
 | 329 | } | 
 | 330 |  | 
 | 331 | /* | 
 | 332 |  * Read a single byte from NAND device | 
 | 333 |  */ | 
 | 334 | static uint8_t lpc32xx_nand_read_byte(struct mtd_info *mtd) | 
 | 335 | { | 
 | 336 | 	struct nand_chip *chip = mtd->priv; | 
 | 337 | 	struct lpc32xx_nand_host *host = chip->priv; | 
 | 338 |  | 
 | 339 | 	return (uint8_t)readl(SLC_DATA(host->io_base)); | 
 | 340 | } | 
 | 341 |  | 
 | 342 | /* | 
 | 343 |  * Simple device read without ECC | 
 | 344 |  */ | 
 | 345 | static void lpc32xx_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) | 
 | 346 | { | 
 | 347 | 	struct nand_chip *chip = mtd->priv; | 
 | 348 | 	struct lpc32xx_nand_host *host = chip->priv; | 
 | 349 |  | 
 | 350 | 	/* Direct device read with no ECC */ | 
 | 351 | 	while (len-- > 0) | 
 | 352 | 		*buf++ = (uint8_t)readl(SLC_DATA(host->io_base)); | 
 | 353 | } | 
 | 354 |  | 
 | 355 | /* | 
 | 356 |  * Simple device write without ECC | 
 | 357 |  */ | 
 | 358 | static void lpc32xx_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) | 
 | 359 | { | 
 | 360 | 	struct nand_chip *chip = mtd->priv; | 
 | 361 | 	struct lpc32xx_nand_host *host = chip->priv; | 
 | 362 |  | 
 | 363 | 	/* Direct device write with no ECC */ | 
 | 364 | 	while (len-- > 0) | 
 | 365 | 		writel((uint32_t)*buf++, SLC_DATA(host->io_base)); | 
 | 366 | } | 
 | 367 |  | 
 | 368 | /* | 
 | 369 |  * Verify data in buffer to data on device | 
 | 370 |  */ | 
 | 371 | static int lpc32xx_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len) | 
 | 372 | { | 
 | 373 | 	struct nand_chip *chip = mtd->priv; | 
 | 374 | 	struct lpc32xx_nand_host *host = chip->priv; | 
 | 375 | 	int i; | 
 | 376 |  | 
 | 377 | 	/* DATA register must be read as 32 bits or it will fail */ | 
 | 378 | 	for (i = 0; i < len; i++) { | 
 | 379 | 		if (buf[i] != (uint8_t)readl(SLC_DATA(host->io_base))) | 
 | 380 | 			return -EFAULT; | 
 | 381 | 	} | 
 | 382 |  | 
 | 383 | 	return 0; | 
 | 384 | } | 
 | 385 |  | 
 | 386 | /* | 
 | 387 |  * Read the OOB data from the device without ECC using FIFO method | 
 | 388 |  */ | 
 | 389 | static int lpc32xx_nand_read_oob_syndrome(struct mtd_info *mtd, | 
 | 390 | 					  struct nand_chip *chip, int page) | 
 | 391 | { | 
 | 392 | 	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page); | 
 | 393 | 	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); | 
 | 394 |  | 
 | 395 | 	return 0; | 
 | 396 | } | 
 | 397 |  | 
 | 398 | /* | 
 | 399 |  * Write the OOB data to the device without ECC using FIFO method | 
 | 400 |  */ | 
 | 401 | static int lpc32xx_nand_write_oob_syndrome(struct mtd_info *mtd, | 
 | 402 | 	struct nand_chip *chip, int page) | 
 | 403 | { | 
 | 404 | 	int status; | 
 | 405 |  | 
 | 406 | 	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page); | 
 | 407 | 	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); | 
 | 408 |  | 
 | 409 | 	/* Send command to program the OOB data */ | 
 | 410 | 	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); | 
 | 411 |  | 
 | 412 | 	status = chip->waitfunc(mtd, chip); | 
 | 413 |  | 
 | 414 | 	return status & NAND_STATUS_FAIL ? -EIO : 0; | 
 | 415 | } | 
 | 416 |  | 
 | 417 | /* | 
 | 418 |  * Fills in the ECC fields in the OOB buffer with the hardware generated ECC | 
 | 419 |  */ | 
 | 420 | static void lpc32xx_slc_ecc_copy(uint8_t *spare, const uint32_t *ecc, int count) | 
 | 421 | { | 
 | 422 | 	int i; | 
 | 423 |  | 
 | 424 | 	for (i = 0; i < (count * 3); i += 3) { | 
 | 425 | 		uint32_t ce = ecc[i / 3]; | 
 | 426 | 		ce = ~(ce << 2) & 0xFFFFFF; | 
 | 427 | 		spare[i + 2] = (uint8_t)(ce & 0xFF); | 
 | 428 | 		ce >>= 8; | 
 | 429 | 		spare[i + 1] = (uint8_t)(ce & 0xFF); | 
 | 430 | 		ce >>= 8; | 
 | 431 | 		spare[i] = (uint8_t)(ce & 0xFF); | 
 | 432 | 	} | 
 | 433 | } | 
 | 434 |  | 
 | 435 | static void lpc32xx_dma_complete_func(void *completion) | 
 | 436 | { | 
 | 437 | 	complete(completion); | 
 | 438 | } | 
 | 439 |  | 
 | 440 | static int lpc32xx_xmit_dma(struct mtd_info *mtd, dma_addr_t dma, | 
 | 441 | 			    void *mem, int len, enum dma_transfer_direction dir) | 
 | 442 | { | 
 | 443 | 	struct nand_chip *chip = mtd->priv; | 
 | 444 | 	struct lpc32xx_nand_host *host = chip->priv; | 
 | 445 | 	struct dma_async_tx_descriptor *desc; | 
 | 446 | 	int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; | 
 | 447 | 	int res; | 
 | 448 |  | 
 | 449 | 	host->dma_slave_config.direction = dir; | 
 | 450 | 	host->dma_slave_config.src_addr = dma; | 
 | 451 | 	host->dma_slave_config.dst_addr = dma; | 
 | 452 | 	host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; | 
 | 453 | 	host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; | 
 | 454 | 	host->dma_slave_config.src_maxburst = 4; | 
 | 455 | 	host->dma_slave_config.dst_maxburst = 4; | 
 | 456 | 	/* DMA controller does flow control: */ | 
 | 457 | 	host->dma_slave_config.device_fc = false; | 
 | 458 | 	if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) { | 
 | 459 | 		dev_err(mtd->dev.parent, "Failed to setup DMA slave\n"); | 
 | 460 | 		return -ENXIO; | 
 | 461 | 	} | 
 | 462 |  | 
 | 463 | 	sg_init_one(&host->sgl, mem, len); | 
 | 464 |  | 
 | 465 | 	res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1, | 
 | 466 | 			 DMA_BIDIRECTIONAL); | 
 | 467 | 	if (res != 1) { | 
 | 468 | 		dev_err(mtd->dev.parent, "Failed to map sg list\n"); | 
 | 469 | 		return -ENXIO; | 
 | 470 | 	} | 
 | 471 | 	desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir, | 
 | 472 | 				       flags); | 
 | 473 | 	if (!desc) { | 
 | 474 | 		dev_err(mtd->dev.parent, "Failed to prepare slave sg\n"); | 
 | 475 | 		goto out1; | 
 | 476 | 	} | 
 | 477 |  | 
 | 478 | 	init_completion(&host->comp); | 
 | 479 | 	desc->callback = lpc32xx_dma_complete_func; | 
 | 480 | 	desc->callback_param = &host->comp; | 
 | 481 |  | 
 | 482 | 	dmaengine_submit(desc); | 
 | 483 | 	dma_async_issue_pending(host->dma_chan); | 
 | 484 |  | 
 | 485 | 	wait_for_completion_timeout(&host->comp, msecs_to_jiffies(1000)); | 
 | 486 |  | 
 | 487 | 	dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1, | 
 | 488 | 		     DMA_BIDIRECTIONAL); | 
 | 489 |  | 
 | 490 | 	return 0; | 
 | 491 | out1: | 
 | 492 | 	dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1, | 
 | 493 | 		     DMA_BIDIRECTIONAL); | 
 | 494 | 	return -ENXIO; | 
 | 495 | } | 
 | 496 |  | 
 | 497 | /* | 
 | 498 |  * DMA read/write transfers with ECC support | 
 | 499 |  */ | 
 | 500 | static int lpc32xx_xfer(struct mtd_info *mtd, uint8_t *buf, int eccsubpages, | 
 | 501 | 			int read) | 
 | 502 | { | 
 | 503 | 	struct nand_chip *chip = mtd->priv; | 
 | 504 | 	struct lpc32xx_nand_host *host = chip->priv; | 
 | 505 | 	int i, status = 0; | 
 | 506 | 	unsigned long timeout; | 
 | 507 | 	int res; | 
 | 508 | 	enum dma_transfer_direction dir = | 
 | 509 | 		read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV; | 
 | 510 | 	uint8_t *dma_buf; | 
 | 511 | 	bool dma_mapped; | 
 | 512 |  | 
 | 513 | 	if ((void *)buf <= high_memory) { | 
 | 514 | 		dma_buf = buf; | 
 | 515 | 		dma_mapped = true; | 
 | 516 | 	} else { | 
 | 517 | 		dma_buf = host->data_buf; | 
 | 518 | 		dma_mapped = false; | 
 | 519 | 		if (!read) | 
 | 520 | 			memcpy(host->data_buf, buf, mtd->writesize); | 
 | 521 | 	} | 
 | 522 |  | 
 | 523 | 	if (read) { | 
 | 524 | 		writel(readl(SLC_CFG(host->io_base)) | | 
 | 525 | 		       SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC | | 
 | 526 | 		       SLCCFG_DMA_BURST, SLC_CFG(host->io_base)); | 
 | 527 | 	} else { | 
 | 528 | 		writel((readl(SLC_CFG(host->io_base)) | | 
 | 529 | 			SLCCFG_ECC_EN | SLCCFG_DMA_ECC | SLCCFG_DMA_BURST) & | 
 | 530 | 		       ~SLCCFG_DMA_DIR, | 
 | 531 | 			SLC_CFG(host->io_base)); | 
 | 532 | 	} | 
 | 533 |  | 
 | 534 | 	/* Clear initial ECC */ | 
 | 535 | 	writel(SLCCTRL_ECC_CLEAR, SLC_CTRL(host->io_base)); | 
 | 536 |  | 
 | 537 | 	/* Transfer size is data area only */ | 
 | 538 | 	writel(mtd->writesize, SLC_TC(host->io_base)); | 
 | 539 |  | 
 | 540 | 	/* Start transfer in the NAND controller */ | 
 | 541 | 	writel(readl(SLC_CTRL(host->io_base)) | SLCCTRL_DMA_START, | 
 | 542 | 	       SLC_CTRL(host->io_base)); | 
 | 543 |  | 
 | 544 | 	for (i = 0; i < chip->ecc.steps; i++) { | 
 | 545 | 		/* Data */ | 
 | 546 | 		res = lpc32xx_xmit_dma(mtd, SLC_DMA_DATA(host->io_base_dma), | 
 | 547 | 				       dma_buf + i * chip->ecc.size, | 
 | 548 | 				       mtd->writesize / chip->ecc.steps, dir); | 
 | 549 | 		if (res) | 
 | 550 | 			return res; | 
 | 551 |  | 
 | 552 | 		/* Always _read_ ECC */ | 
 | 553 | 		if (i == chip->ecc.steps - 1) | 
 | 554 | 			break; | 
 | 555 | 		if (!read) /* ECC availability delayed on write */ | 
 | 556 | 			udelay(10); | 
 | 557 | 		res = lpc32xx_xmit_dma(mtd, SLC_ECC(host->io_base_dma), | 
 | 558 | 				       &host->ecc_buf[i], 4, DMA_DEV_TO_MEM); | 
 | 559 | 		if (res) | 
 | 560 | 			return res; | 
 | 561 | 	} | 
 | 562 |  | 
 | 563 | 	/* | 
 | 564 | 	 * According to NXP, the DMA can be finished here, but the NAND | 
 | 565 | 	 * controller may still have buffered data. After porting to using the | 
 | 566 | 	 * dmaengine DMA driver (amba-pl080), the condition (DMA_FIFO empty) | 
 | 567 | 	 * appears to be always true, according to tests. Keeping the check for | 
 | 568 | 	 * safety reasons for now. | 
 | 569 | 	 */ | 
 | 570 | 	if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) { | 
 | 571 | 		dev_warn(mtd->dev.parent, "FIFO not empty!\n"); | 
 | 572 | 		timeout = jiffies + msecs_to_jiffies(LPC32XX_DMA_TIMEOUT); | 
 | 573 | 		while ((readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) && | 
 | 574 | 		       time_before(jiffies, timeout)) | 
 | 575 | 			cpu_relax(); | 
 | 576 | 		if (!time_before(jiffies, timeout)) { | 
 | 577 | 			dev_err(mtd->dev.parent, "FIFO held data too long\n"); | 
 | 578 | 			status = -EIO; | 
 | 579 | 		} | 
 | 580 | 	} | 
 | 581 |  | 
 | 582 | 	/* Read last calculated ECC value */ | 
 | 583 | 	if (!read) | 
 | 584 | 		udelay(10); | 
 | 585 | 	host->ecc_buf[chip->ecc.steps - 1] = | 
 | 586 | 		readl(SLC_ECC(host->io_base)); | 
 | 587 |  | 
 | 588 | 	/* Flush DMA */ | 
 | 589 | 	dmaengine_terminate_all(host->dma_chan); | 
 | 590 |  | 
 | 591 | 	if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO || | 
 | 592 | 	    readl(SLC_TC(host->io_base))) { | 
 | 593 | 		/* Something is left in the FIFO, something is wrong */ | 
 | 594 | 		dev_err(mtd->dev.parent, "DMA FIFO failure\n"); | 
 | 595 | 		status = -EIO; | 
 | 596 | 	} | 
 | 597 |  | 
 | 598 | 	/* Stop DMA & HW ECC */ | 
 | 599 | 	writel(readl(SLC_CTRL(host->io_base)) & ~SLCCTRL_DMA_START, | 
 | 600 | 	       SLC_CTRL(host->io_base)); | 
 | 601 | 	writel(readl(SLC_CFG(host->io_base)) & | 
 | 602 | 	       ~(SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC | | 
 | 603 | 		 SLCCFG_DMA_BURST), SLC_CFG(host->io_base)); | 
 | 604 |  | 
 | 605 | 	if (!dma_mapped && read) | 
 | 606 | 		memcpy(buf, host->data_buf, mtd->writesize); | 
 | 607 |  | 
 | 608 | 	return status; | 
 | 609 | } | 
 | 610 |  | 
 | 611 | /* | 
 | 612 |  * Read the data and OOB data from the device, use ECC correction with the | 
 | 613 |  * data, disable ECC for the OOB data | 
 | 614 |  */ | 
 | 615 | static int lpc32xx_nand_read_page_syndrome(struct mtd_info *mtd, | 
 | 616 | 					   struct nand_chip *chip, uint8_t *buf, | 
 | 617 | 					   int oob_required, int page) | 
 | 618 | { | 
 | 619 | 	struct lpc32xx_nand_host *host = chip->priv; | 
 | 620 | 	int stat, i, status; | 
 | 621 | 	uint8_t *oobecc, tmpecc[LPC32XX_ECC_SAVE_SIZE]; | 
 | 622 |  | 
 | 623 | 	/* Issue read command */ | 
 | 624 | 	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); | 
 | 625 |  | 
 | 626 | 	/* Read data and oob, calculate ECC */ | 
 | 627 | 	status = lpc32xx_xfer(mtd, buf, chip->ecc.steps, 1); | 
 | 628 |  | 
 | 629 | 	/* Get OOB data */ | 
 | 630 | 	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); | 
 | 631 |  | 
 | 632 | 	/* Convert to stored ECC format */ | 
 | 633 | 	lpc32xx_slc_ecc_copy(tmpecc, (uint32_t *) host->ecc_buf, chip->ecc.steps); | 
 | 634 |  | 
 | 635 | 	/* Pointer to ECC data retrieved from NAND spare area */ | 
 | 636 | 	oobecc = chip->oob_poi + chip->ecc.layout->eccpos[0]; | 
 | 637 |  | 
 | 638 | 	for (i = 0; i < chip->ecc.steps; i++) { | 
 | 639 | 		stat = chip->ecc.correct(mtd, buf, oobecc, | 
 | 640 | 					 &tmpecc[i * chip->ecc.bytes]); | 
 | 641 | 		if (stat < 0) | 
 | 642 | 			mtd->ecc_stats.failed++; | 
 | 643 | 		else | 
 | 644 | 			mtd->ecc_stats.corrected += stat; | 
 | 645 |  | 
 | 646 | 		buf += chip->ecc.size; | 
 | 647 | 		oobecc += chip->ecc.bytes; | 
 | 648 | 	} | 
 | 649 |  | 
 | 650 | 	return status; | 
 | 651 | } | 
 | 652 |  | 
 | 653 | /* | 
 | 654 |  * Read the data and OOB data from the device, no ECC correction with the | 
 | 655 |  * data or OOB data | 
 | 656 |  */ | 
 | 657 | static int lpc32xx_nand_read_page_raw_syndrome(struct mtd_info *mtd, | 
 | 658 | 					       struct nand_chip *chip, | 
 | 659 | 					       uint8_t *buf, int oob_required, | 
 | 660 | 					       int page) | 
 | 661 | { | 
 | 662 | 	/* Issue read command */ | 
 | 663 | 	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); | 
 | 664 |  | 
 | 665 | 	/* Raw reads can just use the FIFO interface */ | 
 | 666 | 	chip->read_buf(mtd, buf, chip->ecc.size * chip->ecc.steps); | 
 | 667 | 	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); | 
 | 668 |  | 
 | 669 | 	return 0; | 
 | 670 | } | 
 | 671 |  | 
 | 672 | /* | 
 | 673 |  * Write the data and OOB data to the device, use ECC with the data, | 
 | 674 |  * disable ECC for the OOB data | 
 | 675 |  */ | 
 | 676 | static int lpc32xx_nand_write_page_syndrome(struct mtd_info *mtd, | 
 | 677 | 					    struct nand_chip *chip, | 
 | 678 | 					    const uint8_t *buf, int oob_required) | 
 | 679 | { | 
 | 680 | 	struct lpc32xx_nand_host *host = chip->priv; | 
 | 681 | 	uint8_t *pb = chip->oob_poi + chip->ecc.layout->eccpos[0]; | 
 | 682 | 	int error; | 
 | 683 |  | 
 | 684 | 	/* Write data, calculate ECC on outbound data */ | 
 | 685 | 	error = lpc32xx_xfer(mtd, (uint8_t *)buf, chip->ecc.steps, 0); | 
 | 686 | 	if (error) | 
 | 687 | 		return error; | 
 | 688 |  | 
 | 689 | 	/* | 
 | 690 | 	 * The calculated ECC needs some manual work done to it before | 
 | 691 | 	 * committing it to NAND. Process the calculated ECC and place | 
 | 692 | 	 * the resultant values directly into the OOB buffer. */ | 
 | 693 | 	lpc32xx_slc_ecc_copy(pb, (uint32_t *)host->ecc_buf, chip->ecc.steps); | 
 | 694 |  | 
 | 695 | 	/* Write ECC data to device */ | 
 | 696 | 	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); | 
 | 697 | 	return 0; | 
 | 698 | } | 
 | 699 |  | 
 | 700 | /* | 
 | 701 |  * Write the data and OOB data to the device, no ECC correction with the | 
 | 702 |  * data or OOB data | 
 | 703 |  */ | 
 | 704 | static int lpc32xx_nand_write_page_raw_syndrome(struct mtd_info *mtd, | 
 | 705 | 						struct nand_chip *chip, | 
 | 706 | 						const uint8_t *buf, | 
 | 707 | 						int oob_required) | 
 | 708 | { | 
 | 709 | 	/* Raw writes can just use the FIFO interface */ | 
 | 710 | 	chip->write_buf(mtd, buf, chip->ecc.size * chip->ecc.steps); | 
 | 711 | 	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); | 
 | 712 | 	return 0; | 
 | 713 | } | 
 | 714 |  | 
 | 715 | static bool lpc32xx_dma_filter(struct dma_chan *chan, void *param) | 
 | 716 | { | 
 | 717 | 	struct pl08x_dma_chan *ch = | 
 | 718 | 		container_of(chan, struct pl08x_dma_chan, chan); | 
 | 719 |  | 
 | 720 | 	/* In LPC32xx's PL080 DMA wiring, the SLC NAND DMA signal is #1 */ | 
 | 721 | 	if (ch->cd->min_signal == 1) | 
 | 722 | 		return true; | 
 | 723 | 	return false; | 
 | 724 | } | 
 | 725 |  | 
 | 726 | static int lpc32xx_nand_dma_setup(struct lpc32xx_nand_host *host) | 
 | 727 | { | 
 | 728 | 	struct mtd_info *mtd = &host->mtd; | 
 | 729 | 	dma_cap_mask_t mask; | 
 | 730 |  | 
 | 731 | 	dma_cap_zero(mask); | 
 | 732 | 	dma_cap_set(DMA_SLAVE, mask); | 
 | 733 | 	host->dma_chan = dma_request_channel(mask, lpc32xx_dma_filter, NULL); | 
 | 734 | 	if (!host->dma_chan) { | 
 | 735 | 		dev_err(mtd->dev.parent, "Failed to request DMA channel\n"); | 
 | 736 | 		return -EBUSY; | 
 | 737 | 	} | 
 | 738 |  | 
 | 739 | 	return 0; | 
 | 740 | } | 
 | 741 |  | 
 | 742 | #ifdef CONFIG_OF | 
 | 743 | static struct lpc32xx_nand_cfg_slc *lpc32xx_parse_dt(struct device *dev) | 
 | 744 | { | 
 | 745 | 	struct lpc32xx_nand_cfg_slc *pdata; | 
 | 746 | 	struct device_node *np = dev->of_node; | 
 | 747 |  | 
 | 748 | 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); | 
 | 749 | 	if (!pdata) { | 
 | 750 | 		dev_err(dev, "could not allocate memory for platform data\n"); | 
 | 751 | 		return NULL; | 
 | 752 | 	} | 
 | 753 |  | 
 | 754 | 	of_property_read_u32(np, "nxp,wdr-clks", &pdata->wdr_clks); | 
 | 755 | 	of_property_read_u32(np, "nxp,wwidth", &pdata->wwidth); | 
 | 756 | 	of_property_read_u32(np, "nxp,whold", &pdata->whold); | 
 | 757 | 	of_property_read_u32(np, "nxp,wsetup", &pdata->wsetup); | 
 | 758 | 	of_property_read_u32(np, "nxp,rdr-clks", &pdata->rdr_clks); | 
 | 759 | 	of_property_read_u32(np, "nxp,rwidth", &pdata->rwidth); | 
 | 760 | 	of_property_read_u32(np, "nxp,rhold", &pdata->rhold); | 
 | 761 | 	of_property_read_u32(np, "nxp,rsetup", &pdata->rsetup); | 
 | 762 |  | 
 | 763 | 	if (!pdata->wdr_clks || !pdata->wwidth || !pdata->whold || | 
 | 764 | 	    !pdata->wsetup || !pdata->rdr_clks || !pdata->rwidth || | 
 | 765 | 	    !pdata->rhold || !pdata->rsetup) { | 
 | 766 | 		dev_err(dev, "chip parameters not specified correctly\n"); | 
 | 767 | 		return NULL; | 
 | 768 | 	} | 
 | 769 |  | 
 | 770 | 	pdata->use_bbt = of_get_nand_on_flash_bbt(np); | 
 | 771 | 	pdata->wp_gpio = of_get_named_gpio_flags(np, "gpios", 0, NULL); | 
 | 772 |  | 
 | 773 | 	return pdata; | 
 | 774 | } | 
 | 775 | #else | 
 | 776 | static struct lpc32xx_nand_cfg_slc *lpc32xx_parse_dt(struct device *dev) | 
 | 777 | { | 
 | 778 | 	return NULL; | 
 | 779 | } | 
 | 780 | #endif | 
 | 781 |  | 
 | 782 | /* | 
 | 783 |  * Probe for NAND controller | 
 | 784 |  */ | 
 | 785 | static int __devinit lpc32xx_nand_probe(struct platform_device *pdev) | 
 | 786 | { | 
 | 787 | 	struct lpc32xx_nand_host *host; | 
 | 788 | 	struct mtd_info *mtd; | 
 | 789 | 	struct nand_chip *chip; | 
 | 790 | 	struct resource *rc; | 
 | 791 | 	struct mtd_part_parser_data ppdata = {}; | 
 | 792 | 	int res; | 
 | 793 |  | 
 | 794 | 	rc = platform_get_resource(pdev, IORESOURCE_MEM, 0); | 
 | 795 | 	if (rc == NULL) { | 
 | 796 | 		dev_err(&pdev->dev, "No memory resource found for device\n"); | 
 | 797 | 		return -EBUSY; | 
 | 798 | 	} | 
 | 799 |  | 
 | 800 | 	/* Allocate memory for the device structure (and zero it) */ | 
 | 801 | 	host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL); | 
 | 802 | 	if (!host) { | 
 | 803 | 		dev_err(&pdev->dev, "failed to allocate device structure\n"); | 
 | 804 | 		return -ENOMEM; | 
 | 805 | 	} | 
 | 806 | 	host->io_base_dma = rc->start; | 
 | 807 |  | 
 | 808 | 	host->io_base = devm_request_and_ioremap(&pdev->dev, rc); | 
 | 809 | 	if (host->io_base == NULL) { | 
 | 810 | 		dev_err(&pdev->dev, "ioremap failed\n"); | 
 | 811 | 		return -ENOMEM; | 
 | 812 | 	} | 
 | 813 |  | 
 | 814 | 	if (pdev->dev.of_node) | 
 | 815 | 		host->ncfg = lpc32xx_parse_dt(&pdev->dev); | 
 | 816 | 	else | 
 | 817 | 		host->ncfg = pdev->dev.platform_data; | 
 | 818 | 	if (!host->ncfg) { | 
 | 819 | 		dev_err(&pdev->dev, "Missing platform data\n"); | 
 | 820 | 		return -ENOENT; | 
 | 821 | 	} | 
 | 822 | 	if (gpio_request(host->ncfg->wp_gpio, "NAND WP")) { | 
 | 823 | 		dev_err(&pdev->dev, "GPIO not available\n"); | 
 | 824 | 		return -EBUSY; | 
 | 825 | 	} | 
 | 826 | 	lpc32xx_wp_disable(host); | 
 | 827 |  | 
 | 828 | 	mtd = &host->mtd; | 
 | 829 | 	chip = &host->nand_chip; | 
 | 830 | 	chip->priv = host; | 
 | 831 | 	mtd->priv = chip; | 
 | 832 | 	mtd->owner = THIS_MODULE; | 
 | 833 | 	mtd->dev.parent = &pdev->dev; | 
 | 834 |  | 
 | 835 | 	/* Get NAND clock */ | 
 | 836 | 	host->clk = clk_get(&pdev->dev, NULL); | 
 | 837 | 	if (IS_ERR(host->clk)) { | 
 | 838 | 		dev_err(&pdev->dev, "Clock failure\n"); | 
 | 839 | 		res = -ENOENT; | 
 | 840 | 		goto err_exit1; | 
 | 841 | 	} | 
 | 842 | 	clk_enable(host->clk); | 
 | 843 |  | 
 | 844 | 	/* Set NAND IO addresses and command/ready functions */ | 
 | 845 | 	chip->IO_ADDR_R = SLC_DATA(host->io_base); | 
 | 846 | 	chip->IO_ADDR_W = SLC_DATA(host->io_base); | 
 | 847 | 	chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl; | 
 | 848 | 	chip->dev_ready = lpc32xx_nand_device_ready; | 
 | 849 | 	chip->chip_delay = 20; /* 20us command delay time */ | 
 | 850 |  | 
 | 851 | 	/* Init NAND controller */ | 
 | 852 | 	lpc32xx_nand_setup(host); | 
 | 853 |  | 
 | 854 | 	platform_set_drvdata(pdev, host); | 
 | 855 |  | 
 | 856 | 	/* NAND callbacks for LPC32xx SLC hardware */ | 
 | 857 | 	chip->ecc.mode = NAND_ECC_HW_SYNDROME; | 
 | 858 | 	chip->read_byte = lpc32xx_nand_read_byte; | 
 | 859 | 	chip->read_buf = lpc32xx_nand_read_buf; | 
 | 860 | 	chip->write_buf = lpc32xx_nand_write_buf; | 
 | 861 | 	chip->ecc.read_page_raw = lpc32xx_nand_read_page_raw_syndrome; | 
 | 862 | 	chip->ecc.read_page = lpc32xx_nand_read_page_syndrome; | 
 | 863 | 	chip->ecc.write_page_raw = lpc32xx_nand_write_page_raw_syndrome; | 
 | 864 | 	chip->ecc.write_page = lpc32xx_nand_write_page_syndrome; | 
 | 865 | 	chip->ecc.write_oob = lpc32xx_nand_write_oob_syndrome; | 
 | 866 | 	chip->ecc.read_oob = lpc32xx_nand_read_oob_syndrome; | 
 | 867 | 	chip->ecc.calculate = lpc32xx_nand_ecc_calculate; | 
 | 868 | 	chip->ecc.correct = nand_correct_data; | 
 | 869 | 	chip->ecc.strength = 1; | 
 | 870 | 	chip->ecc.hwctl = lpc32xx_nand_ecc_enable; | 
 | 871 | 	chip->verify_buf = lpc32xx_verify_buf; | 
 | 872 |  | 
 | 873 | 	/* bitflip_threshold's default is defined as ecc_strength anyway. | 
 | 874 | 	 * Unfortunately, it is set only later at add_mtd_device(). Meanwhile | 
 | 875 | 	 * being 0, it causes bad block table scanning errors in | 
 | 876 | 	 * nand_scan_tail(), so preparing it here already. */ | 
 | 877 | 	mtd->bitflip_threshold = chip->ecc.strength; | 
 | 878 |  | 
 | 879 | 	/* | 
 | 880 | 	 * Allocate a large enough buffer for a single huge page plus | 
 | 881 | 	 * extra space for the spare area and ECC storage area | 
 | 882 | 	 */ | 
 | 883 | 	host->dma_buf_len = LPC32XX_DMA_DATA_SIZE + LPC32XX_ECC_SAVE_SIZE; | 
 | 884 | 	host->data_buf = devm_kzalloc(&pdev->dev, host->dma_buf_len, | 
 | 885 | 				      GFP_KERNEL); | 
 | 886 | 	if (host->data_buf == NULL) { | 
 | 887 | 		dev_err(&pdev->dev, "Error allocating memory\n"); | 
 | 888 | 		res = -ENOMEM; | 
 | 889 | 		goto err_exit2; | 
 | 890 | 	} | 
 | 891 |  | 
 | 892 | 	res = lpc32xx_nand_dma_setup(host); | 
 | 893 | 	if (res) { | 
 | 894 | 		res = -EIO; | 
 | 895 | 		goto err_exit2; | 
 | 896 | 	} | 
 | 897 |  | 
 | 898 | 	/* Find NAND device */ | 
 | 899 | 	if (nand_scan_ident(mtd, 1, NULL)) { | 
 | 900 | 		res = -ENXIO; | 
 | 901 | 		goto err_exit3; | 
 | 902 | 	} | 
 | 903 |  | 
 | 904 | 	/* OOB and ECC CPU and DMA work areas */ | 
 | 905 | 	host->ecc_buf = (uint32_t *)(host->data_buf + LPC32XX_DMA_DATA_SIZE); | 
 | 906 |  | 
 | 907 | 	/* | 
 | 908 | 	 * Small page FLASH has a unique OOB layout, but large and huge | 
 | 909 | 	 * page FLASH use the standard layout. Small page FLASH uses a | 
 | 910 | 	 * custom BBT marker layout. | 
 | 911 | 	 */ | 
 | 912 | 	if (mtd->writesize <= 512) | 
 | 913 | 		chip->ecc.layout = &lpc32xx_nand_oob_16; | 
 | 914 |  | 
 | 915 | 	/* These sizes remain the same regardless of page size */ | 
 | 916 | 	chip->ecc.size = 256; | 
 | 917 | 	chip->ecc.bytes = LPC32XX_SLC_DEV_ECC_BYTES; | 
 | 918 | 	chip->ecc.prepad = chip->ecc.postpad = 0; | 
 | 919 |  | 
 | 920 | 	/* Avoid extra scan if using BBT, setup BBT support */ | 
 | 921 | 	if (host->ncfg->use_bbt) { | 
 | 922 | 		chip->options |= NAND_SKIP_BBTSCAN; | 
 | 923 | 		chip->bbt_options |= NAND_BBT_USE_FLASH; | 
 | 924 |  | 
 | 925 | 		/* | 
 | 926 | 		 * Use a custom BBT marker setup for small page FLASH that | 
 | 927 | 		 * won't interfere with the ECC layout. Large and huge page | 
 | 928 | 		 * FLASH use the standard layout. | 
 | 929 | 		 */ | 
 | 930 | 		if (mtd->writesize <= 512) { | 
 | 931 | 			chip->bbt_td = &bbt_smallpage_main_descr; | 
 | 932 | 			chip->bbt_md = &bbt_smallpage_mirror_descr; | 
 | 933 | 		} | 
 | 934 | 	} | 
 | 935 |  | 
 | 936 | 	/* | 
 | 937 | 	 * Fills out all the uninitialized function pointers with the defaults | 
 | 938 | 	 */ | 
 | 939 | 	if (nand_scan_tail(mtd)) { | 
 | 940 | 		res = -ENXIO; | 
 | 941 | 		goto err_exit3; | 
 | 942 | 	} | 
 | 943 |  | 
 | 944 | 	/* Standard layout in FLASH for bad block tables */ | 
 | 945 | 	if (host->ncfg->use_bbt) { | 
 | 946 | 		if (nand_default_bbt(mtd) < 0) | 
 | 947 | 			dev_err(&pdev->dev, | 
 | 948 | 			       "Error initializing default bad block tables\n"); | 
 | 949 | 	} | 
 | 950 |  | 
 | 951 | 	mtd->name = "nxp_lpc3220_slc"; | 
 | 952 | 	ppdata.of_node = pdev->dev.of_node; | 
 | 953 | 	res = mtd_device_parse_register(mtd, NULL, &ppdata, host->ncfg->parts, | 
 | 954 | 					host->ncfg->num_parts); | 
 | 955 | 	if (!res) | 
 | 956 | 		return res; | 
 | 957 |  | 
 | 958 | 	nand_release(mtd); | 
 | 959 |  | 
 | 960 | err_exit3: | 
 | 961 | 	dma_release_channel(host->dma_chan); | 
 | 962 | err_exit2: | 
 | 963 | 	clk_disable(host->clk); | 
 | 964 | 	clk_put(host->clk); | 
 | 965 | 	platform_set_drvdata(pdev, NULL); | 
 | 966 | err_exit1: | 
 | 967 | 	lpc32xx_wp_enable(host); | 
 | 968 | 	gpio_free(host->ncfg->wp_gpio); | 
 | 969 |  | 
 | 970 | 	return res; | 
 | 971 | } | 
 | 972 |  | 
 | 973 | /* | 
 | 974 |  * Remove NAND device. | 
 | 975 |  */ | 
 | 976 | static int __devexit lpc32xx_nand_remove(struct platform_device *pdev) | 
 | 977 | { | 
 | 978 | 	uint32_t tmp; | 
 | 979 | 	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); | 
 | 980 | 	struct mtd_info *mtd = &host->mtd; | 
 | 981 |  | 
 | 982 | 	nand_release(mtd); | 
 | 983 | 	dma_release_channel(host->dma_chan); | 
 | 984 |  | 
 | 985 | 	/* Force CE high */ | 
 | 986 | 	tmp = readl(SLC_CTRL(host->io_base)); | 
 | 987 | 	tmp &= ~SLCCFG_CE_LOW; | 
 | 988 | 	writel(tmp, SLC_CTRL(host->io_base)); | 
 | 989 |  | 
 | 990 | 	clk_disable(host->clk); | 
 | 991 | 	clk_put(host->clk); | 
 | 992 | 	platform_set_drvdata(pdev, NULL); | 
 | 993 | 	lpc32xx_wp_enable(host); | 
 | 994 | 	gpio_free(host->ncfg->wp_gpio); | 
 | 995 |  | 
 | 996 | 	return 0; | 
 | 997 | } | 
 | 998 |  | 
 | 999 | #ifdef CONFIG_PM | 
 | 1000 | static int lpc32xx_nand_resume(struct platform_device *pdev) | 
 | 1001 | { | 
 | 1002 | 	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); | 
 | 1003 |  | 
 | 1004 | 	/* Re-enable NAND clock */ | 
 | 1005 | 	clk_enable(host->clk); | 
 | 1006 |  | 
 | 1007 | 	/* Fresh init of NAND controller */ | 
 | 1008 | 	lpc32xx_nand_setup(host); | 
 | 1009 |  | 
 | 1010 | 	/* Disable write protect */ | 
 | 1011 | 	lpc32xx_wp_disable(host); | 
 | 1012 |  | 
 | 1013 | 	return 0; | 
 | 1014 | } | 
 | 1015 |  | 
 | 1016 | static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm) | 
 | 1017 | { | 
 | 1018 | 	uint32_t tmp; | 
 | 1019 | 	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); | 
 | 1020 |  | 
 | 1021 | 	/* Force CE high */ | 
 | 1022 | 	tmp = readl(SLC_CTRL(host->io_base)); | 
 | 1023 | 	tmp &= ~SLCCFG_CE_LOW; | 
 | 1024 | 	writel(tmp, SLC_CTRL(host->io_base)); | 
 | 1025 |  | 
 | 1026 | 	/* Enable write protect for safety */ | 
 | 1027 | 	lpc32xx_wp_enable(host); | 
 | 1028 |  | 
 | 1029 | 	/* Disable clock */ | 
 | 1030 | 	clk_disable(host->clk); | 
 | 1031 |  | 
 | 1032 | 	return 0; | 
 | 1033 | } | 
 | 1034 |  | 
 | 1035 | #else | 
 | 1036 | #define lpc32xx_nand_resume NULL | 
 | 1037 | #define lpc32xx_nand_suspend NULL | 
 | 1038 | #endif | 
 | 1039 |  | 
 | 1040 | #if defined(CONFIG_OF) | 
 | 1041 | static const struct of_device_id lpc32xx_nand_match[] = { | 
 | 1042 | 	{ .compatible = "nxp,lpc3220-slc" }, | 
 | 1043 | 	{ /* sentinel */ }, | 
 | 1044 | }; | 
 | 1045 | MODULE_DEVICE_TABLE(of, lpc32xx_nand_match); | 
 | 1046 | #endif | 
 | 1047 |  | 
 | 1048 | static struct platform_driver lpc32xx_nand_driver = { | 
 | 1049 | 	.probe		= lpc32xx_nand_probe, | 
 | 1050 | 	.remove		= __devexit_p(lpc32xx_nand_remove), | 
 | 1051 | 	.resume		= lpc32xx_nand_resume, | 
 | 1052 | 	.suspend	= lpc32xx_nand_suspend, | 
 | 1053 | 	.driver		= { | 
 | 1054 | 		.name	= LPC32XX_MODNAME, | 
 | 1055 | 		.owner	= THIS_MODULE, | 
 | 1056 | 		.of_match_table = of_match_ptr(lpc32xx_nand_match), | 
 | 1057 | 	}, | 
 | 1058 | }; | 
 | 1059 |  | 
 | 1060 | module_platform_driver(lpc32xx_nand_driver); | 
 | 1061 |  | 
 | 1062 | MODULE_LICENSE("GPL"); | 
 | 1063 | MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>"); | 
 | 1064 | MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>"); | 
 | 1065 | MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX SLC controller"); |