blob: 8d4ccf061a4ddc3e218f2b8ebafbd901957670a4 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002 * Common time routines among all ppc machines.
3 *
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8 *
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
14 *
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17 *
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time. (for iSeries, we calibrate the timebase
21 * against the Titan chip's clock.)
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
25 *
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
Linus Torvalds1da177e2005-04-16 15:20:36 -070035#include <linux/errno.h>
36#include <linux/module.h>
37#include <linux/sched.h>
38#include <linux/kernel.h>
39#include <linux/param.h>
40#include <linux/string.h>
41#include <linux/mm.h>
42#include <linux/interrupt.h>
43#include <linux/timex.h>
44#include <linux/kernel_stat.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070045#include <linux/time.h>
46#include <linux/init.h>
47#include <linux/profile.h>
48#include <linux/cpu.h>
49#include <linux/security.h>
Paul Mackerrasf2783c12005-10-20 09:23:26 +100050#include <linux/percpu.h>
51#include <linux/rtc.h>
Paul Mackerras092b8f32006-02-20 10:38:56 +110052#include <linux/jiffies.h>
Paul Mackerrasc6622f62006-02-24 10:06:59 +110053#include <linux/posix-timers.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070054
Linus Torvalds1da177e2005-04-16 15:20:36 -070055#include <asm/io.h>
56#include <asm/processor.h>
57#include <asm/nvram.h>
58#include <asm/cache.h>
59#include <asm/machdep.h>
Paul Mackerrasf2783c12005-10-20 09:23:26 +100060#include <asm/uaccess.h>
61#include <asm/time.h>
62#include <asm/prom.h>
63#include <asm/irq.h>
64#include <asm/div64.h>
Paul Mackerras2249ca92005-11-07 13:18:13 +110065#include <asm/smp.h>
Benjamin Herrenschmidta7f290d2005-11-11 21:15:21 +110066#include <asm/vdso_datapage.h>
Paul Mackerrasf2783c12005-10-20 09:23:26 +100067#ifdef CONFIG_PPC64
Paul Mackerrasf2783c12005-10-20 09:23:26 +100068#include <asm/firmware.h>
69#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -070070#ifdef CONFIG_PPC_ISERIES
Kelly Daly8875ccf2005-11-02 14:13:34 +110071#include <asm/iseries/it_lp_queue.h>
Kelly Daly8021b8a2005-11-02 11:41:12 +110072#include <asm/iseries/hv_call_xm.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070073#endif
Olof Johansson732ee212005-11-07 00:57:55 -080074#include <asm/smp.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070075
Linus Torvalds1da177e2005-04-16 15:20:36 -070076/* keep track of when we need to update the rtc */
77time_t last_rtc_update;
Linus Torvalds1da177e2005-04-16 15:20:36 -070078#ifdef CONFIG_PPC_ISERIES
79unsigned long iSeries_recal_titan = 0;
80unsigned long iSeries_recal_tb = 0;
81static unsigned long first_settimeofday = 1;
82#endif
83
Paul Mackerrasf2783c12005-10-20 09:23:26 +100084/* The decrementer counts down by 128 every 128ns on a 601. */
85#define DECREMENTER_COUNT_601 (1000000000 / HZ)
86
Linus Torvalds1da177e2005-04-16 15:20:36 -070087#define XSEC_PER_SEC (1024*1024)
88
Paul Mackerrasf2783c12005-10-20 09:23:26 +100089#ifdef CONFIG_PPC64
90#define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
91#else
92/* compute ((xsec << 12) * max) >> 32 */
93#define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
94#endif
95
Linus Torvalds1da177e2005-04-16 15:20:36 -070096unsigned long tb_ticks_per_jiffy;
97unsigned long tb_ticks_per_usec = 100; /* sane default */
98EXPORT_SYMBOL(tb_ticks_per_usec);
99unsigned long tb_ticks_per_sec;
Paul Mackerras2cf82c02006-02-27 15:41:47 +1100100EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000101u64 tb_to_xs;
102unsigned tb_to_us;
Paul Mackerras092b8f32006-02-20 10:38:56 +1100103
Roman Zippel19923c12006-06-26 00:25:18 -0700104#define TICKLEN_SCALE TICK_LENGTH_SHIFT
Paul Mackerras092b8f32006-02-20 10:38:56 +1100105u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
106u64 ticklen_to_xs; /* 0.64 fraction */
107
108/* If last_tick_len corresponds to about 1/HZ seconds, then
109 last_tick_len << TICKLEN_SHIFT will be about 2^63. */
110#define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
111
Linus Torvalds1da177e2005-04-16 15:20:36 -0700112DEFINE_SPINLOCK(rtc_lock);
Benjamin Herrenschmidt6ae3db12005-06-27 14:36:35 -0700113EXPORT_SYMBOL_GPL(rtc_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700114
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000115u64 tb_to_ns_scale;
116unsigned tb_to_ns_shift;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700117
118struct gettimeofday_struct do_gtod;
119
120extern unsigned long wall_jiffies;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700121
122extern struct timezone sys_tz;
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000123static long timezone_offset;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700124
Arnd Bergmann10f7e7c2005-06-23 09:43:07 +1000125unsigned long ppc_proc_freq;
126unsigned long ppc_tb_freq;
127
Paul Mackerras96c44502005-10-23 17:14:56 +1000128u64 tb_last_jiffy __cacheline_aligned_in_smp;
129unsigned long tb_last_stamp;
130
131/*
132 * Note that on ppc32 this only stores the bottom 32 bits of
133 * the timebase value, but that's enough to tell when a jiffy
134 * has passed.
135 */
136DEFINE_PER_CPU(unsigned long, last_jiffy);
137
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100138#ifdef CONFIG_VIRT_CPU_ACCOUNTING
139/*
140 * Factors for converting from cputime_t (timebase ticks) to
141 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
142 * These are all stored as 0.64 fixed-point binary fractions.
143 */
144u64 __cputime_jiffies_factor;
Paul Mackerras2cf82c02006-02-27 15:41:47 +1100145EXPORT_SYMBOL(__cputime_jiffies_factor);
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100146u64 __cputime_msec_factor;
Paul Mackerras2cf82c02006-02-27 15:41:47 +1100147EXPORT_SYMBOL(__cputime_msec_factor);
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100148u64 __cputime_sec_factor;
Paul Mackerras2cf82c02006-02-27 15:41:47 +1100149EXPORT_SYMBOL(__cputime_sec_factor);
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100150u64 __cputime_clockt_factor;
Paul Mackerras2cf82c02006-02-27 15:41:47 +1100151EXPORT_SYMBOL(__cputime_clockt_factor);
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100152
153static void calc_cputime_factors(void)
154{
155 struct div_result res;
156
157 div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
158 __cputime_jiffies_factor = res.result_low;
159 div128_by_32(1000, 0, tb_ticks_per_sec, &res);
160 __cputime_msec_factor = res.result_low;
161 div128_by_32(1, 0, tb_ticks_per_sec, &res);
162 __cputime_sec_factor = res.result_low;
163 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
164 __cputime_clockt_factor = res.result_low;
165}
166
167/*
168 * Read the PURR on systems that have it, otherwise the timebase.
169 */
170static u64 read_purr(void)
171{
172 if (cpu_has_feature(CPU_FTR_PURR))
173 return mfspr(SPRN_PURR);
174 return mftb();
175}
176
177/*
178 * Account time for a transition between system, hard irq
179 * or soft irq state.
180 */
181void account_system_vtime(struct task_struct *tsk)
182{
183 u64 now, delta;
184 unsigned long flags;
185
186 local_irq_save(flags);
187 now = read_purr();
188 delta = now - get_paca()->startpurr;
189 get_paca()->startpurr = now;
190 if (!in_interrupt()) {
191 delta += get_paca()->system_time;
192 get_paca()->system_time = 0;
193 }
194 account_system_time(tsk, 0, delta);
195 local_irq_restore(flags);
196}
197
198/*
199 * Transfer the user and system times accumulated in the paca
200 * by the exception entry and exit code to the generic process
201 * user and system time records.
202 * Must be called with interrupts disabled.
203 */
204void account_process_vtime(struct task_struct *tsk)
205{
206 cputime_t utime;
207
208 utime = get_paca()->user_time;
209 get_paca()->user_time = 0;
210 account_user_time(tsk, utime);
211}
212
213static void account_process_time(struct pt_regs *regs)
214{
215 int cpu = smp_processor_id();
216
217 account_process_vtime(current);
218 run_local_timers();
219 if (rcu_pending(cpu))
220 rcu_check_callbacks(cpu, user_mode(regs));
221 scheduler_tick();
222 run_posix_cpu_timers(current);
223}
224
225#ifdef CONFIG_PPC_SPLPAR
226/*
227 * Stuff for accounting stolen time.
228 */
229struct cpu_purr_data {
230 int initialized; /* thread is running */
231 u64 tb0; /* timebase at origin time */
232 u64 purr0; /* PURR at origin time */
233 u64 tb; /* last TB value read */
234 u64 purr; /* last PURR value read */
235 u64 stolen; /* stolen time so far */
236 spinlock_t lock;
237};
238
239static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
240
241static void snapshot_tb_and_purr(void *data)
242{
243 struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
244
245 p->tb0 = mftb();
246 p->purr0 = mfspr(SPRN_PURR);
247 p->tb = p->tb0;
248 p->purr = 0;
249 wmb();
250 p->initialized = 1;
251}
252
253/*
254 * Called during boot when all cpus have come up.
255 */
256void snapshot_timebases(void)
257{
258 int cpu;
259
260 if (!cpu_has_feature(CPU_FTR_PURR))
261 return;
KAMEZAWA Hiroyuki0e551952006-03-28 14:50:51 -0800262 for_each_possible_cpu(cpu)
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100263 spin_lock_init(&per_cpu(cpu_purr_data, cpu).lock);
264 on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1);
265}
266
267void calculate_steal_time(void)
268{
269 u64 tb, purr, t0;
270 s64 stolen;
271 struct cpu_purr_data *p0, *pme, *phim;
272 int cpu;
273
274 if (!cpu_has_feature(CPU_FTR_PURR))
275 return;
276 cpu = smp_processor_id();
277 pme = &per_cpu(cpu_purr_data, cpu);
278 if (!pme->initialized)
279 return; /* this can happen in early boot */
280 p0 = &per_cpu(cpu_purr_data, cpu & ~1);
281 phim = &per_cpu(cpu_purr_data, cpu ^ 1);
282 spin_lock(&p0->lock);
283 tb = mftb();
284 purr = mfspr(SPRN_PURR) - pme->purr0;
285 if (!phim->initialized || !cpu_online(cpu ^ 1)) {
286 stolen = (tb - pme->tb) - (purr - pme->purr);
287 } else {
288 t0 = pme->tb0;
289 if (phim->tb0 < t0)
290 t0 = phim->tb0;
291 stolen = phim->tb - t0 - phim->purr - purr - p0->stolen;
292 }
293 if (stolen > 0) {
294 account_steal_time(current, stolen);
295 p0->stolen += stolen;
296 }
297 pme->tb = tb;
298 pme->purr = purr;
299 spin_unlock(&p0->lock);
300}
301
302/*
303 * Must be called before the cpu is added to the online map when
304 * a cpu is being brought up at runtime.
305 */
306static void snapshot_purr(void)
307{
308 int cpu;
309 u64 purr;
310 struct cpu_purr_data *p0, *pme, *phim;
311 unsigned long flags;
312
313 if (!cpu_has_feature(CPU_FTR_PURR))
314 return;
315 cpu = smp_processor_id();
316 pme = &per_cpu(cpu_purr_data, cpu);
317 p0 = &per_cpu(cpu_purr_data, cpu & ~1);
318 phim = &per_cpu(cpu_purr_data, cpu ^ 1);
319 spin_lock_irqsave(&p0->lock, flags);
320 pme->tb = pme->tb0 = mftb();
321 purr = mfspr(SPRN_PURR);
322 if (!phim->initialized) {
323 pme->purr = 0;
324 pme->purr0 = purr;
325 } else {
326 /* set p->purr and p->purr0 for no change in p0->stolen */
327 pme->purr = phim->tb - phim->tb0 - phim->purr - p0->stolen;
328 pme->purr0 = purr - pme->purr;
329 }
330 pme->initialized = 1;
331 spin_unlock_irqrestore(&p0->lock, flags);
332}
333
334#endif /* CONFIG_PPC_SPLPAR */
335
336#else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
337#define calc_cputime_factors()
338#define account_process_time(regs) update_process_times(user_mode(regs))
339#define calculate_steal_time() do { } while (0)
340#endif
341
342#if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
343#define snapshot_purr() do { } while (0)
344#endif
345
346/*
347 * Called when a cpu comes up after the system has finished booting,
348 * i.e. as a result of a hotplug cpu action.
349 */
350void snapshot_timebase(void)
351{
352 __get_cpu_var(last_jiffy) = get_tb();
353 snapshot_purr();
354}
355
Paul Mackerras6defa382005-11-18 13:44:17 +1100356void __delay(unsigned long loops)
357{
358 unsigned long start;
359 int diff;
360
361 if (__USE_RTC()) {
362 start = get_rtcl();
363 do {
364 /* the RTCL register wraps at 1000000000 */
365 diff = get_rtcl() - start;
366 if (diff < 0)
367 diff += 1000000000;
368 } while (diff < loops);
369 } else {
370 start = get_tbl();
371 while (get_tbl() - start < loops)
372 HMT_low();
373 HMT_medium();
374 }
375}
376EXPORT_SYMBOL(__delay);
377
378void udelay(unsigned long usecs)
379{
380 __delay(tb_ticks_per_usec * usecs);
381}
382EXPORT_SYMBOL(udelay);
383
Linus Torvalds1da177e2005-04-16 15:20:36 -0700384static __inline__ void timer_check_rtc(void)
385{
386 /*
387 * update the rtc when needed, this should be performed on the
388 * right fraction of a second. Half or full second ?
389 * Full second works on mk48t59 clocks, others need testing.
390 * Note that this update is basically only used through
391 * the adjtimex system calls. Setting the HW clock in
392 * any other way is a /dev/rtc and userland business.
393 * This is still wrong by -0.5/+1.5 jiffies because of the
394 * timer interrupt resolution and possible delay, but here we
395 * hit a quantization limit which can only be solved by higher
396 * resolution timers and decoupling time management from timer
397 * interrupts. This is also wrong on the clocks
398 * which require being written at the half second boundary.
399 * We should have an rtc call that only sets the minutes and
400 * seconds like on Intel to avoid problems with non UTC clocks.
401 */
Kumar Galad2e61512005-10-20 11:43:33 -0500402 if (ppc_md.set_rtc_time && ntp_synced() &&
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000403 xtime.tv_sec - last_rtc_update >= 659 &&
Paul Mackerras092b8f32006-02-20 10:38:56 +1100404 abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ) {
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000405 struct rtc_time tm;
406 to_tm(xtime.tv_sec + 1 + timezone_offset, &tm);
407 tm.tm_year -= 1900;
408 tm.tm_mon -= 1;
409 if (ppc_md.set_rtc_time(&tm) == 0)
410 last_rtc_update = xtime.tv_sec + 1;
411 else
412 /* Try again one minute later */
413 last_rtc_update += 60;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700414 }
415}
416
417/*
418 * This version of gettimeofday has microsecond resolution.
419 */
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000420static inline void __do_gettimeofday(struct timeval *tv, u64 tb_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700421{
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000422 unsigned long sec, usec;
423 u64 tb_ticks, xsec;
424 struct gettimeofday_vars *temp_varp;
425 u64 temp_tb_to_xs, temp_stamp_xsec;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700426
427 /*
428 * These calculations are faster (gets rid of divides)
429 * if done in units of 1/2^20 rather than microseconds.
430 * The conversion to microseconds at the end is done
431 * without a divide (and in fact, without a multiply)
432 */
433 temp_varp = do_gtod.varp;
434 tb_ticks = tb_val - temp_varp->tb_orig_stamp;
435 temp_tb_to_xs = temp_varp->tb_to_xs;
436 temp_stamp_xsec = temp_varp->stamp_xsec;
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000437 xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700438 sec = xsec / XSEC_PER_SEC;
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000439 usec = (unsigned long)xsec & (XSEC_PER_SEC - 1);
440 usec = SCALE_XSEC(usec, 1000000);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700441
442 tv->tv_sec = sec;
443 tv->tv_usec = usec;
444}
445
446void do_gettimeofday(struct timeval *tv)
447{
Paul Mackerras96c44502005-10-23 17:14:56 +1000448 if (__USE_RTC()) {
449 /* do this the old way */
450 unsigned long flags, seq;
Paul Mackerras092b8f32006-02-20 10:38:56 +1100451 unsigned int sec, nsec, usec;
Paul Mackerras96c44502005-10-23 17:14:56 +1000452
453 do {
454 seq = read_seqbegin_irqsave(&xtime_lock, flags);
455 sec = xtime.tv_sec;
456 nsec = xtime.tv_nsec + tb_ticks_since(tb_last_stamp);
Paul Mackerras96c44502005-10-23 17:14:56 +1000457 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
Paul Mackerras092b8f32006-02-20 10:38:56 +1100458 usec = nsec / 1000;
Paul Mackerras96c44502005-10-23 17:14:56 +1000459 while (usec >= 1000000) {
460 usec -= 1000000;
461 ++sec;
462 }
463 tv->tv_sec = sec;
464 tv->tv_usec = usec;
465 return;
466 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700467 __do_gettimeofday(tv, get_tb());
468}
469
470EXPORT_SYMBOL(do_gettimeofday);
471
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000472/*
473 * There are two copies of tb_to_xs and stamp_xsec so that no
474 * lock is needed to access and use these values in
475 * do_gettimeofday. We alternate the copies and as long as a
476 * reasonable time elapses between changes, there will never
477 * be inconsistent values. ntpd has a minimum of one minute
478 * between updates.
479 */
480static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
Paul Mackerras5d14a182005-10-20 22:33:06 +1000481 u64 new_tb_to_xs)
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000482{
483 unsigned temp_idx;
484 struct gettimeofday_vars *temp_varp;
485
486 temp_idx = (do_gtod.var_idx == 0);
487 temp_varp = &do_gtod.vars[temp_idx];
488
489 temp_varp->tb_to_xs = new_tb_to_xs;
490 temp_varp->tb_orig_stamp = new_tb_stamp;
491 temp_varp->stamp_xsec = new_stamp_xsec;
492 smp_mb();
493 do_gtod.varp = temp_varp;
494 do_gtod.var_idx = temp_idx;
495
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000496 /*
497 * tb_update_count is used to allow the userspace gettimeofday code
498 * to assure itself that it sees a consistent view of the tb_to_xs and
499 * stamp_xsec variables. It reads the tb_update_count, then reads
500 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
501 * the two values of tb_update_count match and are even then the
502 * tb_to_xs and stamp_xsec values are consistent. If not, then it
503 * loops back and reads them again until this criteria is met.
Paul Mackerras0a45d442006-03-15 13:47:15 +1100504 * We expect the caller to have done the first increment of
505 * vdso_data->tb_update_count already.
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000506 */
Benjamin Herrenschmidta7f290d2005-11-11 21:15:21 +1100507 vdso_data->tb_orig_stamp = new_tb_stamp;
508 vdso_data->stamp_xsec = new_stamp_xsec;
509 vdso_data->tb_to_xs = new_tb_to_xs;
510 vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
511 vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000512 smp_wmb();
Benjamin Herrenschmidta7f290d2005-11-11 21:15:21 +1100513 ++(vdso_data->tb_update_count);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700514}
515
516/*
517 * When the timebase - tb_orig_stamp gets too big, we do a manipulation
518 * between tb_orig_stamp and stamp_xsec. The goal here is to keep the
519 * difference tb - tb_orig_stamp small enough to always fit inside a
520 * 32 bits number. This is a requirement of our fast 32 bits userland
521 * implementation in the vdso. If we "miss" a call to this function
522 * (interrupt latency, CPU locked in a spinlock, ...) and we end up
523 * with a too big difference, then the vdso will fallback to calling
524 * the syscall
525 */
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000526static __inline__ void timer_recalc_offset(u64 cur_tb)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700527{
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000528 unsigned long offset;
529 u64 new_stamp_xsec;
Paul Mackerras092b8f32006-02-20 10:38:56 +1100530 u64 tlen, t2x;
Paul Mackerras0a45d442006-03-15 13:47:15 +1100531 u64 tb, xsec_old, xsec_new;
532 struct gettimeofday_vars *varp;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700533
Paul Mackerras96c44502005-10-23 17:14:56 +1000534 if (__USE_RTC())
535 return;
Roman Zippel19923c12006-06-26 00:25:18 -0700536 tlen = current_tick_length();
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000537 offset = cur_tb - do_gtod.varp->tb_orig_stamp;
Paul Mackerras0a45d442006-03-15 13:47:15 +1100538 if (tlen == last_tick_len && offset < 0x80000000u)
539 return;
Paul Mackerras092b8f32006-02-20 10:38:56 +1100540 if (tlen != last_tick_len) {
541 t2x = mulhdu(tlen << TICKLEN_SHIFT, ticklen_to_xs);
542 last_tick_len = tlen;
543 } else
544 t2x = do_gtod.varp->tb_to_xs;
545 new_stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
546 do_div(new_stamp_xsec, 1000000000);
547 new_stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
Paul Mackerras0a45d442006-03-15 13:47:15 +1100548
549 ++vdso_data->tb_update_count;
550 smp_mb();
551
552 /*
553 * Make sure time doesn't go backwards for userspace gettimeofday.
554 */
555 tb = get_tb();
556 varp = do_gtod.varp;
557 xsec_old = mulhdu(tb - varp->tb_orig_stamp, varp->tb_to_xs)
558 + varp->stamp_xsec;
559 xsec_new = mulhdu(tb - cur_tb, t2x) + new_stamp_xsec;
560 if (xsec_new < xsec_old)
561 new_stamp_xsec += xsec_old - xsec_new;
562
Paul Mackerras092b8f32006-02-20 10:38:56 +1100563 update_gtod(cur_tb, new_stamp_xsec, t2x);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700564}
565
566#ifdef CONFIG_SMP
567unsigned long profile_pc(struct pt_regs *regs)
568{
569 unsigned long pc = instruction_pointer(regs);
570
571 if (in_lock_functions(pc))
572 return regs->link;
573
574 return pc;
575}
576EXPORT_SYMBOL(profile_pc);
577#endif
578
579#ifdef CONFIG_PPC_ISERIES
580
581/*
582 * This function recalibrates the timebase based on the 49-bit time-of-day
583 * value in the Titan chip. The Titan is much more accurate than the value
584 * returned by the service processor for the timebase frequency.
585 */
586
587static void iSeries_tb_recal(void)
588{
589 struct div_result divres;
590 unsigned long titan, tb;
591 tb = get_tb();
592 titan = HvCallXm_loadTod();
593 if ( iSeries_recal_titan ) {
594 unsigned long tb_ticks = tb - iSeries_recal_tb;
595 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
596 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
597 unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
598 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
599 char sign = '+';
600 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
601 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
602
603 if ( tick_diff < 0 ) {
604 tick_diff = -tick_diff;
605 sign = '-';
606 }
607 if ( tick_diff ) {
608 if ( tick_diff < tb_ticks_per_jiffy/25 ) {
609 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
610 new_tb_ticks_per_jiffy, sign, tick_diff );
611 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
612 tb_ticks_per_sec = new_tb_ticks_per_sec;
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100613 calc_cputime_factors();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700614 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
615 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
616 tb_to_xs = divres.result_low;
617 do_gtod.varp->tb_to_xs = tb_to_xs;
Benjamin Herrenschmidta7f290d2005-11-11 21:15:21 +1100618 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
619 vdso_data->tb_to_xs = tb_to_xs;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700620 }
621 else {
622 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
623 " new tb_ticks_per_jiffy = %lu\n"
624 " old tb_ticks_per_jiffy = %lu\n",
625 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
626 }
627 }
628 }
629 iSeries_recal_titan = titan;
630 iSeries_recal_tb = tb;
631}
632#endif
633
634/*
635 * For iSeries shared processors, we have to let the hypervisor
636 * set the hardware decrementer. We set a virtual decrementer
637 * in the lppaca and call the hypervisor if the virtual
638 * decrementer is less than the current value in the hardware
639 * decrementer. (almost always the new decrementer value will
640 * be greater than the current hardware decementer so the hypervisor
641 * call will not be needed)
642 */
643
Linus Torvalds1da177e2005-04-16 15:20:36 -0700644/*
645 * timer_interrupt - gets called when the decrementer overflows,
646 * with interrupts disabled.
647 */
Kumar Galac7aeffc2005-09-19 09:30:27 -0500648void timer_interrupt(struct pt_regs * regs)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700649{
650 int next_dec;
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000651 int cpu = smp_processor_id();
652 unsigned long ticks;
653
654#ifdef CONFIG_PPC32
655 if (atomic_read(&ppc_n_lost_interrupts) != 0)
656 do_IRQ(regs);
657#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700658
659 irq_enter();
660
Linus Torvalds1da177e2005-04-16 15:20:36 -0700661 profile_tick(CPU_PROFILING, regs);
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100662 calculate_steal_time();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700663
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000664#ifdef CONFIG_PPC_ISERIES
David Gibson3356bb92006-01-13 10:26:42 +1100665 get_lppaca()->int_dword.fields.decr_int = 0;
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000666#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700667
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000668 while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu)))
669 >= tb_ticks_per_jiffy) {
670 /* Update last_jiffy */
671 per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy;
672 /* Handle RTCL overflow on 601 */
673 if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000)
674 per_cpu(last_jiffy, cpu) -= 1000000000;
675
Linus Torvalds1da177e2005-04-16 15:20:36 -0700676 /*
677 * We cannot disable the decrementer, so in the period
678 * between this cpu's being marked offline in cpu_online_map
679 * and calling stop-self, it is taking timer interrupts.
680 * Avoid calling into the scheduler rebalancing code if this
681 * is the case.
682 */
683 if (!cpu_is_offline(cpu))
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100684 account_process_time(regs);
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000685
Linus Torvalds1da177e2005-04-16 15:20:36 -0700686 /*
687 * No need to check whether cpu is offline here; boot_cpuid
688 * should have been fixed up by now.
689 */
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000690 if (cpu != boot_cpuid)
691 continue;
692
693 write_seqlock(&xtime_lock);
Paul Mackerras96c44502005-10-23 17:14:56 +1000694 tb_last_jiffy += tb_ticks_per_jiffy;
695 tb_last_stamp = per_cpu(last_jiffy, cpu);
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000696 do_timer(regs);
Paul Mackerras092b8f32006-02-20 10:38:56 +1100697 timer_recalc_offset(tb_last_jiffy);
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000698 timer_check_rtc();
699 write_sequnlock(&xtime_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700700 }
701
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000702 next_dec = tb_ticks_per_jiffy - ticks;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700703 set_dec(next_dec);
704
705#ifdef CONFIG_PPC_ISERIES
Michael Ellerman937b31b2005-06-30 15:15:42 +1000706 if (hvlpevent_is_pending())
Michael Ellerman74889802005-06-30 15:15:53 +1000707 process_hvlpevents(regs);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700708#endif
709
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000710#ifdef CONFIG_PPC64
Stephen Rothwell8d15a3e2005-08-03 14:40:16 +1000711 /* collect purr register values often, for accurate calculations */
Stephen Rothwell1ababe12005-08-03 14:35:25 +1000712 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700713 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
714 cu->current_tb = mfspr(SPRN_PURR);
715 }
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000716#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700717
718 irq_exit();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700719}
720
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000721void wakeup_decrementer(void)
722{
Paul Mackerras092b8f32006-02-20 10:38:56 +1100723 unsigned long ticks;
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000724
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000725 /*
Paul Mackerras092b8f32006-02-20 10:38:56 +1100726 * The timebase gets saved on sleep and restored on wakeup,
727 * so all we need to do is to reset the decrementer.
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000728 */
Paul Mackerras092b8f32006-02-20 10:38:56 +1100729 ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
730 if (ticks < tb_ticks_per_jiffy)
731 ticks = tb_ticks_per_jiffy - ticks;
732 else
733 ticks = 1;
734 set_dec(ticks);
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000735}
736
Paul Mackerrasa5b518e2005-10-22 14:55:23 +1000737#ifdef CONFIG_SMP
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000738void __init smp_space_timers(unsigned int max_cpus)
739{
740 int i;
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100741 unsigned long half = tb_ticks_per_jiffy / 2;
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000742 unsigned long offset = tb_ticks_per_jiffy / max_cpus;
743 unsigned long previous_tb = per_cpu(last_jiffy, boot_cpuid);
744
Paul Mackerrascbe62e22005-11-10 14:28:03 +1100745 /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
746 previous_tb -= tb_ticks_per_jiffy;
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100747 /*
748 * The stolen time calculation for POWER5 shared-processor LPAR
749 * systems works better if the two threads' timebase interrupts
750 * are staggered by half a jiffy with respect to each other.
751 */
KAMEZAWA Hiroyuki0e551952006-03-28 14:50:51 -0800752 for_each_possible_cpu(i) {
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100753 if (i == boot_cpuid)
754 continue;
755 if (i == (boot_cpuid ^ 1))
756 per_cpu(last_jiffy, i) =
757 per_cpu(last_jiffy, boot_cpuid) - half;
758 else if (i & 1)
759 per_cpu(last_jiffy, i) =
760 per_cpu(last_jiffy, i ^ 1) + half;
761 else {
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000762 previous_tb += offset;
763 per_cpu(last_jiffy, i) = previous_tb;
764 }
765 }
766}
767#endif
768
Linus Torvalds1da177e2005-04-16 15:20:36 -0700769/*
770 * Scheduler clock - returns current time in nanosec units.
771 *
772 * Note: mulhdu(a, b) (multiply high double unsigned) returns
773 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
774 * are 64-bit unsigned numbers.
775 */
776unsigned long long sched_clock(void)
777{
Paul Mackerras96c44502005-10-23 17:14:56 +1000778 if (__USE_RTC())
779 return get_rtc();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700780 return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift;
781}
782
783int do_settimeofday(struct timespec *tv)
784{
785 time_t wtm_sec, new_sec = tv->tv_sec;
786 long wtm_nsec, new_nsec = tv->tv_nsec;
787 unsigned long flags;
Paul Mackerras092b8f32006-02-20 10:38:56 +1100788 u64 new_xsec;
789 unsigned long tb_delta;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700790
791 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
792 return -EINVAL;
793
794 write_seqlock_irqsave(&xtime_lock, flags);
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000795
796 /*
797 * Updating the RTC is not the job of this code. If the time is
798 * stepped under NTP, the RTC will be updated after STA_UNSYNC
799 * is cleared. Tools like clock/hwclock either copy the RTC
Linus Torvalds1da177e2005-04-16 15:20:36 -0700800 * to the system time, in which case there is no point in writing
801 * to the RTC again, or write to the RTC but then they don't call
802 * settimeofday to perform this operation.
803 */
804#ifdef CONFIG_PPC_ISERIES
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000805 if (first_settimeofday) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700806 iSeries_tb_recal();
807 first_settimeofday = 0;
808 }
809#endif
Paul Mackerras092b8f32006-02-20 10:38:56 +1100810
Paul Mackerras0a45d442006-03-15 13:47:15 +1100811 /* Make userspace gettimeofday spin until we're done. */
812 ++vdso_data->tb_update_count;
813 smp_mb();
814
Paul Mackerras092b8f32006-02-20 10:38:56 +1100815 /*
816 * Subtract off the number of nanoseconds since the
817 * beginning of the last tick.
818 * Note that since we don't increment jiffies_64 anywhere other
819 * than in do_timer (since we don't have a lost tick problem),
820 * wall_jiffies will always be the same as jiffies,
821 * and therefore the (jiffies - wall_jiffies) computation
822 * has been removed.
823 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700824 tb_delta = tb_ticks_since(tb_last_stamp);
Paul Mackerras092b8f32006-02-20 10:38:56 +1100825 tb_delta = mulhdu(tb_delta, do_gtod.varp->tb_to_xs); /* in xsec */
826 new_nsec -= SCALE_XSEC(tb_delta, 1000000000);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700827
828 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
829 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);
830
831 set_normalized_timespec(&xtime, new_sec, new_nsec);
832 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
833
834 /* In case of a large backwards jump in time with NTP, we want the
835 * clock to be updated as soon as the PLL is again in lock.
836 */
837 last_rtc_update = new_sec - 658;
838
john stultzb149ee22005-09-06 15:17:46 -0700839 ntp_clear();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700840
Paul Mackerras092b8f32006-02-20 10:38:56 +1100841 new_xsec = xtime.tv_nsec;
842 if (new_xsec != 0) {
843 new_xsec *= XSEC_PER_SEC;
Paul Mackerras5f6b5b92005-10-30 22:55:52 +1100844 do_div(new_xsec, NSEC_PER_SEC);
845 }
Paul Mackerras092b8f32006-02-20 10:38:56 +1100846 new_xsec += (u64)xtime.tv_sec * XSEC_PER_SEC;
Paul Mackerras96c44502005-10-23 17:14:56 +1000847 update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700848
Benjamin Herrenschmidta7f290d2005-11-11 21:15:21 +1100849 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
850 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700851
852 write_sequnlock_irqrestore(&xtime_lock, flags);
853 clock_was_set();
854 return 0;
855}
856
857EXPORT_SYMBOL(do_settimeofday);
858
Anton Blanchard0bb474a42006-06-20 18:47:26 +1000859static int __init get_freq(char *name, int cells, unsigned long *val)
Arnd Bergmann10f7e7c2005-06-23 09:43:07 +1000860{
861 struct device_node *cpu;
Jeremy Kerra7f67bd2006-07-12 15:35:54 +1000862 const unsigned int *fp;
Anton Blanchard0bb474a42006-06-20 18:47:26 +1000863 int found = 0;
Arnd Bergmann10f7e7c2005-06-23 09:43:07 +1000864
Anton Blanchard0bb474a42006-06-20 18:47:26 +1000865 /* The cpu node should have timebase and clock frequency properties */
Arnd Bergmann10f7e7c2005-06-23 09:43:07 +1000866 cpu = of_find_node_by_type(NULL, "cpu");
867
Olaf Heringd8a81882006-02-04 10:34:56 +0100868 if (cpu) {
Jeremy Kerra7f67bd2006-07-12 15:35:54 +1000869 fp = get_property(cpu, name, NULL);
Olaf Heringd8a81882006-02-04 10:34:56 +0100870 if (fp) {
Anton Blanchard0bb474a42006-06-20 18:47:26 +1000871 found = 1;
872 *val = 0;
873 while (cells--)
874 *val = (*val << 32) | *fp++;
Arnd Bergmann10f7e7c2005-06-23 09:43:07 +1000875 }
Anton Blanchard0bb474a42006-06-20 18:47:26 +1000876
877 of_node_put(cpu);
Arnd Bergmann10f7e7c2005-06-23 09:43:07 +1000878 }
Anton Blanchard0bb474a42006-06-20 18:47:26 +1000879
880 return found;
881}
882
883void __init generic_calibrate_decr(void)
884{
885 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
886
887 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
888 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
889
Arnd Bergmann10f7e7c2005-06-23 09:43:07 +1000890 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
891 "(not found)\n");
Arnd Bergmann10f7e7c2005-06-23 09:43:07 +1000892 }
Anton Blanchard0bb474a42006-06-20 18:47:26 +1000893
894 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
895
896 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
897 !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
898
899 printk(KERN_ERR "WARNING: Estimating processor frequency "
900 "(not found)\n");
901 }
902
Kumar Gala0fd6f712005-10-25 23:02:59 -0500903#ifdef CONFIG_BOOKE
904 /* Set the time base to zero */
905 mtspr(SPRN_TBWL, 0);
906 mtspr(SPRN_TBWU, 0);
907
908 /* Clear any pending timer interrupts */
909 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
910
911 /* Enable decrementer interrupt */
912 mtspr(SPRN_TCR, TCR_DIE);
913#endif
Arnd Bergmann10f7e7c2005-06-23 09:43:07 +1000914}
Arnd Bergmann10f7e7c2005-06-23 09:43:07 +1000915
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000916unsigned long get_boot_time(void)
917{
918 struct rtc_time tm;
919
920 if (ppc_md.get_boot_time)
921 return ppc_md.get_boot_time();
922 if (!ppc_md.get_rtc_time)
923 return 0;
924 ppc_md.get_rtc_time(&tm);
925 return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
926 tm.tm_hour, tm.tm_min, tm.tm_sec);
927}
928
929/* This function is only called on the boot processor */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700930void __init time_init(void)
931{
Linus Torvalds1da177e2005-04-16 15:20:36 -0700932 unsigned long flags;
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000933 unsigned long tm = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700934 struct div_result res;
Paul Mackerras092b8f32006-02-20 10:38:56 +1100935 u64 scale, x;
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000936 unsigned shift;
937
938 if (ppc_md.time_init != NULL)
939 timezone_offset = ppc_md.time_init();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700940
Paul Mackerras96c44502005-10-23 17:14:56 +1000941 if (__USE_RTC()) {
942 /* 601 processor: dec counts down by 128 every 128ns */
943 ppc_tb_freq = 1000000000;
944 tb_last_stamp = get_rtcl();
945 tb_last_jiffy = tb_last_stamp;
946 } else {
947 /* Normal PowerPC with timebase register */
948 ppc_md.calibrate_decr();
Olof Johansson224ad802006-04-12 15:20:27 -0500949 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
Paul Mackerras96c44502005-10-23 17:14:56 +1000950 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
Olof Johansson224ad802006-04-12 15:20:27 -0500951 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
Paul Mackerras96c44502005-10-23 17:14:56 +1000952 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
953 tb_last_stamp = tb_last_jiffy = get_tb();
954 }
Paul Mackerras374e99d2005-10-20 21:04:51 +1000955
956 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
Paul Mackerras092b8f32006-02-20 10:38:56 +1100957 tb_ticks_per_sec = ppc_tb_freq;
Paul Mackerras374e99d2005-10-20 21:04:51 +1000958 tb_ticks_per_usec = ppc_tb_freq / 1000000;
959 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100960 calc_cputime_factors();
Paul Mackerras092b8f32006-02-20 10:38:56 +1100961
962 /*
963 * Calculate the length of each tick in ns. It will not be
964 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
965 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
966 * rounded up.
967 */
968 x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
969 do_div(x, ppc_tb_freq);
970 tick_nsec = x;
971 last_tick_len = x << TICKLEN_SCALE;
972
973 /*
974 * Compute ticklen_to_xs, which is a factor which gets multiplied
975 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
976 * It is computed as:
977 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
978 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
Paul Mackerras0a45d442006-03-15 13:47:15 +1100979 * which turns out to be N = 51 - SHIFT_HZ.
980 * This gives the result as a 0.64 fixed-point fraction.
981 * That value is reduced by an offset amounting to 1 xsec per
982 * 2^31 timebase ticks to avoid problems with time going backwards
983 * by 1 xsec when we do timer_recalc_offset due to losing the
984 * fractional xsec. That offset is equal to ppc_tb_freq/2^51
985 * since there are 2^20 xsec in a second.
Paul Mackerras092b8f32006-02-20 10:38:56 +1100986 */
Paul Mackerras0a45d442006-03-15 13:47:15 +1100987 div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
988 tb_ticks_per_jiffy << SHIFT_HZ, &res);
Paul Mackerras092b8f32006-02-20 10:38:56 +1100989 div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
990 ticklen_to_xs = res.result_low;
991
992 /* Compute tb_to_xs from tick_nsec */
993 tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
Paul Mackerras374e99d2005-10-20 21:04:51 +1000994
Linus Torvalds1da177e2005-04-16 15:20:36 -0700995 /*
996 * Compute scale factor for sched_clock.
997 * The calibrate_decr() function has set tb_ticks_per_sec,
998 * which is the timebase frequency.
999 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
1000 * the 128-bit result as a 64.64 fixed-point number.
1001 * We then shift that number right until it is less than 1.0,
1002 * giving us the scale factor and shift count to use in
1003 * sched_clock().
1004 */
1005 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
1006 scale = res.result_low;
1007 for (shift = 0; res.result_high != 0; ++shift) {
1008 scale = (scale >> 1) | (res.result_high << 63);
1009 res.result_high >>= 1;
1010 }
1011 tb_to_ns_scale = scale;
1012 tb_to_ns_shift = shift;
1013
Olof Johansson4bd174f2006-04-18 11:25:53 -05001014 tm = get_boot_time();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001015
1016 write_seqlock_irqsave(&xtime_lock, flags);
Paul Mackerras092b8f32006-02-20 10:38:56 +11001017
1018 /* If platform provided a timezone (pmac), we correct the time */
1019 if (timezone_offset) {
1020 sys_tz.tz_minuteswest = -timezone_offset / 60;
1021 sys_tz.tz_dsttime = 0;
1022 tm -= timezone_offset;
1023 }
1024
Paul Mackerrasf2783c12005-10-20 09:23:26 +10001025 xtime.tv_sec = tm;
1026 xtime.tv_nsec = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001027 do_gtod.varp = &do_gtod.vars[0];
1028 do_gtod.var_idx = 0;
Paul Mackerras96c44502005-10-23 17:14:56 +10001029 do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
Paul Mackerrasf2783c12005-10-20 09:23:26 +10001030 __get_cpu_var(last_jiffy) = tb_last_stamp;
1031 do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001032 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
1033 do_gtod.varp->tb_to_xs = tb_to_xs;
1034 do_gtod.tb_to_us = tb_to_us;
Benjamin Herrenschmidta7f290d2005-11-11 21:15:21 +11001035
1036 vdso_data->tb_orig_stamp = tb_last_jiffy;
1037 vdso_data->tb_update_count = 0;
1038 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
Paul Mackerras092b8f32006-02-20 10:38:56 +11001039 vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
Benjamin Herrenschmidta7f290d2005-11-11 21:15:21 +11001040 vdso_data->tb_to_xs = tb_to_xs;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001041
1042 time_freq = 0;
1043
Linus Torvalds1da177e2005-04-16 15:20:36 -07001044 last_rtc_update = xtime.tv_sec;
1045 set_normalized_timespec(&wall_to_monotonic,
1046 -xtime.tv_sec, -xtime.tv_nsec);
1047 write_sequnlock_irqrestore(&xtime_lock, flags);
1048
1049 /* Not exact, but the timer interrupt takes care of this */
1050 set_dec(tb_ticks_per_jiffy);
1051}
1052
Linus Torvalds1da177e2005-04-16 15:20:36 -07001053
Linus Torvalds1da177e2005-04-16 15:20:36 -07001054#define FEBRUARY 2
1055#define STARTOFTIME 1970
1056#define SECDAY 86400L
1057#define SECYR (SECDAY * 365)
Paul Mackerrasf2783c12005-10-20 09:23:26 +10001058#define leapyear(year) ((year) % 4 == 0 && \
1059 ((year) % 100 != 0 || (year) % 400 == 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001060#define days_in_year(a) (leapyear(a) ? 366 : 365)
1061#define days_in_month(a) (month_days[(a) - 1])
1062
1063static int month_days[12] = {
1064 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1065};
1066
1067/*
1068 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1069 */
1070void GregorianDay(struct rtc_time * tm)
1071{
1072 int leapsToDate;
1073 int lastYear;
1074 int day;
1075 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1076
Paul Mackerrasf2783c12005-10-20 09:23:26 +10001077 lastYear = tm->tm_year - 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001078
1079 /*
1080 * Number of leap corrections to apply up to end of last year
1081 */
Paul Mackerrasf2783c12005-10-20 09:23:26 +10001082 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001083
1084 /*
1085 * This year is a leap year if it is divisible by 4 except when it is
1086 * divisible by 100 unless it is divisible by 400
1087 *
Paul Mackerrasf2783c12005-10-20 09:23:26 +10001088 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
Linus Torvalds1da177e2005-04-16 15:20:36 -07001089 */
Paul Mackerrasf2783c12005-10-20 09:23:26 +10001090 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001091
1092 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1093 tm->tm_mday;
1094
Paul Mackerrasf2783c12005-10-20 09:23:26 +10001095 tm->tm_wday = day % 7;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001096}
1097
1098void to_tm(int tim, struct rtc_time * tm)
1099{
1100 register int i;
1101 register long hms, day;
1102
1103 day = tim / SECDAY;
1104 hms = tim % SECDAY;
1105
1106 /* Hours, minutes, seconds are easy */
1107 tm->tm_hour = hms / 3600;
1108 tm->tm_min = (hms % 3600) / 60;
1109 tm->tm_sec = (hms % 3600) % 60;
1110
1111 /* Number of years in days */
1112 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1113 day -= days_in_year(i);
1114 tm->tm_year = i;
1115
1116 /* Number of months in days left */
1117 if (leapyear(tm->tm_year))
1118 days_in_month(FEBRUARY) = 29;
1119 for (i = 1; day >= days_in_month(i); i++)
1120 day -= days_in_month(i);
1121 days_in_month(FEBRUARY) = 28;
1122 tm->tm_mon = i;
1123
1124 /* Days are what is left over (+1) from all that. */
1125 tm->tm_mday = day + 1;
1126
1127 /*
1128 * Determine the day of week
1129 */
1130 GregorianDay(tm);
1131}
1132
1133/* Auxiliary function to compute scaling factors */
1134/* Actually the choice of a timebase running at 1/4 the of the bus
1135 * frequency giving resolution of a few tens of nanoseconds is quite nice.
1136 * It makes this computation very precise (27-28 bits typically) which
1137 * is optimistic considering the stability of most processor clock
1138 * oscillators and the precision with which the timebase frequency
1139 * is measured but does not harm.
1140 */
Paul Mackerrasf2783c12005-10-20 09:23:26 +10001141unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
1142{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001143 unsigned mlt=0, tmp, err;
1144 /* No concern for performance, it's done once: use a stupid
1145 * but safe and compact method to find the multiplier.
1146 */
1147
1148 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
Paul Mackerrasf2783c12005-10-20 09:23:26 +10001149 if (mulhwu(inscale, mlt|tmp) < outscale)
1150 mlt |= tmp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001151 }
1152
1153 /* We might still be off by 1 for the best approximation.
1154 * A side effect of this is that if outscale is too large
1155 * the returned value will be zero.
1156 * Many corner cases have been checked and seem to work,
1157 * some might have been forgotten in the test however.
1158 */
1159
Paul Mackerrasf2783c12005-10-20 09:23:26 +10001160 err = inscale * (mlt+1);
1161 if (err <= inscale/2)
1162 mlt++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001163 return mlt;
Paul Mackerrasf2783c12005-10-20 09:23:26 +10001164}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001165
1166/*
1167 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1168 * result.
1169 */
Paul Mackerrasf2783c12005-10-20 09:23:26 +10001170void div128_by_32(u64 dividend_high, u64 dividend_low,
1171 unsigned divisor, struct div_result *dr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001172{
Paul Mackerrasf2783c12005-10-20 09:23:26 +10001173 unsigned long a, b, c, d;
1174 unsigned long w, x, y, z;
1175 u64 ra, rb, rc;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001176
1177 a = dividend_high >> 32;
1178 b = dividend_high & 0xffffffff;
1179 c = dividend_low >> 32;
1180 d = dividend_low & 0xffffffff;
1181
Paul Mackerrasf2783c12005-10-20 09:23:26 +10001182 w = a / divisor;
1183 ra = ((u64)(a - (w * divisor)) << 32) + b;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001184
Paul Mackerrasf2783c12005-10-20 09:23:26 +10001185 rb = ((u64) do_div(ra, divisor) << 32) + c;
1186 x = ra;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001187
Paul Mackerrasf2783c12005-10-20 09:23:26 +10001188 rc = ((u64) do_div(rb, divisor) << 32) + d;
1189 y = rb;
1190
1191 do_div(rc, divisor);
1192 z = rc;
Paul Mackerrasf2783c12005-10-20 09:23:26 +10001193
1194 dr->result_high = ((u64)w << 32) + x;
1195 dr->result_low = ((u64)y << 32) + z;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001196
1197}