blob: e8fa90801d755a2cb72b3582624ca5221a418ce2 [file] [log] [blame]
Manu Abraham41e840b2009-12-02 21:57:10 -03001/*
2 Fujitsu MB86A16 DVB-S/DSS DC Receiver driver
3
4 Copyright (C) 2005, 2006 Manu Abraham (abraham.manu@gmail.com)
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19*/
20
21#include <linux/init.h>
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/moduleparam.h>
25
26#include "dvb_frontend.h"
27#include "mb86a16.h"
28#include "mb86a16_priv.h"
29
30unsigned int verbose = 5;
31module_param(verbose, int, 0644);
32
33#define ABS(x) ((x) < 0 ? (-x) : (x))
34
35struct mb86a16_state {
36 struct i2c_adapter *i2c_adap;
37 const struct mb86a16_config *config;
38 struct dvb_frontend frontend;
39 u8 signal;
40
41 // tuning parameters
42 int frequency;
43 int srate;
44
45 // Internal stuff
46 int master_clk;
47 int deci;
48 int csel;
49 int rsel;
50};
51
52#define MB86A16_ERROR 0
53#define MB86A16_NOTICE 1
54#define MB86A16_INFO 2
55#define MB86A16_DEBUG 3
56
57#define dprintk(x, y, z, format, arg...) do { \
58 if (z) { \
59 if ((x > MB86A16_ERROR) && (x > y)) \
60 printk(KERN_ERR "%s: " format "\n", __func__, ##arg); \
61 else if ((x > MB86A16_NOTICE) && (x > y)) \
62 printk(KERN_NOTICE "%s: " format "\n", __func__, ##arg); \
63 else if ((x > MB86A16_INFO) && (x > y)) \
64 printk(KERN_INFO "%s: " format "\n", __func__, ##arg); \
65 else if ((x > MB86A16_DEBUG) && (x > y)) \
66 printk(KERN_DEBUG "%s: " format "\n", __func__, ##arg); \
67 } else { \
68 if (x > y) \
69 printk(format, ##arg); \
70 } \
71} while (0)
72
73#define TRACE_IN dprintk(verbose, MB86A16_DEBUG, 1, "-->()")
74#define TRACE_OUT dprintk(verbose, MB86A16_DEBUG, 1, "()-->")
75
76static int mb86a16_write(struct mb86a16_state *state, u8 reg, u8 val)
77{
78 int ret;
79 u8 buf[] = { reg, val };
80
81 struct i2c_msg msg = {
82 .addr = state->config->demod_address,
83 .flags = 0,
84 .buf = buf,
85 .len = 2
86 };
87
88 dprintk(verbose, MB86A16_DEBUG, 1,
89 "writing to [0x%02x],Reg[0x%02x],Data[0x%02x]",
90 state->config->demod_address, buf[0], buf[1]);
91
92 ret = i2c_transfer(state->i2c_adap, &msg, 1);
93
94 return (ret != 1) ? -EREMOTEIO : 0;
95}
96
97static int mb86a16_read(struct mb86a16_state *state, u8 reg, u8 *val)
98{
99 int ret;
100 u8 b0[] = { reg };
101 u8 b1[] = { 0 };
102
103 struct i2c_msg msg[] = {
104 {
105 .addr = state->config->demod_address,
106 .flags = 0,
107 .buf = b0,
108 .len = 1
109 },{
110 .addr = state->config->demod_address,
111 .flags = I2C_M_RD,
112 .buf = b1,
113 .len = 1
114 }
115 };
116 ret = i2c_transfer(state->i2c_adap, msg, 2);
117 if (ret != 2) {
118 dprintk(verbose, MB86A16_ERROR, 1, "read error(reg=0x%02x, ret=0x%i)",
119 reg, ret);
120
121 return -EREMOTEIO;
122 }
123 *val = b1[0];
124
125 return ret;
126}
127
128static int CNTM_set(struct mb86a16_state *state,
129 unsigned char timint1,
130 unsigned char timint2,
131 unsigned char cnext)
132{
133 unsigned char val;
134
135 val = (timint1 << 4) | (timint2 << 2) | cnext;
136 if (mb86a16_write(state, MB86A16_CNTMR, val) < 0)
137 goto err;
138
139 return 0;
140
141err:
142 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
143 return -EREMOTEIO;
144}
145
146static int smrt_set(struct mb86a16_state *state, int rate)
147{
148 int tmp ;
149 int m ;
150 unsigned char STOFS0, STOFS1;
151
152 m = 1 << state->deci;
153 tmp = (8192 * state->master_clk - 2 * m * rate * 8192 + state->master_clk / 2) / state->master_clk;
154
155 STOFS0 = tmp & 0x0ff;
156 STOFS1 = (tmp & 0xf00) >> 8;
157
158 if (mb86a16_write(state, MB86A16_SRATE1, (state->deci << 2) |
159 (state->csel << 1) |
160 state->rsel) < 0)
161 goto err;
162 if (mb86a16_write(state, MB86A16_SRATE2, STOFS0) < 0)
163 goto err;
164 if (mb86a16_write(state, MB86A16_SRATE3, STOFS1) < 0)
165 goto err;
166
167 return 0;
168err:
169 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
170 return -1;
171}
172
173static int srst(struct mb86a16_state *state)
174{
175 if (mb86a16_write(state, MB86A16_RESET, 0x04) < 0)
176 goto err;
177
178 return 0;
179err:
180 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
181 return -EREMOTEIO;
182
183}
184
185static int afcex_data_set(struct mb86a16_state *state,
186 unsigned char AFCEX_L,
187 unsigned char AFCEX_H)
188{
189 if (mb86a16_write(state, MB86A16_AFCEXL, AFCEX_L) < 0)
190 goto err;
191 if (mb86a16_write(state, MB86A16_AFCEXH, AFCEX_H) < 0)
192 goto err;
193
194 return 0;
195err:
196 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
197
198 return -1;
199}
200
201static int afcofs_data_set(struct mb86a16_state *state,
202 unsigned char AFCEX_L,
203 unsigned char AFCEX_H)
204{
205 if (mb86a16_write(state, 0x58, AFCEX_L) < 0)
206 goto err;
207 if (mb86a16_write(state, 0x59, AFCEX_H) < 0)
208 goto err;
209
210 return 0;
211err:
212 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
213 return -EREMOTEIO;
214}
215
216static int stlp_set(struct mb86a16_state *state,
217 unsigned char STRAS,
218 unsigned char STRBS)
219{
220 if (mb86a16_write(state, MB86A16_STRFILTCOEF1, (STRBS << 3) | (STRAS)) < 0)
221 goto err;
222
223 return 0;
224err:
225 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
226 return -EREMOTEIO;
227}
228
229static int Vi_set(struct mb86a16_state *state, unsigned char ETH, unsigned char VIA)
230{
231 if (mb86a16_write(state, MB86A16_VISET2, 0x04) < 0)
232 goto err;
233 if (mb86a16_write(state, MB86A16_VISET3, 0xf5) < 0)
234 goto err;
235
236 return 0;
237err:
238 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
239 return -EREMOTEIO;
240}
241
242static int initial_set(struct mb86a16_state *state)
243{
244 if (stlp_set(state, 5, 7))
245 goto err;
Manu Abrahama890cce2009-12-02 21:58:38 -0300246
247 udelay(100);
Manu Abraham41e840b2009-12-02 21:57:10 -0300248 if (afcex_data_set(state, 0, 0))
249 goto err;
Manu Abrahama890cce2009-12-02 21:58:38 -0300250
251 udelay(100);
Manu Abraham41e840b2009-12-02 21:57:10 -0300252 if (afcofs_data_set(state, 0, 0))
253 goto err;
254
Manu Abrahama890cce2009-12-02 21:58:38 -0300255 udelay(100);
Manu Abraham41e840b2009-12-02 21:57:10 -0300256 if (mb86a16_write(state, MB86A16_CRLFILTCOEF1, 0x16) < 0)
257 goto err;
258 if (mb86a16_write(state, 0x2f, 0x21) < 0)
259 goto err;
260 if (mb86a16_write(state, MB86A16_VIMAG, 0x38) < 0)
261 goto err;
262 if (mb86a16_write(state, MB86A16_FAGCS1, 0x00) < 0)
263 goto err;
264 if (mb86a16_write(state, MB86A16_FAGCS2, 0x1c) < 0)
265 goto err;
266 if (mb86a16_write(state, MB86A16_FAGCS3, 0x20) < 0)
267 goto err;
268 if (mb86a16_write(state, MB86A16_FAGCS4, 0x1e) < 0)
269 goto err;
270 if (mb86a16_write(state, MB86A16_FAGCS5, 0x23) < 0)
271 goto err;
272 if (mb86a16_write(state, 0x54, 0xff) < 0)
273 goto err;
274 if (mb86a16_write(state, MB86A16_TSOUT, 0x00) < 0)
275 goto err;
276
277 return 0;
278
279err:
280 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
281 return -EREMOTEIO;
282}
283
284static int S01T_set(struct mb86a16_state *state,
285 unsigned char s1t,
286 unsigned s0t)
287{
288 if (mb86a16_write(state, 0x33, (s1t << 3) | s0t) < 0)
289 goto err;
290
291 return 0;
292err:
293 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
294 return -EREMOTEIO;
295}
296
297
298static int EN_set(struct mb86a16_state *state,
299 int cren,
300 int afcen)
301{
302 unsigned char val;
303
304 val = 0x7a | (cren << 7) | (afcen << 2);
305 if (mb86a16_write(state, 0x49, val) < 0)
306 goto err;
307
308 return 0;
309err:
310 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
311 return -EREMOTEIO;
312}
313
314static int AFCEXEN_set(struct mb86a16_state *state,
315 int afcexen,
316 int smrt)
317{
318 unsigned char AFCA ;
319
320 if (smrt > 18875)
321 AFCA = 4;
322 else if (smrt > 9375)
323 AFCA = 3;
324 else if (smrt > 2250)
325 AFCA = 2;
326 else
327 AFCA = 1;
328
329 if (mb86a16_write(state, 0x2a, 0x02 | (afcexen << 5) | (AFCA << 2)) < 0)
330 goto err;
331
332 return 0;
333
334err:
335 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
336 return -EREMOTEIO;
337}
338
339static int DAGC_data_set(struct mb86a16_state *state,
340 unsigned char DAGCA,
341 unsigned char DAGCW)
342{
343 if (mb86a16_write(state, 0x2d, (DAGCA << 3) | DAGCW) < 0)
344 goto err;
345
346 return 0;
347
348err:
349 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
350 return -EREMOTEIO;
351}
352
353static void smrt_info_get(struct mb86a16_state *state, int rate)
354{
355 if (rate >= 37501) {
356 state->deci = 0; state->csel = 0; state->rsel = 0;
357 } else if (rate >= 30001) {
358 state->deci = 0; state->csel = 0; state->rsel = 1;
359 } else if (rate >= 26251) {
360 state->deci = 0; state->csel = 1; state->rsel = 0;
361 } else if (rate >= 22501) {
362 state->deci = 0; state->csel = 1; state->rsel = 1;
363 } else if (rate >= 18751) {
364 state->deci = 1; state->csel = 0; state->rsel = 0;
365 } else if (rate >= 15001) {
366 state->deci = 1; state->csel = 0; state->rsel = 1;
367 } else if (rate >= 13126) {
368 state->deci = 1; state->csel = 1; state->rsel = 0;
369 } else if (rate >= 11251) {
370 state->deci = 1; state->csel = 1; state->rsel = 1;
371 } else if (rate >= 9376) {
372 state->deci = 2; state->csel = 0; state->rsel = 0;
373 } else if (rate >= 7501) {
374 state->deci = 2; state->csel = 0; state->rsel = 1;
375 } else if (rate >= 6563) {
376 state->deci = 2; state->csel = 1; state->rsel = 0;
377 } else if (rate >= 5626) {
378 state->deci = 2; state->csel = 1; state->rsel = 1;
379 } else if (rate >= 4688) {
380 state->deci = 3; state->csel = 0; state->rsel = 0;
381 } else if (rate >= 3751) {
382 state->deci = 3; state->csel = 0; state->rsel = 1;
383 } else if (rate >= 3282) {
384 state->deci = 3; state->csel = 1; state->rsel = 0;
385 } else if (rate >= 2814) {
386 state->deci = 3; state->csel = 1; state->rsel = 1;
387 } else if (rate >= 2344) {
388 state->deci = 4; state->csel = 0; state->rsel = 0;
389 } else if (rate >= 1876) {
390 state->deci = 4; state->csel = 0; state->rsel = 1;
391 } else if (rate >= 1641) {
392 state->deci = 4; state->csel = 1; state->rsel = 0;
393 } else if (rate >= 1407) {
394 state->deci = 4; state->csel = 1; state->rsel = 1;
395 } else if (rate >= 1172) {
396 state->deci = 5; state->csel = 0; state->rsel = 0;
397 } else if (rate >= 939) {
398 state->deci = 5; state->csel = 0; state->rsel = 1;
399 } else if (rate >= 821) {
400 state->deci = 5; state->csel = 1; state->rsel = 0;
401 } else {
402 state->deci = 5; state->csel = 1; state->rsel = 1;
403 }
404
405 if (state->csel == 0)
406 state->master_clk = 92000;
407 else
408 state->master_clk = 61333;
409
410}
411
412static int signal_det(struct mb86a16_state *state,
413 int smrt,
414 unsigned char *SIG)
415{
416
417 int ret ;
418 int smrtd ;
419 int wait_sym ;
420 int wait_t ;
421 unsigned char S[3] ;
422 int i ;
423
424 if (*SIG > 45) {
425 if (CNTM_set(state, 2, 1, 2) < 0) {
426 dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
427 return -1;
428 }
429 wait_sym = 40000;
430 } else {
431 if (CNTM_set(state, 3, 1, 2) < 0) {
432 dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
433 return -1;
434 }
435 wait_sym = 80000;
436 }
437 for (i = 0; i < 3; i++) {
438 if (i == 0 )
439 smrtd = smrt * 98 / 100;
440 else if (i == 1)
441 smrtd = smrt;
442 else
443 smrtd = smrt * 102 / 100;
444 smrt_info_get(state, smrtd);
445 smrt_set(state, smrtd);
446 srst(state);
447 wait_t = (wait_sym + 99 * smrtd / 100) / smrtd;
448 if (wait_t == 0)
449 wait_t = 1;
450 msleep_interruptible(10);
451 if (mb86a16_read(state, 0x37, &(S[i])) != 2) {
452 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
453 return -EREMOTEIO;
454 }
455 }
456 if ((S[1] > S[0] * 112 / 100) &&
457 (S[1] > S[2] * 112 / 100)) {
458
459 ret = 1;
460 } else {
461 ret = 0;
462 }
463 *SIG = S[1];
464
465 if (CNTM_set(state, 0, 1, 2) < 0) {
466 dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
467 return -1;
468 }
469
470 return ret;
471}
472
473static int rf_val_set(struct mb86a16_state *state,
474 int f,
475 int smrt,
476 unsigned char R)
477{
478 unsigned char C, F, B;
479 int M;
480 unsigned char rf_val[5];
481 int ack = -1;
482
483 if (smrt > 37750 )
484 C = 1;
485 else if (smrt > 18875)
486 C = 2;
487 else if (smrt > 5500 )
488 C = 3;
489 else
490 C = 4;
491
492 if (smrt > 30500)
493 F = 3;
494 else if (smrt > 9375)
495 F = 1;
496 else if (smrt > 4625)
497 F = 0;
498 else
499 F = 2;
500
501 if (f < 1060)
502 B = 0;
503 else if (f < 1175)
504 B = 1;
505 else if (f < 1305)
506 B = 2;
507 else if (f < 1435)
508 B = 3;
509 else if (f < 1570)
510 B = 4;
511 else if (f < 1715)
512 B = 5;
513 else if (f < 1845)
514 B = 6;
515 else if (f < 1980)
516 B = 7;
517 else if (f < 2080)
518 B = 8;
519 else
520 B = 9;
521
522 M = f * (1 << R) / 2;
523
524 rf_val[0] = 0x01 | (C << 3) | (F << 1);
525 rf_val[1] = (R << 5) | ((M & 0x1f000) >> 12);
526 rf_val[2] = (M & 0x00ff0) >> 4;
527 rf_val[3] = ((M & 0x0000f) << 4) | B;
528
529 // Frequency Set
530 if (mb86a16_write(state, 0x21, rf_val[0]) < 0)
531 ack = 0;
532 if (mb86a16_write(state, 0x22, rf_val[1]) < 0)
533 ack = 0;
534 if (mb86a16_write(state, 0x23, rf_val[2]) < 0)
535 ack = 0;
536 if (mb86a16_write(state, 0x24, rf_val[3]) < 0)
537 ack = 0;
538 if (mb86a16_write(state, 0x25, 0x01) < 0)
539 ack = 0;
540 if (ack == 0) {
541 dprintk(verbose, MB86A16_ERROR, 1, "RF Setup - I2C transfer error");
542 return -EREMOTEIO;
543 }
544
545 return 0;
546}
547
548static int afcerr_chk(struct mb86a16_state *state)
549{
550 unsigned char AFCM_L, AFCM_H ;
551 int AFCM ;
552 int afcm, afcerr ;
553
554 if (mb86a16_read(state, 0x0e, &AFCM_L) != 2)
555 goto err;
556 if (mb86a16_read(state, 0x0f, &AFCM_H) != 2)
557 goto err;
558
559 AFCM = (AFCM_H << 8) + AFCM_L;
560
561 if (AFCM > 2048)
562 afcm = AFCM - 4096;
563 else
564 afcm = AFCM;
565 afcerr = afcm * state->master_clk / 8192;
566
567 return afcerr;
568
569err:
570 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
571 return -EREMOTEIO;
572}
573
574static int dagcm_val_get(struct mb86a16_state *state)
575{
576 int DAGCM;
577 unsigned char DAGCM_H, DAGCM_L;
578
579 if (mb86a16_read(state, 0x45, &DAGCM_L) != 2)
580 goto err;
581 if (mb86a16_read(state, 0x46, &DAGCM_H) != 2)
582 goto err;
583
584 DAGCM = (DAGCM_H << 8) + DAGCM_L;
585
586 return DAGCM;
587
588err:
589 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
590 return -EREMOTEIO;
591}
592
593static int mb86a16_read_status(struct dvb_frontend *fe, fe_status_t *status)
594{
595 struct mb86a16_state *state = fe->demodulator_priv;
596
597 if (state->signal & 0x02)
598 *status |= FE_HAS_VITERBI;
599 if (state->signal & 0x01)
600 *status |= FE_HAS_SYNC;
601 if (state->signal & 0x03)
602 *status |= FE_HAS_LOCK;
603
604 return 0;
605}
606
607static int sync_chk(struct mb86a16_state *state,
608 unsigned char *VIRM)
609{
610 unsigned char val;
611 int sync;
612
613 if (mb86a16_read(state, 0x0d, &val) != 2)
614 goto err;
615
616 dprintk(verbose, MB86A16_INFO, 1, "Status = %02x,", val);
617 sync = val & 0x01;
618 *VIRM = (val & 0x1c) >> 2;
619
620 return sync;
621err:
622 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
623 return -EREMOTEIO;
624
625}
626
627static int freqerr_chk(struct mb86a16_state *state,
628 int fTP,
629 int smrt,
630 int unit)
631{
632 unsigned char CRM, AFCML, AFCMH;
633 unsigned char temp1, temp2, temp3;
634 int crm, afcm, AFCM;
635 int crrerr, afcerr; // [kHz]
636 int frqerr; // [MHz]
637 int afcen, afcexen = 0;
638 int R, M, fOSC, fOSC_OFS;
639
640 if (mb86a16_read(state, 0x43, &CRM) != 2)
641 goto err;
642
643 if (CRM > 127)
644 crm = CRM - 256;
645 else
646 crm = CRM;
647
648 crrerr = smrt * crm / 256;
649 if (mb86a16_read(state, 0x49, &temp1) != 2)
650 goto err;
651
652 afcen = (temp1 & 0x04) >> 2;
653 if (afcen == 0) {
654 if (mb86a16_read(state, 0x2a, &temp1) != 2)
655 goto err;
656 afcexen = (temp1 & 0x20) >> 5;
657 }
658
659 if (afcen == 1) {
660 if (mb86a16_read(state, 0x0e, &AFCML) != 2)
661 goto err;
662 if (mb86a16_read(state, 0x0f, &AFCMH) != 2)
663 goto err;
664 } else if (afcexen == 1) {
665 if (mb86a16_read(state, 0x2b, &AFCML) != 2)
666 goto err;
667 if (mb86a16_read(state, 0x2c, &AFCMH) != 2)
668 goto err;
669 }
670 if ((afcen == 1) || (afcexen == 1)) {
671 smrt_info_get(state, smrt);
672 AFCM = ((AFCMH & 0x01) << 8) + AFCML;
673 if (AFCM > 255)
674 afcm = AFCM - 512;
675 else
676 afcm = AFCM;
677
678 afcerr = afcm * state->master_clk / 8192;
679 } else
680 afcerr = 0;
681
682 if (mb86a16_read(state, 0x22, &temp1) != 2)
683 goto err;
684 if (mb86a16_read(state, 0x23, &temp2) != 2)
685 goto err;
686 if (mb86a16_read(state, 0x24, &temp3) != 2)
687 goto err;
688
689 R = (temp1 & 0xe0) >> 5;
690 M = ((temp1 & 0x1f) << 12) + (temp2 << 4) + (temp3 >> 4);
691 if (R == 0)
692 fOSC = 2 * M;
693 else
694 fOSC = M;
695
696 fOSC_OFS = fOSC - fTP;
697
698 if (unit == 0) { //[MHz]
699 if (crrerr + afcerr + fOSC_OFS * 1000 >= 0)
700 frqerr = (crrerr + afcerr + fOSC_OFS * 1000 + 500) / 1000;
701 else
702 frqerr = (crrerr + afcerr + fOSC_OFS * 1000 - 500) / 1000;
703 } else { //[kHz]
704 frqerr = crrerr + afcerr + fOSC_OFS * 1000;
705 }
706
707 return frqerr;
708err:
709 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
710 return -EREMOTEIO;
711}
712
713static unsigned char vco_dev_get(struct mb86a16_state *state, int smrt)
714{
715 unsigned char R;
716
717 if (smrt > 9375)
718 R = 0;
719 else
720 R = 1;
721
722 return R;
723}
724
725static void swp_info_get(struct mb86a16_state *state,
726 int fOSC_start,
727 int smrt,
728 int v, int R,
729 int swp_ofs,
730 int *fOSC,
731 int *afcex_freq,
732 unsigned char *AFCEX_L,
733 unsigned char *AFCEX_H)
734{
735 int AFCEX ;
736 int crnt_swp_freq ;
737
738 crnt_swp_freq = fOSC_start * 1000 + v * swp_ofs;
739
740 if (R == 0 )
741 *fOSC = (crnt_swp_freq + 1000) / 2000 * 2;
742 else
743 *fOSC = (crnt_swp_freq + 500) / 1000;
744
745 if (*fOSC >= crnt_swp_freq)
746 *afcex_freq = *fOSC *1000 - crnt_swp_freq;
747 else
748 *afcex_freq = crnt_swp_freq - *fOSC * 1000;
749
750 AFCEX = *afcex_freq * 8192 / state->master_clk;
751 *AFCEX_L = AFCEX & 0x00ff;
752 *AFCEX_H = (AFCEX & 0x0f00) >> 8;
753}
754
755
756static int swp_freq_calcuation(struct mb86a16_state *state, int i, int v, int *V, int vmax, int vmin,
757 int SIGMIN, int fOSC, int afcex_freq, int swp_ofs, unsigned char *SIG1)
758{
759 int swp_freq ;
760
761 if ((i % 2 == 1) && (v <= vmax)) {
762 // positive v (case 1)
763 if ((v - 1 == vmin) &&
764 (*(V + 30 + v) >= 0) &&
765 (*(V + 30 + v - 1) >= 0) &&
766 (*(V + 30 + v - 1) > *(V + 30 + v)) &&
767 (*(V + 30 + v - 1) > SIGMIN)) {
768
769 swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
770 *SIG1 = *(V + 30 + v - 1);
771 } else if ((v == vmax) &&
772 (*(V + 30 + v) >= 0) &&
773 (*(V + 30 + v - 1) >= 0) &&
774 (*(V + 30 + v) > *(V + 30 + v - 1)) &&
775 (*(V + 30 + v) > SIGMIN)) {
776 // (case 2)
777 swp_freq = fOSC * 1000 + afcex_freq;
778 *SIG1 = *(V + 30 + v);
779 } else if ((*(V + 30 + v) > 0) &&
780 (*(V + 30 + v - 1) > 0) &&
781 (*(V + 30 + v - 2) > 0) &&
782 (*(V + 30 + v - 3) > 0) &&
783 (*(V + 30 + v - 1) > *(V + 30 + v)) &&
784 (*(V + 30 + v - 2) > *(V + 30 + v - 3)) &&
785 ((*(V + 30 + v - 1) > SIGMIN) ||
786 (*(V + 30 + v - 2) > SIGMIN))) {
787 // (case 3)
788 if (*(V + 30 + v - 1) >= *(V + 30 + v - 2)) {
789 swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
790 *SIG1 = *(V + 30 + v - 1);
791 } else {
792 swp_freq = fOSC * 1000 + afcex_freq - swp_ofs * 2;
793 *SIG1 = *(V + 30 + v - 2);
794 }
795 } else if ((v == vmax) &&
796 (*(V + 30 + v) >= 0) &&
797 (*(V + 30 + v - 1) >= 0) &&
798 (*(V + 30 + v - 2) >= 0) &&
799 (*(V + 30 + v) > *(V + 30 + v - 2)) &&
800 (*(V + 30 + v - 1) > *(V + 30 + v - 2)) &&
801 ((*(V + 30 + v) > SIGMIN) ||
802 (*(V + 30 + v - 1) > SIGMIN))) {
803 // (case 4)
804 if (*(V + 30 + v) >= *(V + 30 + v - 1)) {
805 swp_freq = fOSC * 1000 + afcex_freq;
806 *SIG1 = *(V + 30 + v);
807 } else {
808 swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
809 *SIG1 = *(V + 30 + v - 1);
810 }
811 } else {
812 swp_freq = -1 ;
813 }
814 } else if ((i % 2 == 0) && (v >= vmin)) {
815 // Negative v (case 1)
816 if ((*(V + 30 + v) > 0) &&
817 (*(V + 30 + v + 1) > 0) &&
818 (*(V + 30 + v + 2) > 0) &&
819 (*(V + 30 + v + 1) > *(V + 30 + v)) &&
820 (*(V + 30 + v + 1) > *(V + 30 + v + 2)) &&
821 (*(V + 30 + v + 1) > SIGMIN)) {
822
823 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
824 *SIG1 = *(V + 30 + v + 1);
825 } else if ((v + 1 == vmax) &&
826 (*(V + 30 + v) >= 0) &&
827 (*(V + 30 + v + 1) >= 0) &&
828 (*(V + 30 + v + 1) > *(V + 30 + v)) &&
829 (*(V + 30 + v + 1) > SIGMIN)) {
830 // (case 2)
831 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
832 *SIG1 = *(V + 30 + v);
833 } else if ((v == vmin) &&
834 (*(V + 30 + v) > 0) &&
835 (*(V + 30 + v + 1) > 0) &&
836 (*(V + 30 + v + 2) > 0) &&
837 (*(V + 30 + v) > *(V + 30 + v + 1)) &&
838 (*(V + 30 + v) > *(V + 30 + v + 2)) &&
839 (*(V + 30 + v) > SIGMIN)) {
840 // (case 3)
841 swp_freq = fOSC * 1000 + afcex_freq;
842 *SIG1 = *(V + 30 + v);
843 } else if ((*(V + 30 + v) >= 0) &&
844 (*(V + 30 + v + 1) >= 0) &&
845 (*(V + 30 + v + 2) >= 0) &&
846 (*(V +30 + v + 3) >= 0) &&
847 (*(V + 30 + v + 1) > *(V + 30 + v)) &&
848 (*(V + 30 + v + 2) > *(V + 30 + v + 3)) &&
849 ((*(V + 30 + v + 1) > SIGMIN) ||
850 (*(V + 30 + v + 2) > SIGMIN))) {
851 // (case 4)
852 if (*(V + 30 + v + 1) >= *(V + 30 + v + 2)) {
853 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
854 *SIG1 = *(V + 30 + v + 1);
855 } else {
856 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs * 2;
857 *SIG1 = *(V + 30 + v + 2);
858 }
859 } else if ((*(V + 30 + v) >= 0) &&
860 (*(V + 30 + v + 1) >= 0) &&
861 (*(V + 30 + v + 2) >= 0) &&
862 (*(V + 30 + v + 3) >= 0) &&
863 (*(V + 30 + v) > *(V + 30 + v + 2)) &&
864 (*(V + 30 + v + 1) > *(V + 30 + v + 2)) &&
865 (*(V + 30 + v) > *(V + 30 + v + 3)) &&
866 (*(V + 30 + v + 1) > *(V + 30 + v + 3)) &&
867 ((*(V + 30 + v) > SIGMIN) ||
868 (*(V + 30 + v + 1) > SIGMIN))) {
869 // (case 5)
870 if (*(V + 30 + v) >= *(V + 30 + v + 1)) {
871 swp_freq = fOSC * 1000 + afcex_freq;
872 *SIG1 = *(V + 30 + v);
873 } else {
874 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
875 *SIG1 = *(V + 30 + v + 1);
876 }
877 } else if ((v + 2 == vmin) &&
878 (*(V + 30 + v) >= 0) &&
879 (*(V + 30 + v + 1) >= 0) &&
880 (*(V + 30 + v + 2) >= 0) &&
881 (*(V + 30 + v + 1) > *(V + 30 + v)) &&
882 (*(V + 30 + v + 2) > *(V + 30 + v)) &&
883 ((*(V + 30 + v + 1) > SIGMIN) ||
884 (*(V + 30 + v + 2) > SIGMIN))) {
885 // (case 6)
886 if (*(V + 30 + v + 1) >= *(V + 30 + v + 2)) {
887 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
888 *SIG1 = *(V + 30 + v + 1);
889 } else {
890 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs * 2;
891 *SIG1 = *(V + 30 + v + 2);
892 }
893 } else if ((vmax == 0) && (vmin == 0) && (*(V + 30 + v) > SIGMIN)) {
894 swp_freq = fOSC * 1000;
895 *SIG1 = *(V + 30 + v);
896 } else swp_freq = -1;
897 } else swp_freq = -1;
898
899 return swp_freq;
900}
901
902static void swp_info_get2(struct mb86a16_state *state,
903 int smrt,
904 int R,
905 int swp_freq,
906 int *afcex_freq,
907 int *fOSC,
908 unsigned char *AFCEX_L,
909 unsigned char *AFCEX_H)
910{
911 int AFCEX ;
912
913 if (R == 0)
914 *fOSC = (swp_freq + 1000) / 2000 * 2;
915 else
916 *fOSC = (swp_freq + 500) / 1000;
917
918 if (*fOSC >= swp_freq)
919 *afcex_freq = *fOSC * 1000 - swp_freq;
920 else
921 *afcex_freq = swp_freq - *fOSC * 1000;
922
923 AFCEX = *afcex_freq * 8192 / state->master_clk;
924 *AFCEX_L = AFCEX & 0x00ff;
925 *AFCEX_H = (AFCEX & 0x0f00) >> 8;
926}
927
928static void afcex_info_get(struct mb86a16_state *state,
929 int afcex_freq,
930 unsigned char *AFCEX_L,
931 unsigned char *AFCEX_H)
932{
933 int AFCEX ;
934
935 AFCEX = afcex_freq * 8192 / state->master_clk;
936 *AFCEX_L = AFCEX & 0x00ff;
937 *AFCEX_H = (AFCEX & 0x0f00) >> 8;
938}
939
940static int SEQ_set(struct mb86a16_state *state, unsigned char loop)
941{
942 // SLOCK0 = 0
943 if (mb86a16_write(state, 0x32, 0x02 | (loop << 2)) < 0) {
944 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
945 return -EREMOTEIO;
946 }
947
948 return 0;
949}
950
951static int iq_vt_set(struct mb86a16_state *state, unsigned char IQINV)
952{
953 // Viterbi Rate, IQ Settings
954 if (mb86a16_write(state, 0x06, 0xdf | (IQINV << 5)) < 0) {
955 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
956 return -EREMOTEIO;
957 }
958
959 return 0;
960}
961
962static int FEC_srst(struct mb86a16_state *state)
963{
964 if (mb86a16_write(state, MB86A16_RESET, 0x02) < 0) {
965 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
966 return -EREMOTEIO;
967 }
968
969 return 0;
970}
971
972static int S2T_set(struct mb86a16_state *state, unsigned char S2T)
973{
974 if (mb86a16_write(state, 0x34, 0x70 | S2T) < 0) {
975 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
976 return -EREMOTEIO;
977 }
978
979 return 0;
980}
981
982static int S45T_set(struct mb86a16_state *state, unsigned char S4T, unsigned char S5T)
983{
984 if (mb86a16_write(state, 0x35, 0x00 | (S5T << 4) | S4T) < 0) {
985 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
986 return -EREMOTEIO;
987 }
988
989 return 0;
990}
991
992
993static int mb86a16_set_fe(struct mb86a16_state *state)
994{
995 u8 agcval, cnmval;
996
997 int i, j;
998 int fOSC = 0;
999 int fOSC_start = 0;
1000 int wait_t;
1001 int fcp;
1002 int swp_ofs;
1003 int V[60];
1004 u8 SIG1MIN;
1005
1006 unsigned char CREN, AFCEN, AFCEXEN;
1007 unsigned char SIG1;
1008 unsigned char TIMINT1, TIMINT2, TIMEXT;
1009 unsigned char S0T, S1T;
1010 unsigned char S2T;
1011// unsigned char S2T, S3T;
1012 unsigned char S4T, S5T;
1013 unsigned char AFCEX_L, AFCEX_H;
1014 unsigned char R;
1015 unsigned char VIRM;
1016 unsigned char ETH, VIA;
1017 unsigned char junk;
1018
1019 int loop;
1020 int ftemp;
1021 int v, vmax, vmin;
1022 int vmax_his, vmin_his;
1023 int swp_freq, prev_swp_freq[20];
1024 int prev_freq_num;
1025 int signal_dupl;
1026 int afcex_freq;
1027 int signal;
1028 int afcerr;
1029 int temp_freq, delta_freq;
1030 int dagcm[4];
1031 int smrt_d;
1032// int freq_err;
1033 int n;
1034 int ret = -1;
1035 int sync;
1036
1037 dprintk(verbose, MB86A16_INFO, 1, "freq=%d Mhz, symbrt=%d Ksps", state->frequency, state->srate);
1038
1039 fcp = 5000; // (carrier recovery [kHz])
1040// fcp = 3000;
1041 swp_ofs = state->srate / 4;
1042
1043 for (i = 0; i < 60; i++)
1044 V[i] = -1;
1045
1046 for (i = 0; i < 20; i++)
1047 prev_swp_freq[i] = 0;
1048
1049 SIG1MIN = 25;
1050
1051 for (n = 0; ((n < 3) && (ret == -1)); n++) {
1052 SEQ_set(state, 0);
1053 iq_vt_set(state, 0);
1054
1055 CREN = 0;
1056 AFCEN = 0;
1057 AFCEXEN = 1;
1058 TIMINT1 = 0;
1059 TIMINT2 = 1;
1060 TIMEXT = 2;
1061 S1T = 0;
1062 S0T = 0;
1063
1064 if (initial_set(state) < 0) {
1065 dprintk(verbose, MB86A16_ERROR, 1, "initial set failed");
1066 return -1;
1067 }
1068 if (DAGC_data_set(state, 3, 2) < 0) {
1069 dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
1070 return -1;
1071 }
1072 if (EN_set(state, CREN, AFCEN) < 0) {
1073 dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
1074 return -1; // (0, 0)
1075 }
1076 if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
1077 dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1078 return -1; // (1, smrt) = (1, symbolrate)
1079 }
1080 if (CNTM_set(state, TIMINT1, TIMINT2, TIMEXT) < 0) {
1081 dprintk(verbose, MB86A16_ERROR, 1, "CNTM set error");
1082 return -1; // (0, 1, 2)
1083 }
1084 if (S01T_set(state, S1T, S0T) < 0) {
1085 dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
1086 return -1; // (0, 0)
1087 }
1088 smrt_info_get(state, state->srate);
1089 if (smrt_set(state, state->srate) < 0) {
1090 dprintk(verbose, MB86A16_ERROR, 1, "smrt info get error");
1091 return -1;
1092 }
1093
1094 R = vco_dev_get(state, state->srate);
1095 if (R == 1)
1096 fOSC_start = state->frequency;
1097
1098 else if (R == 0) {
1099 if (state->frequency % 2 == 0) {
1100 fOSC_start = state->frequency;
1101 } else {
1102 fOSC_start = state->frequency + 1;
1103 if (fOSC_start > 2150)
1104 fOSC_start = state->frequency - 1;
1105 }
1106 }
1107 loop = 1;
1108 ftemp = fOSC_start * 1000;
1109 vmax = 0 ;
1110 while (loop == 1) {
1111 ftemp = ftemp + swp_ofs;
1112 vmax++;
1113
1114 // Upper bound
1115 if (ftemp > 2150000) {
1116 loop = 0;
1117 vmax--;
1118 }
1119 else if ((ftemp == 2150000) || (ftemp - state->frequency * 1000 >= fcp + state->srate / 4))
1120 loop = 0;
1121 }
1122
1123 loop = 1;
1124 ftemp = fOSC_start * 1000;
1125 vmin = 0 ;
1126 while (loop == 1) {
1127 ftemp = ftemp - swp_ofs;
1128 vmin--;
1129
1130 // Lower bound
1131 if (ftemp < 950000) {
1132 loop = 0;
1133 vmin++;
1134 }
1135 else if ((ftemp == 950000) || (state->frequency * 1000 - ftemp >= fcp + state->srate / 4))
1136 loop = 0;
1137 }
1138
1139 wait_t = (8000 + state->srate / 2) / state->srate;
1140 if (wait_t == 0)
1141 wait_t = 1;
1142
1143 i = 0;
1144 j = 0;
1145 prev_freq_num = 0;
1146 loop = 1;
1147 signal = 0;
1148 vmax_his = 0;
1149 vmin_his = 0;
1150 v = 0;
1151
1152 while (loop == 1) {
1153 swp_info_get(state, fOSC_start, state->srate,
1154 v, R, swp_ofs, &fOSC,
1155 &afcex_freq, &AFCEX_L, &AFCEX_H);
1156
Manu Abrahama890cce2009-12-02 21:58:38 -03001157 udelay(100);
Manu Abraham41e840b2009-12-02 21:57:10 -03001158 if (rf_val_set(state, fOSC, state->srate, R) < 0) {
1159 dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1160 return -1;
1161 }
Manu Abrahama890cce2009-12-02 21:58:38 -03001162 udelay(100);
Manu Abraham41e840b2009-12-02 21:57:10 -03001163 if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1164 dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1165 return -1;
1166 }
1167 if (srst(state) < 0) {
1168 dprintk(verbose, MB86A16_ERROR, 1, "srst error");
1169 return -1;
1170 }
1171 msleep_interruptible(wait_t);
1172
1173 if (mb86a16_read(state, 0x37, &SIG1) != 2) {
1174 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1175 return -1;
1176 }
1177 V[30 + v] = SIG1 ;
1178 swp_freq = swp_freq_calcuation(state, i, v, V, vmax, vmin,
1179 SIG1MIN, fOSC, afcex_freq,
1180 swp_ofs, &SIG1); //changed
1181
1182 signal_dupl = 0;
1183 for (j = 0; j < prev_freq_num; j++) {
1184 if ((ABS(prev_swp_freq[j] - swp_freq)) < (swp_ofs * 3 / 2)) {
1185 signal_dupl = 1;
1186 dprintk(verbose, MB86A16_INFO, 1, "Probably Duplicate Signal, j = %d", j);
1187 }
1188 }
1189 if ((signal_dupl == 0) && (swp_freq > 0) && (ABS(swp_freq - state->frequency * 1000) < fcp + state->srate / 6)) {
1190 dprintk(verbose, MB86A16_DEBUG, 1, "------ Signal detect ------ [swp_freq=[%07d, srate=%05d]]", swp_freq, state->srate);
1191 prev_swp_freq[prev_freq_num] = swp_freq;
1192 prev_freq_num++;
1193 swp_info_get2(state, state->srate, R, swp_freq,
1194 &afcex_freq, &fOSC,
1195 &AFCEX_L, &AFCEX_H);
1196
1197 if (rf_val_set(state, fOSC, state->srate, R) < 0) {
1198 dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1199 return -1;
1200 }
1201 if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1202 dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1203 return -1;
1204 }
1205 signal = signal_det(state, state->srate, &SIG1);
1206 if (signal == 1) {
1207 dprintk(verbose, MB86A16_ERROR, 1, "***** Signal Found *****");
1208 loop = 0;
1209 } else {
1210 dprintk(verbose, MB86A16_ERROR, 1, "!!!!! No signal !!!!!, try again...");
1211 smrt_info_get(state, state->srate);
1212 if (smrt_set(state, state->srate) < 0) {
1213 dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1214 return -1;
1215 }
1216 }
1217 }
1218 if (v > vmax)
1219 vmax_his = 1 ;
1220 if (v < vmin)
1221 vmin_his = 1 ;
1222 i++;
1223
1224 if ((i % 2 == 1) && (vmax_his == 1))
1225 i++;
1226 if ((i % 2 == 0) && (vmin_his == 1))
1227 i++;
1228
1229 if (i % 2 == 1)
1230 v = (i + 1) / 2;
1231 else
1232 v = -i / 2;
1233
1234 if ((vmax_his == 1) && (vmin_his == 1))
1235 loop = 0 ;
1236 }
1237
1238 if (signal == 1) {
1239 dprintk(verbose, MB86A16_INFO, 1, " Start Freq Error Check");
1240 S1T = 7 ;
1241 S0T = 1 ;
1242 CREN = 0 ;
1243 AFCEN = 1 ;
1244 AFCEXEN = 0 ;
1245
1246 if (S01T_set(state, S1T, S0T) < 0) {
1247 dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
1248 return -1;
1249 }
1250 smrt_info_get(state, state->srate);
1251 if (smrt_set(state, state->srate) < 0) {
1252 dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1253 return -1;
1254 }
1255 if (EN_set(state, CREN, AFCEN) < 0) {
1256 dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
1257 return -1;
1258 }
1259 if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
1260 dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1261 return -1;
1262 }
1263 afcex_info_get(state, afcex_freq, &AFCEX_L, &AFCEX_H);
1264 if (afcofs_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1265 dprintk(verbose, MB86A16_ERROR, 1, "AFCOFS data set error");
1266 return -1;
1267 }
1268 if (srst(state) < 0) {
1269 dprintk(verbose, MB86A16_ERROR, 1, "srst error");
1270 return -1;
1271 }
1272 // delay 4~200
1273 wait_t = 200000 / state->master_clk + 200000 / state->srate;
1274 msleep(wait_t);
1275 afcerr = afcerr_chk(state);
1276 if (afcerr == -1)
1277 return -1;
1278
1279 swp_freq = fOSC * 1000 + afcerr ;
1280 AFCEXEN = 1 ;
1281 if (state->srate >= 1500)
1282 smrt_d = state->srate / 3;
1283 else
1284 smrt_d = state->srate / 2;
1285 smrt_info_get(state, smrt_d);
1286 if (smrt_set(state, smrt_d) < 0) {
1287 dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1288 return -1;
1289 }
1290 if (AFCEXEN_set(state, AFCEXEN, smrt_d) < 0) {
1291 dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1292 return -1;
1293 }
1294 R = vco_dev_get(state, smrt_d);
1295 if (DAGC_data_set(state, 2, 0) < 0) {
1296 dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
1297 return -1;
1298 }
1299 for (i = 0; i < 3; i++) {
1300 temp_freq = swp_freq + (i - 1) * state->srate / 8;
1301 swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1302 if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
1303 dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1304 return -1;
1305 }
1306 if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1307 dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1308 return -1;
1309 }
1310 wait_t = 200000 / state->master_clk + 40000 / smrt_d;
1311 msleep(wait_t);
1312 dagcm[i] = dagcm_val_get(state);
1313 }
1314 if ((dagcm[0] > dagcm[1]) &&
1315 (dagcm[0] > dagcm[2]) &&
1316 (dagcm[0] - dagcm[1] > 2 * (dagcm[2] - dagcm[1]))) {
1317
1318 temp_freq = swp_freq - 2 * state->srate / 8;
1319 swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1320 if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
1321 dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1322 return -1;
1323 }
1324 if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1325 dprintk(verbose, MB86A16_ERROR, 1, "afcex data set");
1326 return -1;
1327 }
1328 wait_t = 200000 / state->master_clk + 40000 / smrt_d;
1329 msleep(wait_t);
1330 dagcm[3] = dagcm_val_get(state);
1331 if (dagcm[3] > dagcm[1])
1332 delta_freq = (dagcm[2] - dagcm[0] + dagcm[1] - dagcm[3]) * state->srate / 300;
1333 else
1334 delta_freq = 0;
1335 } else if ((dagcm[2] > dagcm[1]) &&
1336 (dagcm[2] > dagcm[0]) &&
1337 (dagcm[2] - dagcm[1] > 2 * (dagcm[0] - dagcm[1]))) {
1338
1339 temp_freq = swp_freq + 2 * state->srate / 8;
1340 swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1341 if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
1342 dprintk(verbose, MB86A16_ERROR, 1, "rf val set");
1343 return -1;
1344 }
1345 if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1346 dprintk(verbose, MB86A16_ERROR, 1, "afcex data set");
1347 return -1;
1348 }
1349 wait_t = 200000 / state->master_clk + 40000 / smrt_d;
1350 msleep(wait_t);
1351 dagcm[3] = dagcm_val_get(state);
1352 if (dagcm[3] > dagcm[1])
1353 delta_freq = (dagcm[2] - dagcm[0] + dagcm[3] - dagcm[1]) * state->srate / 300;
1354 else
1355 delta_freq = 0 ;
1356
1357 } else {
1358 delta_freq = 0 ;
1359 }
1360 dprintk(verbose, MB86A16_INFO, 1, "SWEEP Frequency = %d", swp_freq);
1361 swp_freq += delta_freq;
1362 dprintk(verbose, MB86A16_INFO, 1, "Adjusting .., DELTA Freq = %d, SWEEP Freq=%d", delta_freq, swp_freq);
1363 if (ABS(state->frequency * 1000 - swp_freq) > 3800) {
1364 dprintk(verbose, MB86A16_INFO, 1, "NO -- SIGNAL !");
1365 } else {
1366
1367 S1T = 0;
1368 S0T = 3;
1369 CREN = 1;
1370 AFCEN = 0;
1371 AFCEXEN = 1;
1372
1373 if (S01T_set(state, S1T, S0T) < 0) {
1374 dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
1375 return -1;
1376 }
1377 if (DAGC_data_set(state, 0, 0) < 0) {
1378 dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
1379 return -1;
1380 }
1381 R = vco_dev_get(state, state->srate);
1382 smrt_info_get(state, state->srate);
1383 if (smrt_set(state, state->srate) < 0) {
1384 dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1385 return -1;
1386 }
1387 if (EN_set(state, CREN, AFCEN) < 0) {
1388 dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
1389 return -1;
1390 }
1391 if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
1392 dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1393 return -1;
1394 }
1395 swp_info_get2(state, state->srate, R, swp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1396 if (rf_val_set(state, fOSC, state->srate, R) < 0) {
1397 dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1398 return -1;
1399 }
1400 if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1401 dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1402 return -1;
1403 }
1404 if (srst(state) < 0) {
1405 dprintk(verbose, MB86A16_ERROR, 1, "srst error");
1406 return -1;
1407 }
1408 wait_t = 7 + (10000 + state->srate / 2) / state->srate;
1409 if (wait_t == 0)
1410 wait_t = 1;
1411 msleep_interruptible(wait_t);
1412 if (mb86a16_read(state, 0x37, &SIG1) != 2) {
1413 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1414 return -EREMOTEIO;
1415 }
1416
1417 if (SIG1 > 110) {
1418 S2T = 4; S4T = 1; S5T = 6; ETH = 4; VIA = 6;
1419 wait_t = 7 + (917504 + state->srate / 2) / state->srate;
1420 } else if (SIG1 > 105) {
1421 S2T = 4; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1422 wait_t = 7 + (1048576 + state->srate / 2) / state->srate;
1423 } else if (SIG1 > 85) {
1424 S2T = 5; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1425 wait_t = 7 + (1310720 + state->srate / 2) / state->srate;
1426 } else if (SIG1 > 65) {
1427 S2T = 6; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1428 wait_t = 7 + (1572864 + state->srate / 2) / state->srate;
1429 } else {
1430 S2T = 7; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1431 wait_t = 7 + (2097152 + state->srate / 2) / state->srate;
1432 }
1433 S2T_set(state, S2T);
1434 S45T_set(state, S4T, S5T);
1435 Vi_set(state, ETH, VIA);
1436 srst(state);
1437 msleep_interruptible(wait_t);
1438 sync = sync_chk(state, &VIRM);
1439 dprintk(verbose, MB86A16_INFO, 1, "-------- Viterbi=[%d] SYNC=[%d] ---------", VIRM, sync);
1440 if (mb86a16_read(state, 0x0d, &state->signal) != 2) {
1441 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1442 return -EREMOTEIO;
1443 }
1444 if (VIRM) {
1445 if (VIRM == 4) { // 5/6
1446 if (SIG1 > 110)
1447 wait_t = ( 786432 + state->srate / 2) / state->srate;
1448 else
1449 wait_t = (1572864 + state->srate / 2) / state->srate;
1450 if (state->srate < 5000)
1451 // FIXME ! , should be a long wait !
1452 msleep_interruptible(wait_t);
1453 else
1454 msleep_interruptible(wait_t);
1455
1456 if (sync_chk(state, &junk) == 0) {
1457 iq_vt_set(state, 1);
1458 FEC_srst(state);
1459 }
1460 if (SIG1 > 110)
1461 wait_t = ( 786432 + state->srate / 2) / state->srate;
1462 else
1463 wait_t = (1572864 + state->srate / 2) / state->srate;
1464
1465 msleep_interruptible(wait_t);
1466 SEQ_set(state, 1);
1467 } else { // 1/2, 2/3, 3/4, 7/8
1468 if (SIG1 > 110)
1469 wait_t = ( 786432 + state->srate / 2) / state->srate;
1470 else
1471 wait_t = (1572864 + state->srate / 2) / state->srate;
1472
1473 msleep_interruptible(wait_t);
1474 SEQ_set(state, 1);
1475 }
1476 } else {
1477 dprintk(verbose, MB86A16_INFO, 1, "NO -- SIGNAL");
1478 SEQ_set(state, 1);
1479 }
1480 }
1481 } else {
1482 dprintk (verbose, MB86A16_INFO, 1, "NO -- SIGNAL");
1483 }
1484
1485 sync = sync_chk(state, &junk);
1486 if (sync) {
1487 dprintk(verbose, MB86A16_INFO, 1, "******* SYNC *******");
1488 freqerr_chk(state, state->frequency, state->srate, 1);
1489 }
1490 }
1491
1492 mb86a16_read(state, 0x15, &agcval);
1493 mb86a16_read(state, 0x26, &cnmval);
1494 dprintk(verbose, MB86A16_INFO, 1, "AGC = %02x CNM = %02x", agcval, cnmval);
1495
1496 return ret;
1497}
1498
1499static int mb86a16_send_diseqc_msg(struct dvb_frontend *fe,
1500 struct dvb_diseqc_master_cmd *cmd)
1501{
1502 struct mb86a16_state *state = fe->demodulator_priv;
1503 int i;
1504 u8 regs;
1505
1506 if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA) < 0)
1507 goto err;
1508 if (mb86a16_write(state, MB86A16_DCCOUT, 0x00) < 0)
1509 goto err;
1510 if (mb86a16_write(state, MB86A16_TONEOUT2, 0x04) < 0)
1511 goto err;
1512
1513 regs = 0x18;
1514
1515 if (cmd->msg_len > 5 || cmd->msg_len < 4)
1516 return -EINVAL;
1517
1518 for (i = 0; i < cmd->msg_len; i++) {
1519 if (mb86a16_write(state, regs, cmd->msg[i]) < 0)
1520 goto err;
1521
1522 regs++;
1523 }
1524 i += 0x90;
1525
1526 msleep_interruptible(10);
1527
1528 if (mb86a16_write(state, MB86A16_DCC1, i) < 0)
1529 goto err;
1530 if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1531 goto err;
1532
1533 return 0;
1534
1535err:
1536 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1537 return -EREMOTEIO;
1538}
1539
1540static int mb86a16_send_diseqc_burst(struct dvb_frontend *fe, fe_sec_mini_cmd_t burst)
1541{
1542 struct mb86a16_state *state = fe->demodulator_priv;
1543
1544 switch (burst) {
1545 case SEC_MINI_A:
1546 if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
1547 MB86A16_DCC1_TBEN |
1548 MB86A16_DCC1_TBO) < 0)
1549 goto err;
1550 if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1551 goto err;
1552 break;
1553 case SEC_MINI_B:
1554 if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
1555 MB86A16_DCC1_TBEN) < 0)
1556 goto err;
1557 if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1558 goto err;
1559 break;
1560 }
1561
1562 return 0;
1563err:
1564 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1565 return -EREMOTEIO;
1566}
1567
1568static int mb86a16_set_tone(struct dvb_frontend *fe, fe_sec_tone_mode_t tone)
1569{
1570 struct mb86a16_state *state = fe->demodulator_priv;
1571
1572 switch (tone) {
1573 case SEC_TONE_ON:
1574 if (mb86a16_write(state, MB86A16_TONEOUT2, 0x00) < 0)
1575 goto err;
1576 if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
1577 MB86A16_DCC1_CTOE) < 0)
1578
1579 goto err;
1580 if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1581 goto err;
1582 break;
1583 case SEC_TONE_OFF:
1584 if (mb86a16_write(state, MB86A16_TONEOUT2, 0x04) < 0)
1585 goto err;
1586 if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA) < 0)
1587 goto err;
1588 if (mb86a16_write(state, MB86A16_DCCOUT, 0x00) < 0)
1589 goto err;
1590 break;
1591 default:
1592 return -EINVAL;
1593 }
1594 return 0;
1595
1596err:
1597 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1598 return -EREMOTEIO;
1599}
1600
1601#define MB86A16_FE_ALGO 1
1602
1603static int mb86a16_frontend_algo(struct dvb_frontend *fe)
1604{
1605 return MB86A16_FE_ALGO;
1606}
1607
1608static int mb86a16_set_frontend(struct dvb_frontend *fe,
1609 struct dvb_frontend_parameters *p,
1610 unsigned int mode_flags,
1611 int *delay,
1612 fe_status_t *status)
1613{
1614 int ret = 0;
1615 struct mb86a16_state *state = fe->demodulator_priv;
1616
1617 if (p != NULL) {
1618 state->frequency = p->frequency / 1000;
1619 state->srate = p->u.qpsk.symbol_rate / 1000;
1620 ret = mb86a16_set_fe(state);
1621 }
1622 if (!(mode_flags & FE_TUNE_MODE_ONESHOT))
1623 mb86a16_read_status(fe, status);
1624
1625 *delay = HZ/3000;
1626
1627 return ret;
1628}
1629
1630static void mb86a16_release(struct dvb_frontend *fe)
1631{
1632 struct mb86a16_state *state = fe->demodulator_priv;
1633 kfree(state);
1634}
1635
1636static int mb86a16_init(struct dvb_frontend *fe)
1637{
1638 return 0;
1639}
1640
1641static int mb86a16_sleep(struct dvb_frontend *fe)
1642{
1643 return 0;
1644}
1645
1646static int mb86a16_read_ber(struct dvb_frontend *fe, u32 *ber)
1647{
1648 return 0;
1649}
1650
1651static int mb86a16_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
1652{
1653 *strength = 0;
1654
1655 return 0;
1656}
1657
1658struct cnr {
1659 u8 cn_reg;
1660 u8 cn_val;
1661};
1662
1663static const struct cnr cnr_tab[] = {
1664 { 35, 2 },
1665 { 40, 3 },
1666 { 50, 4 },
1667 { 60, 5 },
1668 { 70, 6 },
1669 { 80, 7 },
1670 { 92, 8 },
1671 { 103, 9 },
1672 { 115, 10 },
1673 { 138, 12 },
1674 { 162, 15 },
1675 { 180, 18 },
1676 { 185, 19 },
1677 { 189, 20 },
1678 { 195, 22 },
1679 { 199, 24 },
1680 { 201, 25 },
1681 { 202, 26 },
1682 { 203, 27 },
1683 { 205, 28 },
1684 { 208, 30 }
1685};
1686
1687static int mb86a16_read_snr(struct dvb_frontend *fe, u16 *snr)
1688{
1689 struct mb86a16_state *state = fe->demodulator_priv;
1690 int i = 0;
1691 int low_tide = 2, high_tide = 30, q_level;
1692 u8 cn;
1693
1694 if (mb86a16_read(state, 0x26, &cn) != 2) {
1695 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1696 return -EREMOTEIO;
1697 }
1698
1699 for (i = 0; i < ARRAY_SIZE(cnr_tab); i++) {
1700 if (cn < cnr_tab[i].cn_reg) {
1701 *snr = cnr_tab[i].cn_val;
1702 break;
1703 }
1704 }
1705 q_level = (*snr * 100) / (high_tide - low_tide);
1706 dprintk(verbose, MB86A16_ERROR, 1, "SNR (Quality) = [%d dB], Level=%d %%", *snr, q_level);
1707
1708 return 0;
1709}
1710
1711static int mb86a16_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
1712{
1713 return 0;
1714}
1715
1716static struct dvb_frontend_ops mb86a16_ops = {
1717 .info = {
1718 .name = "Fujitsu MB86A16 DVB-S",
1719 .type = FE_QPSK,
1720 .frequency_min = 950000,
1721 .frequency_max = 2150000,
1722 .frequency_stepsize = 125,
1723 .frequency_tolerance = 0,
1724 .symbol_rate_min = 1000000,
1725 .symbol_rate_max = 45000000,
1726 .symbol_rate_tolerance = 500,
1727 .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
1728 FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 |
1729 FE_CAN_FEC_7_8 | FE_CAN_QPSK |
1730 FE_CAN_FEC_AUTO
1731 },
1732 .release = mb86a16_release,
1733 .tune = mb86a16_set_frontend,
1734 .read_status = mb86a16_read_status,
1735 .get_frontend_algo = mb86a16_frontend_algo,
1736 .init = mb86a16_init,
1737 .sleep = mb86a16_sleep,
1738 .read_status = mb86a16_read_status,
1739
1740 .read_ber = mb86a16_read_ber,
1741 .read_signal_strength = mb86a16_read_signal_strength,
1742 .read_snr = mb86a16_read_snr,
1743 .read_ucblocks = mb86a16_read_ucblocks,
1744
1745 .diseqc_send_master_cmd = mb86a16_send_diseqc_msg,
1746 .diseqc_send_burst = mb86a16_send_diseqc_burst,
1747 .set_tone = mb86a16_set_tone,
1748};
1749
1750struct dvb_frontend *mb86a16_attach(const struct mb86a16_config *config,
1751 struct i2c_adapter *i2c_adap)
1752{
1753 u8 dev_id = 0;
1754 struct mb86a16_state *state = NULL;
1755
1756 state = kmalloc(sizeof (struct mb86a16_state), GFP_KERNEL);
1757 if (state == NULL)
1758 goto error;
1759
1760 state->config = config;
1761 state->i2c_adap = i2c_adap;
1762
1763 mb86a16_read(state, 0x7f, &dev_id);
1764 if (dev_id != 0xfe)
1765 goto error;
1766
1767 memcpy(&state->frontend.ops, &mb86a16_ops, sizeof (struct dvb_frontend_ops));
1768 state->frontend.demodulator_priv = state;
1769 state->frontend.ops.set_voltage = state->config->set_voltage;
1770
1771 return &state->frontend;
1772error:
1773 kfree(state);
1774 return NULL;
1775}
1776EXPORT_SYMBOL(mb86a16_attach);
1777MODULE_LICENSE("GPL");
1778MODULE_AUTHOR("Manu Abraham");