blob: c80c277454f399a9dbc78bb654c528344d7fb437 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * arch/parisc/kernel/firmware.c - safe PDC access routines
3 *
4 * PDC == Processor Dependent Code
5 *
6 * See http://www.parisc-linux.org/documentation/index.html
7 * for documentation describing the entry points and calling
8 * conventions defined below.
9 *
10 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
11 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
12 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
13 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
Thibaut Varene8ffaeaf2006-05-03 17:27:35 -060014 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
Linus Torvalds1da177e2005-04-16 15:20:36 -070015 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License as published by
18 * the Free Software Foundation; either version 2 of the License, or
19 * (at your option) any later version.
20 *
21 */
22
23/* I think it would be in everyone's best interest to follow this
24 * guidelines when writing PDC wrappers:
25 *
26 * - the name of the pdc wrapper should match one of the macros
27 * used for the first two arguments
28 * - don't use caps for random parts of the name
29 * - use the static PDC result buffers and "copyout" to structs
30 * supplied by the caller to encapsulate alignment restrictions
31 * - hold pdc_lock while in PDC or using static result buffers
32 * - use __pa() to convert virtual (kernel) pointers to physical
33 * ones.
34 * - the name of the struct used for pdc return values should equal
35 * one of the macros used for the first two arguments to the
36 * corresponding PDC call
37 * - keep the order of arguments
38 * - don't be smart (setting trailing NUL bytes for strings, return
39 * something useful even if the call failed) unless you are sure
40 * it's not going to affect functionality or performance
41 *
42 * Example:
43 * int pdc_cache_info(struct pdc_cache_info *cache_info )
44 * {
45 * int retval;
46 *
47 * spin_lock_irq(&pdc_lock);
48 * retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
49 * convert_to_wide(pdc_result);
50 * memcpy(cache_info, pdc_result, sizeof(*cache_info));
51 * spin_unlock_irq(&pdc_lock);
52 *
53 * return retval;
54 * }
55 * prumpf 991016
56 */
57
58#include <stdarg.h>
59
60#include <linux/delay.h>
61#include <linux/init.h>
62#include <linux/kernel.h>
63#include <linux/module.h>
64#include <linux/string.h>
65#include <linux/spinlock.h>
66
67#include <asm/page.h>
68#include <asm/pdc.h>
69#include <asm/pdcpat.h>
70#include <asm/system.h>
71#include <asm/processor.h> /* for boot_cpu_data */
72
73static DEFINE_SPINLOCK(pdc_lock);
74static unsigned long pdc_result[32] __attribute__ ((aligned (8)));
75static unsigned long pdc_result2[32] __attribute__ ((aligned (8)));
76
77#ifdef __LP64__
78#define WIDE_FIRMWARE 0x1
79#define NARROW_FIRMWARE 0x2
80
81/* Firmware needs to be initially set to narrow to determine the
82 * actual firmware width. */
Helge Deller8039de12006-01-10 20:35:03 -050083int parisc_narrow_firmware __read_mostly = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -070084#endif
85
Grant Grundler675ec7a2005-10-21 22:51:40 -040086/* On most currently-supported platforms, IODC I/O calls are 32-bit calls
87 * and MEM_PDC calls are always the same width as the OS.
88 * Some PAT boxes may have 64-bit IODC I/O.
Linus Torvalds1da177e2005-04-16 15:20:36 -070089 *
Grant Grundler675ec7a2005-10-21 22:51:40 -040090 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
91 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
92 * This allowed wide kernels to run on Cxxx boxes.
93 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
94 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
Linus Torvalds1da177e2005-04-16 15:20:36 -070095 */
96
97#ifdef __LP64__
98long real64_call(unsigned long function, ...);
99#endif
100long real32_call(unsigned long function, ...);
101
102#ifdef __LP64__
103# define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
104# define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
105#else
106# define MEM_PDC (unsigned long)PAGE0->mem_pdc
107# define mem_pdc_call(args...) real32_call(MEM_PDC, args)
108#endif
109
110
111/**
112 * f_extend - Convert PDC addresses to kernel addresses.
113 * @address: Address returned from PDC.
114 *
115 * This function is used to convert PDC addresses into kernel addresses
116 * when the PDC address size and kernel address size are different.
117 */
118static unsigned long f_extend(unsigned long address)
119{
120#ifdef __LP64__
121 if(unlikely(parisc_narrow_firmware)) {
122 if((address & 0xff000000) == 0xf0000000)
123 return 0xf0f0f0f000000000UL | (u32)address;
124
125 if((address & 0xf0000000) == 0xf0000000)
126 return 0xffffffff00000000UL | (u32)address;
127 }
128#endif
129 return address;
130}
131
132/**
133 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
134 * @address: The return buffer from PDC.
135 *
136 * This function is used to convert the return buffer addresses retrieved from PDC
137 * into kernel addresses when the PDC address size and kernel address size are
138 * different.
139 */
140static void convert_to_wide(unsigned long *addr)
141{
142#ifdef __LP64__
143 int i;
144 unsigned int *p = (unsigned int *)addr;
145
146 if(unlikely(parisc_narrow_firmware)) {
147 for(i = 31; i >= 0; --i)
148 addr[i] = p[i];
149 }
150#endif
151}
152
153/**
154 * set_firmware_width - Determine if the firmware is wide or narrow.
155 *
156 * This function must be called before any pdc_* function that uses the convert_to_wide
157 * function.
158 */
159void __init set_firmware_width(void)
160{
161#ifdef __LP64__
162 int retval;
163
164 spin_lock_irq(&pdc_lock);
165 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
166 convert_to_wide(pdc_result);
167 if(pdc_result[0] != NARROW_FIRMWARE)
168 parisc_narrow_firmware = 0;
169 spin_unlock_irq(&pdc_lock);
170#endif
171}
172
173/**
174 * pdc_emergency_unlock - Unlock the linux pdc lock
175 *
176 * This call unlocks the linux pdc lock in case we need some PDC functions
177 * (like pdc_add_valid) during kernel stack dump.
178 */
179void pdc_emergency_unlock(void)
180{
181 /* Spinlock DEBUG code freaks out if we unconditionally unlock */
182 if (spin_is_locked(&pdc_lock))
183 spin_unlock(&pdc_lock);
184}
185
186
187/**
188 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
189 * @address: Address to be verified.
190 *
191 * This PDC call attempts to read from the specified address and verifies
192 * if the address is valid.
193 *
194 * The return value is PDC_OK (0) in case accessing this address is valid.
195 */
196int pdc_add_valid(unsigned long address)
197{
198 int retval;
199
200 spin_lock_irq(&pdc_lock);
201 retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
202 spin_unlock_irq(&pdc_lock);
203
204 return retval;
205}
206EXPORT_SYMBOL(pdc_add_valid);
207
208/**
209 * pdc_chassis_info - Return chassis information.
210 * @result: The return buffer.
211 * @chassis_info: The memory buffer address.
212 * @len: The size of the memory buffer address.
213 *
214 * An HVERSION dependent call for returning the chassis information.
215 */
216int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
217{
218 int retval;
219
220 spin_lock_irq(&pdc_lock);
221 memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
222 memcpy(&pdc_result2, led_info, len);
223 retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
224 __pa(pdc_result), __pa(pdc_result2), len);
225 memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
226 memcpy(led_info, pdc_result2, len);
227 spin_unlock_irq(&pdc_lock);
228
229 return retval;
230}
231
232/**
233 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
234 * @retval: -1 on error, 0 on success. Other value are PDC errors
235 *
236 * Must be correctly formatted or expect system crash
237 */
238#ifdef __LP64__
239int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
240{
241 int retval = 0;
242
243 if (!is_pdc_pat())
244 return -1;
245
246 spin_lock_irq(&pdc_lock);
247 retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
248 spin_unlock_irq(&pdc_lock);
249
250 return retval;
251}
252#endif
253
254/**
Thibaut Varene8ffaeaf2006-05-03 17:27:35 -0600255 * pdc_chassis_disp - Updates chassis code
Linus Torvalds1da177e2005-04-16 15:20:36 -0700256 * @retval: -1 on error, 0 on success
Linus Torvalds1da177e2005-04-16 15:20:36 -0700257 */
258int pdc_chassis_disp(unsigned long disp)
259{
260 int retval = 0;
261
262 spin_lock_irq(&pdc_lock);
263 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
264 spin_unlock_irq(&pdc_lock);
265
266 return retval;
267}
268
269/**
Thibaut Varene8ffaeaf2006-05-03 17:27:35 -0600270 * pdc_chassis_warn - Fetches chassis warnings
271 * @retval: -1 on error, 0 on success
272 */
273int pdc_chassis_warn(unsigned long *warn)
274{
275 int retval = 0;
276
277 spin_lock_irq(&pdc_lock);
278 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
279 *warn = pdc_result[0];
280 spin_unlock_irq(&pdc_lock);
281
282 return retval;
283}
284
285/**
Linus Torvalds1da177e2005-04-16 15:20:36 -0700286 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
287 * @pdc_coproc_info: Return buffer address.
288 *
289 * This PDC call returns the presence and status of all the coprocessors
290 * attached to the processor.
291 */
292int __init pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
293{
294 int retval;
295
296 spin_lock_irq(&pdc_lock);
297 retval = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
298 convert_to_wide(pdc_result);
299 pdc_coproc_info->ccr_functional = pdc_result[0];
300 pdc_coproc_info->ccr_present = pdc_result[1];
301 pdc_coproc_info->revision = pdc_result[17];
302 pdc_coproc_info->model = pdc_result[18];
303 spin_unlock_irq(&pdc_lock);
304
305 return retval;
306}
307
308/**
309 * pdc_iodc_read - Read data from the modules IODC.
310 * @actcnt: The actual number of bytes.
311 * @hpa: The HPA of the module for the iodc read.
312 * @index: The iodc entry point.
313 * @iodc_data: A buffer memory for the iodc options.
314 * @iodc_data_size: Size of the memory buffer.
315 *
316 * This PDC call reads from the IODC of the module specified by the hpa
317 * argument.
318 */
319int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
320 void *iodc_data, unsigned int iodc_data_size)
321{
322 int retval;
323
324 spin_lock_irq(&pdc_lock);
325 retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa,
326 index, __pa(pdc_result2), iodc_data_size);
327 convert_to_wide(pdc_result);
328 *actcnt = pdc_result[0];
329 memcpy(iodc_data, pdc_result2, iodc_data_size);
330 spin_unlock_irq(&pdc_lock);
331
332 return retval;
333}
334EXPORT_SYMBOL(pdc_iodc_read);
335
336/**
337 * pdc_system_map_find_mods - Locate unarchitected modules.
338 * @pdc_mod_info: Return buffer address.
339 * @mod_path: pointer to dev path structure.
340 * @mod_index: fixed address module index.
341 *
342 * To locate and identify modules which reside at fixed I/O addresses, which
343 * do not self-identify via architected bus walks.
344 */
345int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
346 struct pdc_module_path *mod_path, long mod_index)
347{
348 int retval;
349
350 spin_lock_irq(&pdc_lock);
351 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result),
352 __pa(pdc_result2), mod_index);
353 convert_to_wide(pdc_result);
354 memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
355 memcpy(mod_path, pdc_result2, sizeof(*mod_path));
356 spin_unlock_irq(&pdc_lock);
357
358 pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
359 return retval;
360}
361
362/**
363 * pdc_system_map_find_addrs - Retrieve additional address ranges.
364 * @pdc_addr_info: Return buffer address.
365 * @mod_index: Fixed address module index.
366 * @addr_index: Address range index.
367 *
368 * Retrieve additional information about subsequent address ranges for modules
369 * with multiple address ranges.
370 */
371int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info,
372 long mod_index, long addr_index)
373{
374 int retval;
375
376 spin_lock_irq(&pdc_lock);
377 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
378 mod_index, addr_index);
379 convert_to_wide(pdc_result);
380 memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
381 spin_unlock_irq(&pdc_lock);
382
383 pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
384 return retval;
385}
386
387/**
388 * pdc_model_info - Return model information about the processor.
389 * @model: The return buffer.
390 *
391 * Returns the version numbers, identifiers, and capabilities from the processor module.
392 */
393int pdc_model_info(struct pdc_model *model)
394{
395 int retval;
396
397 spin_lock_irq(&pdc_lock);
398 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
399 convert_to_wide(pdc_result);
400 memcpy(model, pdc_result, sizeof(*model));
401 spin_unlock_irq(&pdc_lock);
402
403 return retval;
404}
405
406/**
407 * pdc_model_sysmodel - Get the system model name.
408 * @name: A char array of at least 81 characters.
409 *
410 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L)
411 */
412int pdc_model_sysmodel(char *name)
413{
414 int retval;
415
416 spin_lock_irq(&pdc_lock);
417 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
418 OS_ID_HPUX, __pa(name));
419 convert_to_wide(pdc_result);
420
421 if (retval == PDC_OK) {
422 name[pdc_result[0]] = '\0'; /* add trailing '\0' */
423 } else {
424 name[0] = 0;
425 }
426 spin_unlock_irq(&pdc_lock);
427
428 return retval;
429}
430
431/**
432 * pdc_model_versions - Identify the version number of each processor.
433 * @cpu_id: The return buffer.
434 * @id: The id of the processor to check.
435 *
436 * Returns the version number for each processor component.
437 *
438 * This comment was here before, but I do not know what it means :( -RB
439 * id: 0 = cpu revision, 1 = boot-rom-version
440 */
441int pdc_model_versions(unsigned long *versions, int id)
442{
443 int retval;
444
445 spin_lock_irq(&pdc_lock);
446 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
447 convert_to_wide(pdc_result);
448 *versions = pdc_result[0];
449 spin_unlock_irq(&pdc_lock);
450
451 return retval;
452}
453
454/**
455 * pdc_model_cpuid - Returns the CPU_ID.
456 * @cpu_id: The return buffer.
457 *
458 * Returns the CPU_ID value which uniquely identifies the cpu portion of
459 * the processor module.
460 */
461int pdc_model_cpuid(unsigned long *cpu_id)
462{
463 int retval;
464
465 spin_lock_irq(&pdc_lock);
466 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
467 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
468 convert_to_wide(pdc_result);
469 *cpu_id = pdc_result[0];
470 spin_unlock_irq(&pdc_lock);
471
472 return retval;
473}
474
475/**
476 * pdc_model_capabilities - Returns the platform capabilities.
477 * @capabilities: The return buffer.
478 *
479 * Returns information about platform support for 32- and/or 64-bit
480 * OSes, IO-PDIR coherency, and virtual aliasing.
481 */
482int pdc_model_capabilities(unsigned long *capabilities)
483{
484 int retval;
485
486 spin_lock_irq(&pdc_lock);
487 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
488 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
489 convert_to_wide(pdc_result);
490 *capabilities = pdc_result[0];
491 spin_unlock_irq(&pdc_lock);
492
493 return retval;
494}
495
496/**
497 * pdc_cache_info - Return cache and TLB information.
498 * @cache_info: The return buffer.
499 *
500 * Returns information about the processor's cache and TLB.
501 */
502int pdc_cache_info(struct pdc_cache_info *cache_info)
503{
504 int retval;
505
506 spin_lock_irq(&pdc_lock);
507 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
508 convert_to_wide(pdc_result);
509 memcpy(cache_info, pdc_result, sizeof(*cache_info));
510 spin_unlock_irq(&pdc_lock);
511
512 return retval;
513}
514
Kyle McMartina9d2d382006-06-16 18:20:00 -0400515/**
516 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
517 * @space_bits: Should be 0, if not, bad mojo!
518 *
519 * Returns information about Space ID hashing.
520 */
521int pdc_spaceid_bits(unsigned long *space_bits)
522{
523 int retval;
524
525 spin_lock_irq(&pdc_lock);
526 pdc_result[0] = 0;
527 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
528 convert_to_wide(pdc_result);
529 *space_bits = pdc_result[0];
530 spin_unlock_irq(&pdc_lock);
531
532 return retval;
533}
534
Linus Torvalds1da177e2005-04-16 15:20:36 -0700535#ifndef CONFIG_PA20
536/**
537 * pdc_btlb_info - Return block TLB information.
538 * @btlb: The return buffer.
539 *
540 * Returns information about the hardware Block TLB.
541 */
542int pdc_btlb_info(struct pdc_btlb_info *btlb)
543{
544 int retval;
545
546 spin_lock_irq(&pdc_lock);
547 retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
548 memcpy(btlb, pdc_result, sizeof(*btlb));
549 spin_unlock_irq(&pdc_lock);
550
551 if(retval < 0) {
552 btlb->max_size = 0;
553 }
554 return retval;
555}
556
557/**
558 * pdc_mem_map_hpa - Find fixed module information.
559 * @address: The return buffer
560 * @mod_path: pointer to dev path structure.
561 *
562 * This call was developed for S700 workstations to allow the kernel to find
563 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
564 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
565 * call.
566 *
567 * This call is supported by all existing S700 workstations (up to Gecko).
568 */
569int pdc_mem_map_hpa(struct pdc_memory_map *address,
570 struct pdc_module_path *mod_path)
571{
572 int retval;
573
574 spin_lock_irq(&pdc_lock);
575 memcpy(pdc_result2, mod_path, sizeof(*mod_path));
576 retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
577 __pa(pdc_result2));
578 memcpy(address, pdc_result, sizeof(*address));
579 spin_unlock_irq(&pdc_lock);
580
581 return retval;
582}
583#endif /* !CONFIG_PA20 */
584
585/**
586 * pdc_lan_station_id - Get the LAN address.
587 * @lan_addr: The return buffer.
588 * @hpa: The network device HPA.
589 *
590 * Get the LAN station address when it is not directly available from the LAN hardware.
591 */
592int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
593{
594 int retval;
595
596 spin_lock_irq(&pdc_lock);
597 retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
598 __pa(pdc_result), hpa);
599 if (retval < 0) {
600 /* FIXME: else read MAC from NVRAM */
601 memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
602 } else {
603 memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
604 }
605 spin_unlock_irq(&pdc_lock);
606
607 return retval;
608}
609EXPORT_SYMBOL(pdc_lan_station_id);
610
611/**
612 * pdc_stable_read - Read data from Stable Storage.
613 * @staddr: Stable Storage address to access.
614 * @memaddr: The memory address where Stable Storage data shall be copied.
615 * @count: number of bytes to transfert. count is multiple of 4.
616 *
617 * This PDC call reads from the Stable Storage address supplied in staddr
618 * and copies count bytes to the memory address memaddr.
619 * The call will fail if staddr+count > PDC_STABLE size.
620 */
621int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
622{
623 int retval;
624
625 spin_lock_irq(&pdc_lock);
626 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
627 __pa(pdc_result), count);
628 convert_to_wide(pdc_result);
629 memcpy(memaddr, pdc_result, count);
630 spin_unlock_irq(&pdc_lock);
631
632 return retval;
633}
634EXPORT_SYMBOL(pdc_stable_read);
635
636/**
637 * pdc_stable_write - Write data to Stable Storage.
638 * @staddr: Stable Storage address to access.
639 * @memaddr: The memory address where Stable Storage data shall be read from.
640 * @count: number of bytes to transfert. count is multiple of 4.
641 *
642 * This PDC call reads count bytes from the supplied memaddr address,
643 * and copies count bytes to the Stable Storage address staddr.
644 * The call will fail if staddr+count > PDC_STABLE size.
645 */
646int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
647{
648 int retval;
649
650 spin_lock_irq(&pdc_lock);
651 memcpy(pdc_result, memaddr, count);
652 convert_to_wide(pdc_result);
653 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
654 __pa(pdc_result), count);
655 spin_unlock_irq(&pdc_lock);
656
657 return retval;
658}
659EXPORT_SYMBOL(pdc_stable_write);
660
661/**
662 * pdc_stable_get_size - Get Stable Storage size in bytes.
663 * @size: pointer where the size will be stored.
664 *
665 * This PDC call returns the number of bytes in the processor's Stable
666 * Storage, which is the number of contiguous bytes implemented in Stable
667 * Storage starting from staddr=0. size in an unsigned 64-bit integer
668 * which is a multiple of four.
669 */
670int pdc_stable_get_size(unsigned long *size)
671{
672 int retval;
673
674 spin_lock_irq(&pdc_lock);
675 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
676 *size = pdc_result[0];
677 spin_unlock_irq(&pdc_lock);
678
679 return retval;
680}
681EXPORT_SYMBOL(pdc_stable_get_size);
682
683/**
684 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
685 *
686 * This PDC call is meant to be used to check the integrity of the current
687 * contents of Stable Storage.
688 */
689int pdc_stable_verify_contents(void)
690{
691 int retval;
692
693 spin_lock_irq(&pdc_lock);
694 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
695 spin_unlock_irq(&pdc_lock);
696
697 return retval;
698}
699EXPORT_SYMBOL(pdc_stable_verify_contents);
700
701/**
702 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
703 * the validity indicator.
704 *
705 * This PDC call will erase all contents of Stable Storage. Use with care!
706 */
707int pdc_stable_initialize(void)
708{
709 int retval;
710
711 spin_lock_irq(&pdc_lock);
712 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
713 spin_unlock_irq(&pdc_lock);
714
715 return retval;
716}
717EXPORT_SYMBOL(pdc_stable_initialize);
718
719/**
720 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
721 * @hwpath: fully bc.mod style path to the device.
722 * @initiator: the array to return the result into
723 *
724 * Get the SCSI operational parameters from PDC.
725 * Needed since HPUX never used BIOS or symbios card NVRAM.
726 * Most ncr/sym cards won't have an entry and just use whatever
727 * capabilities of the card are (eg Ultra, LVD). But there are
728 * several cases where it's useful:
729 * o set SCSI id for Multi-initiator clusters,
730 * o cable too long (ie SE scsi 10Mhz won't support 6m length),
731 * o bus width exported is less than what the interface chip supports.
732 */
733int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
734{
735 int retval;
736
737 spin_lock_irq(&pdc_lock);
738
739/* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
740#define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
741 strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
742
743 retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR,
744 __pa(pdc_result), __pa(hwpath));
745 if (retval < PDC_OK)
746 goto out;
747
748 if (pdc_result[0] < 16) {
749 initiator->host_id = pdc_result[0];
750 } else {
751 initiator->host_id = -1;
752 }
753
754 /*
755 * Sprockets and Piranha return 20 or 40 (MT/s). Prelude returns
756 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
757 */
758 switch (pdc_result[1]) {
759 case 1: initiator->factor = 50; break;
760 case 2: initiator->factor = 25; break;
761 case 5: initiator->factor = 12; break;
762 case 25: initiator->factor = 10; break;
763 case 20: initiator->factor = 12; break;
764 case 40: initiator->factor = 10; break;
765 default: initiator->factor = -1; break;
766 }
767
768 if (IS_SPROCKETS()) {
769 initiator->width = pdc_result[4];
770 initiator->mode = pdc_result[5];
771 } else {
772 initiator->width = -1;
773 initiator->mode = -1;
774 }
775
776 out:
777 spin_unlock_irq(&pdc_lock);
778 return (retval >= PDC_OK);
779}
780EXPORT_SYMBOL(pdc_get_initiator);
781
782
783/**
784 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
785 * @num_entries: The return value.
786 * @hpa: The HPA for the device.
787 *
788 * This PDC function returns the number of entries in the specified cell's
789 * interrupt table.
790 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
791 */
792int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
793{
794 int retval;
795
796 spin_lock_irq(&pdc_lock);
797 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE,
798 __pa(pdc_result), hpa);
799 convert_to_wide(pdc_result);
800 *num_entries = pdc_result[0];
801 spin_unlock_irq(&pdc_lock);
802
803 return retval;
804}
805
806/**
807 * pdc_pci_irt - Get the PCI interrupt routing table.
808 * @num_entries: The number of entries in the table.
809 * @hpa: The Hard Physical Address of the device.
810 * @tbl:
811 *
812 * Get the PCI interrupt routing table for the device at the given HPA.
813 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
814 */
815int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
816{
817 int retval;
818
819 BUG_ON((unsigned long)tbl & 0x7);
820
821 spin_lock_irq(&pdc_lock);
822 pdc_result[0] = num_entries;
823 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL,
824 __pa(pdc_result), hpa, __pa(tbl));
825 spin_unlock_irq(&pdc_lock);
826
827 return retval;
828}
829
830
831#if 0 /* UNTEST CODE - left here in case someone needs it */
832
833/**
834 * pdc_pci_config_read - read PCI config space.
835 * @hpa token from PDC to indicate which PCI device
836 * @pci_addr configuration space address to read from
837 *
838 * Read PCI Configuration space *before* linux PCI subsystem is running.
839 */
840unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
841{
842 int retval;
843 spin_lock_irq(&pdc_lock);
844 pdc_result[0] = 0;
845 pdc_result[1] = 0;
846 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG,
847 __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
848 spin_unlock_irq(&pdc_lock);
849 return retval ? ~0 : (unsigned int) pdc_result[0];
850}
851
852
853/**
854 * pdc_pci_config_write - read PCI config space.
855 * @hpa token from PDC to indicate which PCI device
856 * @pci_addr configuration space address to write
857 * @val value we want in the 32-bit register
858 *
859 * Write PCI Configuration space *before* linux PCI subsystem is running.
860 */
861void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
862{
863 int retval;
864 spin_lock_irq(&pdc_lock);
865 pdc_result[0] = 0;
866 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG,
867 __pa(pdc_result), hpa,
868 cfg_addr&~3UL, 4UL, (unsigned long) val);
869 spin_unlock_irq(&pdc_lock);
870 return retval;
871}
872#endif /* UNTESTED CODE */
873
874/**
875 * pdc_tod_read - Read the Time-Of-Day clock.
876 * @tod: The return buffer:
877 *
878 * Read the Time-Of-Day clock
879 */
880int pdc_tod_read(struct pdc_tod *tod)
881{
882 int retval;
883
884 spin_lock_irq(&pdc_lock);
885 retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
886 convert_to_wide(pdc_result);
887 memcpy(tod, pdc_result, sizeof(*tod));
888 spin_unlock_irq(&pdc_lock);
889
890 return retval;
891}
892EXPORT_SYMBOL(pdc_tod_read);
893
894/**
895 * pdc_tod_set - Set the Time-Of-Day clock.
896 * @sec: The number of seconds since epoch.
897 * @usec: The number of micro seconds.
898 *
899 * Set the Time-Of-Day clock.
900 */
901int pdc_tod_set(unsigned long sec, unsigned long usec)
902{
903 int retval;
904
905 spin_lock_irq(&pdc_lock);
906 retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
907 spin_unlock_irq(&pdc_lock);
908
909 return retval;
910}
911EXPORT_SYMBOL(pdc_tod_set);
912
913#ifdef __LP64__
914int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
915 struct pdc_memory_table *tbl, unsigned long entries)
916{
917 int retval;
918
919 spin_lock_irq(&pdc_lock);
920 retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
921 convert_to_wide(pdc_result);
922 memcpy(r_addr, pdc_result, sizeof(*r_addr));
923 memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
924 spin_unlock_irq(&pdc_lock);
925
926 return retval;
927}
928#endif /* __LP64__ */
929
930/* FIXME: Is this pdc used? I could not find type reference to ftc_bitmap
931 * so I guessed at unsigned long. Someone who knows what this does, can fix
932 * it later. :)
933 */
934int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
935{
936 int retval;
937
938 spin_lock_irq(&pdc_lock);
939 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
940 PDC_FIRM_TEST_MAGIC, ftc_bitmap);
941 spin_unlock_irq(&pdc_lock);
942
943 return retval;
944}
945
946/*
947 * pdc_do_reset - Reset the system.
948 *
949 * Reset the system.
950 */
951int pdc_do_reset(void)
952{
953 int retval;
954
955 spin_lock_irq(&pdc_lock);
956 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
957 spin_unlock_irq(&pdc_lock);
958
959 return retval;
960}
961
962/*
963 * pdc_soft_power_info - Enable soft power switch.
964 * @power_reg: address of soft power register
965 *
966 * Return the absolute address of the soft power switch register
967 */
968int __init pdc_soft_power_info(unsigned long *power_reg)
969{
970 int retval;
971
972 *power_reg = (unsigned long) (-1);
973
974 spin_lock_irq(&pdc_lock);
975 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
976 if (retval == PDC_OK) {
977 convert_to_wide(pdc_result);
978 *power_reg = f_extend(pdc_result[0]);
979 }
980 spin_unlock_irq(&pdc_lock);
981
982 return retval;
983}
984
985/*
986 * pdc_soft_power_button - Control the soft power button behaviour
987 * @sw_control: 0 for hardware control, 1 for software control
988 *
989 *
990 * This PDC function places the soft power button under software or
991 * hardware control.
992 * Under software control the OS may control to when to allow to shut
993 * down the system. Under hardware control pressing the power button
994 * powers off the system immediately.
995 */
996int pdc_soft_power_button(int sw_control)
997{
998 int retval;
999 spin_lock_irq(&pdc_lock);
1000 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1001 spin_unlock_irq(&pdc_lock);
1002 return retval;
1003}
1004
1005/*
1006 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1007 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1008 * who knows what other platform firmware might do with this OS "hook".
1009 */
1010void pdc_io_reset(void)
1011{
1012 spin_lock_irq(&pdc_lock);
1013 mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1014 spin_unlock_irq(&pdc_lock);
1015}
1016
1017/*
1018 * pdc_io_reset_devices - Hack to Stop USB controller
1019 *
1020 * If PDC used the usb controller, the usb controller
1021 * is still running and will crash the machines during iommu
1022 * setup, because of still running DMA. This PDC call
1023 * stops the USB controller.
1024 * Normally called after calling pdc_io_reset().
1025 */
1026void pdc_io_reset_devices(void)
1027{
1028 spin_lock_irq(&pdc_lock);
1029 mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1030 spin_unlock_irq(&pdc_lock);
1031}
1032
1033
1034/**
1035 * pdc_iodc_putc - Console character print using IODC.
1036 * @c: the character to output.
1037 *
1038 * Note that only these special chars are architected for console IODC io:
1039 * BEL, BS, CR, and LF. Others are passed through.
1040 * Since the HP console requires CR+LF to perform a 'newline', we translate
1041 * "\n" to "\r\n".
1042 */
1043void pdc_iodc_putc(unsigned char c)
1044{
1045 /* XXX Should we spinlock posx usage */
1046 static int posx; /* for simple TAB-Simulation... */
1047 static int __attribute__((aligned(8))) iodc_retbuf[32];
1048 static char __attribute__((aligned(64))) iodc_dbuf[4096];
1049 unsigned int n;
1050 unsigned int flags;
1051
1052 switch (c) {
1053 case '\n':
1054 iodc_dbuf[0] = '\r';
1055 iodc_dbuf[1] = '\n';
1056 n = 2;
1057 posx = 0;
1058 break;
1059 case '\t':
1060 pdc_iodc_putc(' ');
1061 while (posx & 7) /* expand TAB */
1062 pdc_iodc_putc(' ');
1063 return; /* return since IODC can't handle this */
1064 case '\b':
1065 posx-=2; /* BS */
1066 default:
1067 iodc_dbuf[0] = c;
1068 n = 1;
1069 posx++;
1070 break;
1071 }
1072
1073 spin_lock_irqsave(&pdc_lock, flags);
1074 real32_call(PAGE0->mem_cons.iodc_io,
1075 (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1076 PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1077 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), n, 0);
1078 spin_unlock_irqrestore(&pdc_lock, flags);
1079}
1080
1081/**
1082 * pdc_iodc_outc - Console character print using IODC (without conversions).
1083 * @c: the character to output.
1084 *
1085 * Write the character directly to the IODC console.
1086 */
1087void pdc_iodc_outc(unsigned char c)
1088{
1089 unsigned int n, flags;
1090
1091 /* fill buffer with one caracter and print it */
1092 static int __attribute__((aligned(8))) iodc_retbuf[32];
1093 static char __attribute__((aligned(64))) iodc_dbuf[4096];
1094
1095 n = 1;
1096 iodc_dbuf[0] = c;
1097
1098 spin_lock_irqsave(&pdc_lock, flags);
1099 real32_call(PAGE0->mem_cons.iodc_io,
1100 (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1101 PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1102 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), n, 0);
1103 spin_unlock_irqrestore(&pdc_lock, flags);
1104}
1105
1106/**
1107 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1108 *
1109 * Read a character (non-blocking) from the PDC console, returns -1 if
1110 * key is not present.
1111 */
1112int pdc_iodc_getc(void)
1113{
1114 unsigned int flags;
1115 static int __attribute__((aligned(8))) iodc_retbuf[32];
1116 static char __attribute__((aligned(64))) iodc_dbuf[4096];
1117 int ch;
1118 int status;
1119
1120 /* Bail if no console input device. */
1121 if (!PAGE0->mem_kbd.iodc_io)
1122 return 0;
1123
1124 /* wait for a keyboard (rs232)-input */
1125 spin_lock_irqsave(&pdc_lock, flags);
1126 real32_call(PAGE0->mem_kbd.iodc_io,
1127 (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1128 PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers),
1129 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1130
1131 ch = *iodc_dbuf;
1132 status = *iodc_retbuf;
1133 spin_unlock_irqrestore(&pdc_lock, flags);
1134
1135 if (status == 0)
1136 return -1;
1137
1138 return ch;
1139}
1140
1141int pdc_sti_call(unsigned long func, unsigned long flags,
1142 unsigned long inptr, unsigned long outputr,
1143 unsigned long glob_cfg)
1144{
1145 int retval;
1146
1147 spin_lock_irq(&pdc_lock);
1148 retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1149 spin_unlock_irq(&pdc_lock);
1150
1151 return retval;
1152}
1153EXPORT_SYMBOL(pdc_sti_call);
1154
1155#ifdef __LP64__
1156/**
1157 * pdc_pat_cell_get_number - Returns the cell number.
1158 * @cell_info: The return buffer.
1159 *
1160 * This PDC call returns the cell number of the cell from which the call
1161 * is made.
1162 */
1163int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1164{
1165 int retval;
1166
1167 spin_lock_irq(&pdc_lock);
1168 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1169 memcpy(cell_info, pdc_result, sizeof(*cell_info));
1170 spin_unlock_irq(&pdc_lock);
1171
1172 return retval;
1173}
1174
1175/**
1176 * pdc_pat_cell_module - Retrieve the cell's module information.
1177 * @actcnt: The number of bytes written to mem_addr.
1178 * @ploc: The physical location.
1179 * @mod: The module index.
1180 * @view_type: The view of the address type.
1181 * @mem_addr: The return buffer.
1182 *
1183 * This PDC call returns information about each module attached to the cell
1184 * at the specified location.
1185 */
1186int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1187 unsigned long view_type, void *mem_addr)
1188{
1189 int retval;
1190 static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1191
1192 spin_lock_irq(&pdc_lock);
1193 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result),
1194 ploc, mod, view_type, __pa(&result));
1195 if(!retval) {
1196 *actcnt = pdc_result[0];
1197 memcpy(mem_addr, &result, *actcnt);
1198 }
1199 spin_unlock_irq(&pdc_lock);
1200
1201 return retval;
1202}
1203
1204/**
1205 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1206 * @cpu_info: The return buffer.
1207 * @hpa: The Hard Physical Address of the CPU.
1208 *
1209 * Retrieve the cpu number for the cpu at the specified HPA.
1210 */
1211int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, void *hpa)
1212{
1213 int retval;
1214
1215 spin_lock_irq(&pdc_lock);
1216 retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1217 __pa(&pdc_result), hpa);
1218 memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1219 spin_unlock_irq(&pdc_lock);
1220
1221 return retval;
1222}
1223
1224/**
1225 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1226 * @num_entries: The return value.
1227 * @cell_num: The target cell.
1228 *
1229 * This PDC function returns the number of entries in the specified cell's
1230 * interrupt table.
1231 */
1232int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1233{
1234 int retval;
1235
1236 spin_lock_irq(&pdc_lock);
1237 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1238 __pa(pdc_result), cell_num);
1239 *num_entries = pdc_result[0];
1240 spin_unlock_irq(&pdc_lock);
1241
1242 return retval;
1243}
1244
1245/**
1246 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1247 * @r_addr: The return buffer.
1248 * @cell_num: The target cell.
1249 *
1250 * This PDC function returns the actual interrupt table for the specified cell.
1251 */
1252int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1253{
1254 int retval;
1255
1256 spin_lock_irq(&pdc_lock);
1257 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1258 __pa(r_addr), cell_num);
1259 spin_unlock_irq(&pdc_lock);
1260
1261 return retval;
1262}
1263
1264/**
1265 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1266 * @actlen: The return buffer.
1267 * @mem_addr: Pointer to the memory buffer.
1268 * @count: The number of bytes to read from the buffer.
1269 * @offset: The offset with respect to the beginning of the buffer.
1270 *
1271 */
1272int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr,
1273 unsigned long count, unsigned long offset)
1274{
1275 int retval;
1276
1277 spin_lock_irq(&pdc_lock);
1278 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result),
1279 __pa(pdc_result2), count, offset);
1280 *actual_len = pdc_result[0];
1281 memcpy(mem_addr, pdc_result2, *actual_len);
1282 spin_unlock_irq(&pdc_lock);
1283
1284 return retval;
1285}
1286
1287/**
1288 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1289 * @pci_addr: PCI configuration space address for which the read request is being made.
1290 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4.
1291 * @mem_addr: Pointer to return memory buffer.
1292 *
1293 */
1294int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1295{
1296 int retval;
1297 spin_lock_irq(&pdc_lock);
1298 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1299 __pa(pdc_result), pci_addr, pci_size);
1300 switch(pci_size) {
1301 case 1: *(u8 *) mem_addr = (u8) pdc_result[0];
1302 case 2: *(u16 *)mem_addr = (u16) pdc_result[0];
1303 case 4: *(u32 *)mem_addr = (u32) pdc_result[0];
1304 }
1305 spin_unlock_irq(&pdc_lock);
1306
1307 return retval;
1308}
1309
1310/**
1311 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1312 * @pci_addr: PCI configuration space address for which the write request is being made.
1313 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4.
1314 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be
1315 * written to PCI Config space.
1316 *
1317 */
1318int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1319{
1320 int retval;
1321
1322 spin_lock_irq(&pdc_lock);
1323 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1324 pci_addr, pci_size, val);
1325 spin_unlock_irq(&pdc_lock);
1326
1327 return retval;
1328}
1329#endif /* __LP64__ */
1330
1331
1332/***************** 32-bit real-mode calls ***********/
1333/* The struct below is used
1334 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1335 * real32_call_asm() then uses this stack in narrow real mode
1336 */
1337
1338struct narrow_stack {
1339 /* use int, not long which is 64 bits */
1340 unsigned int arg13;
1341 unsigned int arg12;
1342 unsigned int arg11;
1343 unsigned int arg10;
1344 unsigned int arg9;
1345 unsigned int arg8;
1346 unsigned int arg7;
1347 unsigned int arg6;
1348 unsigned int arg5;
1349 unsigned int arg4;
1350 unsigned int arg3;
1351 unsigned int arg2;
1352 unsigned int arg1;
1353 unsigned int arg0;
1354 unsigned int frame_marker[8];
1355 unsigned int sp;
1356 /* in reality, there's nearly 8k of stack after this */
1357};
1358
1359long real32_call(unsigned long fn, ...)
1360{
1361 va_list args;
1362 extern struct narrow_stack real_stack;
1363 extern unsigned long real32_call_asm(unsigned int *,
1364 unsigned int *,
1365 unsigned int);
1366
1367 va_start(args, fn);
1368 real_stack.arg0 = va_arg(args, unsigned int);
1369 real_stack.arg1 = va_arg(args, unsigned int);
1370 real_stack.arg2 = va_arg(args, unsigned int);
1371 real_stack.arg3 = va_arg(args, unsigned int);
1372 real_stack.arg4 = va_arg(args, unsigned int);
1373 real_stack.arg5 = va_arg(args, unsigned int);
1374 real_stack.arg6 = va_arg(args, unsigned int);
1375 real_stack.arg7 = va_arg(args, unsigned int);
1376 real_stack.arg8 = va_arg(args, unsigned int);
1377 real_stack.arg9 = va_arg(args, unsigned int);
1378 real_stack.arg10 = va_arg(args, unsigned int);
1379 real_stack.arg11 = va_arg(args, unsigned int);
1380 real_stack.arg12 = va_arg(args, unsigned int);
1381 real_stack.arg13 = va_arg(args, unsigned int);
1382 va_end(args);
1383
1384 return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1385}
1386
1387#ifdef __LP64__
1388/***************** 64-bit real-mode calls ***********/
1389
1390struct wide_stack {
1391 unsigned long arg0;
1392 unsigned long arg1;
1393 unsigned long arg2;
1394 unsigned long arg3;
1395 unsigned long arg4;
1396 unsigned long arg5;
1397 unsigned long arg6;
1398 unsigned long arg7;
1399 unsigned long arg8;
1400 unsigned long arg9;
1401 unsigned long arg10;
1402 unsigned long arg11;
1403 unsigned long arg12;
1404 unsigned long arg13;
1405 unsigned long frame_marker[2]; /* rp, previous sp */
1406 unsigned long sp;
1407 /* in reality, there's nearly 8k of stack after this */
1408};
1409
1410long real64_call(unsigned long fn, ...)
1411{
1412 va_list args;
1413 extern struct wide_stack real64_stack;
1414 extern unsigned long real64_call_asm(unsigned long *,
1415 unsigned long *,
1416 unsigned long);
1417
1418 va_start(args, fn);
1419 real64_stack.arg0 = va_arg(args, unsigned long);
1420 real64_stack.arg1 = va_arg(args, unsigned long);
1421 real64_stack.arg2 = va_arg(args, unsigned long);
1422 real64_stack.arg3 = va_arg(args, unsigned long);
1423 real64_stack.arg4 = va_arg(args, unsigned long);
1424 real64_stack.arg5 = va_arg(args, unsigned long);
1425 real64_stack.arg6 = va_arg(args, unsigned long);
1426 real64_stack.arg7 = va_arg(args, unsigned long);
1427 real64_stack.arg8 = va_arg(args, unsigned long);
1428 real64_stack.arg9 = va_arg(args, unsigned long);
1429 real64_stack.arg10 = va_arg(args, unsigned long);
1430 real64_stack.arg11 = va_arg(args, unsigned long);
1431 real64_stack.arg12 = va_arg(args, unsigned long);
1432 real64_stack.arg13 = va_arg(args, unsigned long);
1433 va_end(args);
1434
1435 return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1436}
1437
1438#endif /* __LP64__ */
1439