blob: b94e4dffba1920beb3ea431721dd94dffbd53bb1 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002 * Common time routines among all ppc machines.
3 *
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8 *
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
14 *
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17 *
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time. (for iSeries, we calibrate the timebase
21 * against the Titan chip's clock.)
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
25 *
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
Linus Torvalds1da177e2005-04-16 15:20:36 -070035#include <linux/errno.h>
36#include <linux/module.h>
37#include <linux/sched.h>
38#include <linux/kernel.h>
39#include <linux/param.h>
40#include <linux/string.h>
41#include <linux/mm.h>
42#include <linux/interrupt.h>
43#include <linux/timex.h>
44#include <linux/kernel_stat.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070045#include <linux/time.h>
46#include <linux/init.h>
47#include <linux/profile.h>
48#include <linux/cpu.h>
49#include <linux/security.h>
Paul Mackerrasf2783c12005-10-20 09:23:26 +100050#include <linux/percpu.h>
51#include <linux/rtc.h>
Paul Mackerras092b8f32006-02-20 10:38:56 +110052#include <linux/jiffies.h>
Paul Mackerrasc6622f62006-02-24 10:06:59 +110053#include <linux/posix-timers.h>
David Howells7d12e782006-10-05 14:55:46 +010054#include <linux/irq.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070055
Linus Torvalds1da177e2005-04-16 15:20:36 -070056#include <asm/io.h>
57#include <asm/processor.h>
58#include <asm/nvram.h>
59#include <asm/cache.h>
60#include <asm/machdep.h>
Paul Mackerrasf2783c12005-10-20 09:23:26 +100061#include <asm/uaccess.h>
62#include <asm/time.h>
63#include <asm/prom.h>
64#include <asm/irq.h>
65#include <asm/div64.h>
Paul Mackerras2249ca92005-11-07 13:18:13 +110066#include <asm/smp.h>
Benjamin Herrenschmidta7f290d2005-11-11 21:15:21 +110067#include <asm/vdso_datapage.h>
Paul Mackerrasf2783c12005-10-20 09:23:26 +100068#ifdef CONFIG_PPC64
Paul Mackerrasf2783c12005-10-20 09:23:26 +100069#include <asm/firmware.h>
70#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -070071#ifdef CONFIG_PPC_ISERIES
Kelly Daly8875ccf2005-11-02 14:13:34 +110072#include <asm/iseries/it_lp_queue.h>
Kelly Daly8021b8a2005-11-02 11:41:12 +110073#include <asm/iseries/hv_call_xm.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070074#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -070075
Linus Torvalds1da177e2005-04-16 15:20:36 -070076#ifdef CONFIG_PPC_ISERIES
Tony Breeds71712b42007-06-22 16:54:30 +100077static unsigned long __initdata iSeries_recal_titan;
78static signed long __initdata iSeries_recal_tb;
Linus Torvalds1da177e2005-04-16 15:20:36 -070079#endif
80
81#define XSEC_PER_SEC (1024*1024)
82
Paul Mackerrasf2783c12005-10-20 09:23:26 +100083#ifdef CONFIG_PPC64
84#define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
85#else
86/* compute ((xsec << 12) * max) >> 32 */
87#define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
88#endif
89
Linus Torvalds1da177e2005-04-16 15:20:36 -070090unsigned long tb_ticks_per_jiffy;
91unsigned long tb_ticks_per_usec = 100; /* sane default */
92EXPORT_SYMBOL(tb_ticks_per_usec);
93unsigned long tb_ticks_per_sec;
Paul Mackerras2cf82c02006-02-27 15:41:47 +110094EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
Paul Mackerrasf2783c12005-10-20 09:23:26 +100095u64 tb_to_xs;
96unsigned tb_to_us;
Paul Mackerras092b8f32006-02-20 10:38:56 +110097
Roman Zippel19923c12006-06-26 00:25:18 -070098#define TICKLEN_SCALE TICK_LENGTH_SHIFT
Paul Mackerras092b8f32006-02-20 10:38:56 +110099u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
100u64 ticklen_to_xs; /* 0.64 fraction */
101
102/* If last_tick_len corresponds to about 1/HZ seconds, then
103 last_tick_len << TICKLEN_SHIFT will be about 2^63. */
104#define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
105
Linus Torvalds1da177e2005-04-16 15:20:36 -0700106DEFINE_SPINLOCK(rtc_lock);
Benjamin Herrenschmidt6ae3db12005-06-27 14:36:35 -0700107EXPORT_SYMBOL_GPL(rtc_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700108
Tony Breedsfc9069f2007-07-04 14:04:31 +1000109static u64 tb_to_ns_scale __read_mostly;
110static unsigned tb_to_ns_shift __read_mostly;
111static unsigned long boot_tb __read_mostly;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700112
113struct gettimeofday_struct do_gtod;
114
Linus Torvalds1da177e2005-04-16 15:20:36 -0700115extern struct timezone sys_tz;
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000116static long timezone_offset;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700117
Arnd Bergmann10f7e7c2005-06-23 09:43:07 +1000118unsigned long ppc_proc_freq;
Bob Nelson14748552007-07-20 21:39:53 +0200119EXPORT_SYMBOL(ppc_proc_freq);
Arnd Bergmann10f7e7c2005-06-23 09:43:07 +1000120unsigned long ppc_tb_freq;
121
Paul Mackerraseb36c282006-08-30 16:13:16 +1000122static u64 tb_last_jiffy __cacheline_aligned_in_smp;
123static DEFINE_PER_CPU(u64, last_jiffy);
Paul Mackerras96c44502005-10-23 17:14:56 +1000124
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100125#ifdef CONFIG_VIRT_CPU_ACCOUNTING
126/*
127 * Factors for converting from cputime_t (timebase ticks) to
128 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
129 * These are all stored as 0.64 fixed-point binary fractions.
130 */
131u64 __cputime_jiffies_factor;
Paul Mackerras2cf82c02006-02-27 15:41:47 +1100132EXPORT_SYMBOL(__cputime_jiffies_factor);
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100133u64 __cputime_msec_factor;
Paul Mackerras2cf82c02006-02-27 15:41:47 +1100134EXPORT_SYMBOL(__cputime_msec_factor);
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100135u64 __cputime_sec_factor;
Paul Mackerras2cf82c02006-02-27 15:41:47 +1100136EXPORT_SYMBOL(__cputime_sec_factor);
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100137u64 __cputime_clockt_factor;
Paul Mackerras2cf82c02006-02-27 15:41:47 +1100138EXPORT_SYMBOL(__cputime_clockt_factor);
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100139
140static void calc_cputime_factors(void)
141{
142 struct div_result res;
143
144 div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
145 __cputime_jiffies_factor = res.result_low;
146 div128_by_32(1000, 0, tb_ticks_per_sec, &res);
147 __cputime_msec_factor = res.result_low;
148 div128_by_32(1, 0, tb_ticks_per_sec, &res);
149 __cputime_sec_factor = res.result_low;
150 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
151 __cputime_clockt_factor = res.result_low;
152}
153
154/*
155 * Read the PURR on systems that have it, otherwise the timebase.
156 */
157static u64 read_purr(void)
158{
159 if (cpu_has_feature(CPU_FTR_PURR))
160 return mfspr(SPRN_PURR);
161 return mftb();
162}
163
164/*
165 * Account time for a transition between system, hard irq
166 * or soft irq state.
167 */
168void account_system_vtime(struct task_struct *tsk)
169{
170 u64 now, delta;
171 unsigned long flags;
172
173 local_irq_save(flags);
174 now = read_purr();
175 delta = now - get_paca()->startpurr;
176 get_paca()->startpurr = now;
177 if (!in_interrupt()) {
178 delta += get_paca()->system_time;
179 get_paca()->system_time = 0;
180 }
181 account_system_time(tsk, 0, delta);
182 local_irq_restore(flags);
183}
184
185/*
186 * Transfer the user and system times accumulated in the paca
187 * by the exception entry and exit code to the generic process
188 * user and system time records.
189 * Must be called with interrupts disabled.
190 */
191void account_process_vtime(struct task_struct *tsk)
192{
193 cputime_t utime;
194
195 utime = get_paca()->user_time;
196 get_paca()->user_time = 0;
197 account_user_time(tsk, utime);
198}
199
200static void account_process_time(struct pt_regs *regs)
201{
202 int cpu = smp_processor_id();
203
204 account_process_vtime(current);
205 run_local_timers();
206 if (rcu_pending(cpu))
207 rcu_check_callbacks(cpu, user_mode(regs));
208 scheduler_tick();
209 run_posix_cpu_timers(current);
210}
211
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100212/*
213 * Stuff for accounting stolen time.
214 */
215struct cpu_purr_data {
216 int initialized; /* thread is running */
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100217 u64 tb; /* last TB value read */
218 u64 purr; /* last PURR value read */
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100219};
220
Nathan Lynchdf211c82007-05-23 10:51:25 +1000221/*
222 * Each entry in the cpu_purr_data array is manipulated only by its
223 * "owner" cpu -- usually in the timer interrupt but also occasionally
224 * in process context for cpu online. As long as cpus do not touch
225 * each others' cpu_purr_data, disabling local interrupts is
226 * sufficient to serialize accesses.
227 */
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100228static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
229
230static void snapshot_tb_and_purr(void *data)
231{
Nathan Lynchdf211c82007-05-23 10:51:25 +1000232 unsigned long flags;
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100233 struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
234
Nathan Lynchdf211c82007-05-23 10:51:25 +1000235 local_irq_save(flags);
Benjamin Herrenschmidtc27da3392007-09-19 14:21:56 +1000236 p->tb = get_tb_or_rtc();
Stephen Rothwellcbcdb932006-10-17 23:08:35 +1000237 p->purr = mfspr(SPRN_PURR);
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100238 wmb();
239 p->initialized = 1;
Nathan Lynchdf211c82007-05-23 10:51:25 +1000240 local_irq_restore(flags);
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100241}
242
243/*
244 * Called during boot when all cpus have come up.
245 */
246void snapshot_timebases(void)
247{
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100248 if (!cpu_has_feature(CPU_FTR_PURR))
249 return;
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100250 on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1);
251}
252
Nathan Lynchdf211c82007-05-23 10:51:25 +1000253/*
254 * Must be called with interrupts disabled.
255 */
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100256void calculate_steal_time(void)
257{
Stephen Rothwellcbcdb932006-10-17 23:08:35 +1000258 u64 tb, purr;
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100259 s64 stolen;
Stephen Rothwellcbcdb932006-10-17 23:08:35 +1000260 struct cpu_purr_data *pme;
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100261
262 if (!cpu_has_feature(CPU_FTR_PURR))
263 return;
Stephen Rothwellcbcdb932006-10-17 23:08:35 +1000264 pme = &per_cpu(cpu_purr_data, smp_processor_id());
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100265 if (!pme->initialized)
266 return; /* this can happen in early boot */
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100267 tb = mftb();
Stephen Rothwellcbcdb932006-10-17 23:08:35 +1000268 purr = mfspr(SPRN_PURR);
269 stolen = (tb - pme->tb) - (purr - pme->purr);
270 if (stolen > 0)
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100271 account_steal_time(current, stolen);
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100272 pme->tb = tb;
273 pme->purr = purr;
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100274}
275
Michael Neuling4cefebb2007-06-08 13:18:50 +1000276#ifdef CONFIG_PPC_SPLPAR
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100277/*
278 * Must be called before the cpu is added to the online map when
279 * a cpu is being brought up at runtime.
280 */
281static void snapshot_purr(void)
282{
Stephen Rothwellcbcdb932006-10-17 23:08:35 +1000283 struct cpu_purr_data *pme;
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100284 unsigned long flags;
285
286 if (!cpu_has_feature(CPU_FTR_PURR))
287 return;
Nathan Lynchdf211c82007-05-23 10:51:25 +1000288 local_irq_save(flags);
Stephen Rothwellcbcdb932006-10-17 23:08:35 +1000289 pme = &per_cpu(cpu_purr_data, smp_processor_id());
Stephen Rothwellcbcdb932006-10-17 23:08:35 +1000290 pme->tb = mftb();
291 pme->purr = mfspr(SPRN_PURR);
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100292 pme->initialized = 1;
Nathan Lynchdf211c82007-05-23 10:51:25 +1000293 local_irq_restore(flags);
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100294}
295
296#endif /* CONFIG_PPC_SPLPAR */
297
298#else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
299#define calc_cputime_factors()
300#define account_process_time(regs) update_process_times(user_mode(regs))
301#define calculate_steal_time() do { } while (0)
302#endif
303
304#if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
305#define snapshot_purr() do { } while (0)
306#endif
307
308/*
309 * Called when a cpu comes up after the system has finished booting,
310 * i.e. as a result of a hotplug cpu action.
311 */
312void snapshot_timebase(void)
313{
Benjamin Herrenschmidtc27da3392007-09-19 14:21:56 +1000314 __get_cpu_var(last_jiffy) = get_tb_or_rtc();
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100315 snapshot_purr();
316}
317
Paul Mackerras6defa382005-11-18 13:44:17 +1100318void __delay(unsigned long loops)
319{
320 unsigned long start;
321 int diff;
322
323 if (__USE_RTC()) {
324 start = get_rtcl();
325 do {
326 /* the RTCL register wraps at 1000000000 */
327 diff = get_rtcl() - start;
328 if (diff < 0)
329 diff += 1000000000;
330 } while (diff < loops);
331 } else {
332 start = get_tbl();
333 while (get_tbl() - start < loops)
334 HMT_low();
335 HMT_medium();
336 }
337}
338EXPORT_SYMBOL(__delay);
339
340void udelay(unsigned long usecs)
341{
342 __delay(tb_ticks_per_usec * usecs);
343}
344EXPORT_SYMBOL(udelay);
345
Linus Torvalds1da177e2005-04-16 15:20:36 -0700346/*
347 * This version of gettimeofday has microsecond resolution.
348 */
Nathan Lynch5db9fa92006-08-22 20:36:05 -0500349static inline void __do_gettimeofday(struct timeval *tv)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700350{
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000351 unsigned long sec, usec;
352 u64 tb_ticks, xsec;
353 struct gettimeofday_vars *temp_varp;
354 u64 temp_tb_to_xs, temp_stamp_xsec;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700355
356 /*
357 * These calculations are faster (gets rid of divides)
358 * if done in units of 1/2^20 rather than microseconds.
359 * The conversion to microseconds at the end is done
360 * without a divide (and in fact, without a multiply)
361 */
362 temp_varp = do_gtod.varp;
Nathan Lynch5db9fa92006-08-22 20:36:05 -0500363
364 /* Sampling the time base must be done after loading
365 * do_gtod.varp in order to avoid racing with update_gtod.
366 */
367 data_barrier(temp_varp);
368 tb_ticks = get_tb() - temp_varp->tb_orig_stamp;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700369 temp_tb_to_xs = temp_varp->tb_to_xs;
370 temp_stamp_xsec = temp_varp->stamp_xsec;
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000371 xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700372 sec = xsec / XSEC_PER_SEC;
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000373 usec = (unsigned long)xsec & (XSEC_PER_SEC - 1);
374 usec = SCALE_XSEC(usec, 1000000);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700375
376 tv->tv_sec = sec;
377 tv->tv_usec = usec;
378}
379
380void do_gettimeofday(struct timeval *tv)
381{
Paul Mackerras96c44502005-10-23 17:14:56 +1000382 if (__USE_RTC()) {
383 /* do this the old way */
384 unsigned long flags, seq;
Paul Mackerras092b8f32006-02-20 10:38:56 +1100385 unsigned int sec, nsec, usec;
Paul Mackerras96c44502005-10-23 17:14:56 +1000386
387 do {
388 seq = read_seqbegin_irqsave(&xtime_lock, flags);
389 sec = xtime.tv_sec;
Paul Mackerraseb36c282006-08-30 16:13:16 +1000390 nsec = xtime.tv_nsec + tb_ticks_since(tb_last_jiffy);
Paul Mackerras96c44502005-10-23 17:14:56 +1000391 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
Paul Mackerras092b8f32006-02-20 10:38:56 +1100392 usec = nsec / 1000;
Paul Mackerras96c44502005-10-23 17:14:56 +1000393 while (usec >= 1000000) {
394 usec -= 1000000;
395 ++sec;
396 }
397 tv->tv_sec = sec;
398 tv->tv_usec = usec;
399 return;
400 }
Nathan Lynch5db9fa92006-08-22 20:36:05 -0500401 __do_gettimeofday(tv);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700402}
403
404EXPORT_SYMBOL(do_gettimeofday);
405
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000406/*
407 * There are two copies of tb_to_xs and stamp_xsec so that no
408 * lock is needed to access and use these values in
409 * do_gettimeofday. We alternate the copies and as long as a
410 * reasonable time elapses between changes, there will never
411 * be inconsistent values. ntpd has a minimum of one minute
412 * between updates.
413 */
414static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
Paul Mackerras5d14a182005-10-20 22:33:06 +1000415 u64 new_tb_to_xs)
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000416{
417 unsigned temp_idx;
418 struct gettimeofday_vars *temp_varp;
419
420 temp_idx = (do_gtod.var_idx == 0);
421 temp_varp = &do_gtod.vars[temp_idx];
422
423 temp_varp->tb_to_xs = new_tb_to_xs;
424 temp_varp->tb_orig_stamp = new_tb_stamp;
425 temp_varp->stamp_xsec = new_stamp_xsec;
426 smp_mb();
427 do_gtod.varp = temp_varp;
428 do_gtod.var_idx = temp_idx;
429
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000430 /*
431 * tb_update_count is used to allow the userspace gettimeofday code
432 * to assure itself that it sees a consistent view of the tb_to_xs and
433 * stamp_xsec variables. It reads the tb_update_count, then reads
434 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
435 * the two values of tb_update_count match and are even then the
436 * tb_to_xs and stamp_xsec values are consistent. If not, then it
437 * loops back and reads them again until this criteria is met.
Paul Mackerras0a45d442006-03-15 13:47:15 +1100438 * We expect the caller to have done the first increment of
439 * vdso_data->tb_update_count already.
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000440 */
Benjamin Herrenschmidta7f290d2005-11-11 21:15:21 +1100441 vdso_data->tb_orig_stamp = new_tb_stamp;
442 vdso_data->stamp_xsec = new_stamp_xsec;
443 vdso_data->tb_to_xs = new_tb_to_xs;
444 vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
445 vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000446 smp_wmb();
Benjamin Herrenschmidta7f290d2005-11-11 21:15:21 +1100447 ++(vdso_data->tb_update_count);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700448}
449
450/*
451 * When the timebase - tb_orig_stamp gets too big, we do a manipulation
452 * between tb_orig_stamp and stamp_xsec. The goal here is to keep the
453 * difference tb - tb_orig_stamp small enough to always fit inside a
454 * 32 bits number. This is a requirement of our fast 32 bits userland
455 * implementation in the vdso. If we "miss" a call to this function
456 * (interrupt latency, CPU locked in a spinlock, ...) and we end up
457 * with a too big difference, then the vdso will fallback to calling
458 * the syscall
459 */
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000460static __inline__ void timer_recalc_offset(u64 cur_tb)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700461{
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000462 unsigned long offset;
463 u64 new_stamp_xsec;
Paul Mackerras092b8f32006-02-20 10:38:56 +1100464 u64 tlen, t2x;
Paul Mackerras0a45d442006-03-15 13:47:15 +1100465 u64 tb, xsec_old, xsec_new;
466 struct gettimeofday_vars *varp;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700467
Paul Mackerras96c44502005-10-23 17:14:56 +1000468 if (__USE_RTC())
469 return;
Roman Zippel19923c12006-06-26 00:25:18 -0700470 tlen = current_tick_length();
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000471 offset = cur_tb - do_gtod.varp->tb_orig_stamp;
Paul Mackerras0a45d442006-03-15 13:47:15 +1100472 if (tlen == last_tick_len && offset < 0x80000000u)
473 return;
Paul Mackerras092b8f32006-02-20 10:38:56 +1100474 if (tlen != last_tick_len) {
475 t2x = mulhdu(tlen << TICKLEN_SHIFT, ticklen_to_xs);
476 last_tick_len = tlen;
477 } else
478 t2x = do_gtod.varp->tb_to_xs;
479 new_stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
480 do_div(new_stamp_xsec, 1000000000);
481 new_stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
Paul Mackerras0a45d442006-03-15 13:47:15 +1100482
483 ++vdso_data->tb_update_count;
484 smp_mb();
485
486 /*
487 * Make sure time doesn't go backwards for userspace gettimeofday.
488 */
489 tb = get_tb();
490 varp = do_gtod.varp;
491 xsec_old = mulhdu(tb - varp->tb_orig_stamp, varp->tb_to_xs)
492 + varp->stamp_xsec;
493 xsec_new = mulhdu(tb - cur_tb, t2x) + new_stamp_xsec;
494 if (xsec_new < xsec_old)
495 new_stamp_xsec += xsec_old - xsec_new;
496
Paul Mackerras092b8f32006-02-20 10:38:56 +1100497 update_gtod(cur_tb, new_stamp_xsec, t2x);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700498}
499
500#ifdef CONFIG_SMP
501unsigned long profile_pc(struct pt_regs *regs)
502{
503 unsigned long pc = instruction_pointer(regs);
504
505 if (in_lock_functions(pc))
506 return regs->link;
507
508 return pc;
509}
510EXPORT_SYMBOL(profile_pc);
511#endif
512
513#ifdef CONFIG_PPC_ISERIES
514
515/*
516 * This function recalibrates the timebase based on the 49-bit time-of-day
517 * value in the Titan chip. The Titan is much more accurate than the value
518 * returned by the service processor for the timebase frequency.
519 */
520
Tony Breeds71712b42007-06-22 16:54:30 +1000521static int __init iSeries_tb_recal(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700522{
523 struct div_result divres;
524 unsigned long titan, tb;
Tony Breeds71712b42007-06-22 16:54:30 +1000525
526 /* Make sure we only run on iSeries */
527 if (!firmware_has_feature(FW_FEATURE_ISERIES))
528 return -ENODEV;
529
Linus Torvalds1da177e2005-04-16 15:20:36 -0700530 tb = get_tb();
531 titan = HvCallXm_loadTod();
532 if ( iSeries_recal_titan ) {
533 unsigned long tb_ticks = tb - iSeries_recal_tb;
534 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
535 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
536 unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
537 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
538 char sign = '+';
539 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
540 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
541
542 if ( tick_diff < 0 ) {
543 tick_diff = -tick_diff;
544 sign = '-';
545 }
546 if ( tick_diff ) {
547 if ( tick_diff < tb_ticks_per_jiffy/25 ) {
548 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
549 new_tb_ticks_per_jiffy, sign, tick_diff );
550 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
551 tb_ticks_per_sec = new_tb_ticks_per_sec;
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100552 calc_cputime_factors();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700553 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
554 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
555 tb_to_xs = divres.result_low;
556 do_gtod.varp->tb_to_xs = tb_to_xs;
Benjamin Herrenschmidta7f290d2005-11-11 21:15:21 +1100557 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
558 vdso_data->tb_to_xs = tb_to_xs;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700559 }
560 else {
561 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
562 " new tb_ticks_per_jiffy = %lu\n"
563 " old tb_ticks_per_jiffy = %lu\n",
564 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
565 }
566 }
567 }
568 iSeries_recal_titan = titan;
569 iSeries_recal_tb = tb;
Tony Breeds71712b42007-06-22 16:54:30 +1000570
571 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700572}
Tony Breeds71712b42007-06-22 16:54:30 +1000573late_initcall(iSeries_tb_recal);
574
575/* Called from platform early init */
576void __init iSeries_time_init_early(void)
577{
578 iSeries_recal_tb = get_tb();
579 iSeries_recal_titan = HvCallXm_loadTod();
580}
581#endif /* CONFIG_PPC_ISERIES */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700582
583/*
584 * For iSeries shared processors, we have to let the hypervisor
585 * set the hardware decrementer. We set a virtual decrementer
586 * in the lppaca and call the hypervisor if the virtual
587 * decrementer is less than the current value in the hardware
588 * decrementer. (almost always the new decrementer value will
589 * be greater than the current hardware decementer so the hypervisor
590 * call will not be needed)
591 */
592
Linus Torvalds1da177e2005-04-16 15:20:36 -0700593/*
594 * timer_interrupt - gets called when the decrementer overflows,
595 * with interrupts disabled.
596 */
Kumar Galac7aeffc2005-09-19 09:30:27 -0500597void timer_interrupt(struct pt_regs * regs)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700598{
David Howells7d12e782006-10-05 14:55:46 +0100599 struct pt_regs *old_regs;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700600 int next_dec;
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000601 int cpu = smp_processor_id();
602 unsigned long ticks;
Nathan Lynch5db9fa92006-08-22 20:36:05 -0500603 u64 tb_next_jiffy;
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000604
605#ifdef CONFIG_PPC32
606 if (atomic_read(&ppc_n_lost_interrupts) != 0)
607 do_IRQ(regs);
608#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700609
David Howells7d12e782006-10-05 14:55:46 +0100610 old_regs = set_irq_regs(regs);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700611 irq_enter();
612
David Howells7d12e782006-10-05 14:55:46 +0100613 profile_tick(CPU_PROFILING);
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100614 calculate_steal_time();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700615
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000616#ifdef CONFIG_PPC_ISERIES
Stephen Rothwell501b6d22006-11-21 15:10:20 +1100617 if (firmware_has_feature(FW_FEATURE_ISERIES))
618 get_lppaca()->int_dword.fields.decr_int = 0;
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000619#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700620
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000621 while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu)))
622 >= tb_ticks_per_jiffy) {
623 /* Update last_jiffy */
624 per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy;
625 /* Handle RTCL overflow on 601 */
626 if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000)
627 per_cpu(last_jiffy, cpu) -= 1000000000;
628
Linus Torvalds1da177e2005-04-16 15:20:36 -0700629 /*
630 * We cannot disable the decrementer, so in the period
631 * between this cpu's being marked offline in cpu_online_map
632 * and calling stop-self, it is taking timer interrupts.
633 * Avoid calling into the scheduler rebalancing code if this
634 * is the case.
635 */
636 if (!cpu_is_offline(cpu))
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100637 account_process_time(regs);
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000638
Linus Torvalds1da177e2005-04-16 15:20:36 -0700639 /*
640 * No need to check whether cpu is offline here; boot_cpuid
641 * should have been fixed up by now.
642 */
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000643 if (cpu != boot_cpuid)
644 continue;
645
646 write_seqlock(&xtime_lock);
Nathan Lynch5db9fa92006-08-22 20:36:05 -0500647 tb_next_jiffy = tb_last_jiffy + tb_ticks_per_jiffy;
Benjamin Herrenschmidtc27da3392007-09-19 14:21:56 +1000648 if (__USE_RTC() && tb_next_jiffy >= 1000000000)
649 tb_next_jiffy -= 1000000000;
Nathan Lynch5db9fa92006-08-22 20:36:05 -0500650 if (per_cpu(last_jiffy, cpu) >= tb_next_jiffy) {
651 tb_last_jiffy = tb_next_jiffy;
Atsushi Nemoto3171a032006-09-29 02:00:32 -0700652 do_timer(1);
Nathan Lynch5db9fa92006-08-22 20:36:05 -0500653 timer_recalc_offset(tb_last_jiffy);
Nathan Lynch5db9fa92006-08-22 20:36:05 -0500654 }
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000655 write_sequnlock(&xtime_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700656 }
657
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000658 next_dec = tb_ticks_per_jiffy - ticks;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700659 set_dec(next_dec);
660
661#ifdef CONFIG_PPC_ISERIES
Stephen Rothwell501b6d22006-11-21 15:10:20 +1100662 if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
Olaf Hering35a84c22006-10-07 22:08:26 +1000663 process_hvlpevents();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700664#endif
665
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000666#ifdef CONFIG_PPC64
Stephen Rothwell8d15a3e2005-08-03 14:40:16 +1000667 /* collect purr register values often, for accurate calculations */
Stephen Rothwell1ababe12005-08-03 14:35:25 +1000668 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700669 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
670 cu->current_tb = mfspr(SPRN_PURR);
671 }
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000672#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700673
674 irq_exit();
David Howells7d12e782006-10-05 14:55:46 +0100675 set_irq_regs(old_regs);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700676}
677
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000678void wakeup_decrementer(void)
679{
Paul Mackerras092b8f32006-02-20 10:38:56 +1100680 unsigned long ticks;
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000681
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000682 /*
Paul Mackerras092b8f32006-02-20 10:38:56 +1100683 * The timebase gets saved on sleep and restored on wakeup,
684 * so all we need to do is to reset the decrementer.
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000685 */
Paul Mackerras092b8f32006-02-20 10:38:56 +1100686 ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
687 if (ticks < tb_ticks_per_jiffy)
688 ticks = tb_ticks_per_jiffy - ticks;
689 else
690 ticks = 1;
691 set_dec(ticks);
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000692}
693
Paul Mackerrasa5b518e2005-10-22 14:55:23 +1000694#ifdef CONFIG_SMP
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000695void __init smp_space_timers(unsigned int max_cpus)
696{
697 int i;
Paul Mackerraseb36c282006-08-30 16:13:16 +1000698 u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000699
Paul Mackerrascbe62e22005-11-10 14:28:03 +1100700 /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
701 previous_tb -= tb_ticks_per_jiffy;
will schmidte147ec82007-05-11 23:34:16 +1000702
KAMEZAWA Hiroyuki0e551952006-03-28 14:50:51 -0800703 for_each_possible_cpu(i) {
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100704 if (i == boot_cpuid)
705 continue;
will schmidte147ec82007-05-11 23:34:16 +1000706 per_cpu(last_jiffy, i) = previous_tb;
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000707 }
708}
709#endif
710
Linus Torvalds1da177e2005-04-16 15:20:36 -0700711/*
712 * Scheduler clock - returns current time in nanosec units.
713 *
714 * Note: mulhdu(a, b) (multiply high double unsigned) returns
715 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
716 * are 64-bit unsigned numbers.
717 */
718unsigned long long sched_clock(void)
719{
Paul Mackerras96c44502005-10-23 17:14:56 +1000720 if (__USE_RTC())
721 return get_rtc();
Tony Breedsfc9069f2007-07-04 14:04:31 +1000722 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700723}
724
725int do_settimeofday(struct timespec *tv)
726{
727 time_t wtm_sec, new_sec = tv->tv_sec;
728 long wtm_nsec, new_nsec = tv->tv_nsec;
729 unsigned long flags;
Paul Mackerras092b8f32006-02-20 10:38:56 +1100730 u64 new_xsec;
731 unsigned long tb_delta;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700732
733 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
734 return -EINVAL;
735
736 write_seqlock_irqsave(&xtime_lock, flags);
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000737
738 /*
739 * Updating the RTC is not the job of this code. If the time is
740 * stepped under NTP, the RTC will be updated after STA_UNSYNC
741 * is cleared. Tools like clock/hwclock either copy the RTC
Linus Torvalds1da177e2005-04-16 15:20:36 -0700742 * to the system time, in which case there is no point in writing
743 * to the RTC again, or write to the RTC but then they don't call
744 * settimeofday to perform this operation.
745 */
Paul Mackerras092b8f32006-02-20 10:38:56 +1100746
Paul Mackerras0a45d442006-03-15 13:47:15 +1100747 /* Make userspace gettimeofday spin until we're done. */
748 ++vdso_data->tb_update_count;
749 smp_mb();
750
Paul Mackerras092b8f32006-02-20 10:38:56 +1100751 /*
752 * Subtract off the number of nanoseconds since the
753 * beginning of the last tick.
Paul Mackerras092b8f32006-02-20 10:38:56 +1100754 */
Paul Mackerraseb36c282006-08-30 16:13:16 +1000755 tb_delta = tb_ticks_since(tb_last_jiffy);
Paul Mackerras092b8f32006-02-20 10:38:56 +1100756 tb_delta = mulhdu(tb_delta, do_gtod.varp->tb_to_xs); /* in xsec */
757 new_nsec -= SCALE_XSEC(tb_delta, 1000000000);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700758
759 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
760 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);
761
762 set_normalized_timespec(&xtime, new_sec, new_nsec);
763 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
764
john stultzb149ee22005-09-06 15:17:46 -0700765 ntp_clear();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700766
Paul Mackerras092b8f32006-02-20 10:38:56 +1100767 new_xsec = xtime.tv_nsec;
768 if (new_xsec != 0) {
769 new_xsec *= XSEC_PER_SEC;
Paul Mackerras5f6b5b92005-10-30 22:55:52 +1100770 do_div(new_xsec, NSEC_PER_SEC);
771 }
Paul Mackerras092b8f32006-02-20 10:38:56 +1100772 new_xsec += (u64)xtime.tv_sec * XSEC_PER_SEC;
Paul Mackerras96c44502005-10-23 17:14:56 +1000773 update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700774
Benjamin Herrenschmidta7f290d2005-11-11 21:15:21 +1100775 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
776 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700777
778 write_sequnlock_irqrestore(&xtime_lock, flags);
779 clock_was_set();
780 return 0;
781}
782
783EXPORT_SYMBOL(do_settimeofday);
784
Anton Blanchard0bb474a42006-06-20 18:47:26 +1000785static int __init get_freq(char *name, int cells, unsigned long *val)
Arnd Bergmann10f7e7c2005-06-23 09:43:07 +1000786{
787 struct device_node *cpu;
Jeremy Kerra7f67bd2006-07-12 15:35:54 +1000788 const unsigned int *fp;
Anton Blanchard0bb474a42006-06-20 18:47:26 +1000789 int found = 0;
Arnd Bergmann10f7e7c2005-06-23 09:43:07 +1000790
Anton Blanchard0bb474a42006-06-20 18:47:26 +1000791 /* The cpu node should have timebase and clock frequency properties */
Arnd Bergmann10f7e7c2005-06-23 09:43:07 +1000792 cpu = of_find_node_by_type(NULL, "cpu");
793
Olaf Heringd8a81882006-02-04 10:34:56 +0100794 if (cpu) {
Stephen Rothwelle2eb6392007-04-03 22:26:41 +1000795 fp = of_get_property(cpu, name, NULL);
Olaf Heringd8a81882006-02-04 10:34:56 +0100796 if (fp) {
Anton Blanchard0bb474a42006-06-20 18:47:26 +1000797 found = 1;
Paul Mackerrasa4dc7ff2006-09-19 14:06:27 +1000798 *val = of_read_ulong(fp, cells);
Arnd Bergmann10f7e7c2005-06-23 09:43:07 +1000799 }
Anton Blanchard0bb474a42006-06-20 18:47:26 +1000800
801 of_node_put(cpu);
Arnd Bergmann10f7e7c2005-06-23 09:43:07 +1000802 }
Anton Blanchard0bb474a42006-06-20 18:47:26 +1000803
804 return found;
805}
806
807void __init generic_calibrate_decr(void)
808{
809 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
810
811 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
812 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
813
Arnd Bergmann10f7e7c2005-06-23 09:43:07 +1000814 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
815 "(not found)\n");
Arnd Bergmann10f7e7c2005-06-23 09:43:07 +1000816 }
Anton Blanchard0bb474a42006-06-20 18:47:26 +1000817
818 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
819
820 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
821 !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
822
823 printk(KERN_ERR "WARNING: Estimating processor frequency "
824 "(not found)\n");
825 }
826
Josh Boyeraab69292007-08-20 07:29:11 -0500827#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
Kumar Gala0fd6f712005-10-25 23:02:59 -0500828 /* Set the time base to zero */
829 mtspr(SPRN_TBWL, 0);
830 mtspr(SPRN_TBWU, 0);
831
832 /* Clear any pending timer interrupts */
833 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
834
835 /* Enable decrementer interrupt */
836 mtspr(SPRN_TCR, TCR_DIE);
837#endif
Arnd Bergmann10f7e7c2005-06-23 09:43:07 +1000838}
Arnd Bergmann10f7e7c2005-06-23 09:43:07 +1000839
Tony Breedsaa3be5f2007-09-21 13:26:02 +1000840int update_persistent_clock(struct timespec now)
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000841{
842 struct rtc_time tm;
843
Tony Breedsaa3be5f2007-09-21 13:26:02 +1000844 if (!ppc_md.set_rtc_time)
845 return 0;
846
847 to_tm(now.tv_sec + 1 + timezone_offset, &tm);
848 tm.tm_year -= 1900;
849 tm.tm_mon -= 1;
850
851 return ppc_md.set_rtc_time(&tm);
852}
853
854unsigned long read_persistent_clock(void)
855{
856 struct rtc_time tm;
857 static int first = 1;
858
859 /* XXX this is a litle fragile but will work okay in the short term */
860 if (first) {
861 first = 0;
862 if (ppc_md.time_init)
863 timezone_offset = ppc_md.time_init();
864
865 /* get_boot_time() isn't guaranteed to be safe to call late */
866 if (ppc_md.get_boot_time)
867 return ppc_md.get_boot_time() -timezone_offset;
868 }
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000869 if (!ppc_md.get_rtc_time)
870 return 0;
871 ppc_md.get_rtc_time(&tm);
872 return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
873 tm.tm_hour, tm.tm_min, tm.tm_sec);
874}
875
876/* This function is only called on the boot processor */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700877void __init time_init(void)
878{
Linus Torvalds1da177e2005-04-16 15:20:36 -0700879 unsigned long flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700880 struct div_result res;
Paul Mackerras092b8f32006-02-20 10:38:56 +1100881 u64 scale, x;
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000882 unsigned shift;
883
Paul Mackerras96c44502005-10-23 17:14:56 +1000884 if (__USE_RTC()) {
885 /* 601 processor: dec counts down by 128 every 128ns */
886 ppc_tb_freq = 1000000000;
Paul Mackerraseb36c282006-08-30 16:13:16 +1000887 tb_last_jiffy = get_rtcl();
Paul Mackerras96c44502005-10-23 17:14:56 +1000888 } else {
889 /* Normal PowerPC with timebase register */
890 ppc_md.calibrate_decr();
Olof Johansson224ad802006-04-12 15:20:27 -0500891 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
Paul Mackerras96c44502005-10-23 17:14:56 +1000892 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
Olof Johansson224ad802006-04-12 15:20:27 -0500893 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
Paul Mackerras96c44502005-10-23 17:14:56 +1000894 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
Paul Mackerraseb36c282006-08-30 16:13:16 +1000895 tb_last_jiffy = get_tb();
Paul Mackerras96c44502005-10-23 17:14:56 +1000896 }
Paul Mackerras374e99d2005-10-20 21:04:51 +1000897
898 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
Paul Mackerras092b8f32006-02-20 10:38:56 +1100899 tb_ticks_per_sec = ppc_tb_freq;
Paul Mackerras374e99d2005-10-20 21:04:51 +1000900 tb_ticks_per_usec = ppc_tb_freq / 1000000;
901 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100902 calc_cputime_factors();
Paul Mackerras092b8f32006-02-20 10:38:56 +1100903
904 /*
905 * Calculate the length of each tick in ns. It will not be
906 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
907 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
908 * rounded up.
909 */
910 x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
911 do_div(x, ppc_tb_freq);
912 tick_nsec = x;
913 last_tick_len = x << TICKLEN_SCALE;
914
915 /*
916 * Compute ticklen_to_xs, which is a factor which gets multiplied
917 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
918 * It is computed as:
919 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
920 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
Paul Mackerras0a45d442006-03-15 13:47:15 +1100921 * which turns out to be N = 51 - SHIFT_HZ.
922 * This gives the result as a 0.64 fixed-point fraction.
923 * That value is reduced by an offset amounting to 1 xsec per
924 * 2^31 timebase ticks to avoid problems with time going backwards
925 * by 1 xsec when we do timer_recalc_offset due to losing the
926 * fractional xsec. That offset is equal to ppc_tb_freq/2^51
927 * since there are 2^20 xsec in a second.
Paul Mackerras092b8f32006-02-20 10:38:56 +1100928 */
Paul Mackerras0a45d442006-03-15 13:47:15 +1100929 div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
930 tb_ticks_per_jiffy << SHIFT_HZ, &res);
Paul Mackerras092b8f32006-02-20 10:38:56 +1100931 div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
932 ticklen_to_xs = res.result_low;
933
934 /* Compute tb_to_xs from tick_nsec */
935 tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
Paul Mackerras374e99d2005-10-20 21:04:51 +1000936
Linus Torvalds1da177e2005-04-16 15:20:36 -0700937 /*
938 * Compute scale factor for sched_clock.
939 * The calibrate_decr() function has set tb_ticks_per_sec,
940 * which is the timebase frequency.
941 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
942 * the 128-bit result as a 64.64 fixed-point number.
943 * We then shift that number right until it is less than 1.0,
944 * giving us the scale factor and shift count to use in
945 * sched_clock().
946 */
947 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
948 scale = res.result_low;
949 for (shift = 0; res.result_high != 0; ++shift) {
950 scale = (scale >> 1) | (res.result_high << 63);
951 res.result_high >>= 1;
952 }
953 tb_to_ns_scale = scale;
954 tb_to_ns_shift = shift;
Tony Breedsfc9069f2007-07-04 14:04:31 +1000955 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
Benjamin Herrenschmidtc27da3392007-09-19 14:21:56 +1000956 boot_tb = get_tb_or_rtc();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700957
Linus Torvalds1da177e2005-04-16 15:20:36 -0700958 write_seqlock_irqsave(&xtime_lock, flags);
Paul Mackerras092b8f32006-02-20 10:38:56 +1100959
960 /* If platform provided a timezone (pmac), we correct the time */
961 if (timezone_offset) {
962 sys_tz.tz_minuteswest = -timezone_offset / 60;
963 sys_tz.tz_dsttime = 0;
Paul Mackerras092b8f32006-02-20 10:38:56 +1100964 }
965
Linus Torvalds1da177e2005-04-16 15:20:36 -0700966 do_gtod.varp = &do_gtod.vars[0];
967 do_gtod.var_idx = 0;
Paul Mackerras96c44502005-10-23 17:14:56 +1000968 do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
Paul Mackerraseb36c282006-08-30 16:13:16 +1000969 __get_cpu_var(last_jiffy) = tb_last_jiffy;
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000970 do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700971 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
972 do_gtod.varp->tb_to_xs = tb_to_xs;
973 do_gtod.tb_to_us = tb_to_us;
Benjamin Herrenschmidta7f290d2005-11-11 21:15:21 +1100974
975 vdso_data->tb_orig_stamp = tb_last_jiffy;
976 vdso_data->tb_update_count = 0;
977 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
Paul Mackerras092b8f32006-02-20 10:38:56 +1100978 vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
Benjamin Herrenschmidta7f290d2005-11-11 21:15:21 +1100979 vdso_data->tb_to_xs = tb_to_xs;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700980
981 time_freq = 0;
982
Linus Torvalds1da177e2005-04-16 15:20:36 -0700983 write_sequnlock_irqrestore(&xtime_lock, flags);
984
985 /* Not exact, but the timer interrupt takes care of this */
986 set_dec(tb_ticks_per_jiffy);
987}
988
Linus Torvalds1da177e2005-04-16 15:20:36 -0700989
Linus Torvalds1da177e2005-04-16 15:20:36 -0700990#define FEBRUARY 2
991#define STARTOFTIME 1970
992#define SECDAY 86400L
993#define SECYR (SECDAY * 365)
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000994#define leapyear(year) ((year) % 4 == 0 && \
995 ((year) % 100 != 0 || (year) % 400 == 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700996#define days_in_year(a) (leapyear(a) ? 366 : 365)
997#define days_in_month(a) (month_days[(a) - 1])
998
999static int month_days[12] = {
1000 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1001};
1002
1003/*
1004 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1005 */
1006void GregorianDay(struct rtc_time * tm)
1007{
1008 int leapsToDate;
1009 int lastYear;
1010 int day;
1011 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1012
Paul Mackerrasf2783c12005-10-20 09:23:26 +10001013 lastYear = tm->tm_year - 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001014
1015 /*
1016 * Number of leap corrections to apply up to end of last year
1017 */
Paul Mackerrasf2783c12005-10-20 09:23:26 +10001018 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001019
1020 /*
1021 * This year is a leap year if it is divisible by 4 except when it is
1022 * divisible by 100 unless it is divisible by 400
1023 *
Paul Mackerrasf2783c12005-10-20 09:23:26 +10001024 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
Linus Torvalds1da177e2005-04-16 15:20:36 -07001025 */
Paul Mackerrasf2783c12005-10-20 09:23:26 +10001026 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001027
1028 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1029 tm->tm_mday;
1030
Paul Mackerrasf2783c12005-10-20 09:23:26 +10001031 tm->tm_wday = day % 7;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001032}
1033
1034void to_tm(int tim, struct rtc_time * tm)
1035{
1036 register int i;
1037 register long hms, day;
1038
1039 day = tim / SECDAY;
1040 hms = tim % SECDAY;
1041
1042 /* Hours, minutes, seconds are easy */
1043 tm->tm_hour = hms / 3600;
1044 tm->tm_min = (hms % 3600) / 60;
1045 tm->tm_sec = (hms % 3600) % 60;
1046
1047 /* Number of years in days */
1048 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1049 day -= days_in_year(i);
1050 tm->tm_year = i;
1051
1052 /* Number of months in days left */
1053 if (leapyear(tm->tm_year))
1054 days_in_month(FEBRUARY) = 29;
1055 for (i = 1; day >= days_in_month(i); i++)
1056 day -= days_in_month(i);
1057 days_in_month(FEBRUARY) = 28;
1058 tm->tm_mon = i;
1059
1060 /* Days are what is left over (+1) from all that. */
1061 tm->tm_mday = day + 1;
1062
1063 /*
1064 * Determine the day of week
1065 */
1066 GregorianDay(tm);
1067}
1068
1069/* Auxiliary function to compute scaling factors */
1070/* Actually the choice of a timebase running at 1/4 the of the bus
1071 * frequency giving resolution of a few tens of nanoseconds is quite nice.
1072 * It makes this computation very precise (27-28 bits typically) which
1073 * is optimistic considering the stability of most processor clock
1074 * oscillators and the precision with which the timebase frequency
1075 * is measured but does not harm.
1076 */
Paul Mackerrasf2783c12005-10-20 09:23:26 +10001077unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
1078{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001079 unsigned mlt=0, tmp, err;
1080 /* No concern for performance, it's done once: use a stupid
1081 * but safe and compact method to find the multiplier.
1082 */
1083
1084 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
Paul Mackerrasf2783c12005-10-20 09:23:26 +10001085 if (mulhwu(inscale, mlt|tmp) < outscale)
1086 mlt |= tmp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001087 }
1088
1089 /* We might still be off by 1 for the best approximation.
1090 * A side effect of this is that if outscale is too large
1091 * the returned value will be zero.
1092 * Many corner cases have been checked and seem to work,
1093 * some might have been forgotten in the test however.
1094 */
1095
Paul Mackerrasf2783c12005-10-20 09:23:26 +10001096 err = inscale * (mlt+1);
1097 if (err <= inscale/2)
1098 mlt++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001099 return mlt;
Paul Mackerrasf2783c12005-10-20 09:23:26 +10001100}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001101
1102/*
1103 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1104 * result.
1105 */
Paul Mackerrasf2783c12005-10-20 09:23:26 +10001106void div128_by_32(u64 dividend_high, u64 dividend_low,
1107 unsigned divisor, struct div_result *dr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001108{
Paul Mackerrasf2783c12005-10-20 09:23:26 +10001109 unsigned long a, b, c, d;
1110 unsigned long w, x, y, z;
1111 u64 ra, rb, rc;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001112
1113 a = dividend_high >> 32;
1114 b = dividend_high & 0xffffffff;
1115 c = dividend_low >> 32;
1116 d = dividend_low & 0xffffffff;
1117
Paul Mackerrasf2783c12005-10-20 09:23:26 +10001118 w = a / divisor;
1119 ra = ((u64)(a - (w * divisor)) << 32) + b;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001120
Paul Mackerrasf2783c12005-10-20 09:23:26 +10001121 rb = ((u64) do_div(ra, divisor) << 32) + c;
1122 x = ra;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001123
Paul Mackerrasf2783c12005-10-20 09:23:26 +10001124 rc = ((u64) do_div(rb, divisor) << 32) + d;
1125 y = rb;
1126
1127 do_div(rc, divisor);
1128 z = rc;
Paul Mackerrasf2783c12005-10-20 09:23:26 +10001129
1130 dr->result_high = ((u64)w << 32) + x;
1131 dr->result_low = ((u64)y << 32) + z;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001132
1133}