Mikael Starvik | 51533b6 | 2005-07-27 11:44:44 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2003, Axis Communications AB. |
| 3 | */ |
| 4 | |
| 5 | #include <asm/irq.h> |
| 6 | #include <linux/irq.h> |
| 7 | #include <linux/interrupt.h> |
| 8 | #include <linux/smp.h> |
Mikael Starvik | 51533b6 | 2005-07-27 11:44:44 -0700 | [diff] [blame] | 9 | #include <linux/kernel.h> |
| 10 | #include <linux/errno.h> |
| 11 | #include <linux/init.h> |
| 12 | #include <linux/profile.h> |
| 13 | #include <linux/proc_fs.h> |
| 14 | #include <linux/seq_file.h> |
| 15 | #include <linux/threads.h> |
| 16 | #include <linux/spinlock.h> |
| 17 | #include <linux/kernel_stat.h> |
| 18 | #include <asm/arch/hwregs/reg_map.h> |
| 19 | #include <asm/arch/hwregs/reg_rdwr.h> |
| 20 | #include <asm/arch/hwregs/intr_vect.h> |
| 21 | #include <asm/arch/hwregs/intr_vect_defs.h> |
| 22 | |
| 23 | #define CPU_FIXED -1 |
| 24 | |
| 25 | /* IRQ masks (refer to comment for crisv32_do_multiple) */ |
| 26 | #define TIMER_MASK (1 << (TIMER_INTR_VECT - FIRST_IRQ)) |
| 27 | #ifdef CONFIG_ETRAX_KGDB |
| 28 | #if defined(CONFIG_ETRAX_KGDB_PORT0) |
| 29 | #define IGNOREMASK (1 << (SER0_INTR_VECT - FIRST_IRQ)) |
| 30 | #elif defined(CONFIG_ETRAX_KGDB_PORT1) |
| 31 | #define IGNOREMASK (1 << (SER1_INTR_VECT - FIRST_IRQ)) |
| 32 | #elif defined(CONFIG_ETRAX_KGB_PORT2) |
| 33 | #define IGNOREMASK (1 << (SER2_INTR_VECT - FIRST_IRQ)) |
| 34 | #elif defined(CONFIG_ETRAX_KGDB_PORT3) |
| 35 | #define IGNOREMASK (1 << (SER3_INTR_VECT - FIRST_IRQ)) |
| 36 | #endif |
| 37 | #endif |
| 38 | |
| 39 | DEFINE_SPINLOCK(irq_lock); |
| 40 | |
| 41 | struct cris_irq_allocation |
| 42 | { |
| 43 | int cpu; /* The CPU to which the IRQ is currently allocated. */ |
| 44 | cpumask_t mask; /* The CPUs to which the IRQ may be allocated. */ |
| 45 | }; |
| 46 | |
| 47 | struct cris_irq_allocation irq_allocations[NR_IRQS] = |
| 48 | {[0 ... NR_IRQS - 1] = {0, CPU_MASK_ALL}}; |
| 49 | |
| 50 | static unsigned long irq_regs[NR_CPUS] = |
| 51 | { |
| 52 | regi_irq, |
| 53 | #ifdef CONFIG_SMP |
| 54 | regi_irq2, |
| 55 | #endif |
| 56 | }; |
| 57 | |
| 58 | unsigned long cpu_irq_counters[NR_CPUS]; |
| 59 | unsigned long irq_counters[NR_REAL_IRQS]; |
| 60 | |
| 61 | /* From irq.c. */ |
| 62 | extern void weird_irq(void); |
| 63 | |
| 64 | /* From entry.S. */ |
| 65 | extern void system_call(void); |
| 66 | extern void nmi_interrupt(void); |
| 67 | extern void multiple_interrupt(void); |
| 68 | extern void gdb_handle_exception(void); |
| 69 | extern void i_mmu_refill(void); |
| 70 | extern void i_mmu_invalid(void); |
| 71 | extern void i_mmu_access(void); |
| 72 | extern void i_mmu_execute(void); |
| 73 | extern void d_mmu_refill(void); |
| 74 | extern void d_mmu_invalid(void); |
| 75 | extern void d_mmu_access(void); |
| 76 | extern void d_mmu_write(void); |
| 77 | |
| 78 | /* From kgdb.c. */ |
| 79 | extern void kgdb_init(void); |
| 80 | extern void breakpoint(void); |
| 81 | |
| 82 | /* |
| 83 | * Build the IRQ handler stubs using macros from irq.h. First argument is the |
| 84 | * IRQ number, the second argument is the corresponding bit in |
| 85 | * intr_rw_vect_mask found in asm/arch/hwregs/intr_vect_defs.h. |
| 86 | */ |
| 87 | BUILD_IRQ(0x31, (1 << 0)) /* memarb */ |
| 88 | BUILD_IRQ(0x32, (1 << 1)) /* gen_io */ |
| 89 | BUILD_IRQ(0x33, (1 << 2)) /* iop0 */ |
| 90 | BUILD_IRQ(0x34, (1 << 3)) /* iop1 */ |
| 91 | BUILD_IRQ(0x35, (1 << 4)) /* iop2 */ |
| 92 | BUILD_IRQ(0x36, (1 << 5)) /* iop3 */ |
| 93 | BUILD_IRQ(0x37, (1 << 6)) /* dma0 */ |
| 94 | BUILD_IRQ(0x38, (1 << 7)) /* dma1 */ |
| 95 | BUILD_IRQ(0x39, (1 << 8)) /* dma2 */ |
| 96 | BUILD_IRQ(0x3a, (1 << 9)) /* dma3 */ |
| 97 | BUILD_IRQ(0x3b, (1 << 10)) /* dma4 */ |
| 98 | BUILD_IRQ(0x3c, (1 << 11)) /* dma5 */ |
| 99 | BUILD_IRQ(0x3d, (1 << 12)) /* dma6 */ |
| 100 | BUILD_IRQ(0x3e, (1 << 13)) /* dma7 */ |
| 101 | BUILD_IRQ(0x3f, (1 << 14)) /* dma8 */ |
| 102 | BUILD_IRQ(0x40, (1 << 15)) /* dma9 */ |
| 103 | BUILD_IRQ(0x41, (1 << 16)) /* ata */ |
| 104 | BUILD_IRQ(0x42, (1 << 17)) /* sser0 */ |
| 105 | BUILD_IRQ(0x43, (1 << 18)) /* sser1 */ |
| 106 | BUILD_IRQ(0x44, (1 << 19)) /* ser0 */ |
| 107 | BUILD_IRQ(0x45, (1 << 20)) /* ser1 */ |
| 108 | BUILD_IRQ(0x46, (1 << 21)) /* ser2 */ |
| 109 | BUILD_IRQ(0x47, (1 << 22)) /* ser3 */ |
| 110 | BUILD_IRQ(0x48, (1 << 23)) |
| 111 | BUILD_IRQ(0x49, (1 << 24)) /* eth0 */ |
| 112 | BUILD_IRQ(0x4a, (1 << 25)) /* eth1 */ |
| 113 | BUILD_TIMER_IRQ(0x4b, (1 << 26))/* timer */ |
| 114 | BUILD_IRQ(0x4c, (1 << 27)) /* bif_arb */ |
| 115 | BUILD_IRQ(0x4d, (1 << 28)) /* bif_dma */ |
| 116 | BUILD_IRQ(0x4e, (1 << 29)) /* ext */ |
| 117 | BUILD_IRQ(0x4f, (1 << 29)) /* ipi */ |
| 118 | |
| 119 | /* Pointers to the low-level handlers. */ |
| 120 | static void (*interrupt[NR_IRQS])(void) = { |
| 121 | IRQ0x31_interrupt, IRQ0x32_interrupt, IRQ0x33_interrupt, |
| 122 | IRQ0x34_interrupt, IRQ0x35_interrupt, IRQ0x36_interrupt, |
| 123 | IRQ0x37_interrupt, IRQ0x38_interrupt, IRQ0x39_interrupt, |
| 124 | IRQ0x3a_interrupt, IRQ0x3b_interrupt, IRQ0x3c_interrupt, |
| 125 | IRQ0x3d_interrupt, IRQ0x3e_interrupt, IRQ0x3f_interrupt, |
| 126 | IRQ0x40_interrupt, IRQ0x41_interrupt, IRQ0x42_interrupt, |
| 127 | IRQ0x43_interrupt, IRQ0x44_interrupt, IRQ0x45_interrupt, |
| 128 | IRQ0x46_interrupt, IRQ0x47_interrupt, IRQ0x48_interrupt, |
| 129 | IRQ0x49_interrupt, IRQ0x4a_interrupt, IRQ0x4b_interrupt, |
| 130 | IRQ0x4c_interrupt, IRQ0x4d_interrupt, IRQ0x4e_interrupt, |
| 131 | IRQ0x4f_interrupt |
| 132 | }; |
| 133 | |
| 134 | void |
| 135 | block_irq(int irq, int cpu) |
| 136 | { |
| 137 | int intr_mask; |
| 138 | unsigned long flags; |
| 139 | |
| 140 | spin_lock_irqsave(&irq_lock, flags); |
| 141 | intr_mask = REG_RD_INT(intr_vect, irq_regs[cpu], rw_mask); |
| 142 | |
| 143 | /* Remember; 1 let thru, 0 block. */ |
| 144 | intr_mask &= ~(1 << (irq - FIRST_IRQ)); |
| 145 | |
| 146 | REG_WR_INT(intr_vect, irq_regs[cpu], rw_mask, intr_mask); |
| 147 | spin_unlock_irqrestore(&irq_lock, flags); |
| 148 | } |
| 149 | |
| 150 | void |
| 151 | unblock_irq(int irq, int cpu) |
| 152 | { |
| 153 | int intr_mask; |
| 154 | unsigned long flags; |
| 155 | |
| 156 | spin_lock_irqsave(&irq_lock, flags); |
| 157 | intr_mask = REG_RD_INT(intr_vect, irq_regs[cpu], rw_mask); |
| 158 | |
| 159 | /* Remember; 1 let thru, 0 block. */ |
| 160 | intr_mask |= (1 << (irq - FIRST_IRQ)); |
| 161 | |
| 162 | REG_WR_INT(intr_vect, irq_regs[cpu], rw_mask, intr_mask); |
| 163 | spin_unlock_irqrestore(&irq_lock, flags); |
| 164 | } |
| 165 | |
| 166 | /* Find out which CPU the irq should be allocated to. */ |
| 167 | static int irq_cpu(int irq) |
| 168 | { |
| 169 | int cpu; |
| 170 | unsigned long flags; |
| 171 | |
| 172 | spin_lock_irqsave(&irq_lock, flags); |
| 173 | cpu = irq_allocations[irq - FIRST_IRQ].cpu; |
| 174 | |
| 175 | /* Fixed interrupts stay on the local CPU. */ |
| 176 | if (cpu == CPU_FIXED) |
| 177 | { |
| 178 | spin_unlock_irqrestore(&irq_lock, flags); |
| 179 | return smp_processor_id(); |
| 180 | } |
| 181 | |
| 182 | |
| 183 | /* Let the interrupt stay if possible */ |
| 184 | if (cpu_isset(cpu, irq_allocations[irq - FIRST_IRQ].mask)) |
| 185 | goto out; |
| 186 | |
| 187 | /* IRQ must be moved to another CPU. */ |
| 188 | cpu = first_cpu(irq_allocations[irq - FIRST_IRQ].mask); |
| 189 | irq_allocations[irq - FIRST_IRQ].cpu = cpu; |
| 190 | out: |
| 191 | spin_unlock_irqrestore(&irq_lock, flags); |
| 192 | return cpu; |
| 193 | } |
| 194 | |
| 195 | void |
| 196 | mask_irq(int irq) |
| 197 | { |
| 198 | int cpu; |
| 199 | |
| 200 | for (cpu = 0; cpu < NR_CPUS; cpu++) |
| 201 | block_irq(irq, cpu); |
| 202 | } |
| 203 | |
| 204 | void |
| 205 | unmask_irq(int irq) |
| 206 | { |
| 207 | unblock_irq(irq, irq_cpu(irq)); |
| 208 | } |
| 209 | |
| 210 | |
| 211 | static unsigned int startup_crisv32_irq(unsigned int irq) |
| 212 | { |
| 213 | unmask_irq(irq); |
| 214 | return 0; |
| 215 | } |
| 216 | |
| 217 | static void shutdown_crisv32_irq(unsigned int irq) |
| 218 | { |
| 219 | mask_irq(irq); |
| 220 | } |
| 221 | |
| 222 | static void enable_crisv32_irq(unsigned int irq) |
| 223 | { |
| 224 | unmask_irq(irq); |
| 225 | } |
| 226 | |
| 227 | static void disable_crisv32_irq(unsigned int irq) |
| 228 | { |
| 229 | mask_irq(irq); |
| 230 | } |
| 231 | |
| 232 | static void ack_crisv32_irq(unsigned int irq) |
| 233 | { |
| 234 | } |
| 235 | |
| 236 | static void end_crisv32_irq(unsigned int irq) |
| 237 | { |
| 238 | } |
| 239 | |
| 240 | void set_affinity_crisv32_irq(unsigned int irq, cpumask_t dest) |
| 241 | { |
| 242 | unsigned long flags; |
| 243 | spin_lock_irqsave(&irq_lock, flags); |
| 244 | irq_allocations[irq - FIRST_IRQ].mask = dest; |
| 245 | spin_unlock_irqrestore(&irq_lock, flags); |
| 246 | } |
| 247 | |
| 248 | static struct hw_interrupt_type crisv32_irq_type = { |
| 249 | .typename = "CRISv32", |
| 250 | .startup = startup_crisv32_irq, |
| 251 | .shutdown = shutdown_crisv32_irq, |
| 252 | .enable = enable_crisv32_irq, |
| 253 | .disable = disable_crisv32_irq, |
| 254 | .ack = ack_crisv32_irq, |
| 255 | .end = end_crisv32_irq, |
| 256 | .set_affinity = set_affinity_crisv32_irq |
| 257 | }; |
| 258 | |
| 259 | void |
| 260 | set_exception_vector(int n, irqvectptr addr) |
| 261 | { |
| 262 | etrax_irv->v[n] = (irqvectptr) addr; |
| 263 | } |
| 264 | |
| 265 | extern void do_IRQ(int irq, struct pt_regs * regs); |
| 266 | |
| 267 | void |
| 268 | crisv32_do_IRQ(int irq, int block, struct pt_regs* regs) |
| 269 | { |
| 270 | /* Interrupts that may not be moved to another CPU and |
Thomas Gleixner | aa7135f | 2006-07-01 19:29:14 -0700 | [diff] [blame^] | 271 | * are IRQF_DISABLED may skip blocking. This is currently |
Mikael Starvik | 51533b6 | 2005-07-27 11:44:44 -0700 | [diff] [blame] | 272 | * only valid for the timer IRQ and the IPI and is used |
| 273 | * for the timer interrupt to avoid watchdog starvation. |
| 274 | */ |
| 275 | if (!block) { |
| 276 | do_IRQ(irq, regs); |
| 277 | return; |
| 278 | } |
| 279 | |
| 280 | block_irq(irq, smp_processor_id()); |
| 281 | do_IRQ(irq, regs); |
| 282 | |
| 283 | unblock_irq(irq, irq_cpu(irq)); |
| 284 | } |
| 285 | |
| 286 | /* If multiple interrupts occur simultaneously we get a multiple |
| 287 | * interrupt from the CPU and software has to sort out which |
| 288 | * interrupts that happened. There are two special cases here: |
| 289 | * |
| 290 | * 1. Timer interrupts may never be blocked because of the |
| 291 | * watchdog (refer to comment in include/asr/arch/irq.h) |
| 292 | * 2. GDB serial port IRQs are unhandled here and will be handled |
| 293 | * as a single IRQ when it strikes again because the GDB |
| 294 | * stubb wants to save the registers in its own fashion. |
| 295 | */ |
| 296 | void |
| 297 | crisv32_do_multiple(struct pt_regs* regs) |
| 298 | { |
| 299 | int cpu; |
| 300 | int mask; |
| 301 | int masked; |
| 302 | int bit; |
| 303 | |
| 304 | cpu = smp_processor_id(); |
| 305 | |
| 306 | /* An extra irq_enter here to prevent softIRQs to run after |
| 307 | * each do_IRQ. This will decrease the interrupt latency. |
| 308 | */ |
| 309 | irq_enter(); |
| 310 | |
| 311 | /* Get which IRQs that happend. */ |
| 312 | masked = REG_RD_INT(intr_vect, irq_regs[cpu], r_masked_vect); |
| 313 | |
| 314 | /* Calculate new IRQ mask with these IRQs disabled. */ |
| 315 | mask = REG_RD_INT(intr_vect, irq_regs[cpu], rw_mask); |
| 316 | mask &= ~masked; |
| 317 | |
| 318 | /* Timer IRQ is never masked */ |
| 319 | if (masked & TIMER_MASK) |
| 320 | mask |= TIMER_MASK; |
| 321 | |
| 322 | /* Block all the IRQs */ |
| 323 | REG_WR_INT(intr_vect, irq_regs[cpu], rw_mask, mask); |
| 324 | |
| 325 | /* Check for timer IRQ and handle it special. */ |
| 326 | if (masked & TIMER_MASK) { |
| 327 | masked &= ~TIMER_MASK; |
| 328 | do_IRQ(TIMER_INTR_VECT, regs); |
| 329 | } |
| 330 | |
| 331 | #ifdef IGNORE_MASK |
| 332 | /* Remove IRQs that can't be handled as multiple. */ |
| 333 | masked &= ~IGNORE_MASK; |
| 334 | #endif |
| 335 | |
| 336 | /* Handle the rest of the IRQs. */ |
| 337 | for (bit = 0; bit < 32; bit++) |
| 338 | { |
| 339 | if (masked & (1 << bit)) |
| 340 | do_IRQ(bit + FIRST_IRQ, regs); |
| 341 | } |
| 342 | |
| 343 | /* Unblock all the IRQs. */ |
| 344 | mask = REG_RD_INT(intr_vect, irq_regs[cpu], rw_mask); |
| 345 | mask |= masked; |
| 346 | REG_WR_INT(intr_vect, irq_regs[cpu], rw_mask, mask); |
| 347 | |
| 348 | /* This irq_exit() will trigger the soft IRQs. */ |
| 349 | irq_exit(); |
| 350 | } |
| 351 | |
| 352 | /* |
| 353 | * This is called by start_kernel. It fixes the IRQ masks and setup the |
| 354 | * interrupt vector table to point to bad_interrupt pointers. |
| 355 | */ |
| 356 | void __init |
| 357 | init_IRQ(void) |
| 358 | { |
| 359 | int i; |
| 360 | int j; |
| 361 | reg_intr_vect_rw_mask vect_mask = {0}; |
| 362 | |
| 363 | /* Clear all interrupts masks. */ |
| 364 | REG_WR(intr_vect, regi_irq, rw_mask, vect_mask); |
| 365 | |
| 366 | for (i = 0; i < 256; i++) |
| 367 | etrax_irv->v[i] = weird_irq; |
| 368 | |
| 369 | /* Point all IRQ's to bad handlers. */ |
| 370 | for (i = FIRST_IRQ, j = 0; j < NR_IRQS; i++, j++) { |
Ingo Molnar | d1bef4e | 2006-06-29 02:24:36 -0700 | [diff] [blame] | 371 | irq_desc[j].chip = &crisv32_irq_type; |
Mikael Starvik | 51533b6 | 2005-07-27 11:44:44 -0700 | [diff] [blame] | 372 | set_exception_vector(i, interrupt[j]); |
| 373 | } |
| 374 | |
| 375 | /* Mark Timer and IPI IRQs as CPU local */ |
| 376 | irq_allocations[TIMER_INTR_VECT - FIRST_IRQ].cpu = CPU_FIXED; |
| 377 | irq_desc[TIMER_INTR_VECT].status |= IRQ_PER_CPU; |
| 378 | irq_allocations[IPI_INTR_VECT - FIRST_IRQ].cpu = CPU_FIXED; |
| 379 | irq_desc[IPI_INTR_VECT].status |= IRQ_PER_CPU; |
| 380 | |
| 381 | set_exception_vector(0x00, nmi_interrupt); |
| 382 | set_exception_vector(0x30, multiple_interrupt); |
| 383 | |
| 384 | /* Set up handler for various MMU bus faults. */ |
| 385 | set_exception_vector(0x04, i_mmu_refill); |
| 386 | set_exception_vector(0x05, i_mmu_invalid); |
| 387 | set_exception_vector(0x06, i_mmu_access); |
| 388 | set_exception_vector(0x07, i_mmu_execute); |
| 389 | set_exception_vector(0x08, d_mmu_refill); |
| 390 | set_exception_vector(0x09, d_mmu_invalid); |
| 391 | set_exception_vector(0x0a, d_mmu_access); |
| 392 | set_exception_vector(0x0b, d_mmu_write); |
| 393 | |
| 394 | /* The system-call trap is reached by "break 13". */ |
| 395 | set_exception_vector(0x1d, system_call); |
| 396 | |
| 397 | /* Exception handlers for debugging, both user-mode and kernel-mode. */ |
| 398 | |
| 399 | /* Break 8. */ |
| 400 | set_exception_vector(0x18, gdb_handle_exception); |
| 401 | /* Hardware single step. */ |
| 402 | set_exception_vector(0x3, gdb_handle_exception); |
| 403 | /* Hardware breakpoint. */ |
| 404 | set_exception_vector(0xc, gdb_handle_exception); |
| 405 | |
| 406 | #ifdef CONFIG_ETRAX_KGDB |
| 407 | kgdb_init(); |
| 408 | /* Everything is set up; now trap the kernel. */ |
| 409 | breakpoint(); |
| 410 | #endif |
| 411 | } |
| 412 | |