blob: 7f50882f11ab363492a8ad0d81793f4ccdef482a [file] [log] [blame]
Ben Hutchings86094f72013-08-21 19:51:04 +01001/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2011 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/bitops.h>
12#include <linux/delay.h>
13#include <linux/interrupt.h>
14#include <linux/pci.h>
15#include <linux/module.h>
16#include <linux/seq_file.h>
17#include "net_driver.h"
18#include "bitfield.h"
19#include "efx.h"
20#include "nic.h"
21#include "farch_regs.h"
22#include "io.h"
23#include "workarounds.h"
24
25/* Falcon-architecture (SFC4000 and SFC9000-family) support */
26
27/**************************************************************************
28 *
29 * Configurable values
30 *
31 **************************************************************************
32 */
33
34/* This is set to 16 for a good reason. In summary, if larger than
35 * 16, the descriptor cache holds more than a default socket
36 * buffer's worth of packets (for UDP we can only have at most one
37 * socket buffer's worth outstanding). This combined with the fact
38 * that we only get 1 TX event per descriptor cache means the NIC
39 * goes idle.
40 */
41#define TX_DC_ENTRIES 16
42#define TX_DC_ENTRIES_ORDER 1
43
44#define RX_DC_ENTRIES 64
45#define RX_DC_ENTRIES_ORDER 3
46
47/* If EFX_MAX_INT_ERRORS internal errors occur within
48 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
49 * disable it.
50 */
51#define EFX_INT_ERROR_EXPIRE 3600
52#define EFX_MAX_INT_ERRORS 5
53
54/* Depth of RX flush request fifo */
55#define EFX_RX_FLUSH_COUNT 4
56
57/* Driver generated events */
58#define _EFX_CHANNEL_MAGIC_TEST 0x000101
59#define _EFX_CHANNEL_MAGIC_FILL 0x000102
60#define _EFX_CHANNEL_MAGIC_RX_DRAIN 0x000103
61#define _EFX_CHANNEL_MAGIC_TX_DRAIN 0x000104
62
63#define _EFX_CHANNEL_MAGIC(_code, _data) ((_code) << 8 | (_data))
64#define _EFX_CHANNEL_MAGIC_CODE(_magic) ((_magic) >> 8)
65
66#define EFX_CHANNEL_MAGIC_TEST(_channel) \
67 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
68#define EFX_CHANNEL_MAGIC_FILL(_rx_queue) \
69 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL, \
70 efx_rx_queue_index(_rx_queue))
71#define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue) \
72 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN, \
73 efx_rx_queue_index(_rx_queue))
74#define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue) \
75 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN, \
76 (_tx_queue)->queue)
77
78static void efx_farch_magic_event(struct efx_channel *channel, u32 magic);
79
80/**************************************************************************
81 *
82 * Hardware access
83 *
84 **************************************************************************/
85
86static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
87 unsigned int index)
88{
89 efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
90 value, index);
91}
92
93static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
94 const efx_oword_t *mask)
95{
96 return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
97 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
98}
99
100int efx_farch_test_registers(struct efx_nic *efx,
101 const struct efx_farch_register_test *regs,
102 size_t n_regs)
103{
104 unsigned address = 0, i, j;
105 efx_oword_t mask, imask, original, reg, buf;
106
107 for (i = 0; i < n_regs; ++i) {
108 address = regs[i].address;
109 mask = imask = regs[i].mask;
110 EFX_INVERT_OWORD(imask);
111
112 efx_reado(efx, &original, address);
113
114 /* bit sweep on and off */
115 for (j = 0; j < 128; j++) {
116 if (!EFX_EXTRACT_OWORD32(mask, j, j))
117 continue;
118
119 /* Test this testable bit can be set in isolation */
120 EFX_AND_OWORD(reg, original, mask);
121 EFX_SET_OWORD32(reg, j, j, 1);
122
123 efx_writeo(efx, &reg, address);
124 efx_reado(efx, &buf, address);
125
126 if (efx_masked_compare_oword(&reg, &buf, &mask))
127 goto fail;
128
129 /* Test this testable bit can be cleared in isolation */
130 EFX_OR_OWORD(reg, original, mask);
131 EFX_SET_OWORD32(reg, j, j, 0);
132
133 efx_writeo(efx, &reg, address);
134 efx_reado(efx, &buf, address);
135
136 if (efx_masked_compare_oword(&reg, &buf, &mask))
137 goto fail;
138 }
139
140 efx_writeo(efx, &original, address);
141 }
142
143 return 0;
144
145fail:
146 netif_err(efx, hw, efx->net_dev,
147 "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
148 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
149 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
150 return -EIO;
151}
152
153/**************************************************************************
154 *
155 * Special buffer handling
156 * Special buffers are used for event queues and the TX and RX
157 * descriptor rings.
158 *
159 *************************************************************************/
160
161/*
162 * Initialise a special buffer
163 *
164 * This will define a buffer (previously allocated via
165 * efx_alloc_special_buffer()) in the buffer table, allowing
166 * it to be used for event queues, descriptor rings etc.
167 */
168static void
169efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
170{
171 efx_qword_t buf_desc;
172 unsigned int index;
173 dma_addr_t dma_addr;
174 int i;
175
176 EFX_BUG_ON_PARANOID(!buffer->buf.addr);
177
178 /* Write buffer descriptors to NIC */
179 for (i = 0; i < buffer->entries; i++) {
180 index = buffer->index + i;
181 dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE);
182 netif_dbg(efx, probe, efx->net_dev,
183 "mapping special buffer %d at %llx\n",
184 index, (unsigned long long)dma_addr);
185 EFX_POPULATE_QWORD_3(buf_desc,
186 FRF_AZ_BUF_ADR_REGION, 0,
187 FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
188 FRF_AZ_BUF_OWNER_ID_FBUF, 0);
189 efx_write_buf_tbl(efx, &buf_desc, index);
190 }
191}
192
193/* Unmaps a buffer and clears the buffer table entries */
194static void
195efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
196{
197 efx_oword_t buf_tbl_upd;
198 unsigned int start = buffer->index;
199 unsigned int end = (buffer->index + buffer->entries - 1);
200
201 if (!buffer->entries)
202 return;
203
204 netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
205 buffer->index, buffer->index + buffer->entries - 1);
206
207 EFX_POPULATE_OWORD_4(buf_tbl_upd,
208 FRF_AZ_BUF_UPD_CMD, 0,
209 FRF_AZ_BUF_CLR_CMD, 1,
210 FRF_AZ_BUF_CLR_END_ID, end,
211 FRF_AZ_BUF_CLR_START_ID, start);
212 efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
213}
214
215/*
216 * Allocate a new special buffer
217 *
218 * This allocates memory for a new buffer, clears it and allocates a
219 * new buffer ID range. It does not write into the buffer table.
220 *
221 * This call will allocate 4KB buffers, since 8KB buffers can't be
222 * used for event queues and descriptor rings.
223 */
224static int efx_alloc_special_buffer(struct efx_nic *efx,
225 struct efx_special_buffer *buffer,
226 unsigned int len)
227{
228 len = ALIGN(len, EFX_BUF_SIZE);
229
230 if (efx_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
231 return -ENOMEM;
232 buffer->entries = len / EFX_BUF_SIZE;
233 BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1));
234
235 /* Select new buffer ID */
236 buffer->index = efx->next_buffer_table;
237 efx->next_buffer_table += buffer->entries;
238#ifdef CONFIG_SFC_SRIOV
239 BUG_ON(efx_sriov_enabled(efx) &&
240 efx->vf_buftbl_base < efx->next_buffer_table);
241#endif
242
243 netif_dbg(efx, probe, efx->net_dev,
244 "allocating special buffers %d-%d at %llx+%x "
245 "(virt %p phys %llx)\n", buffer->index,
246 buffer->index + buffer->entries - 1,
247 (u64)buffer->buf.dma_addr, len,
248 buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
249
250 return 0;
251}
252
253static void
254efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
255{
256 if (!buffer->buf.addr)
257 return;
258
259 netif_dbg(efx, hw, efx->net_dev,
260 "deallocating special buffers %d-%d at %llx+%x "
261 "(virt %p phys %llx)\n", buffer->index,
262 buffer->index + buffer->entries - 1,
263 (u64)buffer->buf.dma_addr, buffer->buf.len,
264 buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
265
266 efx_nic_free_buffer(efx, &buffer->buf);
267 buffer->entries = 0;
268}
269
270/**************************************************************************
271 *
272 * TX path
273 *
274 **************************************************************************/
275
276/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
277static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue)
278{
279 unsigned write_ptr;
280 efx_dword_t reg;
281
282 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
283 EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
284 efx_writed_page(tx_queue->efx, &reg,
285 FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
286}
287
288/* Write pointer and first descriptor for TX descriptor ring */
289static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue,
290 const efx_qword_t *txd)
291{
292 unsigned write_ptr;
293 efx_oword_t reg;
294
295 BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
296 BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
297
298 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
299 EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
300 FRF_AZ_TX_DESC_WPTR, write_ptr);
301 reg.qword[0] = *txd;
302 efx_writeo_page(tx_queue->efx, &reg,
303 FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
304}
305
306
307/* For each entry inserted into the software descriptor ring, create a
308 * descriptor in the hardware TX descriptor ring (in host memory), and
309 * write a doorbell.
310 */
311void efx_farch_tx_write(struct efx_tx_queue *tx_queue)
312{
313
314 struct efx_tx_buffer *buffer;
315 efx_qword_t *txd;
316 unsigned write_ptr;
317 unsigned old_write_count = tx_queue->write_count;
318
319 BUG_ON(tx_queue->write_count == tx_queue->insert_count);
320
321 do {
322 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
323 buffer = &tx_queue->buffer[write_ptr];
324 txd = efx_tx_desc(tx_queue, write_ptr);
325 ++tx_queue->write_count;
326
327 /* Create TX descriptor ring entry */
328 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
329 EFX_POPULATE_QWORD_4(*txd,
330 FSF_AZ_TX_KER_CONT,
331 buffer->flags & EFX_TX_BUF_CONT,
332 FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
333 FSF_AZ_TX_KER_BUF_REGION, 0,
334 FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
335 } while (tx_queue->write_count != tx_queue->insert_count);
336
337 wmb(); /* Ensure descriptors are written before they are fetched */
338
339 if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
340 txd = efx_tx_desc(tx_queue,
341 old_write_count & tx_queue->ptr_mask);
342 efx_farch_push_tx_desc(tx_queue, txd);
343 ++tx_queue->pushes;
344 } else {
345 efx_farch_notify_tx_desc(tx_queue);
346 }
347}
348
349/* Allocate hardware resources for a TX queue */
350int efx_farch_tx_probe(struct efx_tx_queue *tx_queue)
351{
352 struct efx_nic *efx = tx_queue->efx;
353 unsigned entries;
354
355 entries = tx_queue->ptr_mask + 1;
356 return efx_alloc_special_buffer(efx, &tx_queue->txd,
357 entries * sizeof(efx_qword_t));
358}
359
360void efx_farch_tx_init(struct efx_tx_queue *tx_queue)
361{
362 struct efx_nic *efx = tx_queue->efx;
363 efx_oword_t reg;
364
365 /* Pin TX descriptor ring */
366 efx_init_special_buffer(efx, &tx_queue->txd);
367
368 /* Push TX descriptor ring to card */
369 EFX_POPULATE_OWORD_10(reg,
370 FRF_AZ_TX_DESCQ_EN, 1,
371 FRF_AZ_TX_ISCSI_DDIG_EN, 0,
372 FRF_AZ_TX_ISCSI_HDIG_EN, 0,
373 FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
374 FRF_AZ_TX_DESCQ_EVQ_ID,
375 tx_queue->channel->channel,
376 FRF_AZ_TX_DESCQ_OWNER_ID, 0,
377 FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
378 FRF_AZ_TX_DESCQ_SIZE,
379 __ffs(tx_queue->txd.entries),
380 FRF_AZ_TX_DESCQ_TYPE, 0,
381 FRF_BZ_TX_NON_IP_DROP_DIS, 1);
382
383 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
384 int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
385 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
386 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
387 !csum);
388 }
389
390 efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
391 tx_queue->queue);
392
393 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
394 /* Only 128 bits in this register */
395 BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
396
397 efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
398 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
399 __clear_bit_le(tx_queue->queue, &reg);
400 else
401 __set_bit_le(tx_queue->queue, &reg);
402 efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
403 }
404
405 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
406 EFX_POPULATE_OWORD_1(reg,
407 FRF_BZ_TX_PACE,
408 (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
409 FFE_BZ_TX_PACE_OFF :
410 FFE_BZ_TX_PACE_RESERVED);
411 efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
412 tx_queue->queue);
413 }
414}
415
416static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue)
417{
418 struct efx_nic *efx = tx_queue->efx;
419 efx_oword_t tx_flush_descq;
420
421 WARN_ON(atomic_read(&tx_queue->flush_outstanding));
422 atomic_set(&tx_queue->flush_outstanding, 1);
423
424 EFX_POPULATE_OWORD_2(tx_flush_descq,
425 FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
426 FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
427 efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
428}
429
430void efx_farch_tx_fini(struct efx_tx_queue *tx_queue)
431{
432 struct efx_nic *efx = tx_queue->efx;
433 efx_oword_t tx_desc_ptr;
434
435 /* Remove TX descriptor ring from card */
436 EFX_ZERO_OWORD(tx_desc_ptr);
437 efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
438 tx_queue->queue);
439
440 /* Unpin TX descriptor ring */
441 efx_fini_special_buffer(efx, &tx_queue->txd);
442}
443
444/* Free buffers backing TX queue */
445void efx_farch_tx_remove(struct efx_tx_queue *tx_queue)
446{
447 efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
448}
449
450/**************************************************************************
451 *
452 * RX path
453 *
454 **************************************************************************/
455
456/* This creates an entry in the RX descriptor queue */
457static inline void
458efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
459{
460 struct efx_rx_buffer *rx_buf;
461 efx_qword_t *rxd;
462
463 rxd = efx_rx_desc(rx_queue, index);
464 rx_buf = efx_rx_buffer(rx_queue, index);
465 EFX_POPULATE_QWORD_3(*rxd,
466 FSF_AZ_RX_KER_BUF_SIZE,
467 rx_buf->len -
468 rx_queue->efx->type->rx_buffer_padding,
469 FSF_AZ_RX_KER_BUF_REGION, 0,
470 FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
471}
472
473/* This writes to the RX_DESC_WPTR register for the specified receive
474 * descriptor ring.
475 */
476void efx_farch_rx_write(struct efx_rx_queue *rx_queue)
477{
478 struct efx_nic *efx = rx_queue->efx;
479 efx_dword_t reg;
480 unsigned write_ptr;
481
482 while (rx_queue->notified_count != rx_queue->added_count) {
483 efx_farch_build_rx_desc(
484 rx_queue,
485 rx_queue->notified_count & rx_queue->ptr_mask);
486 ++rx_queue->notified_count;
487 }
488
489 wmb();
490 write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
491 EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
492 efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
493 efx_rx_queue_index(rx_queue));
494}
495
496int efx_farch_rx_probe(struct efx_rx_queue *rx_queue)
497{
498 struct efx_nic *efx = rx_queue->efx;
499 unsigned entries;
500
501 entries = rx_queue->ptr_mask + 1;
502 return efx_alloc_special_buffer(efx, &rx_queue->rxd,
503 entries * sizeof(efx_qword_t));
504}
505
506void efx_farch_rx_init(struct efx_rx_queue *rx_queue)
507{
508 efx_oword_t rx_desc_ptr;
509 struct efx_nic *efx = rx_queue->efx;
510 bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
511 bool iscsi_digest_en = is_b0;
512 bool jumbo_en;
513
514 /* For kernel-mode queues in Falcon A1, the JUMBO flag enables
515 * DMA to continue after a PCIe page boundary (and scattering
516 * is not possible). In Falcon B0 and Siena, it enables
517 * scatter.
518 */
519 jumbo_en = !is_b0 || efx->rx_scatter;
520
521 netif_dbg(efx, hw, efx->net_dev,
522 "RX queue %d ring in special buffers %d-%d\n",
523 efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
524 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
525
526 rx_queue->scatter_n = 0;
527
528 /* Pin RX descriptor ring */
529 efx_init_special_buffer(efx, &rx_queue->rxd);
530
531 /* Push RX descriptor ring to card */
532 EFX_POPULATE_OWORD_10(rx_desc_ptr,
533 FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
534 FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
535 FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
536 FRF_AZ_RX_DESCQ_EVQ_ID,
537 efx_rx_queue_channel(rx_queue)->channel,
538 FRF_AZ_RX_DESCQ_OWNER_ID, 0,
539 FRF_AZ_RX_DESCQ_LABEL,
540 efx_rx_queue_index(rx_queue),
541 FRF_AZ_RX_DESCQ_SIZE,
542 __ffs(rx_queue->rxd.entries),
543 FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
544 FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
545 FRF_AZ_RX_DESCQ_EN, 1);
546 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
547 efx_rx_queue_index(rx_queue));
548}
549
550static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue)
551{
552 struct efx_nic *efx = rx_queue->efx;
553 efx_oword_t rx_flush_descq;
554
555 EFX_POPULATE_OWORD_2(rx_flush_descq,
556 FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
557 FRF_AZ_RX_FLUSH_DESCQ,
558 efx_rx_queue_index(rx_queue));
559 efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
560}
561
562void efx_farch_rx_fini(struct efx_rx_queue *rx_queue)
563{
564 efx_oword_t rx_desc_ptr;
565 struct efx_nic *efx = rx_queue->efx;
566
567 /* Remove RX descriptor ring from card */
568 EFX_ZERO_OWORD(rx_desc_ptr);
569 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
570 efx_rx_queue_index(rx_queue));
571
572 /* Unpin RX descriptor ring */
573 efx_fini_special_buffer(efx, &rx_queue->rxd);
574}
575
576/* Free buffers backing RX queue */
577void efx_farch_rx_remove(struct efx_rx_queue *rx_queue)
578{
579 efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
580}
581
582/**************************************************************************
583 *
584 * Flush handling
585 *
586 **************************************************************************/
587
588/* efx_farch_flush_queues() must be woken up when all flushes are completed,
589 * or more RX flushes can be kicked off.
590 */
591static bool efx_farch_flush_wake(struct efx_nic *efx)
592{
593 /* Ensure that all updates are visible to efx_farch_flush_queues() */
594 smp_mb();
595
596 return (atomic_read(&efx->drain_pending) == 0 ||
597 (atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
598 && atomic_read(&efx->rxq_flush_pending) > 0));
599}
600
601static bool efx_check_tx_flush_complete(struct efx_nic *efx)
602{
603 bool i = true;
604 efx_oword_t txd_ptr_tbl;
605 struct efx_channel *channel;
606 struct efx_tx_queue *tx_queue;
607
608 efx_for_each_channel(channel, efx) {
609 efx_for_each_channel_tx_queue(tx_queue, channel) {
610 efx_reado_table(efx, &txd_ptr_tbl,
611 FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
612 if (EFX_OWORD_FIELD(txd_ptr_tbl,
613 FRF_AZ_TX_DESCQ_FLUSH) ||
614 EFX_OWORD_FIELD(txd_ptr_tbl,
615 FRF_AZ_TX_DESCQ_EN)) {
616 netif_dbg(efx, hw, efx->net_dev,
617 "flush did not complete on TXQ %d\n",
618 tx_queue->queue);
619 i = false;
620 } else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
621 1, 0)) {
622 /* The flush is complete, but we didn't
623 * receive a flush completion event
624 */
625 netif_dbg(efx, hw, efx->net_dev,
626 "flush complete on TXQ %d, so drain "
627 "the queue\n", tx_queue->queue);
628 /* Don't need to increment drain_pending as it
629 * has already been incremented for the queues
630 * which did not drain
631 */
632 efx_farch_magic_event(channel,
633 EFX_CHANNEL_MAGIC_TX_DRAIN(
634 tx_queue));
635 }
636 }
637 }
638
639 return i;
640}
641
642/* Flush all the transmit queues, and continue flushing receive queues until
643 * they're all flushed. Wait for the DRAIN events to be recieved so that there
644 * are no more RX and TX events left on any channel. */
645static int efx_farch_do_flush(struct efx_nic *efx)
646{
647 unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
648 struct efx_channel *channel;
649 struct efx_rx_queue *rx_queue;
650 struct efx_tx_queue *tx_queue;
651 int rc = 0;
652
653 efx_for_each_channel(channel, efx) {
654 efx_for_each_channel_tx_queue(tx_queue, channel) {
655 atomic_inc(&efx->drain_pending);
656 efx_farch_flush_tx_queue(tx_queue);
657 }
658 efx_for_each_channel_rx_queue(rx_queue, channel) {
659 atomic_inc(&efx->drain_pending);
660 rx_queue->flush_pending = true;
661 atomic_inc(&efx->rxq_flush_pending);
662 }
663 }
664
665 while (timeout && atomic_read(&efx->drain_pending) > 0) {
666 /* If SRIOV is enabled, then offload receive queue flushing to
667 * the firmware (though we will still have to poll for
668 * completion). If that fails, fall back to the old scheme.
669 */
670 if (efx_sriov_enabled(efx)) {
671 rc = efx_mcdi_flush_rxqs(efx);
672 if (!rc)
673 goto wait;
674 }
675
676 /* The hardware supports four concurrent rx flushes, each of
677 * which may need to be retried if there is an outstanding
678 * descriptor fetch
679 */
680 efx_for_each_channel(channel, efx) {
681 efx_for_each_channel_rx_queue(rx_queue, channel) {
682 if (atomic_read(&efx->rxq_flush_outstanding) >=
683 EFX_RX_FLUSH_COUNT)
684 break;
685
686 if (rx_queue->flush_pending) {
687 rx_queue->flush_pending = false;
688 atomic_dec(&efx->rxq_flush_pending);
689 atomic_inc(&efx->rxq_flush_outstanding);
690 efx_farch_flush_rx_queue(rx_queue);
691 }
692 }
693 }
694
695 wait:
696 timeout = wait_event_timeout(efx->flush_wq,
697 efx_farch_flush_wake(efx),
698 timeout);
699 }
700
701 if (atomic_read(&efx->drain_pending) &&
702 !efx_check_tx_flush_complete(efx)) {
703 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
704 "(rx %d+%d)\n", atomic_read(&efx->drain_pending),
705 atomic_read(&efx->rxq_flush_outstanding),
706 atomic_read(&efx->rxq_flush_pending));
707 rc = -ETIMEDOUT;
708
709 atomic_set(&efx->drain_pending, 0);
710 atomic_set(&efx->rxq_flush_pending, 0);
711 atomic_set(&efx->rxq_flush_outstanding, 0);
712 }
713
714 return rc;
715}
716
717int efx_farch_fini_dmaq(struct efx_nic *efx)
718{
719 struct efx_channel *channel;
720 struct efx_tx_queue *tx_queue;
721 struct efx_rx_queue *rx_queue;
722 int rc = 0;
723
724 /* Do not attempt to write to the NIC during EEH recovery */
725 if (efx->state != STATE_RECOVERY) {
726 /* Only perform flush if DMA is enabled */
727 if (efx->pci_dev->is_busmaster) {
728 efx->type->prepare_flush(efx);
729 rc = efx_farch_do_flush(efx);
730 efx->type->finish_flush(efx);
731 }
732
733 efx_for_each_channel(channel, efx) {
734 efx_for_each_channel_rx_queue(rx_queue, channel)
735 efx_farch_rx_fini(rx_queue);
736 efx_for_each_channel_tx_queue(tx_queue, channel)
737 efx_farch_tx_fini(tx_queue);
738 }
739 }
740
741 return rc;
742}
743
744/**************************************************************************
745 *
746 * Event queue processing
747 * Event queues are processed by per-channel tasklets.
748 *
749 **************************************************************************/
750
751/* Update a channel's event queue's read pointer (RPTR) register
752 *
753 * This writes the EVQ_RPTR_REG register for the specified channel's
754 * event queue.
755 */
756void efx_farch_ev_read_ack(struct efx_channel *channel)
757{
758 efx_dword_t reg;
759 struct efx_nic *efx = channel->efx;
760
761 EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
762 channel->eventq_read_ptr & channel->eventq_mask);
763
764 /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
765 * of 4 bytes, but it is really 16 bytes just like later revisions.
766 */
767 efx_writed(efx, &reg,
768 efx->type->evq_rptr_tbl_base +
769 FR_BZ_EVQ_RPTR_STEP * channel->channel);
770}
771
772/* Use HW to insert a SW defined event */
773void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
774 efx_qword_t *event)
775{
776 efx_oword_t drv_ev_reg;
777
778 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
779 FRF_AZ_DRV_EV_DATA_WIDTH != 64);
780 drv_ev_reg.u32[0] = event->u32[0];
781 drv_ev_reg.u32[1] = event->u32[1];
782 drv_ev_reg.u32[2] = 0;
783 drv_ev_reg.u32[3] = 0;
784 EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
785 efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
786}
787
788static void efx_farch_magic_event(struct efx_channel *channel, u32 magic)
789{
790 efx_qword_t event;
791
792 EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
793 FSE_AZ_EV_CODE_DRV_GEN_EV,
794 FSF_AZ_DRV_GEN_EV_MAGIC, magic);
795 efx_farch_generate_event(channel->efx, channel->channel, &event);
796}
797
798/* Handle a transmit completion event
799 *
800 * The NIC batches TX completion events; the message we receive is of
801 * the form "complete all TX events up to this index".
802 */
803static int
804efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
805{
806 unsigned int tx_ev_desc_ptr;
807 unsigned int tx_ev_q_label;
808 struct efx_tx_queue *tx_queue;
809 struct efx_nic *efx = channel->efx;
810 int tx_packets = 0;
811
812 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
813 return 0;
814
815 if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
816 /* Transmit completion */
817 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
818 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
819 tx_queue = efx_channel_get_tx_queue(
820 channel, tx_ev_q_label % EFX_TXQ_TYPES);
821 tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
822 tx_queue->ptr_mask);
823 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
824 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
825 /* Rewrite the FIFO write pointer */
826 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
827 tx_queue = efx_channel_get_tx_queue(
828 channel, tx_ev_q_label % EFX_TXQ_TYPES);
829
830 netif_tx_lock(efx->net_dev);
831 efx_farch_notify_tx_desc(tx_queue);
832 netif_tx_unlock(efx->net_dev);
Ben Hutchingsab3b8252012-10-05 19:31:02 +0100833 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
Ben Hutchings86094f72013-08-21 19:51:04 +0100834 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
835 } else {
836 netif_err(efx, tx_err, efx->net_dev,
837 "channel %d unexpected TX event "
838 EFX_QWORD_FMT"\n", channel->channel,
839 EFX_QWORD_VAL(*event));
840 }
841
842 return tx_packets;
843}
844
845/* Detect errors included in the rx_evt_pkt_ok bit. */
846static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
847 const efx_qword_t *event)
848{
849 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
850 struct efx_nic *efx = rx_queue->efx;
851 bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
852 bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
853 bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
854 bool rx_ev_other_err, rx_ev_pause_frm;
855 bool rx_ev_hdr_type, rx_ev_mcast_pkt;
856 unsigned rx_ev_pkt_type;
857
858 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
859 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
860 rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
861 rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
862 rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
863 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
864 rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
865 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
866 rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
867 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
868 rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
869 rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
870 rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
871 0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
872 rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
873
874 /* Every error apart from tobe_disc and pause_frm */
875 rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
876 rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
877 rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
878
879 /* Count errors that are not in MAC stats. Ignore expected
880 * checksum errors during self-test. */
881 if (rx_ev_frm_trunc)
882 ++channel->n_rx_frm_trunc;
883 else if (rx_ev_tobe_disc)
884 ++channel->n_rx_tobe_disc;
885 else if (!efx->loopback_selftest) {
886 if (rx_ev_ip_hdr_chksum_err)
887 ++channel->n_rx_ip_hdr_chksum_err;
888 else if (rx_ev_tcp_udp_chksum_err)
889 ++channel->n_rx_tcp_udp_chksum_err;
890 }
891
892 /* TOBE_DISC is expected on unicast mismatches; don't print out an
893 * error message. FRM_TRUNC indicates RXDP dropped the packet due
894 * to a FIFO overflow.
895 */
896#ifdef DEBUG
897 if (rx_ev_other_err && net_ratelimit()) {
898 netif_dbg(efx, rx_err, efx->net_dev,
899 " RX queue %d unexpected RX event "
900 EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
901 efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
902 rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
903 rx_ev_ip_hdr_chksum_err ?
904 " [IP_HDR_CHKSUM_ERR]" : "",
905 rx_ev_tcp_udp_chksum_err ?
906 " [TCP_UDP_CHKSUM_ERR]" : "",
907 rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
908 rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
909 rx_ev_drib_nib ? " [DRIB_NIB]" : "",
910 rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
911 rx_ev_pause_frm ? " [PAUSE]" : "");
912 }
913#endif
914
915 /* The frame must be discarded if any of these are true. */
916 return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
917 rx_ev_tobe_disc | rx_ev_pause_frm) ?
918 EFX_RX_PKT_DISCARD : 0;
919}
920
921/* Handle receive events that are not in-order. Return true if this
922 * can be handled as a partial packet discard, false if it's more
923 * serious.
924 */
925static bool
926efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
927{
928 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
929 struct efx_nic *efx = rx_queue->efx;
930 unsigned expected, dropped;
931
932 if (rx_queue->scatter_n &&
933 index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
934 rx_queue->ptr_mask)) {
935 ++channel->n_rx_nodesc_trunc;
936 return true;
937 }
938
939 expected = rx_queue->removed_count & rx_queue->ptr_mask;
940 dropped = (index - expected) & rx_queue->ptr_mask;
941 netif_info(efx, rx_err, efx->net_dev,
942 "dropped %d events (index=%d expected=%d)\n",
943 dropped, index, expected);
944
945 efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
946 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
947 return false;
948}
949
950/* Handle a packet received event
951 *
952 * The NIC gives a "discard" flag if it's a unicast packet with the
953 * wrong destination address
954 * Also "is multicast" and "matches multicast filter" flags can be used to
955 * discard non-matching multicast packets.
956 */
957static void
958efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
959{
960 unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
961 unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
962 unsigned expected_ptr;
963 bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
964 u16 flags;
965 struct efx_rx_queue *rx_queue;
966 struct efx_nic *efx = channel->efx;
967
968 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
969 return;
970
971 rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
972 rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
973 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
974 channel->channel);
975
976 rx_queue = efx_channel_get_rx_queue(channel);
977
978 rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
979 expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
980 rx_queue->ptr_mask);
981
982 /* Check for partial drops and other errors */
983 if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
984 unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
985 if (rx_ev_desc_ptr != expected_ptr &&
986 !efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
987 return;
988
989 /* Discard all pending fragments */
990 if (rx_queue->scatter_n) {
991 efx_rx_packet(
992 rx_queue,
993 rx_queue->removed_count & rx_queue->ptr_mask,
994 rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
995 rx_queue->removed_count += rx_queue->scatter_n;
996 rx_queue->scatter_n = 0;
997 }
998
999 /* Return if there is no new fragment */
1000 if (rx_ev_desc_ptr != expected_ptr)
1001 return;
1002
1003 /* Discard new fragment if not SOP */
1004 if (!rx_ev_sop) {
1005 efx_rx_packet(
1006 rx_queue,
1007 rx_queue->removed_count & rx_queue->ptr_mask,
1008 1, 0, EFX_RX_PKT_DISCARD);
1009 ++rx_queue->removed_count;
1010 return;
1011 }
1012 }
1013
1014 ++rx_queue->scatter_n;
1015 if (rx_ev_cont)
1016 return;
1017
1018 rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1019 rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1020 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1021
1022 if (likely(rx_ev_pkt_ok)) {
1023 /* If packet is marked as OK then we can rely on the
1024 * hardware checksum and classification.
1025 */
1026 flags = 0;
1027 switch (rx_ev_hdr_type) {
1028 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1029 flags |= EFX_RX_PKT_TCP;
1030 /* fall through */
1031 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1032 flags |= EFX_RX_PKT_CSUMMED;
1033 /* fall through */
1034 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1035 case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1036 break;
1037 }
1038 } else {
1039 flags = efx_farch_handle_rx_not_ok(rx_queue, event);
1040 }
1041
1042 /* Detect multicast packets that didn't match the filter */
1043 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1044 if (rx_ev_mcast_pkt) {
1045 unsigned int rx_ev_mcast_hash_match =
1046 EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1047
1048 if (unlikely(!rx_ev_mcast_hash_match)) {
1049 ++channel->n_rx_mcast_mismatch;
1050 flags |= EFX_RX_PKT_DISCARD;
1051 }
1052 }
1053
1054 channel->irq_mod_score += 2;
1055
1056 /* Handle received packet */
1057 efx_rx_packet(rx_queue,
1058 rx_queue->removed_count & rx_queue->ptr_mask,
1059 rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1060 rx_queue->removed_count += rx_queue->scatter_n;
1061 rx_queue->scatter_n = 0;
1062}
1063
1064/* If this flush done event corresponds to a &struct efx_tx_queue, then
1065 * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1066 * of all transmit completions.
1067 */
1068static void
1069efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1070{
1071 struct efx_tx_queue *tx_queue;
1072 int qid;
1073
1074 qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1075 if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
1076 tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1077 qid % EFX_TXQ_TYPES);
1078 if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1079 efx_farch_magic_event(tx_queue->channel,
1080 EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1081 }
1082 }
1083}
1084
1085/* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1086 * was succesful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1087 * the RX queue back to the mask of RX queues in need of flushing.
1088 */
1089static void
1090efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1091{
1092 struct efx_channel *channel;
1093 struct efx_rx_queue *rx_queue;
1094 int qid;
1095 bool failed;
1096
1097 qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1098 failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1099 if (qid >= efx->n_channels)
1100 return;
1101 channel = efx_get_channel(efx, qid);
1102 if (!efx_channel_has_rx_queue(channel))
1103 return;
1104 rx_queue = efx_channel_get_rx_queue(channel);
1105
1106 if (failed) {
1107 netif_info(efx, hw, efx->net_dev,
1108 "RXQ %d flush retry\n", qid);
1109 rx_queue->flush_pending = true;
1110 atomic_inc(&efx->rxq_flush_pending);
1111 } else {
1112 efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1113 EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1114 }
1115 atomic_dec(&efx->rxq_flush_outstanding);
1116 if (efx_farch_flush_wake(efx))
1117 wake_up(&efx->flush_wq);
1118}
1119
1120static void
1121efx_farch_handle_drain_event(struct efx_channel *channel)
1122{
1123 struct efx_nic *efx = channel->efx;
1124
1125 WARN_ON(atomic_read(&efx->drain_pending) == 0);
1126 atomic_dec(&efx->drain_pending);
1127 if (efx_farch_flush_wake(efx))
1128 wake_up(&efx->flush_wq);
1129}
1130
1131static void efx_farch_handle_generated_event(struct efx_channel *channel,
1132 efx_qword_t *event)
1133{
1134 struct efx_nic *efx = channel->efx;
1135 struct efx_rx_queue *rx_queue =
1136 efx_channel_has_rx_queue(channel) ?
1137 efx_channel_get_rx_queue(channel) : NULL;
1138 unsigned magic, code;
1139
1140 magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1141 code = _EFX_CHANNEL_MAGIC_CODE(magic);
1142
1143 if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1144 channel->event_test_cpu = raw_smp_processor_id();
1145 } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1146 /* The queue must be empty, so we won't receive any rx
1147 * events, so efx_process_channel() won't refill the
1148 * queue. Refill it here */
1149 efx_fast_push_rx_descriptors(rx_queue);
1150 } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1151 efx_farch_handle_drain_event(channel);
1152 } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1153 efx_farch_handle_drain_event(channel);
1154 } else {
1155 netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1156 "generated event "EFX_QWORD_FMT"\n",
1157 channel->channel, EFX_QWORD_VAL(*event));
1158 }
1159}
1160
1161static void
1162efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1163{
1164 struct efx_nic *efx = channel->efx;
1165 unsigned int ev_sub_code;
1166 unsigned int ev_sub_data;
1167
1168 ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1169 ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1170
1171 switch (ev_sub_code) {
1172 case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1173 netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1174 channel->channel, ev_sub_data);
1175 efx_farch_handle_tx_flush_done(efx, event);
1176 efx_sriov_tx_flush_done(efx, event);
1177 break;
1178 case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1179 netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1180 channel->channel, ev_sub_data);
1181 efx_farch_handle_rx_flush_done(efx, event);
1182 efx_sriov_rx_flush_done(efx, event);
1183 break;
1184 case FSE_AZ_EVQ_INIT_DONE_EV:
1185 netif_dbg(efx, hw, efx->net_dev,
1186 "channel %d EVQ %d initialised\n",
1187 channel->channel, ev_sub_data);
1188 break;
1189 case FSE_AZ_SRM_UPD_DONE_EV:
1190 netif_vdbg(efx, hw, efx->net_dev,
1191 "channel %d SRAM update done\n", channel->channel);
1192 break;
1193 case FSE_AZ_WAKE_UP_EV:
1194 netif_vdbg(efx, hw, efx->net_dev,
1195 "channel %d RXQ %d wakeup event\n",
1196 channel->channel, ev_sub_data);
1197 break;
1198 case FSE_AZ_TIMER_EV:
1199 netif_vdbg(efx, hw, efx->net_dev,
1200 "channel %d RX queue %d timer expired\n",
1201 channel->channel, ev_sub_data);
1202 break;
1203 case FSE_AA_RX_RECOVER_EV:
1204 netif_err(efx, rx_err, efx->net_dev,
1205 "channel %d seen DRIVER RX_RESET event. "
1206 "Resetting.\n", channel->channel);
1207 atomic_inc(&efx->rx_reset);
1208 efx_schedule_reset(efx,
1209 EFX_WORKAROUND_6555(efx) ?
1210 RESET_TYPE_RX_RECOVERY :
1211 RESET_TYPE_DISABLE);
1212 break;
1213 case FSE_BZ_RX_DSC_ERROR_EV:
1214 if (ev_sub_data < EFX_VI_BASE) {
1215 netif_err(efx, rx_err, efx->net_dev,
1216 "RX DMA Q %d reports descriptor fetch error."
1217 " RX Q %d is disabled.\n", ev_sub_data,
1218 ev_sub_data);
1219 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
1220 } else
1221 efx_sriov_desc_fetch_err(efx, ev_sub_data);
1222 break;
1223 case FSE_BZ_TX_DSC_ERROR_EV:
1224 if (ev_sub_data < EFX_VI_BASE) {
1225 netif_err(efx, tx_err, efx->net_dev,
1226 "TX DMA Q %d reports descriptor fetch error."
1227 " TX Q %d is disabled.\n", ev_sub_data,
1228 ev_sub_data);
1229 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
1230 } else
1231 efx_sriov_desc_fetch_err(efx, ev_sub_data);
1232 break;
1233 default:
1234 netif_vdbg(efx, hw, efx->net_dev,
1235 "channel %d unknown driver event code %d "
1236 "data %04x\n", channel->channel, ev_sub_code,
1237 ev_sub_data);
1238 break;
1239 }
1240}
1241
1242int efx_farch_ev_process(struct efx_channel *channel, int budget)
1243{
1244 struct efx_nic *efx = channel->efx;
1245 unsigned int read_ptr;
1246 efx_qword_t event, *p_event;
1247 int ev_code;
1248 int tx_packets = 0;
1249 int spent = 0;
1250
1251 read_ptr = channel->eventq_read_ptr;
1252
1253 for (;;) {
1254 p_event = efx_event(channel, read_ptr);
1255 event = *p_event;
1256
1257 if (!efx_event_present(&event))
1258 /* End of events */
1259 break;
1260
1261 netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1262 "channel %d event is "EFX_QWORD_FMT"\n",
1263 channel->channel, EFX_QWORD_VAL(event));
1264
1265 /* Clear this event by marking it all ones */
1266 EFX_SET_QWORD(*p_event);
1267
1268 ++read_ptr;
1269
1270 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1271
1272 switch (ev_code) {
1273 case FSE_AZ_EV_CODE_RX_EV:
1274 efx_farch_handle_rx_event(channel, &event);
1275 if (++spent == budget)
1276 goto out;
1277 break;
1278 case FSE_AZ_EV_CODE_TX_EV:
1279 tx_packets += efx_farch_handle_tx_event(channel,
1280 &event);
1281 if (tx_packets > efx->txq_entries) {
1282 spent = budget;
1283 goto out;
1284 }
1285 break;
1286 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1287 efx_farch_handle_generated_event(channel, &event);
1288 break;
1289 case FSE_AZ_EV_CODE_DRIVER_EV:
1290 efx_farch_handle_driver_event(channel, &event);
1291 break;
1292 case FSE_CZ_EV_CODE_USER_EV:
1293 efx_sriov_event(channel, &event);
1294 break;
1295 case FSE_CZ_EV_CODE_MCDI_EV:
1296 efx_mcdi_process_event(channel, &event);
1297 break;
1298 case FSE_AZ_EV_CODE_GLOBAL_EV:
1299 if (efx->type->handle_global_event &&
1300 efx->type->handle_global_event(channel, &event))
1301 break;
1302 /* else fall through */
1303 default:
1304 netif_err(channel->efx, hw, channel->efx->net_dev,
1305 "channel %d unknown event type %d (data "
1306 EFX_QWORD_FMT ")\n", channel->channel,
1307 ev_code, EFX_QWORD_VAL(event));
1308 }
1309 }
1310
1311out:
1312 channel->eventq_read_ptr = read_ptr;
1313 return spent;
1314}
1315
1316/* Allocate buffer table entries for event queue */
1317int efx_farch_ev_probe(struct efx_channel *channel)
1318{
1319 struct efx_nic *efx = channel->efx;
1320 unsigned entries;
1321
1322 entries = channel->eventq_mask + 1;
1323 return efx_alloc_special_buffer(efx, &channel->eventq,
1324 entries * sizeof(efx_qword_t));
1325}
1326
1327void efx_farch_ev_init(struct efx_channel *channel)
1328{
1329 efx_oword_t reg;
1330 struct efx_nic *efx = channel->efx;
1331
1332 netif_dbg(efx, hw, efx->net_dev,
1333 "channel %d event queue in special buffers %d-%d\n",
1334 channel->channel, channel->eventq.index,
1335 channel->eventq.index + channel->eventq.entries - 1);
1336
1337 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1338 EFX_POPULATE_OWORD_3(reg,
1339 FRF_CZ_TIMER_Q_EN, 1,
1340 FRF_CZ_HOST_NOTIFY_MODE, 0,
1341 FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1342 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1343 }
1344
1345 /* Pin event queue buffer */
1346 efx_init_special_buffer(efx, &channel->eventq);
1347
1348 /* Fill event queue with all ones (i.e. empty events) */
1349 memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1350
1351 /* Push event queue to card */
1352 EFX_POPULATE_OWORD_3(reg,
1353 FRF_AZ_EVQ_EN, 1,
1354 FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1355 FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1356 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1357 channel->channel);
1358
1359 efx->type->push_irq_moderation(channel);
1360}
1361
1362void efx_farch_ev_fini(struct efx_channel *channel)
1363{
1364 efx_oword_t reg;
1365 struct efx_nic *efx = channel->efx;
1366
1367 /* Remove event queue from card */
1368 EFX_ZERO_OWORD(reg);
1369 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1370 channel->channel);
1371 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1372 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1373
1374 /* Unpin event queue */
1375 efx_fini_special_buffer(efx, &channel->eventq);
1376}
1377
1378/* Free buffers backing event queue */
1379void efx_farch_ev_remove(struct efx_channel *channel)
1380{
1381 efx_free_special_buffer(channel->efx, &channel->eventq);
1382}
1383
1384
1385void efx_farch_ev_test_generate(struct efx_channel *channel)
1386{
1387 efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1388}
1389
1390void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue)
1391{
1392 efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1393 EFX_CHANNEL_MAGIC_FILL(rx_queue));
1394}
1395
1396/**************************************************************************
1397 *
1398 * Hardware interrupts
1399 * The hardware interrupt handler does very little work; all the event
1400 * queue processing is carried out by per-channel tasklets.
1401 *
1402 **************************************************************************/
1403
1404/* Enable/disable/generate interrupts */
1405static inline void efx_farch_interrupts(struct efx_nic *efx,
1406 bool enabled, bool force)
1407{
1408 efx_oword_t int_en_reg_ker;
1409
1410 EFX_POPULATE_OWORD_3(int_en_reg_ker,
1411 FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1412 FRF_AZ_KER_INT_KER, force,
1413 FRF_AZ_DRV_INT_EN_KER, enabled);
1414 efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1415}
1416
1417void efx_farch_irq_enable_master(struct efx_nic *efx)
1418{
1419 EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1420 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1421
1422 efx_farch_interrupts(efx, true, false);
1423}
1424
1425void efx_farch_irq_disable_master(struct efx_nic *efx)
1426{
1427 /* Disable interrupts */
1428 efx_farch_interrupts(efx, false, false);
1429}
1430
1431/* Generate a test interrupt
1432 * Interrupt must already have been enabled, otherwise nasty things
1433 * may happen.
1434 */
1435void efx_farch_irq_test_generate(struct efx_nic *efx)
1436{
1437 efx_farch_interrupts(efx, true, true);
1438}
1439
1440/* Process a fatal interrupt
1441 * Disable bus mastering ASAP and schedule a reset
1442 */
1443irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx)
1444{
1445 struct falcon_nic_data *nic_data = efx->nic_data;
1446 efx_oword_t *int_ker = efx->irq_status.addr;
1447 efx_oword_t fatal_intr;
1448 int error, mem_perr;
1449
1450 efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1451 error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1452
1453 netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1454 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1455 EFX_OWORD_VAL(fatal_intr),
1456 error ? "disabling bus mastering" : "no recognised error");
1457
1458 /* If this is a memory parity error dump which blocks are offending */
1459 mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1460 EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1461 if (mem_perr) {
1462 efx_oword_t reg;
1463 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1464 netif_err(efx, hw, efx->net_dev,
1465 "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1466 EFX_OWORD_VAL(reg));
1467 }
1468
1469 /* Disable both devices */
1470 pci_clear_master(efx->pci_dev);
1471 if (efx_nic_is_dual_func(efx))
1472 pci_clear_master(nic_data->pci_dev2);
1473 efx_farch_irq_disable_master(efx);
1474
1475 /* Count errors and reset or disable the NIC accordingly */
1476 if (efx->int_error_count == 0 ||
1477 time_after(jiffies, efx->int_error_expire)) {
1478 efx->int_error_count = 0;
1479 efx->int_error_expire =
1480 jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1481 }
1482 if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1483 netif_err(efx, hw, efx->net_dev,
1484 "SYSTEM ERROR - reset scheduled\n");
1485 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1486 } else {
1487 netif_err(efx, hw, efx->net_dev,
1488 "SYSTEM ERROR - max number of errors seen."
1489 "NIC will be disabled\n");
1490 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1491 }
1492
1493 return IRQ_HANDLED;
1494}
1495
1496/* Handle a legacy interrupt
1497 * Acknowledges the interrupt and schedule event queue processing.
1498 */
1499irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id)
1500{
1501 struct efx_nic *efx = dev_id;
1502 bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
1503 efx_oword_t *int_ker = efx->irq_status.addr;
1504 irqreturn_t result = IRQ_NONE;
1505 struct efx_channel *channel;
1506 efx_dword_t reg;
1507 u32 queues;
1508 int syserr;
1509
1510 /* Read the ISR which also ACKs the interrupts */
1511 efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1512 queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1513
1514 /* Legacy interrupts are disabled too late by the EEH kernel
1515 * code. Disable them earlier.
1516 * If an EEH error occurred, the read will have returned all ones.
1517 */
1518 if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) &&
1519 !efx->eeh_disabled_legacy_irq) {
1520 disable_irq_nosync(efx->legacy_irq);
1521 efx->eeh_disabled_legacy_irq = true;
1522 }
1523
1524 /* Handle non-event-queue sources */
1525 if (queues & (1U << efx->irq_level) && soft_enabled) {
1526 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1527 if (unlikely(syserr))
1528 return efx_farch_fatal_interrupt(efx);
1529 efx->last_irq_cpu = raw_smp_processor_id();
1530 }
1531
1532 if (queues != 0) {
Ben Hutchingsab3b8252012-10-05 19:31:02 +01001533 efx->irq_zero_count = 0;
Ben Hutchings86094f72013-08-21 19:51:04 +01001534
1535 /* Schedule processing of any interrupting queues */
1536 if (likely(soft_enabled)) {
1537 efx_for_each_channel(channel, efx) {
1538 if (queues & 1)
1539 efx_schedule_channel_irq(channel);
1540 queues >>= 1;
1541 }
1542 }
1543 result = IRQ_HANDLED;
1544
Ben Hutchingsab3b8252012-10-05 19:31:02 +01001545 } else {
Ben Hutchings86094f72013-08-21 19:51:04 +01001546 efx_qword_t *event;
1547
Ben Hutchingsab3b8252012-10-05 19:31:02 +01001548 /* Legacy ISR read can return zero once (SF bug 15783) */
1549
Ben Hutchings86094f72013-08-21 19:51:04 +01001550 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1551 * because this might be a shared interrupt. */
1552 if (efx->irq_zero_count++ == 0)
1553 result = IRQ_HANDLED;
1554
1555 /* Ensure we schedule or rearm all event queues */
1556 if (likely(soft_enabled)) {
1557 efx_for_each_channel(channel, efx) {
1558 event = efx_event(channel,
1559 channel->eventq_read_ptr);
1560 if (efx_event_present(event))
1561 efx_schedule_channel_irq(channel);
1562 else
1563 efx_farch_ev_read_ack(channel);
1564 }
1565 }
1566 }
1567
1568 if (result == IRQ_HANDLED)
1569 netif_vdbg(efx, intr, efx->net_dev,
1570 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1571 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1572
1573 return result;
1574}
1575
1576/* Handle an MSI interrupt
1577 *
1578 * Handle an MSI hardware interrupt. This routine schedules event
1579 * queue processing. No interrupt acknowledgement cycle is necessary.
1580 * Also, we never need to check that the interrupt is for us, since
1581 * MSI interrupts cannot be shared.
1582 */
1583irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id)
1584{
1585 struct efx_msi_context *context = dev_id;
1586 struct efx_nic *efx = context->efx;
1587 efx_oword_t *int_ker = efx->irq_status.addr;
1588 int syserr;
1589
1590 netif_vdbg(efx, intr, efx->net_dev,
1591 "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1592 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1593
1594 if (!likely(ACCESS_ONCE(efx->irq_soft_enabled)))
1595 return IRQ_HANDLED;
1596
1597 /* Handle non-event-queue sources */
1598 if (context->index == efx->irq_level) {
1599 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1600 if (unlikely(syserr))
1601 return efx_farch_fatal_interrupt(efx);
1602 efx->last_irq_cpu = raw_smp_processor_id();
1603 }
1604
1605 /* Schedule processing of the channel */
1606 efx_schedule_channel_irq(efx->channel[context->index]);
1607
1608 return IRQ_HANDLED;
1609}
1610
1611
1612/* Setup RSS indirection table.
1613 * This maps from the hash value of the packet to RXQ
1614 */
1615void efx_farch_rx_push_indir_table(struct efx_nic *efx)
1616{
1617 size_t i = 0;
1618 efx_dword_t dword;
1619
1620 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1621 return;
1622
1623 BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1624 FR_BZ_RX_INDIRECTION_TBL_ROWS);
1625
1626 for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1627 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1628 efx->rx_indir_table[i]);
1629 efx_writed(efx, &dword,
1630 FR_BZ_RX_INDIRECTION_TBL +
1631 FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1632 }
1633}
1634
1635/* Looks at available SRAM resources and works out how many queues we
1636 * can support, and where things like descriptor caches should live.
1637 *
1638 * SRAM is split up as follows:
1639 * 0 buftbl entries for channels
1640 * efx->vf_buftbl_base buftbl entries for SR-IOV
1641 * efx->rx_dc_base RX descriptor caches
1642 * efx->tx_dc_base TX descriptor caches
1643 */
1644void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1645{
1646 unsigned vi_count, buftbl_min;
1647
1648 /* Account for the buffer table entries backing the datapath channels
1649 * and the descriptor caches for those channels.
1650 */
1651 buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1652 efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1653 efx->n_channels * EFX_MAX_EVQ_SIZE)
1654 * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1655 vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1656
1657#ifdef CONFIG_SFC_SRIOV
1658 if (efx_sriov_wanted(efx)) {
1659 unsigned vi_dc_entries, buftbl_free, entries_per_vf, vf_limit;
1660
1661 efx->vf_buftbl_base = buftbl_min;
1662
1663 vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1664 vi_count = max(vi_count, EFX_VI_BASE);
1665 buftbl_free = (sram_lim_qw - buftbl_min -
1666 vi_count * vi_dc_entries);
1667
1668 entries_per_vf = ((vi_dc_entries + EFX_VF_BUFTBL_PER_VI) *
1669 efx_vf_size(efx));
1670 vf_limit = min(buftbl_free / entries_per_vf,
1671 (1024U - EFX_VI_BASE) >> efx->vi_scale);
1672
1673 if (efx->vf_count > vf_limit) {
1674 netif_err(efx, probe, efx->net_dev,
1675 "Reducing VF count from from %d to %d\n",
1676 efx->vf_count, vf_limit);
1677 efx->vf_count = vf_limit;
1678 }
1679 vi_count += efx->vf_count * efx_vf_size(efx);
1680 }
1681#endif
1682
1683 efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1684 efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1685}
1686
1687u32 efx_farch_fpga_ver(struct efx_nic *efx)
1688{
1689 efx_oword_t altera_build;
1690 efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1691 return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1692}
1693
1694void efx_farch_init_common(struct efx_nic *efx)
1695{
1696 efx_oword_t temp;
1697
1698 /* Set positions of descriptor caches in SRAM. */
1699 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1700 efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1701 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1702 efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1703
1704 /* Set TX descriptor cache size. */
1705 BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1706 EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1707 efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1708
1709 /* Set RX descriptor cache size. Set low watermark to size-8, as
1710 * this allows most efficient prefetching.
1711 */
1712 BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1713 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1714 efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1715 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1716 efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1717
1718 /* Program INT_KER address */
1719 EFX_POPULATE_OWORD_2(temp,
1720 FRF_AZ_NORM_INT_VEC_DIS_KER,
1721 EFX_INT_MODE_USE_MSI(efx),
1722 FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1723 efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1724
1725 if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1726 /* Use an interrupt level unused by event queues */
1727 efx->irq_level = 0x1f;
1728 else
1729 /* Use a valid MSI-X vector */
1730 efx->irq_level = 0;
1731
1732 /* Enable all the genuinely fatal interrupts. (They are still
1733 * masked by the overall interrupt mask, controlled by
1734 * falcon_interrupts()).
1735 *
1736 * Note: All other fatal interrupts are enabled
1737 */
1738 EFX_POPULATE_OWORD_3(temp,
1739 FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1740 FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1741 FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1742 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1743 EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1744 EFX_INVERT_OWORD(temp);
1745 efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1746
1747 efx_farch_rx_push_indir_table(efx);
1748
1749 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1750 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1751 */
1752 efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1753 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1754 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1755 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1756 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1757 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1758 /* Enable SW_EV to inherit in char driver - assume harmless here */
1759 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1760 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1761 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1762 /* Disable hardware watchdog which can misfire */
1763 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1764 /* Squash TX of packets of 16 bytes or less */
1765 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1766 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1767 efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1768
1769 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1770 EFX_POPULATE_OWORD_4(temp,
1771 /* Default values */
1772 FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1773 FRF_BZ_TX_PACE_SB_AF, 0xb,
1774 FRF_BZ_TX_PACE_FB_BASE, 0,
1775 /* Allow large pace values in the
1776 * fast bin. */
1777 FRF_BZ_TX_PACE_BIN_TH,
1778 FFE_BZ_TX_PACE_RESERVED);
1779 efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1780 }
1781}