blob: 848d49a043e98af0bf5658aa5877a7c4d16e6f05 [file] [log] [blame]
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001/*
Ingo Molnar57c0c152009-09-21 12:20:38 +02002 * Performance events core code:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
Ingo Molnar57c0c152009-09-21 12:20:38 +02009 * For licensing details see kernel-base/COPYING
Ingo Molnarcdd6c482009-09-21 12:02:48 +020010 */
11
12#include <linux/fs.h>
13#include <linux/mm.h>
14#include <linux/cpu.h>
15#include <linux/smp.h>
16#include <linux/file.h>
17#include <linux/poll.h>
Tejun Heo5a0e3ad2010-03-24 17:04:11 +090018#include <linux/slab.h>
Frederic Weisbecker76e1d902010-04-05 15:35:57 +020019#include <linux/hash.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020020#include <linux/sysfs.h>
21#include <linux/dcache.h>
22#include <linux/percpu.h>
23#include <linux/ptrace.h>
24#include <linux/vmstat.h>
Peter Zijlstra906010b2009-09-21 16:08:49 +020025#include <linux/vmalloc.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020026#include <linux/hardirq.h>
27#include <linux/rculist.h>
28#include <linux/uaccess.h>
29#include <linux/syscalls.h>
30#include <linux/anon_inodes.h>
31#include <linux/kernel_stat.h>
32#include <linux/perf_event.h>
Li Zefan6fb29152009-10-15 11:21:42 +080033#include <linux/ftrace_event.h>
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +020034#include <linux/hw_breakpoint.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020035
36#include <asm/irq_regs.h>
37
38/*
39 * Each CPU has a list of per CPU events:
40 */
Xiao Guangrongaa5452d2009-12-09 11:28:13 +080041static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +020042
43int perf_max_events __read_mostly = 1;
44static int perf_reserved_percpu __read_mostly;
45static int perf_overcommit __read_mostly = 1;
46
47static atomic_t nr_events __read_mostly;
48static atomic_t nr_mmap_events __read_mostly;
49static atomic_t nr_comm_events __read_mostly;
50static atomic_t nr_task_events __read_mostly;
51
52/*
53 * perf event paranoia level:
54 * -1 - not paranoid at all
55 * 0 - disallow raw tracepoint access for unpriv
56 * 1 - disallow cpu events for unpriv
57 * 2 - disallow kernel profiling for unpriv
58 */
59int sysctl_perf_event_paranoid __read_mostly = 1;
60
Ingo Molnarcdd6c482009-09-21 12:02:48 +020061int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
62
63/*
64 * max perf event sample rate
65 */
66int sysctl_perf_event_sample_rate __read_mostly = 100000;
67
68static atomic64_t perf_event_id;
69
70/*
71 * Lock for (sysadmin-configurable) event reservations:
72 */
73static DEFINE_SPINLOCK(perf_resource_lock);
74
75/*
76 * Architecture provided APIs - weak aliases:
77 */
78extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
79{
80 return NULL;
81}
82
83void __weak hw_perf_disable(void) { barrier(); }
84void __weak hw_perf_enable(void) { barrier(); }
85
Ingo Molnarcdd6c482009-09-21 12:02:48 +020086void __weak perf_event_print_debug(void) { }
87
88static DEFINE_PER_CPU(int, perf_disable_count);
89
Ingo Molnarcdd6c482009-09-21 12:02:48 +020090void perf_disable(void)
91{
Peter Zijlstra32975a42010-03-06 19:49:19 +010092 if (!__get_cpu_var(perf_disable_count)++)
93 hw_perf_disable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +020094}
95
96void perf_enable(void)
97{
Peter Zijlstra32975a42010-03-06 19:49:19 +010098 if (!--__get_cpu_var(perf_disable_count))
Ingo Molnarcdd6c482009-09-21 12:02:48 +020099 hw_perf_enable();
100}
101
102static void get_ctx(struct perf_event_context *ctx)
103{
104 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
105}
106
107static void free_ctx(struct rcu_head *head)
108{
109 struct perf_event_context *ctx;
110
111 ctx = container_of(head, struct perf_event_context, rcu_head);
112 kfree(ctx);
113}
114
115static void put_ctx(struct perf_event_context *ctx)
116{
117 if (atomic_dec_and_test(&ctx->refcount)) {
118 if (ctx->parent_ctx)
119 put_ctx(ctx->parent_ctx);
120 if (ctx->task)
121 put_task_struct(ctx->task);
122 call_rcu(&ctx->rcu_head, free_ctx);
123 }
124}
125
126static void unclone_ctx(struct perf_event_context *ctx)
127{
128 if (ctx->parent_ctx) {
129 put_ctx(ctx->parent_ctx);
130 ctx->parent_ctx = NULL;
131 }
132}
133
134/*
135 * If we inherit events we want to return the parent event id
136 * to userspace.
137 */
138static u64 primary_event_id(struct perf_event *event)
139{
140 u64 id = event->id;
141
142 if (event->parent)
143 id = event->parent->id;
144
145 return id;
146}
147
148/*
149 * Get the perf_event_context for a task and lock it.
150 * This has to cope with with the fact that until it is locked,
151 * the context could get moved to another task.
152 */
153static struct perf_event_context *
154perf_lock_task_context(struct task_struct *task, unsigned long *flags)
155{
156 struct perf_event_context *ctx;
157
158 rcu_read_lock();
159 retry:
160 ctx = rcu_dereference(task->perf_event_ctxp);
161 if (ctx) {
162 /*
163 * If this context is a clone of another, it might
164 * get swapped for another underneath us by
165 * perf_event_task_sched_out, though the
166 * rcu_read_lock() protects us from any context
167 * getting freed. Lock the context and check if it
168 * got swapped before we could get the lock, and retry
169 * if so. If we locked the right context, then it
170 * can't get swapped on us any more.
171 */
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100172 raw_spin_lock_irqsave(&ctx->lock, *flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200173 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100174 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200175 goto retry;
176 }
177
178 if (!atomic_inc_not_zero(&ctx->refcount)) {
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100179 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200180 ctx = NULL;
181 }
182 }
183 rcu_read_unlock();
184 return ctx;
185}
186
187/*
188 * Get the context for a task and increment its pin_count so it
189 * can't get swapped to another task. This also increments its
190 * reference count so that the context can't get freed.
191 */
192static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
193{
194 struct perf_event_context *ctx;
195 unsigned long flags;
196
197 ctx = perf_lock_task_context(task, &flags);
198 if (ctx) {
199 ++ctx->pin_count;
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100200 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200201 }
202 return ctx;
203}
204
205static void perf_unpin_context(struct perf_event_context *ctx)
206{
207 unsigned long flags;
208
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100209 raw_spin_lock_irqsave(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200210 --ctx->pin_count;
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100211 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200212 put_ctx(ctx);
213}
214
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100215static inline u64 perf_clock(void)
216{
Peter Zijlstra24691ea2010-02-26 16:36:23 +0100217 return cpu_clock(raw_smp_processor_id());
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100218}
219
220/*
221 * Update the record of the current time in a context.
222 */
223static void update_context_time(struct perf_event_context *ctx)
224{
225 u64 now = perf_clock();
226
227 ctx->time += now - ctx->timestamp;
228 ctx->timestamp = now;
229}
230
231/*
232 * Update the total_time_enabled and total_time_running fields for a event.
233 */
234static void update_event_times(struct perf_event *event)
235{
236 struct perf_event_context *ctx = event->ctx;
237 u64 run_end;
238
239 if (event->state < PERF_EVENT_STATE_INACTIVE ||
240 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
241 return;
242
Peter Zijlstraacd1d7c2009-11-23 15:00:36 +0100243 if (ctx->is_active)
244 run_end = ctx->time;
245 else
246 run_end = event->tstamp_stopped;
247
248 event->total_time_enabled = run_end - event->tstamp_enabled;
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100249
250 if (event->state == PERF_EVENT_STATE_INACTIVE)
251 run_end = event->tstamp_stopped;
252 else
253 run_end = ctx->time;
254
255 event->total_time_running = run_end - event->tstamp_running;
256}
257
Peter Zijlstra96c21a42010-05-11 16:19:10 +0200258/*
259 * Update total_time_enabled and total_time_running for all events in a group.
260 */
261static void update_group_times(struct perf_event *leader)
262{
263 struct perf_event *event;
264
265 update_event_times(leader);
266 list_for_each_entry(event, &leader->sibling_list, group_entry)
267 update_event_times(event);
268}
269
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100270static struct list_head *
271ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
272{
273 if (event->attr.pinned)
274 return &ctx->pinned_groups;
275 else
276 return &ctx->flexible_groups;
277}
278
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200279/*
280 * Add a event from the lists for its context.
281 * Must be called with ctx->mutex and ctx->lock held.
282 */
283static void
284list_add_event(struct perf_event *event, struct perf_event_context *ctx)
285{
286 struct perf_event *group_leader = event->group_leader;
287
288 /*
289 * Depending on whether it is a standalone or sibling event,
290 * add it straight to the context's event list, or to the group
291 * leader's sibling list:
292 */
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100293 if (group_leader == event) {
294 struct list_head *list;
295
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100296 if (is_software_event(event))
297 event->group_flags |= PERF_GROUP_SOFTWARE;
298
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100299 list = ctx_group_list(event, ctx);
300 list_add_tail(&event->group_entry, list);
301 } else {
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100302 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
303 !is_software_event(event))
304 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
305
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200306 list_add_tail(&event->group_entry, &group_leader->sibling_list);
307 group_leader->nr_siblings++;
308 }
309
310 list_add_rcu(&event->event_entry, &ctx->event_list);
311 ctx->nr_events++;
312 if (event->attr.inherit_stat)
313 ctx->nr_stat++;
314}
315
316/*
317 * Remove a event from the lists for its context.
318 * Must be called with ctx->mutex and ctx->lock held.
319 */
320static void
321list_del_event(struct perf_event *event, struct perf_event_context *ctx)
322{
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200323 if (list_empty(&event->group_entry))
324 return;
325 ctx->nr_events--;
326 if (event->attr.inherit_stat)
327 ctx->nr_stat--;
328
329 list_del_init(&event->group_entry);
330 list_del_rcu(&event->event_entry);
331
332 if (event->group_leader != event)
333 event->group_leader->nr_siblings--;
334
Peter Zijlstra96c21a42010-05-11 16:19:10 +0200335 update_group_times(event);
Stephane Eranianb2e74a22009-11-26 09:24:30 -0800336
337 /*
338 * If event was in error state, then keep it
339 * that way, otherwise bogus counts will be
340 * returned on read(). The only way to get out
341 * of error state is by explicit re-enabling
342 * of the event
343 */
344 if (event->state > PERF_EVENT_STATE_OFF)
345 event->state = PERF_EVENT_STATE_OFF;
Peter Zijlstra050735b2010-05-11 11:51:53 +0200346}
347
348static void
349perf_destroy_group(struct perf_event *event, struct perf_event_context *ctx)
350{
351 struct perf_event *sibling, *tmp;
Peter Zijlstra2e2af502009-11-23 11:37:25 +0100352
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200353 /*
354 * If this was a group event with sibling events then
355 * upgrade the siblings to singleton events by adding them
356 * to the context list directly:
357 */
358 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100359 struct list_head *list;
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200360
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100361 list = ctx_group_list(event, ctx);
362 list_move_tail(&sibling->group_entry, list);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200363 sibling->group_leader = sibling;
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100364
365 /* Inherit group flags from the previous leader */
366 sibling->group_flags = event->group_flags;
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200367 }
368}
369
370static void
371event_sched_out(struct perf_event *event,
372 struct perf_cpu_context *cpuctx,
373 struct perf_event_context *ctx)
374{
375 if (event->state != PERF_EVENT_STATE_ACTIVE)
376 return;
377
378 event->state = PERF_EVENT_STATE_INACTIVE;
379 if (event->pending_disable) {
380 event->pending_disable = 0;
381 event->state = PERF_EVENT_STATE_OFF;
382 }
383 event->tstamp_stopped = ctx->time;
384 event->pmu->disable(event);
385 event->oncpu = -1;
386
387 if (!is_software_event(event))
388 cpuctx->active_oncpu--;
389 ctx->nr_active--;
390 if (event->attr.exclusive || !cpuctx->active_oncpu)
391 cpuctx->exclusive = 0;
392}
393
394static void
395group_sched_out(struct perf_event *group_event,
396 struct perf_cpu_context *cpuctx,
397 struct perf_event_context *ctx)
398{
399 struct perf_event *event;
400
401 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
402 return;
403
404 event_sched_out(group_event, cpuctx, ctx);
405
406 /*
407 * Schedule out siblings (if any):
408 */
409 list_for_each_entry(event, &group_event->sibling_list, group_entry)
410 event_sched_out(event, cpuctx, ctx);
411
412 if (group_event->attr.exclusive)
413 cpuctx->exclusive = 0;
414}
415
416/*
417 * Cross CPU call to remove a performance event
418 *
419 * We disable the event on the hardware level first. After that we
420 * remove it from the context list.
421 */
422static void __perf_event_remove_from_context(void *info)
423{
424 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
425 struct perf_event *event = info;
426 struct perf_event_context *ctx = event->ctx;
427
428 /*
429 * If this is a task context, we need to check whether it is
430 * the current task context of this cpu. If not it has been
431 * scheduled out before the smp call arrived.
432 */
433 if (ctx->task && cpuctx->task_ctx != ctx)
434 return;
435
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100436 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200437 /*
438 * Protect the list operation against NMI by disabling the
439 * events on a global level.
440 */
441 perf_disable();
442
443 event_sched_out(event, cpuctx, ctx);
444
445 list_del_event(event, ctx);
446
447 if (!ctx->task) {
448 /*
449 * Allow more per task events with respect to the
450 * reservation:
451 */
452 cpuctx->max_pertask =
453 min(perf_max_events - ctx->nr_events,
454 perf_max_events - perf_reserved_percpu);
455 }
456
457 perf_enable();
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100458 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200459}
460
461
462/*
463 * Remove the event from a task's (or a CPU's) list of events.
464 *
465 * Must be called with ctx->mutex held.
466 *
467 * CPU events are removed with a smp call. For task events we only
468 * call when the task is on a CPU.
469 *
470 * If event->ctx is a cloned context, callers must make sure that
471 * every task struct that event->ctx->task could possibly point to
472 * remains valid. This is OK when called from perf_release since
473 * that only calls us on the top-level context, which can't be a clone.
474 * When called from perf_event_exit_task, it's OK because the
475 * context has been detached from its task.
476 */
477static void perf_event_remove_from_context(struct perf_event *event)
478{
479 struct perf_event_context *ctx = event->ctx;
480 struct task_struct *task = ctx->task;
481
482 if (!task) {
483 /*
484 * Per cpu events are removed via an smp call and
André Goddard Rosaaf901ca2009-11-14 13:09:05 -0200485 * the removal is always successful.
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200486 */
487 smp_call_function_single(event->cpu,
488 __perf_event_remove_from_context,
489 event, 1);
490 return;
491 }
492
493retry:
494 task_oncpu_function_call(task, __perf_event_remove_from_context,
495 event);
496
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100497 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200498 /*
499 * If the context is active we need to retry the smp call.
500 */
501 if (ctx->nr_active && !list_empty(&event->group_entry)) {
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100502 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200503 goto retry;
504 }
505
506 /*
507 * The lock prevents that this context is scheduled in so we
508 * can remove the event safely, if the call above did not
509 * succeed.
510 */
Peter Zijlstra6c2bfcb2009-11-23 11:37:24 +0100511 if (!list_empty(&event->group_entry))
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200512 list_del_event(event, ctx);
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100513 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200514}
515
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200516/*
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200517 * Cross CPU call to disable a performance event
518 */
519static void __perf_event_disable(void *info)
520{
521 struct perf_event *event = info;
522 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
523 struct perf_event_context *ctx = event->ctx;
524
525 /*
526 * If this is a per-task event, need to check whether this
527 * event's task is the current task on this cpu.
528 */
529 if (ctx->task && cpuctx->task_ctx != ctx)
530 return;
531
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100532 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200533
534 /*
535 * If the event is on, turn it off.
536 * If it is in error state, leave it in error state.
537 */
538 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
539 update_context_time(ctx);
540 update_group_times(event);
541 if (event == event->group_leader)
542 group_sched_out(event, cpuctx, ctx);
543 else
544 event_sched_out(event, cpuctx, ctx);
545 event->state = PERF_EVENT_STATE_OFF;
546 }
547
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100548 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200549}
550
551/*
552 * Disable a event.
553 *
554 * If event->ctx is a cloned context, callers must make sure that
555 * every task struct that event->ctx->task could possibly point to
556 * remains valid. This condition is satisifed when called through
557 * perf_event_for_each_child or perf_event_for_each because they
558 * hold the top-level event's child_mutex, so any descendant that
559 * goes to exit will block in sync_child_event.
560 * When called from perf_pending_event it's OK because event->ctx
561 * is the current context on this CPU and preemption is disabled,
562 * hence we can't get into perf_event_task_sched_out for this context.
563 */
Frederic Weisbecker44234ad2009-12-09 09:25:48 +0100564void perf_event_disable(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200565{
566 struct perf_event_context *ctx = event->ctx;
567 struct task_struct *task = ctx->task;
568
569 if (!task) {
570 /*
571 * Disable the event on the cpu that it's on
572 */
573 smp_call_function_single(event->cpu, __perf_event_disable,
574 event, 1);
575 return;
576 }
577
578 retry:
579 task_oncpu_function_call(task, __perf_event_disable, event);
580
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100581 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200582 /*
583 * If the event is still active, we need to retry the cross-call.
584 */
585 if (event->state == PERF_EVENT_STATE_ACTIVE) {
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100586 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200587 goto retry;
588 }
589
590 /*
591 * Since we have the lock this context can't be scheduled
592 * in, so we can change the state safely.
593 */
594 if (event->state == PERF_EVENT_STATE_INACTIVE) {
595 update_group_times(event);
596 event->state = PERF_EVENT_STATE_OFF;
597 }
598
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100599 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200600}
601
602static int
603event_sched_in(struct perf_event *event,
604 struct perf_cpu_context *cpuctx,
Peter Zijlstra6e377382010-02-11 13:21:58 +0100605 struct perf_event_context *ctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200606{
607 if (event->state <= PERF_EVENT_STATE_OFF)
608 return 0;
609
610 event->state = PERF_EVENT_STATE_ACTIVE;
Peter Zijlstra6e377382010-02-11 13:21:58 +0100611 event->oncpu = smp_processor_id();
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200612 /*
613 * The new state must be visible before we turn it on in the hardware:
614 */
615 smp_wmb();
616
617 if (event->pmu->enable(event)) {
618 event->state = PERF_EVENT_STATE_INACTIVE;
619 event->oncpu = -1;
620 return -EAGAIN;
621 }
622
623 event->tstamp_running += ctx->time - event->tstamp_stopped;
624
625 if (!is_software_event(event))
626 cpuctx->active_oncpu++;
627 ctx->nr_active++;
628
629 if (event->attr.exclusive)
630 cpuctx->exclusive = 1;
631
632 return 0;
633}
634
635static int
636group_sched_in(struct perf_event *group_event,
637 struct perf_cpu_context *cpuctx,
Peter Zijlstra6e377382010-02-11 13:21:58 +0100638 struct perf_event_context *ctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200639{
Lin Ming6bde9b62010-04-23 13:56:00 +0800640 struct perf_event *event, *partial_group = NULL;
641 const struct pmu *pmu = group_event->pmu;
642 bool txn = false;
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200643 int ret;
644
645 if (group_event->state == PERF_EVENT_STATE_OFF)
646 return 0;
647
Lin Ming6bde9b62010-04-23 13:56:00 +0800648 /* Check if group transaction availabe */
649 if (pmu->start_txn)
650 txn = true;
651
652 if (txn)
653 pmu->start_txn(pmu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200654
Peter Zijlstra6e377382010-02-11 13:21:58 +0100655 if (event_sched_in(group_event, cpuctx, ctx))
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200656 return -EAGAIN;
657
658 /*
659 * Schedule in siblings as one group (if any):
660 */
661 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
Peter Zijlstra6e377382010-02-11 13:21:58 +0100662 if (event_sched_in(event, cpuctx, ctx)) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200663 partial_group = event;
664 goto group_error;
665 }
666 }
667
Paul Mackerras6e851582010-05-08 20:58:00 +1000668 if (!txn)
669 return 0;
Lin Ming6bde9b62010-04-23 13:56:00 +0800670
Paul Mackerras6e851582010-05-08 20:58:00 +1000671 ret = pmu->commit_txn(pmu);
672 if (!ret) {
673 pmu->cancel_txn(pmu);
674 return 0;
Lin Ming6bde9b62010-04-23 13:56:00 +0800675 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200676
677group_error:
Lin Ming6bde9b62010-04-23 13:56:00 +0800678 if (txn)
679 pmu->cancel_txn(pmu);
680
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200681 /*
682 * Groups can be scheduled in as one unit only, so undo any
683 * partial group before returning:
684 */
685 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
686 if (event == partial_group)
687 break;
688 event_sched_out(event, cpuctx, ctx);
689 }
690 event_sched_out(group_event, cpuctx, ctx);
691
692 return -EAGAIN;
693}
694
695/*
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200696 * Work out whether we can put this event group on the CPU now.
697 */
698static int group_can_go_on(struct perf_event *event,
699 struct perf_cpu_context *cpuctx,
700 int can_add_hw)
701{
702 /*
703 * Groups consisting entirely of software events can always go on.
704 */
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100705 if (event->group_flags & PERF_GROUP_SOFTWARE)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200706 return 1;
707 /*
708 * If an exclusive group is already on, no other hardware
709 * events can go on.
710 */
711 if (cpuctx->exclusive)
712 return 0;
713 /*
714 * If this group is exclusive and there are already
715 * events on the CPU, it can't go on.
716 */
717 if (event->attr.exclusive && cpuctx->active_oncpu)
718 return 0;
719 /*
720 * Otherwise, try to add it if all previous groups were able
721 * to go on.
722 */
723 return can_add_hw;
724}
725
726static void add_event_to_ctx(struct perf_event *event,
727 struct perf_event_context *ctx)
728{
729 list_add_event(event, ctx);
730 event->tstamp_enabled = ctx->time;
731 event->tstamp_running = ctx->time;
732 event->tstamp_stopped = ctx->time;
733}
734
735/*
736 * Cross CPU call to install and enable a performance event
737 *
738 * Must be called with ctx->mutex held
739 */
740static void __perf_install_in_context(void *info)
741{
742 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
743 struct perf_event *event = info;
744 struct perf_event_context *ctx = event->ctx;
745 struct perf_event *leader = event->group_leader;
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200746 int err;
747
748 /*
749 * If this is a task context, we need to check whether it is
750 * the current task context of this cpu. If not it has been
751 * scheduled out before the smp call arrived.
752 * Or possibly this is the right context but it isn't
753 * on this cpu because it had no events.
754 */
755 if (ctx->task && cpuctx->task_ctx != ctx) {
756 if (cpuctx->task_ctx || ctx->task != current)
757 return;
758 cpuctx->task_ctx = ctx;
759 }
760
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100761 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200762 ctx->is_active = 1;
763 update_context_time(ctx);
764
765 /*
766 * Protect the list operation against NMI by disabling the
767 * events on a global level. NOP for non NMI based events.
768 */
769 perf_disable();
770
771 add_event_to_ctx(event, ctx);
772
Peter Zijlstraf4c41762009-12-16 17:55:54 +0100773 if (event->cpu != -1 && event->cpu != smp_processor_id())
774 goto unlock;
775
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200776 /*
777 * Don't put the event on if it is disabled or if
778 * it is in a group and the group isn't on.
779 */
780 if (event->state != PERF_EVENT_STATE_INACTIVE ||
781 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
782 goto unlock;
783
784 /*
785 * An exclusive event can't go on if there are already active
786 * hardware events, and no hardware event can go on if there
787 * is already an exclusive event on.
788 */
789 if (!group_can_go_on(event, cpuctx, 1))
790 err = -EEXIST;
791 else
Peter Zijlstra6e377382010-02-11 13:21:58 +0100792 err = event_sched_in(event, cpuctx, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200793
794 if (err) {
795 /*
796 * This event couldn't go on. If it is in a group
797 * then we have to pull the whole group off.
798 * If the event group is pinned then put it in error state.
799 */
800 if (leader != event)
801 group_sched_out(leader, cpuctx, ctx);
802 if (leader->attr.pinned) {
803 update_group_times(leader);
804 leader->state = PERF_EVENT_STATE_ERROR;
805 }
806 }
807
808 if (!err && !ctx->task && cpuctx->max_pertask)
809 cpuctx->max_pertask--;
810
811 unlock:
812 perf_enable();
813
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100814 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200815}
816
817/*
818 * Attach a performance event to a context
819 *
820 * First we add the event to the list with the hardware enable bit
821 * in event->hw_config cleared.
822 *
823 * If the event is attached to a task which is on a CPU we use a smp
824 * call to enable it in the task context. The task might have been
825 * scheduled away, but we check this in the smp call again.
826 *
827 * Must be called with ctx->mutex held.
828 */
829static void
830perf_install_in_context(struct perf_event_context *ctx,
831 struct perf_event *event,
832 int cpu)
833{
834 struct task_struct *task = ctx->task;
835
836 if (!task) {
837 /*
838 * Per cpu events are installed via an smp call and
André Goddard Rosaaf901ca2009-11-14 13:09:05 -0200839 * the install is always successful.
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200840 */
841 smp_call_function_single(cpu, __perf_install_in_context,
842 event, 1);
843 return;
844 }
845
846retry:
847 task_oncpu_function_call(task, __perf_install_in_context,
848 event);
849
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100850 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200851 /*
852 * we need to retry the smp call.
853 */
854 if (ctx->is_active && list_empty(&event->group_entry)) {
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100855 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200856 goto retry;
857 }
858
859 /*
860 * The lock prevents that this context is scheduled in so we
861 * can add the event safely, if it the call above did not
862 * succeed.
863 */
864 if (list_empty(&event->group_entry))
865 add_event_to_ctx(event, ctx);
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100866 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200867}
868
869/*
870 * Put a event into inactive state and update time fields.
871 * Enabling the leader of a group effectively enables all
872 * the group members that aren't explicitly disabled, so we
873 * have to update their ->tstamp_enabled also.
874 * Note: this works for group members as well as group leaders
875 * since the non-leader members' sibling_lists will be empty.
876 */
877static void __perf_event_mark_enabled(struct perf_event *event,
878 struct perf_event_context *ctx)
879{
880 struct perf_event *sub;
881
882 event->state = PERF_EVENT_STATE_INACTIVE;
883 event->tstamp_enabled = ctx->time - event->total_time_enabled;
884 list_for_each_entry(sub, &event->sibling_list, group_entry)
885 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
886 sub->tstamp_enabled =
887 ctx->time - sub->total_time_enabled;
888}
889
890/*
891 * Cross CPU call to enable a performance event
892 */
893static void __perf_event_enable(void *info)
894{
895 struct perf_event *event = info;
896 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
897 struct perf_event_context *ctx = event->ctx;
898 struct perf_event *leader = event->group_leader;
899 int err;
900
901 /*
902 * If this is a per-task event, need to check whether this
903 * event's task is the current task on this cpu.
904 */
905 if (ctx->task && cpuctx->task_ctx != ctx) {
906 if (cpuctx->task_ctx || ctx->task != current)
907 return;
908 cpuctx->task_ctx = ctx;
909 }
910
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100911 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200912 ctx->is_active = 1;
913 update_context_time(ctx);
914
915 if (event->state >= PERF_EVENT_STATE_INACTIVE)
916 goto unlock;
917 __perf_event_mark_enabled(event, ctx);
918
Peter Zijlstraf4c41762009-12-16 17:55:54 +0100919 if (event->cpu != -1 && event->cpu != smp_processor_id())
920 goto unlock;
921
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200922 /*
923 * If the event is in a group and isn't the group leader,
924 * then don't put it on unless the group is on.
925 */
926 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
927 goto unlock;
928
929 if (!group_can_go_on(event, cpuctx, 1)) {
930 err = -EEXIST;
931 } else {
932 perf_disable();
933 if (event == leader)
Peter Zijlstra6e377382010-02-11 13:21:58 +0100934 err = group_sched_in(event, cpuctx, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200935 else
Peter Zijlstra6e377382010-02-11 13:21:58 +0100936 err = event_sched_in(event, cpuctx, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200937 perf_enable();
938 }
939
940 if (err) {
941 /*
942 * If this event can't go on and it's part of a
943 * group, then the whole group has to come off.
944 */
945 if (leader != event)
946 group_sched_out(leader, cpuctx, ctx);
947 if (leader->attr.pinned) {
948 update_group_times(leader);
949 leader->state = PERF_EVENT_STATE_ERROR;
950 }
951 }
952
953 unlock:
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100954 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200955}
956
957/*
958 * Enable a event.
959 *
960 * If event->ctx is a cloned context, callers must make sure that
961 * every task struct that event->ctx->task could possibly point to
962 * remains valid. This condition is satisfied when called through
963 * perf_event_for_each_child or perf_event_for_each as described
964 * for perf_event_disable.
965 */
Frederic Weisbecker44234ad2009-12-09 09:25:48 +0100966void perf_event_enable(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200967{
968 struct perf_event_context *ctx = event->ctx;
969 struct task_struct *task = ctx->task;
970
971 if (!task) {
972 /*
973 * Enable the event on the cpu that it's on
974 */
975 smp_call_function_single(event->cpu, __perf_event_enable,
976 event, 1);
977 return;
978 }
979
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100980 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200981 if (event->state >= PERF_EVENT_STATE_INACTIVE)
982 goto out;
983
984 /*
985 * If the event is in error state, clear that first.
986 * That way, if we see the event in error state below, we
987 * know that it has gone back into error state, as distinct
988 * from the task having been scheduled away before the
989 * cross-call arrived.
990 */
991 if (event->state == PERF_EVENT_STATE_ERROR)
992 event->state = PERF_EVENT_STATE_OFF;
993
994 retry:
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100995 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200996 task_oncpu_function_call(task, __perf_event_enable, event);
997
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100998 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200999
1000 /*
1001 * If the context is active and the event is still off,
1002 * we need to retry the cross-call.
1003 */
1004 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1005 goto retry;
1006
1007 /*
1008 * Since we have the lock this context can't be scheduled
1009 * in, so we can change the state safely.
1010 */
1011 if (event->state == PERF_EVENT_STATE_OFF)
1012 __perf_event_mark_enabled(event, ctx);
1013
1014 out:
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001015 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001016}
1017
1018static int perf_event_refresh(struct perf_event *event, int refresh)
1019{
1020 /*
1021 * not supported on inherited events
1022 */
1023 if (event->attr.inherit)
1024 return -EINVAL;
1025
1026 atomic_add(refresh, &event->event_limit);
1027 perf_event_enable(event);
1028
1029 return 0;
1030}
1031
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001032enum event_type_t {
1033 EVENT_FLEXIBLE = 0x1,
1034 EVENT_PINNED = 0x2,
1035 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1036};
1037
1038static void ctx_sched_out(struct perf_event_context *ctx,
1039 struct perf_cpu_context *cpuctx,
1040 enum event_type_t event_type)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001041{
1042 struct perf_event *event;
1043
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001044 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001045 ctx->is_active = 0;
1046 if (likely(!ctx->nr_events))
1047 goto out;
1048 update_context_time(ctx);
1049
1050 perf_disable();
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001051 if (!ctx->nr_active)
1052 goto out_enable;
1053
1054 if (event_type & EVENT_PINNED)
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001055 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1056 group_sched_out(event, cpuctx, ctx);
1057
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001058 if (event_type & EVENT_FLEXIBLE)
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001059 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001060 group_sched_out(event, cpuctx, ctx);
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001061
1062 out_enable:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001063 perf_enable();
1064 out:
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001065 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001066}
1067
1068/*
1069 * Test whether two contexts are equivalent, i.e. whether they
1070 * have both been cloned from the same version of the same context
1071 * and they both have the same number of enabled events.
1072 * If the number of enabled events is the same, then the set
1073 * of enabled events should be the same, because these are both
1074 * inherited contexts, therefore we can't access individual events
1075 * in them directly with an fd; we can only enable/disable all
1076 * events via prctl, or enable/disable all events in a family
1077 * via ioctl, which will have the same effect on both contexts.
1078 */
1079static int context_equiv(struct perf_event_context *ctx1,
1080 struct perf_event_context *ctx2)
1081{
1082 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1083 && ctx1->parent_gen == ctx2->parent_gen
1084 && !ctx1->pin_count && !ctx2->pin_count;
1085}
1086
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001087static void __perf_event_sync_stat(struct perf_event *event,
1088 struct perf_event *next_event)
1089{
1090 u64 value;
1091
1092 if (!event->attr.inherit_stat)
1093 return;
1094
1095 /*
1096 * Update the event value, we cannot use perf_event_read()
1097 * because we're in the middle of a context switch and have IRQs
1098 * disabled, which upsets smp_call_function_single(), however
1099 * we know the event must be on the current CPU, therefore we
1100 * don't need to use it.
1101 */
1102 switch (event->state) {
1103 case PERF_EVENT_STATE_ACTIVE:
Peter Zijlstra3dbebf12009-11-20 22:19:52 +01001104 event->pmu->read(event);
1105 /* fall-through */
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001106
1107 case PERF_EVENT_STATE_INACTIVE:
1108 update_event_times(event);
1109 break;
1110
1111 default:
1112 break;
1113 }
1114
1115 /*
1116 * In order to keep per-task stats reliable we need to flip the event
1117 * values when we flip the contexts.
1118 */
1119 value = atomic64_read(&next_event->count);
1120 value = atomic64_xchg(&event->count, value);
1121 atomic64_set(&next_event->count, value);
1122
1123 swap(event->total_time_enabled, next_event->total_time_enabled);
1124 swap(event->total_time_running, next_event->total_time_running);
1125
1126 /*
1127 * Since we swizzled the values, update the user visible data too.
1128 */
1129 perf_event_update_userpage(event);
1130 perf_event_update_userpage(next_event);
1131}
1132
1133#define list_next_entry(pos, member) \
1134 list_entry(pos->member.next, typeof(*pos), member)
1135
1136static void perf_event_sync_stat(struct perf_event_context *ctx,
1137 struct perf_event_context *next_ctx)
1138{
1139 struct perf_event *event, *next_event;
1140
1141 if (!ctx->nr_stat)
1142 return;
1143
Peter Zijlstra02ffdbc2009-11-20 22:19:50 +01001144 update_context_time(ctx);
1145
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001146 event = list_first_entry(&ctx->event_list,
1147 struct perf_event, event_entry);
1148
1149 next_event = list_first_entry(&next_ctx->event_list,
1150 struct perf_event, event_entry);
1151
1152 while (&event->event_entry != &ctx->event_list &&
1153 &next_event->event_entry != &next_ctx->event_list) {
1154
1155 __perf_event_sync_stat(event, next_event);
1156
1157 event = list_next_entry(event, event_entry);
1158 next_event = list_next_entry(next_event, event_entry);
1159 }
1160}
1161
1162/*
1163 * Called from scheduler to remove the events of the current task,
1164 * with interrupts disabled.
1165 *
1166 * We stop each event and update the event value in event->count.
1167 *
1168 * This does not protect us against NMI, but disable()
1169 * sets the disabled bit in the control field of event _before_
1170 * accessing the event control register. If a NMI hits, then it will
1171 * not restart the event.
1172 */
1173void perf_event_task_sched_out(struct task_struct *task,
Peter Zijlstra49f47432009-12-27 11:51:52 +01001174 struct task_struct *next)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001175{
Peter Zijlstra49f47432009-12-27 11:51:52 +01001176 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001177 struct perf_event_context *ctx = task->perf_event_ctxp;
1178 struct perf_event_context *next_ctx;
1179 struct perf_event_context *parent;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001180 int do_switch = 1;
1181
Frederic Weisbeckere49a5bd2010-03-22 19:40:03 +01001182 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001183
1184 if (likely(!ctx || !cpuctx->task_ctx))
1185 return;
1186
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001187 rcu_read_lock();
1188 parent = rcu_dereference(ctx->parent_ctx);
1189 next_ctx = next->perf_event_ctxp;
1190 if (parent && next_ctx &&
1191 rcu_dereference(next_ctx->parent_ctx) == parent) {
1192 /*
1193 * Looks like the two contexts are clones, so we might be
1194 * able to optimize the context switch. We lock both
1195 * contexts and check that they are clones under the
1196 * lock (including re-checking that neither has been
1197 * uncloned in the meantime). It doesn't matter which
1198 * order we take the locks because no other cpu could
1199 * be trying to lock both of these tasks.
1200 */
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001201 raw_spin_lock(&ctx->lock);
1202 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001203 if (context_equiv(ctx, next_ctx)) {
1204 /*
1205 * XXX do we need a memory barrier of sorts
1206 * wrt to rcu_dereference() of perf_event_ctxp
1207 */
1208 task->perf_event_ctxp = next_ctx;
1209 next->perf_event_ctxp = ctx;
1210 ctx->task = next;
1211 next_ctx->task = task;
1212 do_switch = 0;
1213
1214 perf_event_sync_stat(ctx, next_ctx);
1215 }
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001216 raw_spin_unlock(&next_ctx->lock);
1217 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001218 }
1219 rcu_read_unlock();
1220
1221 if (do_switch) {
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001222 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001223 cpuctx->task_ctx = NULL;
1224 }
1225}
1226
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001227static void task_ctx_sched_out(struct perf_event_context *ctx,
1228 enum event_type_t event_type)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001229{
1230 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1231
1232 if (!cpuctx->task_ctx)
1233 return;
1234
1235 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1236 return;
1237
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001238 ctx_sched_out(ctx, cpuctx, event_type);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001239 cpuctx->task_ctx = NULL;
1240}
1241
1242/*
1243 * Called with IRQs disabled
1244 */
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001245static void __perf_event_task_sched_out(struct perf_event_context *ctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001246{
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001247 task_ctx_sched_out(ctx, EVENT_ALL);
1248}
1249
1250/*
1251 * Called with IRQs disabled
1252 */
1253static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1254 enum event_type_t event_type)
1255{
1256 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001257}
1258
1259static void
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001260ctx_pinned_sched_in(struct perf_event_context *ctx,
Peter Zijlstra6e377382010-02-11 13:21:58 +01001261 struct perf_cpu_context *cpuctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001262{
1263 struct perf_event *event;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001264
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001265 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1266 if (event->state <= PERF_EVENT_STATE_OFF)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001267 continue;
Peter Zijlstra6e377382010-02-11 13:21:58 +01001268 if (event->cpu != -1 && event->cpu != smp_processor_id())
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001269 continue;
1270
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001271 if (group_can_go_on(event, cpuctx, 1))
Peter Zijlstra6e377382010-02-11 13:21:58 +01001272 group_sched_in(event, cpuctx, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001273
1274 /*
1275 * If this pinned group hasn't been scheduled,
1276 * put it in error state.
1277 */
1278 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1279 update_group_times(event);
1280 event->state = PERF_EVENT_STATE_ERROR;
1281 }
1282 }
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001283}
1284
1285static void
1286ctx_flexible_sched_in(struct perf_event_context *ctx,
Peter Zijlstra6e377382010-02-11 13:21:58 +01001287 struct perf_cpu_context *cpuctx)
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001288{
1289 struct perf_event *event;
1290 int can_add_hw = 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001291
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001292 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1293 /* Ignore events in OFF or ERROR state */
1294 if (event->state <= PERF_EVENT_STATE_OFF)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001295 continue;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001296 /*
1297 * Listen to the 'cpu' scheduling filter constraint
1298 * of events:
1299 */
Peter Zijlstra6e377382010-02-11 13:21:58 +01001300 if (event->cpu != -1 && event->cpu != smp_processor_id())
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001301 continue;
1302
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001303 if (group_can_go_on(event, cpuctx, can_add_hw))
Peter Zijlstra6e377382010-02-11 13:21:58 +01001304 if (group_sched_in(event, cpuctx, ctx))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001305 can_add_hw = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001306 }
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001307}
1308
1309static void
1310ctx_sched_in(struct perf_event_context *ctx,
1311 struct perf_cpu_context *cpuctx,
1312 enum event_type_t event_type)
1313{
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001314 raw_spin_lock(&ctx->lock);
1315 ctx->is_active = 1;
1316 if (likely(!ctx->nr_events))
1317 goto out;
1318
1319 ctx->timestamp = perf_clock();
1320
1321 perf_disable();
1322
1323 /*
1324 * First go through the list and put on any pinned groups
1325 * in order to give them the best chance of going on.
1326 */
1327 if (event_type & EVENT_PINNED)
Peter Zijlstra6e377382010-02-11 13:21:58 +01001328 ctx_pinned_sched_in(ctx, cpuctx);
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001329
1330 /* Then walk through the lower prio flexible groups */
1331 if (event_type & EVENT_FLEXIBLE)
Peter Zijlstra6e377382010-02-11 13:21:58 +01001332 ctx_flexible_sched_in(ctx, cpuctx);
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001333
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001334 perf_enable();
1335 out:
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001336 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001337}
1338
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001339static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1340 enum event_type_t event_type)
1341{
1342 struct perf_event_context *ctx = &cpuctx->ctx;
1343
1344 ctx_sched_in(ctx, cpuctx, event_type);
1345}
1346
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001347static void task_ctx_sched_in(struct task_struct *task,
1348 enum event_type_t event_type)
1349{
1350 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1351 struct perf_event_context *ctx = task->perf_event_ctxp;
1352
1353 if (likely(!ctx))
1354 return;
1355 if (cpuctx->task_ctx == ctx)
1356 return;
1357 ctx_sched_in(ctx, cpuctx, event_type);
1358 cpuctx->task_ctx = ctx;
1359}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001360/*
1361 * Called from scheduler to add the events of the current task
1362 * with interrupts disabled.
1363 *
1364 * We restore the event value and then enable it.
1365 *
1366 * This does not protect us against NMI, but enable()
1367 * sets the enabled bit in the control field of event _before_
1368 * accessing the event control register. If a NMI hits, then it will
1369 * keep the event running.
1370 */
Peter Zijlstra49f47432009-12-27 11:51:52 +01001371void perf_event_task_sched_in(struct task_struct *task)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001372{
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001373 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1374 struct perf_event_context *ctx = task->perf_event_ctxp;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001375
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001376 if (likely(!ctx))
1377 return;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001378
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001379 if (cpuctx->task_ctx == ctx)
1380 return;
1381
eranian@google.com9b33fa62010-03-10 22:26:05 -08001382 perf_disable();
1383
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001384 /*
1385 * We want to keep the following priority order:
1386 * cpu pinned (that don't need to move), task pinned,
1387 * cpu flexible, task flexible.
1388 */
1389 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1390
1391 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1392 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1393 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1394
1395 cpuctx->task_ctx = ctx;
eranian@google.com9b33fa62010-03-10 22:26:05 -08001396
1397 perf_enable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001398}
1399
1400#define MAX_INTERRUPTS (~0ULL)
1401
1402static void perf_log_throttle(struct perf_event *event, int enable);
1403
Peter Zijlstraabd50712010-01-26 18:50:16 +01001404static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1405{
1406 u64 frequency = event->attr.sample_freq;
1407 u64 sec = NSEC_PER_SEC;
1408 u64 divisor, dividend;
1409
1410 int count_fls, nsec_fls, frequency_fls, sec_fls;
1411
1412 count_fls = fls64(count);
1413 nsec_fls = fls64(nsec);
1414 frequency_fls = fls64(frequency);
1415 sec_fls = 30;
1416
1417 /*
1418 * We got @count in @nsec, with a target of sample_freq HZ
1419 * the target period becomes:
1420 *
1421 * @count * 10^9
1422 * period = -------------------
1423 * @nsec * sample_freq
1424 *
1425 */
1426
1427 /*
1428 * Reduce accuracy by one bit such that @a and @b converge
1429 * to a similar magnitude.
1430 */
1431#define REDUCE_FLS(a, b) \
1432do { \
1433 if (a##_fls > b##_fls) { \
1434 a >>= 1; \
1435 a##_fls--; \
1436 } else { \
1437 b >>= 1; \
1438 b##_fls--; \
1439 } \
1440} while (0)
1441
1442 /*
1443 * Reduce accuracy until either term fits in a u64, then proceed with
1444 * the other, so that finally we can do a u64/u64 division.
1445 */
1446 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1447 REDUCE_FLS(nsec, frequency);
1448 REDUCE_FLS(sec, count);
1449 }
1450
1451 if (count_fls + sec_fls > 64) {
1452 divisor = nsec * frequency;
1453
1454 while (count_fls + sec_fls > 64) {
1455 REDUCE_FLS(count, sec);
1456 divisor >>= 1;
1457 }
1458
1459 dividend = count * sec;
1460 } else {
1461 dividend = count * sec;
1462
1463 while (nsec_fls + frequency_fls > 64) {
1464 REDUCE_FLS(nsec, frequency);
1465 dividend >>= 1;
1466 }
1467
1468 divisor = nsec * frequency;
1469 }
1470
1471 return div64_u64(dividend, divisor);
1472}
1473
Stephane Eraniand76a0812010-02-08 17:06:01 +02001474static void perf_event_stop(struct perf_event *event)
1475{
1476 if (!event->pmu->stop)
1477 return event->pmu->disable(event);
1478
1479 return event->pmu->stop(event);
1480}
1481
1482static int perf_event_start(struct perf_event *event)
1483{
1484 if (!event->pmu->start)
1485 return event->pmu->enable(event);
1486
1487 return event->pmu->start(event);
1488}
1489
Peter Zijlstraabd50712010-01-26 18:50:16 +01001490static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001491{
1492 struct hw_perf_event *hwc = &event->hw;
1493 u64 period, sample_period;
1494 s64 delta;
1495
Peter Zijlstraabd50712010-01-26 18:50:16 +01001496 period = perf_calculate_period(event, nsec, count);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001497
1498 delta = (s64)(period - hwc->sample_period);
1499 delta = (delta + 7) / 8; /* low pass filter */
1500
1501 sample_period = hwc->sample_period + delta;
1502
1503 if (!sample_period)
1504 sample_period = 1;
1505
1506 hwc->sample_period = sample_period;
Peter Zijlstraabd50712010-01-26 18:50:16 +01001507
1508 if (atomic64_read(&hwc->period_left) > 8*sample_period) {
1509 perf_disable();
Stephane Eraniand76a0812010-02-08 17:06:01 +02001510 perf_event_stop(event);
Peter Zijlstraabd50712010-01-26 18:50:16 +01001511 atomic64_set(&hwc->period_left, 0);
Stephane Eraniand76a0812010-02-08 17:06:01 +02001512 perf_event_start(event);
Peter Zijlstraabd50712010-01-26 18:50:16 +01001513 perf_enable();
1514 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001515}
1516
1517static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1518{
1519 struct perf_event *event;
1520 struct hw_perf_event *hwc;
Peter Zijlstraabd50712010-01-26 18:50:16 +01001521 u64 interrupts, now;
1522 s64 delta;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001523
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001524 raw_spin_lock(&ctx->lock);
Paul Mackerras03541f82009-10-14 16:58:03 +11001525 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001526 if (event->state != PERF_EVENT_STATE_ACTIVE)
1527 continue;
1528
Peter Zijlstra5d27c232009-12-17 13:16:32 +01001529 if (event->cpu != -1 && event->cpu != smp_processor_id())
1530 continue;
1531
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001532 hwc = &event->hw;
1533
1534 interrupts = hwc->interrupts;
1535 hwc->interrupts = 0;
1536
1537 /*
1538 * unthrottle events on the tick
1539 */
1540 if (interrupts == MAX_INTERRUPTS) {
1541 perf_log_throttle(event, 1);
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001542 perf_disable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001543 event->pmu->unthrottle(event);
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001544 perf_enable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001545 }
1546
1547 if (!event->attr.freq || !event->attr.sample_freq)
1548 continue;
1549
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001550 perf_disable();
Peter Zijlstraabd50712010-01-26 18:50:16 +01001551 event->pmu->read(event);
1552 now = atomic64_read(&event->count);
1553 delta = now - hwc->freq_count_stamp;
1554 hwc->freq_count_stamp = now;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001555
Peter Zijlstraabd50712010-01-26 18:50:16 +01001556 if (delta > 0)
1557 perf_adjust_period(event, TICK_NSEC, delta);
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001558 perf_enable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001559 }
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001560 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001561}
1562
1563/*
1564 * Round-robin a context's events:
1565 */
1566static void rotate_ctx(struct perf_event_context *ctx)
1567{
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001568 raw_spin_lock(&ctx->lock);
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001569
Frederic Weisbeckere2864172010-01-09 21:05:28 +01001570 /* Rotate the first entry last of non-pinned groups */
Frederic Weisbeckere2864172010-01-09 21:05:28 +01001571 list_rotate_left(&ctx->flexible_groups);
1572
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001573 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001574}
1575
Peter Zijlstra49f47432009-12-27 11:51:52 +01001576void perf_event_task_tick(struct task_struct *curr)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001577{
1578 struct perf_cpu_context *cpuctx;
1579 struct perf_event_context *ctx;
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001580 int rotate = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001581
1582 if (!atomic_read(&nr_events))
1583 return;
1584
Peter Zijlstra49f47432009-12-27 11:51:52 +01001585 cpuctx = &__get_cpu_var(perf_cpu_context);
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001586 if (cpuctx->ctx.nr_events &&
1587 cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1588 rotate = 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001589
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001590 ctx = curr->perf_event_ctxp;
1591 if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
1592 rotate = 1;
Peter Zijlstra9717e6c2010-01-28 13:57:44 +01001593
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001594 perf_ctx_adjust_freq(&cpuctx->ctx);
1595 if (ctx)
1596 perf_ctx_adjust_freq(ctx);
1597
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001598 if (!rotate)
1599 return;
1600
1601 perf_disable();
Frederic Weisbecker7defb0f2010-01-17 12:15:31 +01001602 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001603 if (ctx)
Frederic Weisbecker7defb0f2010-01-17 12:15:31 +01001604 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001605
1606 rotate_ctx(&cpuctx->ctx);
1607 if (ctx)
1608 rotate_ctx(ctx);
1609
Frederic Weisbecker7defb0f2010-01-17 12:15:31 +01001610 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001611 if (ctx)
Frederic Weisbecker7defb0f2010-01-17 12:15:31 +01001612 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
Peter Zijlstra9717e6c2010-01-28 13:57:44 +01001613 perf_enable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001614}
1615
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001616static int event_enable_on_exec(struct perf_event *event,
1617 struct perf_event_context *ctx)
1618{
1619 if (!event->attr.enable_on_exec)
1620 return 0;
1621
1622 event->attr.enable_on_exec = 0;
1623 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1624 return 0;
1625
1626 __perf_event_mark_enabled(event, ctx);
1627
1628 return 1;
1629}
1630
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001631/*
1632 * Enable all of a task's events that have been marked enable-on-exec.
1633 * This expects task == current.
1634 */
1635static void perf_event_enable_on_exec(struct task_struct *task)
1636{
1637 struct perf_event_context *ctx;
1638 struct perf_event *event;
1639 unsigned long flags;
1640 int enabled = 0;
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001641 int ret;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001642
1643 local_irq_save(flags);
1644 ctx = task->perf_event_ctxp;
1645 if (!ctx || !ctx->nr_events)
1646 goto out;
1647
1648 __perf_event_task_sched_out(ctx);
1649
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001650 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001651
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001652 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1653 ret = event_enable_on_exec(event, ctx);
1654 if (ret)
1655 enabled = 1;
1656 }
1657
1658 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1659 ret = event_enable_on_exec(event, ctx);
1660 if (ret)
1661 enabled = 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001662 }
1663
1664 /*
1665 * Unclone this context if we enabled any event.
1666 */
1667 if (enabled)
1668 unclone_ctx(ctx);
1669
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001670 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001671
Peter Zijlstra49f47432009-12-27 11:51:52 +01001672 perf_event_task_sched_in(task);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001673 out:
1674 local_irq_restore(flags);
1675}
1676
1677/*
1678 * Cross CPU call to read the hardware event
1679 */
1680static void __perf_event_read(void *info)
1681{
1682 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1683 struct perf_event *event = info;
1684 struct perf_event_context *ctx = event->ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001685
1686 /*
1687 * If this is a task context, we need to check whether it is
1688 * the current task context of this cpu. If not it has been
1689 * scheduled out before the smp call arrived. In that case
1690 * event->count would have been updated to a recent sample
1691 * when the event was scheduled out.
1692 */
1693 if (ctx->task && cpuctx->task_ctx != ctx)
1694 return;
1695
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001696 raw_spin_lock(&ctx->lock);
Peter Zijlstra58e5ad12009-11-20 22:19:53 +01001697 update_context_time(ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001698 update_event_times(event);
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001699 raw_spin_unlock(&ctx->lock);
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001700
Peter Zijlstra58e5ad12009-11-20 22:19:53 +01001701 event->pmu->read(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001702}
1703
1704static u64 perf_event_read(struct perf_event *event)
1705{
1706 /*
1707 * If event is enabled and currently active on a CPU, update the
1708 * value in the event structure:
1709 */
1710 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1711 smp_call_function_single(event->oncpu,
1712 __perf_event_read, event, 1);
1713 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001714 struct perf_event_context *ctx = event->ctx;
1715 unsigned long flags;
1716
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001717 raw_spin_lock_irqsave(&ctx->lock, flags);
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001718 update_context_time(ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001719 update_event_times(event);
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001720 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001721 }
1722
1723 return atomic64_read(&event->count);
1724}
1725
1726/*
1727 * Initialize the perf_event context in a task_struct:
1728 */
1729static void
1730__perf_event_init_context(struct perf_event_context *ctx,
1731 struct task_struct *task)
1732{
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001733 raw_spin_lock_init(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001734 mutex_init(&ctx->mutex);
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001735 INIT_LIST_HEAD(&ctx->pinned_groups);
1736 INIT_LIST_HEAD(&ctx->flexible_groups);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001737 INIT_LIST_HEAD(&ctx->event_list);
1738 atomic_set(&ctx->refcount, 1);
1739 ctx->task = task;
1740}
1741
1742static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1743{
1744 struct perf_event_context *ctx;
1745 struct perf_cpu_context *cpuctx;
1746 struct task_struct *task;
1747 unsigned long flags;
1748 int err;
1749
Peter Zijlstraf4c41762009-12-16 17:55:54 +01001750 if (pid == -1 && cpu != -1) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001751 /* Must be root to operate on a CPU event: */
1752 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1753 return ERR_PTR(-EACCES);
1754
Paul Mackerras0f624e72009-12-15 19:40:32 +11001755 if (cpu < 0 || cpu >= nr_cpumask_bits)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001756 return ERR_PTR(-EINVAL);
1757
1758 /*
1759 * We could be clever and allow to attach a event to an
1760 * offline CPU and activate it when the CPU comes up, but
1761 * that's for later.
1762 */
Rusty Russellf6325e32009-12-17 11:43:08 -06001763 if (!cpu_online(cpu))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001764 return ERR_PTR(-ENODEV);
1765
1766 cpuctx = &per_cpu(perf_cpu_context, cpu);
1767 ctx = &cpuctx->ctx;
1768 get_ctx(ctx);
1769
1770 return ctx;
1771 }
1772
1773 rcu_read_lock();
1774 if (!pid)
1775 task = current;
1776 else
1777 task = find_task_by_vpid(pid);
1778 if (task)
1779 get_task_struct(task);
1780 rcu_read_unlock();
1781
1782 if (!task)
1783 return ERR_PTR(-ESRCH);
1784
1785 /*
1786 * Can't attach events to a dying task.
1787 */
1788 err = -ESRCH;
1789 if (task->flags & PF_EXITING)
1790 goto errout;
1791
1792 /* Reuse ptrace permission checks for now. */
1793 err = -EACCES;
1794 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1795 goto errout;
1796
1797 retry:
1798 ctx = perf_lock_task_context(task, &flags);
1799 if (ctx) {
1800 unclone_ctx(ctx);
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001801 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001802 }
1803
1804 if (!ctx) {
Xiao Guangrongaa5452d2009-12-09 11:28:13 +08001805 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001806 err = -ENOMEM;
1807 if (!ctx)
1808 goto errout;
1809 __perf_event_init_context(ctx, task);
1810 get_ctx(ctx);
1811 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1812 /*
1813 * We raced with some other task; use
1814 * the context they set.
1815 */
1816 kfree(ctx);
1817 goto retry;
1818 }
1819 get_task_struct(task);
1820 }
1821
1822 put_task_struct(task);
1823 return ctx;
1824
1825 errout:
1826 put_task_struct(task);
1827 return ERR_PTR(err);
1828}
1829
Li Zefan6fb29152009-10-15 11:21:42 +08001830static void perf_event_free_filter(struct perf_event *event);
1831
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001832static void free_event_rcu(struct rcu_head *head)
1833{
1834 struct perf_event *event;
1835
1836 event = container_of(head, struct perf_event, rcu_head);
1837 if (event->ns)
1838 put_pid_ns(event->ns);
Li Zefan6fb29152009-10-15 11:21:42 +08001839 perf_event_free_filter(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001840 kfree(event);
1841}
1842
1843static void perf_pending_sync(struct perf_event *event);
Peter Zijlstraac9721f2010-05-27 12:54:41 +02001844static void perf_mmap_data_put(struct perf_mmap_data *data);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001845
1846static void free_event(struct perf_event *event)
1847{
1848 perf_pending_sync(event);
1849
1850 if (!event->parent) {
1851 atomic_dec(&nr_events);
1852 if (event->attr.mmap)
1853 atomic_dec(&nr_mmap_events);
1854 if (event->attr.comm)
1855 atomic_dec(&nr_comm_events);
1856 if (event->attr.task)
1857 atomic_dec(&nr_task_events);
1858 }
1859
Peter Zijlstraac9721f2010-05-27 12:54:41 +02001860 if (event->data) {
1861 perf_mmap_data_put(event->data);
1862 event->data = NULL;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001863 }
1864
1865 if (event->destroy)
1866 event->destroy(event);
1867
1868 put_ctx(event->ctx);
1869 call_rcu(&event->rcu_head, free_event_rcu);
1870}
1871
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001872int perf_event_release_kernel(struct perf_event *event)
1873{
1874 struct perf_event_context *ctx = event->ctx;
1875
Peter Zijlstra050735b2010-05-11 11:51:53 +02001876 /*
1877 * Remove from the PMU, can't get re-enabled since we got
1878 * here because the last ref went.
1879 */
1880 perf_event_disable(event);
1881
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001882 WARN_ON_ONCE(ctx->parent_ctx);
Peter Zijlstraa0507c82010-05-06 15:42:53 +02001883 /*
1884 * There are two ways this annotation is useful:
1885 *
1886 * 1) there is a lock recursion from perf_event_exit_task
1887 * see the comment there.
1888 *
1889 * 2) there is a lock-inversion with mmap_sem through
1890 * perf_event_read_group(), which takes faults while
1891 * holding ctx->mutex, however this is called after
1892 * the last filedesc died, so there is no possibility
1893 * to trigger the AB-BA case.
1894 */
1895 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
Peter Zijlstra050735b2010-05-11 11:51:53 +02001896 raw_spin_lock_irq(&ctx->lock);
1897 list_del_event(event, ctx);
1898 perf_destroy_group(event, ctx);
1899 raw_spin_unlock_irq(&ctx->lock);
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001900 mutex_unlock(&ctx->mutex);
1901
1902 mutex_lock(&event->owner->perf_event_mutex);
1903 list_del_init(&event->owner_entry);
1904 mutex_unlock(&event->owner->perf_event_mutex);
1905 put_task_struct(event->owner);
1906
1907 free_event(event);
1908
1909 return 0;
1910}
1911EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1912
Peter Zijlstraa66a3052009-11-23 11:37:23 +01001913/*
1914 * Called when the last reference to the file is gone.
1915 */
1916static int perf_release(struct inode *inode, struct file *file)
1917{
1918 struct perf_event *event = file->private_data;
1919
1920 file->private_data = NULL;
1921
1922 return perf_event_release_kernel(event);
1923}
1924
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001925static int perf_event_read_size(struct perf_event *event)
1926{
1927 int entry = sizeof(u64); /* value */
1928 int size = 0;
1929 int nr = 1;
1930
1931 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1932 size += sizeof(u64);
1933
1934 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1935 size += sizeof(u64);
1936
1937 if (event->attr.read_format & PERF_FORMAT_ID)
1938 entry += sizeof(u64);
1939
1940 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1941 nr += event->group_leader->nr_siblings;
1942 size += sizeof(u64);
1943 }
1944
1945 size += entry * nr;
1946
1947 return size;
1948}
1949
Peter Zijlstra59ed446f2009-11-20 22:19:55 +01001950u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001951{
1952 struct perf_event *child;
1953 u64 total = 0;
1954
Peter Zijlstra59ed446f2009-11-20 22:19:55 +01001955 *enabled = 0;
1956 *running = 0;
1957
Peter Zijlstra6f105812009-11-20 22:19:56 +01001958 mutex_lock(&event->child_mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001959 total += perf_event_read(event);
Peter Zijlstra59ed446f2009-11-20 22:19:55 +01001960 *enabled += event->total_time_enabled +
1961 atomic64_read(&event->child_total_time_enabled);
1962 *running += event->total_time_running +
1963 atomic64_read(&event->child_total_time_running);
1964
1965 list_for_each_entry(child, &event->child_list, child_list) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001966 total += perf_event_read(child);
Peter Zijlstra59ed446f2009-11-20 22:19:55 +01001967 *enabled += child->total_time_enabled;
1968 *running += child->total_time_running;
1969 }
Peter Zijlstra6f105812009-11-20 22:19:56 +01001970 mutex_unlock(&event->child_mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001971
1972 return total;
1973}
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001974EXPORT_SYMBOL_GPL(perf_event_read_value);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001975
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001976static int perf_event_read_group(struct perf_event *event,
1977 u64 read_format, char __user *buf)
1978{
1979 struct perf_event *leader = event->group_leader, *sub;
Peter Zijlstra6f105812009-11-20 22:19:56 +01001980 int n = 0, size = 0, ret = -EFAULT;
1981 struct perf_event_context *ctx = leader->ctx;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001982 u64 values[5];
Peter Zijlstra59ed446f2009-11-20 22:19:55 +01001983 u64 count, enabled, running;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001984
Peter Zijlstra6f105812009-11-20 22:19:56 +01001985 mutex_lock(&ctx->mutex);
Peter Zijlstra59ed446f2009-11-20 22:19:55 +01001986 count = perf_event_read_value(leader, &enabled, &running);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001987
1988 values[n++] = 1 + leader->nr_siblings;
Peter Zijlstra59ed446f2009-11-20 22:19:55 +01001989 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1990 values[n++] = enabled;
1991 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1992 values[n++] = running;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001993 values[n++] = count;
1994 if (read_format & PERF_FORMAT_ID)
1995 values[n++] = primary_event_id(leader);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001996
1997 size = n * sizeof(u64);
1998
1999 if (copy_to_user(buf, values, size))
Peter Zijlstra6f105812009-11-20 22:19:56 +01002000 goto unlock;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002001
Peter Zijlstra6f105812009-11-20 22:19:56 +01002002 ret = size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002003
2004 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
Peter Zijlstraabf48682009-11-20 22:19:49 +01002005 n = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002006
Peter Zijlstra59ed446f2009-11-20 22:19:55 +01002007 values[n++] = perf_event_read_value(sub, &enabled, &running);
Peter Zijlstraabf48682009-11-20 22:19:49 +01002008 if (read_format & PERF_FORMAT_ID)
2009 values[n++] = primary_event_id(sub);
2010
2011 size = n * sizeof(u64);
2012
Stephane Eranian184d3da2009-11-23 21:40:49 -08002013 if (copy_to_user(buf + ret, values, size)) {
Peter Zijlstra6f105812009-11-20 22:19:56 +01002014 ret = -EFAULT;
2015 goto unlock;
2016 }
Peter Zijlstraabf48682009-11-20 22:19:49 +01002017
2018 ret += size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002019 }
Peter Zijlstra6f105812009-11-20 22:19:56 +01002020unlock:
2021 mutex_unlock(&ctx->mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002022
Peter Zijlstraabf48682009-11-20 22:19:49 +01002023 return ret;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002024}
2025
2026static int perf_event_read_one(struct perf_event *event,
2027 u64 read_format, char __user *buf)
2028{
Peter Zijlstra59ed446f2009-11-20 22:19:55 +01002029 u64 enabled, running;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002030 u64 values[4];
2031 int n = 0;
2032
Peter Zijlstra59ed446f2009-11-20 22:19:55 +01002033 values[n++] = perf_event_read_value(event, &enabled, &running);
2034 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2035 values[n++] = enabled;
2036 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2037 values[n++] = running;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002038 if (read_format & PERF_FORMAT_ID)
2039 values[n++] = primary_event_id(event);
2040
2041 if (copy_to_user(buf, values, n * sizeof(u64)))
2042 return -EFAULT;
2043
2044 return n * sizeof(u64);
2045}
2046
2047/*
2048 * Read the performance event - simple non blocking version for now
2049 */
2050static ssize_t
2051perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2052{
2053 u64 read_format = event->attr.read_format;
2054 int ret;
2055
2056 /*
2057 * Return end-of-file for a read on a event that is in
2058 * error state (i.e. because it was pinned but it couldn't be
2059 * scheduled on to the CPU at some point).
2060 */
2061 if (event->state == PERF_EVENT_STATE_ERROR)
2062 return 0;
2063
2064 if (count < perf_event_read_size(event))
2065 return -ENOSPC;
2066
2067 WARN_ON_ONCE(event->ctx->parent_ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002068 if (read_format & PERF_FORMAT_GROUP)
2069 ret = perf_event_read_group(event, read_format, buf);
2070 else
2071 ret = perf_event_read_one(event, read_format, buf);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002072
2073 return ret;
2074}
2075
2076static ssize_t
2077perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2078{
2079 struct perf_event *event = file->private_data;
2080
2081 return perf_read_hw(event, buf, count);
2082}
2083
2084static unsigned int perf_poll(struct file *file, poll_table *wait)
2085{
2086 struct perf_event *event = file->private_data;
2087 struct perf_mmap_data *data;
2088 unsigned int events = POLL_HUP;
2089
2090 rcu_read_lock();
2091 data = rcu_dereference(event->data);
2092 if (data)
2093 events = atomic_xchg(&data->poll, 0);
2094 rcu_read_unlock();
2095
2096 poll_wait(file, &event->waitq, wait);
2097
2098 return events;
2099}
2100
2101static void perf_event_reset(struct perf_event *event)
2102{
2103 (void)perf_event_read(event);
2104 atomic64_set(&event->count, 0);
2105 perf_event_update_userpage(event);
2106}
2107
2108/*
2109 * Holding the top-level event's child_mutex means that any
2110 * descendant process that has inherited this event will block
2111 * in sync_child_event if it goes to exit, thus satisfying the
2112 * task existence requirements of perf_event_enable/disable.
2113 */
2114static void perf_event_for_each_child(struct perf_event *event,
2115 void (*func)(struct perf_event *))
2116{
2117 struct perf_event *child;
2118
2119 WARN_ON_ONCE(event->ctx->parent_ctx);
2120 mutex_lock(&event->child_mutex);
2121 func(event);
2122 list_for_each_entry(child, &event->child_list, child_list)
2123 func(child);
2124 mutex_unlock(&event->child_mutex);
2125}
2126
2127static void perf_event_for_each(struct perf_event *event,
2128 void (*func)(struct perf_event *))
2129{
2130 struct perf_event_context *ctx = event->ctx;
2131 struct perf_event *sibling;
2132
2133 WARN_ON_ONCE(ctx->parent_ctx);
2134 mutex_lock(&ctx->mutex);
2135 event = event->group_leader;
2136
2137 perf_event_for_each_child(event, func);
2138 func(event);
2139 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2140 perf_event_for_each_child(event, func);
2141 mutex_unlock(&ctx->mutex);
2142}
2143
2144static int perf_event_period(struct perf_event *event, u64 __user *arg)
2145{
2146 struct perf_event_context *ctx = event->ctx;
2147 unsigned long size;
2148 int ret = 0;
2149 u64 value;
2150
2151 if (!event->attr.sample_period)
2152 return -EINVAL;
2153
2154 size = copy_from_user(&value, arg, sizeof(value));
2155 if (size != sizeof(value))
2156 return -EFAULT;
2157
2158 if (!value)
2159 return -EINVAL;
2160
Thomas Gleixnere625cce2009-11-17 18:02:06 +01002161 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002162 if (event->attr.freq) {
2163 if (value > sysctl_perf_event_sample_rate) {
2164 ret = -EINVAL;
2165 goto unlock;
2166 }
2167
2168 event->attr.sample_freq = value;
2169 } else {
2170 event->attr.sample_period = value;
2171 event->hw.sample_period = value;
2172 }
2173unlock:
Thomas Gleixnere625cce2009-11-17 18:02:06 +01002174 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002175
2176 return ret;
2177}
2178
Peter Zijlstraac9721f2010-05-27 12:54:41 +02002179static const struct file_operations perf_fops;
2180
2181static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2182{
2183 struct file *file;
2184
2185 file = fget_light(fd, fput_needed);
2186 if (!file)
2187 return ERR_PTR(-EBADF);
2188
2189 if (file->f_op != &perf_fops) {
2190 fput_light(file, *fput_needed);
2191 *fput_needed = 0;
2192 return ERR_PTR(-EBADF);
2193 }
2194
2195 return file->private_data;
2196}
2197
2198static int perf_event_set_output(struct perf_event *event,
2199 struct perf_event *output_event);
Li Zefan6fb29152009-10-15 11:21:42 +08002200static int perf_event_set_filter(struct perf_event *event, void __user *arg);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002201
2202static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2203{
2204 struct perf_event *event = file->private_data;
2205 void (*func)(struct perf_event *);
2206 u32 flags = arg;
2207
2208 switch (cmd) {
2209 case PERF_EVENT_IOC_ENABLE:
2210 func = perf_event_enable;
2211 break;
2212 case PERF_EVENT_IOC_DISABLE:
2213 func = perf_event_disable;
2214 break;
2215 case PERF_EVENT_IOC_RESET:
2216 func = perf_event_reset;
2217 break;
2218
2219 case PERF_EVENT_IOC_REFRESH:
2220 return perf_event_refresh(event, arg);
2221
2222 case PERF_EVENT_IOC_PERIOD:
2223 return perf_event_period(event, (u64 __user *)arg);
2224
2225 case PERF_EVENT_IOC_SET_OUTPUT:
Peter Zijlstraac9721f2010-05-27 12:54:41 +02002226 {
2227 struct perf_event *output_event = NULL;
2228 int fput_needed = 0;
2229 int ret;
2230
2231 if (arg != -1) {
2232 output_event = perf_fget_light(arg, &fput_needed);
2233 if (IS_ERR(output_event))
2234 return PTR_ERR(output_event);
2235 }
2236
2237 ret = perf_event_set_output(event, output_event);
2238 if (output_event)
2239 fput_light(output_event->filp, fput_needed);
2240
2241 return ret;
2242 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002243
Li Zefan6fb29152009-10-15 11:21:42 +08002244 case PERF_EVENT_IOC_SET_FILTER:
2245 return perf_event_set_filter(event, (void __user *)arg);
2246
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002247 default:
2248 return -ENOTTY;
2249 }
2250
2251 if (flags & PERF_IOC_FLAG_GROUP)
2252 perf_event_for_each(event, func);
2253 else
2254 perf_event_for_each_child(event, func);
2255
2256 return 0;
2257}
2258
2259int perf_event_task_enable(void)
2260{
2261 struct perf_event *event;
2262
2263 mutex_lock(&current->perf_event_mutex);
2264 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2265 perf_event_for_each_child(event, perf_event_enable);
2266 mutex_unlock(&current->perf_event_mutex);
2267
2268 return 0;
2269}
2270
2271int perf_event_task_disable(void)
2272{
2273 struct perf_event *event;
2274
2275 mutex_lock(&current->perf_event_mutex);
2276 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2277 perf_event_for_each_child(event, perf_event_disable);
2278 mutex_unlock(&current->perf_event_mutex);
2279
2280 return 0;
2281}
2282
2283#ifndef PERF_EVENT_INDEX_OFFSET
2284# define PERF_EVENT_INDEX_OFFSET 0
2285#endif
2286
2287static int perf_event_index(struct perf_event *event)
2288{
2289 if (event->state != PERF_EVENT_STATE_ACTIVE)
2290 return 0;
2291
2292 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2293}
2294
2295/*
2296 * Callers need to ensure there can be no nesting of this function, otherwise
2297 * the seqlock logic goes bad. We can not serialize this because the arch
2298 * code calls this from NMI context.
2299 */
2300void perf_event_update_userpage(struct perf_event *event)
2301{
2302 struct perf_event_mmap_page *userpg;
2303 struct perf_mmap_data *data;
2304
2305 rcu_read_lock();
2306 data = rcu_dereference(event->data);
2307 if (!data)
2308 goto unlock;
2309
2310 userpg = data->user_page;
2311
2312 /*
2313 * Disable preemption so as to not let the corresponding user-space
2314 * spin too long if we get preempted.
2315 */
2316 preempt_disable();
2317 ++userpg->lock;
2318 barrier();
2319 userpg->index = perf_event_index(event);
2320 userpg->offset = atomic64_read(&event->count);
2321 if (event->state == PERF_EVENT_STATE_ACTIVE)
2322 userpg->offset -= atomic64_read(&event->hw.prev_count);
2323
2324 userpg->time_enabled = event->total_time_enabled +
2325 atomic64_read(&event->child_total_time_enabled);
2326
2327 userpg->time_running = event->total_time_running +
2328 atomic64_read(&event->child_total_time_running);
2329
2330 barrier();
2331 ++userpg->lock;
2332 preempt_enable();
2333unlock:
2334 rcu_read_unlock();
2335}
2336
Peter Zijlstra906010b2009-09-21 16:08:49 +02002337#ifndef CONFIG_PERF_USE_VMALLOC
2338
2339/*
2340 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2341 */
2342
2343static struct page *
2344perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2345{
2346 if (pgoff > data->nr_pages)
2347 return NULL;
2348
2349 if (pgoff == 0)
2350 return virt_to_page(data->user_page);
2351
2352 return virt_to_page(data->data_pages[pgoff - 1]);
2353}
2354
Peter Zijlstraa19d35c2010-05-17 18:48:00 +02002355static void *perf_mmap_alloc_page(int cpu)
2356{
2357 struct page *page;
2358 int node;
2359
2360 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2361 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2362 if (!page)
2363 return NULL;
2364
2365 return page_address(page);
2366}
2367
Peter Zijlstra906010b2009-09-21 16:08:49 +02002368static struct perf_mmap_data *
2369perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002370{
2371 struct perf_mmap_data *data;
2372 unsigned long size;
2373 int i;
2374
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002375 size = sizeof(struct perf_mmap_data);
2376 size += nr_pages * sizeof(void *);
2377
2378 data = kzalloc(size, GFP_KERNEL);
2379 if (!data)
2380 goto fail;
2381
Peter Zijlstraa19d35c2010-05-17 18:48:00 +02002382 data->user_page = perf_mmap_alloc_page(event->cpu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002383 if (!data->user_page)
2384 goto fail_user_page;
2385
2386 for (i = 0; i < nr_pages; i++) {
Peter Zijlstraa19d35c2010-05-17 18:48:00 +02002387 data->data_pages[i] = perf_mmap_alloc_page(event->cpu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002388 if (!data->data_pages[i])
2389 goto fail_data_pages;
2390 }
2391
2392 data->nr_pages = nr_pages;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002393
Peter Zijlstra906010b2009-09-21 16:08:49 +02002394 return data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002395
2396fail_data_pages:
2397 for (i--; i >= 0; i--)
2398 free_page((unsigned long)data->data_pages[i]);
2399
2400 free_page((unsigned long)data->user_page);
2401
2402fail_user_page:
2403 kfree(data);
2404
2405fail:
Peter Zijlstra906010b2009-09-21 16:08:49 +02002406 return NULL;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002407}
2408
2409static void perf_mmap_free_page(unsigned long addr)
2410{
2411 struct page *page = virt_to_page((void *)addr);
2412
2413 page->mapping = NULL;
2414 __free_page(page);
2415}
2416
Peter Zijlstra906010b2009-09-21 16:08:49 +02002417static void perf_mmap_data_free(struct perf_mmap_data *data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002418{
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002419 int i;
2420
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002421 perf_mmap_free_page((unsigned long)data->user_page);
2422 for (i = 0; i < data->nr_pages; i++)
2423 perf_mmap_free_page((unsigned long)data->data_pages[i]);
Kristian Høgsbergec70ccd2009-12-01 15:05:01 -05002424 kfree(data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002425}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002426
Peter Zijlstra3cafa9f2010-05-20 19:07:56 +02002427static inline int page_order(struct perf_mmap_data *data)
2428{
2429 return 0;
2430}
2431
Peter Zijlstra906010b2009-09-21 16:08:49 +02002432#else
2433
2434/*
2435 * Back perf_mmap() with vmalloc memory.
2436 *
2437 * Required for architectures that have d-cache aliasing issues.
2438 */
2439
Peter Zijlstra3cafa9f2010-05-20 19:07:56 +02002440static inline int page_order(struct perf_mmap_data *data)
2441{
2442 return data->page_order;
2443}
2444
Peter Zijlstra906010b2009-09-21 16:08:49 +02002445static struct page *
2446perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2447{
Peter Zijlstra3cafa9f2010-05-20 19:07:56 +02002448 if (pgoff > (1UL << page_order(data)))
Peter Zijlstra906010b2009-09-21 16:08:49 +02002449 return NULL;
2450
2451 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2452}
2453
2454static void perf_mmap_unmark_page(void *addr)
2455{
2456 struct page *page = vmalloc_to_page(addr);
2457
2458 page->mapping = NULL;
2459}
2460
2461static void perf_mmap_data_free_work(struct work_struct *work)
2462{
2463 struct perf_mmap_data *data;
2464 void *base;
2465 int i, nr;
2466
2467 data = container_of(work, struct perf_mmap_data, work);
Peter Zijlstra3cafa9f2010-05-20 19:07:56 +02002468 nr = 1 << page_order(data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002469
2470 base = data->user_page;
2471 for (i = 0; i < nr + 1; i++)
2472 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2473
2474 vfree(base);
Kristian Høgsbergec70ccd2009-12-01 15:05:01 -05002475 kfree(data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002476}
2477
2478static void perf_mmap_data_free(struct perf_mmap_data *data)
2479{
2480 schedule_work(&data->work);
2481}
2482
2483static struct perf_mmap_data *
2484perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2485{
2486 struct perf_mmap_data *data;
2487 unsigned long size;
2488 void *all_buf;
2489
Peter Zijlstra906010b2009-09-21 16:08:49 +02002490 size = sizeof(struct perf_mmap_data);
2491 size += sizeof(void *);
2492
2493 data = kzalloc(size, GFP_KERNEL);
2494 if (!data)
2495 goto fail;
2496
2497 INIT_WORK(&data->work, perf_mmap_data_free_work);
2498
2499 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2500 if (!all_buf)
2501 goto fail_all_buf;
2502
2503 data->user_page = all_buf;
2504 data->data_pages[0] = all_buf + PAGE_SIZE;
Peter Zijlstra3cafa9f2010-05-20 19:07:56 +02002505 data->page_order = ilog2(nr_pages);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002506 data->nr_pages = 1;
2507
2508 return data;
2509
2510fail_all_buf:
2511 kfree(data);
2512
2513fail:
2514 return NULL;
2515}
2516
2517#endif
2518
Peter Zijlstra3cafa9f2010-05-20 19:07:56 +02002519static unsigned long perf_data_size(struct perf_mmap_data *data)
2520{
2521 return data->nr_pages << (PAGE_SHIFT + page_order(data));
2522}
2523
Peter Zijlstra906010b2009-09-21 16:08:49 +02002524static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2525{
2526 struct perf_event *event = vma->vm_file->private_data;
2527 struct perf_mmap_data *data;
2528 int ret = VM_FAULT_SIGBUS;
2529
2530 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2531 if (vmf->pgoff == 0)
2532 ret = 0;
2533 return ret;
2534 }
2535
2536 rcu_read_lock();
2537 data = rcu_dereference(event->data);
2538 if (!data)
2539 goto unlock;
2540
2541 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2542 goto unlock;
2543
2544 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2545 if (!vmf->page)
2546 goto unlock;
2547
2548 get_page(vmf->page);
2549 vmf->page->mapping = vma->vm_file->f_mapping;
2550 vmf->page->index = vmf->pgoff;
2551
2552 ret = 0;
2553unlock:
2554 rcu_read_unlock();
2555
2556 return ret;
2557}
2558
2559static void
2560perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2561{
2562 long max_size = perf_data_size(data);
2563
Peter Zijlstra906010b2009-09-21 16:08:49 +02002564 if (event->attr.watermark) {
2565 data->watermark = min_t(long, max_size,
2566 event->attr.wakeup_watermark);
2567 }
2568
2569 if (!data->watermark)
Stephane Eranian8904b182009-11-20 22:19:57 +01002570 data->watermark = max_size / 2;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002571
Peter Zijlstraac9721f2010-05-27 12:54:41 +02002572 atomic_set(&data->refcount, 1);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002573 rcu_assign_pointer(event->data, data);
2574}
2575
2576static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2577{
2578 struct perf_mmap_data *data;
2579
2580 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2581 perf_mmap_data_free(data);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002582}
2583
Peter Zijlstraac9721f2010-05-27 12:54:41 +02002584static struct perf_mmap_data *perf_mmap_data_get(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002585{
Peter Zijlstraac9721f2010-05-27 12:54:41 +02002586 struct perf_mmap_data *data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002587
Peter Zijlstraac9721f2010-05-27 12:54:41 +02002588 rcu_read_lock();
2589 data = rcu_dereference(event->data);
2590 if (data) {
2591 if (!atomic_inc_not_zero(&data->refcount))
2592 data = NULL;
2593 }
2594 rcu_read_unlock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002595
Peter Zijlstraac9721f2010-05-27 12:54:41 +02002596 return data;
2597}
2598
2599static void perf_mmap_data_put(struct perf_mmap_data *data)
2600{
2601 if (!atomic_dec_and_test(&data->refcount))
2602 return;
2603
Peter Zijlstra906010b2009-09-21 16:08:49 +02002604 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002605}
2606
2607static void perf_mmap_open(struct vm_area_struct *vma)
2608{
2609 struct perf_event *event = vma->vm_file->private_data;
2610
2611 atomic_inc(&event->mmap_count);
2612}
2613
2614static void perf_mmap_close(struct vm_area_struct *vma)
2615{
2616 struct perf_event *event = vma->vm_file->private_data;
2617
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002618 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
Peter Zijlstra906010b2009-09-21 16:08:49 +02002619 unsigned long size = perf_data_size(event->data);
Peter Zijlstraac9721f2010-05-27 12:54:41 +02002620 struct user_struct *user = event->mmap_user;
2621 struct perf_mmap_data *data = event->data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002622
Peter Zijlstra906010b2009-09-21 16:08:49 +02002623 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
Peter Zijlstraac9721f2010-05-27 12:54:41 +02002624 vma->vm_mm->locked_vm -= event->mmap_locked;
2625 rcu_assign_pointer(event->data, NULL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002626 mutex_unlock(&event->mmap_mutex);
Peter Zijlstraac9721f2010-05-27 12:54:41 +02002627
2628 perf_mmap_data_put(data);
2629 free_uid(user);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002630 }
2631}
2632
Alexey Dobriyanf0f37e22009-09-27 22:29:37 +04002633static const struct vm_operations_struct perf_mmap_vmops = {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002634 .open = perf_mmap_open,
2635 .close = perf_mmap_close,
2636 .fault = perf_mmap_fault,
2637 .page_mkwrite = perf_mmap_fault,
2638};
2639
2640static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2641{
2642 struct perf_event *event = file->private_data;
2643 unsigned long user_locked, user_lock_limit;
2644 struct user_struct *user = current_user();
2645 unsigned long locked, lock_limit;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002646 struct perf_mmap_data *data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002647 unsigned long vma_size;
2648 unsigned long nr_pages;
2649 long user_extra, extra;
2650 int ret = 0;
2651
Peter Zijlstrac7920612010-05-18 10:33:24 +02002652 /*
2653 * Don't allow mmap() of inherited per-task counters. This would
2654 * create a performance issue due to all children writing to the
2655 * same buffer.
2656 */
2657 if (event->cpu == -1 && event->attr.inherit)
2658 return -EINVAL;
2659
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002660 if (!(vma->vm_flags & VM_SHARED))
2661 return -EINVAL;
2662
2663 vma_size = vma->vm_end - vma->vm_start;
2664 nr_pages = (vma_size / PAGE_SIZE) - 1;
2665
2666 /*
2667 * If we have data pages ensure they're a power-of-two number, so we
2668 * can do bitmasks instead of modulo.
2669 */
2670 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2671 return -EINVAL;
2672
2673 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2674 return -EINVAL;
2675
2676 if (vma->vm_pgoff != 0)
2677 return -EINVAL;
2678
2679 WARN_ON_ONCE(event->ctx->parent_ctx);
2680 mutex_lock(&event->mmap_mutex);
Peter Zijlstraac9721f2010-05-27 12:54:41 +02002681 if (event->data) {
2682 if (event->data->nr_pages == nr_pages)
2683 atomic_inc(&event->data->refcount);
2684 else
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002685 ret = -EINVAL;
2686 goto unlock;
2687 }
2688
2689 user_extra = nr_pages + 1;
2690 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2691
2692 /*
2693 * Increase the limit linearly with more CPUs:
2694 */
2695 user_lock_limit *= num_online_cpus();
2696
2697 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2698
2699 extra = 0;
2700 if (user_locked > user_lock_limit)
2701 extra = user_locked - user_lock_limit;
2702
Jiri Slaby78d7d402010-03-05 13:42:54 -08002703 lock_limit = rlimit(RLIMIT_MEMLOCK);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002704 lock_limit >>= PAGE_SHIFT;
2705 locked = vma->vm_mm->locked_vm + extra;
2706
2707 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2708 !capable(CAP_IPC_LOCK)) {
2709 ret = -EPERM;
2710 goto unlock;
2711 }
2712
2713 WARN_ON(event->data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002714
2715 data = perf_mmap_data_alloc(event, nr_pages);
Peter Zijlstraac9721f2010-05-27 12:54:41 +02002716 if (!data) {
2717 ret = -ENOMEM;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002718 goto unlock;
Peter Zijlstraac9721f2010-05-27 12:54:41 +02002719 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002720
Peter Zijlstra906010b2009-09-21 16:08:49 +02002721 perf_mmap_data_init(event, data);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002722 if (vma->vm_flags & VM_WRITE)
2723 event->data->writable = 1;
2724
Peter Zijlstraac9721f2010-05-27 12:54:41 +02002725 atomic_long_add(user_extra, &user->locked_vm);
2726 event->mmap_locked = extra;
2727 event->mmap_user = get_current_user();
2728 vma->vm_mm->locked_vm += event->mmap_locked;
2729
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002730unlock:
Peter Zijlstraac9721f2010-05-27 12:54:41 +02002731 if (!ret)
2732 atomic_inc(&event->mmap_count);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002733 mutex_unlock(&event->mmap_mutex);
2734
2735 vma->vm_flags |= VM_RESERVED;
2736 vma->vm_ops = &perf_mmap_vmops;
2737
2738 return ret;
2739}
2740
2741static int perf_fasync(int fd, struct file *filp, int on)
2742{
2743 struct inode *inode = filp->f_path.dentry->d_inode;
2744 struct perf_event *event = filp->private_data;
2745 int retval;
2746
2747 mutex_lock(&inode->i_mutex);
2748 retval = fasync_helper(fd, filp, on, &event->fasync);
2749 mutex_unlock(&inode->i_mutex);
2750
2751 if (retval < 0)
2752 return retval;
2753
2754 return 0;
2755}
2756
2757static const struct file_operations perf_fops = {
Arnd Bergmann3326c1c2010-03-23 19:09:33 +01002758 .llseek = no_llseek,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002759 .release = perf_release,
2760 .read = perf_read,
2761 .poll = perf_poll,
2762 .unlocked_ioctl = perf_ioctl,
2763 .compat_ioctl = perf_ioctl,
2764 .mmap = perf_mmap,
2765 .fasync = perf_fasync,
2766};
2767
2768/*
2769 * Perf event wakeup
2770 *
2771 * If there's data, ensure we set the poll() state and publish everything
2772 * to user-space before waking everybody up.
2773 */
2774
2775void perf_event_wakeup(struct perf_event *event)
2776{
2777 wake_up_all(&event->waitq);
2778
2779 if (event->pending_kill) {
2780 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2781 event->pending_kill = 0;
2782 }
2783}
2784
2785/*
2786 * Pending wakeups
2787 *
2788 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2789 *
2790 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2791 * single linked list and use cmpxchg() to add entries lockless.
2792 */
2793
2794static void perf_pending_event(struct perf_pending_entry *entry)
2795{
2796 struct perf_event *event = container_of(entry,
2797 struct perf_event, pending);
2798
2799 if (event->pending_disable) {
2800 event->pending_disable = 0;
2801 __perf_event_disable(event);
2802 }
2803
2804 if (event->pending_wakeup) {
2805 event->pending_wakeup = 0;
2806 perf_event_wakeup(event);
2807 }
2808}
2809
2810#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2811
2812static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2813 PENDING_TAIL,
2814};
2815
2816static void perf_pending_queue(struct perf_pending_entry *entry,
2817 void (*func)(struct perf_pending_entry *))
2818{
2819 struct perf_pending_entry **head;
2820
2821 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2822 return;
2823
2824 entry->func = func;
2825
2826 head = &get_cpu_var(perf_pending_head);
2827
2828 do {
2829 entry->next = *head;
2830 } while (cmpxchg(head, entry->next, entry) != entry->next);
2831
2832 set_perf_event_pending();
2833
2834 put_cpu_var(perf_pending_head);
2835}
2836
2837static int __perf_pending_run(void)
2838{
2839 struct perf_pending_entry *list;
2840 int nr = 0;
2841
2842 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2843 while (list != PENDING_TAIL) {
2844 void (*func)(struct perf_pending_entry *);
2845 struct perf_pending_entry *entry = list;
2846
2847 list = list->next;
2848
2849 func = entry->func;
2850 entry->next = NULL;
2851 /*
2852 * Ensure we observe the unqueue before we issue the wakeup,
2853 * so that we won't be waiting forever.
2854 * -- see perf_not_pending().
2855 */
2856 smp_wmb();
2857
2858 func(entry);
2859 nr++;
2860 }
2861
2862 return nr;
2863}
2864
2865static inline int perf_not_pending(struct perf_event *event)
2866{
2867 /*
2868 * If we flush on whatever cpu we run, there is a chance we don't
2869 * need to wait.
2870 */
2871 get_cpu();
2872 __perf_pending_run();
2873 put_cpu();
2874
2875 /*
2876 * Ensure we see the proper queue state before going to sleep
2877 * so that we do not miss the wakeup. -- see perf_pending_handle()
2878 */
2879 smp_rmb();
2880 return event->pending.next == NULL;
2881}
2882
2883static void perf_pending_sync(struct perf_event *event)
2884{
2885 wait_event(event->waitq, perf_not_pending(event));
2886}
2887
2888void perf_event_do_pending(void)
2889{
2890 __perf_pending_run();
2891}
2892
2893/*
2894 * Callchain support -- arch specific
2895 */
2896
2897__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2898{
2899 return NULL;
2900}
2901
Frederic Weisbecker5331d7b2010-03-04 21:15:56 +01002902__weak
2903void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
2904{
2905}
Frederic Weisbecker26d80aa2010-04-03 12:22:05 +02002906
Frederic Weisbecker5331d7b2010-03-04 21:15:56 +01002907
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002908/*
Zhang, Yanmin39447b32010-04-19 13:32:41 +08002909 * We assume there is only KVM supporting the callbacks.
2910 * Later on, we might change it to a list if there is
2911 * another virtualization implementation supporting the callbacks.
2912 */
2913struct perf_guest_info_callbacks *perf_guest_cbs;
2914
2915int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2916{
2917 perf_guest_cbs = cbs;
2918 return 0;
2919}
2920EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
2921
2922int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2923{
2924 perf_guest_cbs = NULL;
2925 return 0;
2926}
2927EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
2928
2929/*
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002930 * Output
2931 */
2932static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2933 unsigned long offset, unsigned long head)
2934{
2935 unsigned long mask;
2936
2937 if (!data->writable)
2938 return true;
2939
Peter Zijlstra906010b2009-09-21 16:08:49 +02002940 mask = perf_data_size(data) - 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002941
2942 offset = (offset - tail) & mask;
2943 head = (head - tail) & mask;
2944
2945 if ((int)(head - offset) < 0)
2946 return false;
2947
2948 return true;
2949}
2950
2951static void perf_output_wakeup(struct perf_output_handle *handle)
2952{
2953 atomic_set(&handle->data->poll, POLL_IN);
2954
2955 if (handle->nmi) {
2956 handle->event->pending_wakeup = 1;
2957 perf_pending_queue(&handle->event->pending,
2958 perf_pending_event);
2959 } else
2960 perf_event_wakeup(handle->event);
2961}
2962
2963/*
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002964 * We need to ensure a later event_id doesn't publish a head when a former
Peter Zijlstraef607772010-05-18 10:50:41 +02002965 * event isn't done writing. However since we need to deal with NMIs we
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002966 * cannot fully serialize things.
2967 *
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002968 * We only publish the head (and generate a wakeup) when the outer-most
Peter Zijlstraef607772010-05-18 10:50:41 +02002969 * event completes.
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002970 */
Peter Zijlstraef607772010-05-18 10:50:41 +02002971static void perf_output_get_handle(struct perf_output_handle *handle)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002972{
2973 struct perf_mmap_data *data = handle->data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002974
Peter Zijlstraef607772010-05-18 10:50:41 +02002975 preempt_disable();
Peter Zijlstrafa588152010-05-18 10:54:20 +02002976 local_inc(&data->nest);
Peter Zijlstra6d1acfd2010-05-18 11:12:48 +02002977 handle->wakeup = local_read(&data->wakeup);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002978}
2979
Peter Zijlstraef607772010-05-18 10:50:41 +02002980static void perf_output_put_handle(struct perf_output_handle *handle)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002981{
2982 struct perf_mmap_data *data = handle->data;
2983 unsigned long head;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002984
2985again:
Peter Zijlstrafa588152010-05-18 10:54:20 +02002986 head = local_read(&data->head);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002987
2988 /*
Peter Zijlstraef607772010-05-18 10:50:41 +02002989 * IRQ/NMI can happen here, which means we can miss a head update.
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002990 */
2991
Peter Zijlstrafa588152010-05-18 10:54:20 +02002992 if (!local_dec_and_test(&data->nest))
Frederic Weisbeckeracd35a42010-05-20 21:28:34 +02002993 goto out;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002994
2995 /*
Peter Zijlstraef607772010-05-18 10:50:41 +02002996 * Publish the known good head. Rely on the full barrier implied
2997 * by atomic_dec_and_test() order the data->head read and this
2998 * write.
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002999 */
Peter Zijlstraef607772010-05-18 10:50:41 +02003000 data->user_page->data_head = head;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003001
Peter Zijlstraef607772010-05-18 10:50:41 +02003002 /*
3003 * Now check if we missed an update, rely on the (compiler)
3004 * barrier in atomic_dec_and_test() to re-read data->head.
3005 */
Peter Zijlstrafa588152010-05-18 10:54:20 +02003006 if (unlikely(head != local_read(&data->head))) {
3007 local_inc(&data->nest);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003008 goto again;
3009 }
3010
Peter Zijlstra6d1acfd2010-05-18 11:12:48 +02003011 if (handle->wakeup != local_read(&data->wakeup))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003012 perf_output_wakeup(handle);
Peter Zijlstraef607772010-05-18 10:50:41 +02003013
Frederic Weisbeckeracd35a42010-05-20 21:28:34 +02003014 out:
Peter Zijlstraef607772010-05-18 10:50:41 +02003015 preempt_enable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003016}
3017
Peter Zijlstraa94ffaa2010-05-20 19:50:07 +02003018__always_inline void perf_output_copy(struct perf_output_handle *handle,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003019 const void *buf, unsigned int len)
3020{
Peter Zijlstra5d967a82010-05-20 16:46:39 +02003021 do {
Peter Zijlstraa94ffaa2010-05-20 19:50:07 +02003022 unsigned long size = min_t(unsigned long, handle->size, len);
Peter Zijlstra5d967a82010-05-20 16:46:39 +02003023
3024 memcpy(handle->addr, buf, size);
3025
3026 len -= size;
3027 handle->addr += size;
3028 handle->size -= size;
3029 if (!handle->size) {
Peter Zijlstra3cafa9f2010-05-20 19:07:56 +02003030 struct perf_mmap_data *data = handle->data;
3031
Peter Zijlstra5d967a82010-05-20 16:46:39 +02003032 handle->page++;
Peter Zijlstra3cafa9f2010-05-20 19:07:56 +02003033 handle->page &= data->nr_pages - 1;
3034 handle->addr = data->data_pages[handle->page];
3035 handle->size = PAGE_SIZE << page_order(data);
Peter Zijlstra5d967a82010-05-20 16:46:39 +02003036 }
3037 } while (len);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003038}
3039
3040int perf_output_begin(struct perf_output_handle *handle,
3041 struct perf_event *event, unsigned int size,
3042 int nmi, int sample)
3043{
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003044 struct perf_mmap_data *data;
3045 unsigned long tail, offset, head;
3046 int have_lost;
3047 struct {
3048 struct perf_event_header header;
3049 u64 id;
3050 u64 lost;
3051 } lost_event;
3052
3053 rcu_read_lock();
3054 /*
3055 * For inherited events we send all the output towards the parent.
3056 */
3057 if (event->parent)
3058 event = event->parent;
3059
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003060 data = rcu_dereference(event->data);
3061 if (!data)
3062 goto out;
3063
3064 handle->data = data;
3065 handle->event = event;
3066 handle->nmi = nmi;
3067 handle->sample = sample;
3068
3069 if (!data->nr_pages)
Stephane Eranian00d1d0b2010-05-17 12:46:01 +02003070 goto out;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003071
Peter Zijlstrafa588152010-05-18 10:54:20 +02003072 have_lost = local_read(&data->lost);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003073 if (have_lost)
3074 size += sizeof(lost_event);
3075
Peter Zijlstraef607772010-05-18 10:50:41 +02003076 perf_output_get_handle(handle);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003077
3078 do {
3079 /*
3080 * Userspace could choose to issue a mb() before updating the
3081 * tail pointer. So that all reads will be completed before the
3082 * write is issued.
3083 */
3084 tail = ACCESS_ONCE(data->user_page->data_tail);
3085 smp_rmb();
Peter Zijlstrafa588152010-05-18 10:54:20 +02003086 offset = head = local_read(&data->head);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003087 head += size;
3088 if (unlikely(!perf_output_space(data, tail, offset, head)))
3089 goto fail;
Peter Zijlstrafa588152010-05-18 10:54:20 +02003090 } while (local_cmpxchg(&data->head, offset, head) != offset);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003091
Peter Zijlstraadb8e112010-05-20 16:21:55 +02003092 if (head - local_read(&data->wakeup) > data->watermark)
3093 local_add(data->watermark, &data->wakeup);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003094
Peter Zijlstraa94ffaa2010-05-20 19:50:07 +02003095 handle->page = offset >> (PAGE_SHIFT + page_order(data));
Peter Zijlstra5d967a82010-05-20 16:46:39 +02003096 handle->page &= data->nr_pages - 1;
Peter Zijlstraa94ffaa2010-05-20 19:50:07 +02003097 handle->size = offset & ((PAGE_SIZE << page_order(data)) - 1);
Peter Zijlstra5d967a82010-05-20 16:46:39 +02003098 handle->addr = data->data_pages[handle->page];
3099 handle->addr += handle->size;
Peter Zijlstra3cafa9f2010-05-20 19:07:56 +02003100 handle->size = (PAGE_SIZE << page_order(data)) - handle->size;
Peter Zijlstra5d967a82010-05-20 16:46:39 +02003101
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003102 if (have_lost) {
3103 lost_event.header.type = PERF_RECORD_LOST;
3104 lost_event.header.misc = 0;
3105 lost_event.header.size = sizeof(lost_event);
3106 lost_event.id = event->id;
Peter Zijlstrafa588152010-05-18 10:54:20 +02003107 lost_event.lost = local_xchg(&data->lost, 0);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003108
3109 perf_output_put(handle, lost_event);
3110 }
3111
3112 return 0;
3113
3114fail:
Peter Zijlstrafa588152010-05-18 10:54:20 +02003115 local_inc(&data->lost);
Peter Zijlstraef607772010-05-18 10:50:41 +02003116 perf_output_put_handle(handle);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003117out:
3118 rcu_read_unlock();
3119
3120 return -ENOSPC;
3121}
3122
3123void perf_output_end(struct perf_output_handle *handle)
3124{
3125 struct perf_event *event = handle->event;
3126 struct perf_mmap_data *data = handle->data;
3127
3128 int wakeup_events = event->attr.wakeup_events;
3129
3130 if (handle->sample && wakeup_events) {
Peter Zijlstrafa588152010-05-18 10:54:20 +02003131 int events = local_inc_return(&data->events);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003132 if (events >= wakeup_events) {
Peter Zijlstrafa588152010-05-18 10:54:20 +02003133 local_sub(wakeup_events, &data->events);
3134 local_inc(&data->wakeup);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003135 }
3136 }
3137
Peter Zijlstraef607772010-05-18 10:50:41 +02003138 perf_output_put_handle(handle);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003139 rcu_read_unlock();
3140}
3141
3142static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3143{
3144 /*
3145 * only top level events have the pid namespace they were created in
3146 */
3147 if (event->parent)
3148 event = event->parent;
3149
3150 return task_tgid_nr_ns(p, event->ns);
3151}
3152
3153static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3154{
3155 /*
3156 * only top level events have the pid namespace they were created in
3157 */
3158 if (event->parent)
3159 event = event->parent;
3160
3161 return task_pid_nr_ns(p, event->ns);
3162}
3163
3164static void perf_output_read_one(struct perf_output_handle *handle,
3165 struct perf_event *event)
3166{
3167 u64 read_format = event->attr.read_format;
3168 u64 values[4];
3169 int n = 0;
3170
3171 values[n++] = atomic64_read(&event->count);
3172 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3173 values[n++] = event->total_time_enabled +
3174 atomic64_read(&event->child_total_time_enabled);
3175 }
3176 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3177 values[n++] = event->total_time_running +
3178 atomic64_read(&event->child_total_time_running);
3179 }
3180 if (read_format & PERF_FORMAT_ID)
3181 values[n++] = primary_event_id(event);
3182
3183 perf_output_copy(handle, values, n * sizeof(u64));
3184}
3185
3186/*
3187 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3188 */
3189static void perf_output_read_group(struct perf_output_handle *handle,
3190 struct perf_event *event)
3191{
3192 struct perf_event *leader = event->group_leader, *sub;
3193 u64 read_format = event->attr.read_format;
3194 u64 values[5];
3195 int n = 0;
3196
3197 values[n++] = 1 + leader->nr_siblings;
3198
3199 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3200 values[n++] = leader->total_time_enabled;
3201
3202 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3203 values[n++] = leader->total_time_running;
3204
3205 if (leader != event)
3206 leader->pmu->read(leader);
3207
3208 values[n++] = atomic64_read(&leader->count);
3209 if (read_format & PERF_FORMAT_ID)
3210 values[n++] = primary_event_id(leader);
3211
3212 perf_output_copy(handle, values, n * sizeof(u64));
3213
3214 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3215 n = 0;
3216
3217 if (sub != event)
3218 sub->pmu->read(sub);
3219
3220 values[n++] = atomic64_read(&sub->count);
3221 if (read_format & PERF_FORMAT_ID)
3222 values[n++] = primary_event_id(sub);
3223
3224 perf_output_copy(handle, values, n * sizeof(u64));
3225 }
3226}
3227
3228static void perf_output_read(struct perf_output_handle *handle,
3229 struct perf_event *event)
3230{
3231 if (event->attr.read_format & PERF_FORMAT_GROUP)
3232 perf_output_read_group(handle, event);
3233 else
3234 perf_output_read_one(handle, event);
3235}
3236
3237void perf_output_sample(struct perf_output_handle *handle,
3238 struct perf_event_header *header,
3239 struct perf_sample_data *data,
3240 struct perf_event *event)
3241{
3242 u64 sample_type = data->type;
3243
3244 perf_output_put(handle, *header);
3245
3246 if (sample_type & PERF_SAMPLE_IP)
3247 perf_output_put(handle, data->ip);
3248
3249 if (sample_type & PERF_SAMPLE_TID)
3250 perf_output_put(handle, data->tid_entry);
3251
3252 if (sample_type & PERF_SAMPLE_TIME)
3253 perf_output_put(handle, data->time);
3254
3255 if (sample_type & PERF_SAMPLE_ADDR)
3256 perf_output_put(handle, data->addr);
3257
3258 if (sample_type & PERF_SAMPLE_ID)
3259 perf_output_put(handle, data->id);
3260
3261 if (sample_type & PERF_SAMPLE_STREAM_ID)
3262 perf_output_put(handle, data->stream_id);
3263
3264 if (sample_type & PERF_SAMPLE_CPU)
3265 perf_output_put(handle, data->cpu_entry);
3266
3267 if (sample_type & PERF_SAMPLE_PERIOD)
3268 perf_output_put(handle, data->period);
3269
3270 if (sample_type & PERF_SAMPLE_READ)
3271 perf_output_read(handle, event);
3272
3273 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3274 if (data->callchain) {
3275 int size = 1;
3276
3277 if (data->callchain)
3278 size += data->callchain->nr;
3279
3280 size *= sizeof(u64);
3281
3282 perf_output_copy(handle, data->callchain, size);
3283 } else {
3284 u64 nr = 0;
3285 perf_output_put(handle, nr);
3286 }
3287 }
3288
3289 if (sample_type & PERF_SAMPLE_RAW) {
3290 if (data->raw) {
3291 perf_output_put(handle, data->raw->size);
3292 perf_output_copy(handle, data->raw->data,
3293 data->raw->size);
3294 } else {
3295 struct {
3296 u32 size;
3297 u32 data;
3298 } raw = {
3299 .size = sizeof(u32),
3300 .data = 0,
3301 };
3302 perf_output_put(handle, raw);
3303 }
3304 }
3305}
3306
3307void perf_prepare_sample(struct perf_event_header *header,
3308 struct perf_sample_data *data,
3309 struct perf_event *event,
3310 struct pt_regs *regs)
3311{
3312 u64 sample_type = event->attr.sample_type;
3313
3314 data->type = sample_type;
3315
3316 header->type = PERF_RECORD_SAMPLE;
3317 header->size = sizeof(*header);
3318
3319 header->misc = 0;
3320 header->misc |= perf_misc_flags(regs);
3321
3322 if (sample_type & PERF_SAMPLE_IP) {
3323 data->ip = perf_instruction_pointer(regs);
3324
3325 header->size += sizeof(data->ip);
3326 }
3327
3328 if (sample_type & PERF_SAMPLE_TID) {
3329 /* namespace issues */
3330 data->tid_entry.pid = perf_event_pid(event, current);
3331 data->tid_entry.tid = perf_event_tid(event, current);
3332
3333 header->size += sizeof(data->tid_entry);
3334 }
3335
3336 if (sample_type & PERF_SAMPLE_TIME) {
3337 data->time = perf_clock();
3338
3339 header->size += sizeof(data->time);
3340 }
3341
3342 if (sample_type & PERF_SAMPLE_ADDR)
3343 header->size += sizeof(data->addr);
3344
3345 if (sample_type & PERF_SAMPLE_ID) {
3346 data->id = primary_event_id(event);
3347
3348 header->size += sizeof(data->id);
3349 }
3350
3351 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3352 data->stream_id = event->id;
3353
3354 header->size += sizeof(data->stream_id);
3355 }
3356
3357 if (sample_type & PERF_SAMPLE_CPU) {
3358 data->cpu_entry.cpu = raw_smp_processor_id();
3359 data->cpu_entry.reserved = 0;
3360
3361 header->size += sizeof(data->cpu_entry);
3362 }
3363
3364 if (sample_type & PERF_SAMPLE_PERIOD)
3365 header->size += sizeof(data->period);
3366
3367 if (sample_type & PERF_SAMPLE_READ)
3368 header->size += perf_event_read_size(event);
3369
3370 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3371 int size = 1;
3372
3373 data->callchain = perf_callchain(regs);
3374
3375 if (data->callchain)
3376 size += data->callchain->nr;
3377
3378 header->size += size * sizeof(u64);
3379 }
3380
3381 if (sample_type & PERF_SAMPLE_RAW) {
3382 int size = sizeof(u32);
3383
3384 if (data->raw)
3385 size += data->raw->size;
3386 else
3387 size += sizeof(u32);
3388
3389 WARN_ON_ONCE(size & (sizeof(u64)-1));
3390 header->size += size;
3391 }
3392}
3393
3394static void perf_event_output(struct perf_event *event, int nmi,
3395 struct perf_sample_data *data,
3396 struct pt_regs *regs)
3397{
3398 struct perf_output_handle handle;
3399 struct perf_event_header header;
3400
3401 perf_prepare_sample(&header, data, event, regs);
3402
3403 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3404 return;
3405
3406 perf_output_sample(&handle, &header, data, event);
3407
3408 perf_output_end(&handle);
3409}
3410
3411/*
3412 * read event_id
3413 */
3414
3415struct perf_read_event {
3416 struct perf_event_header header;
3417
3418 u32 pid;
3419 u32 tid;
3420};
3421
3422static void
3423perf_event_read_event(struct perf_event *event,
3424 struct task_struct *task)
3425{
3426 struct perf_output_handle handle;
3427 struct perf_read_event read_event = {
3428 .header = {
3429 .type = PERF_RECORD_READ,
3430 .misc = 0,
3431 .size = sizeof(read_event) + perf_event_read_size(event),
3432 },
3433 .pid = perf_event_pid(event, task),
3434 .tid = perf_event_tid(event, task),
3435 };
3436 int ret;
3437
3438 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3439 if (ret)
3440 return;
3441
3442 perf_output_put(&handle, read_event);
3443 perf_output_read(&handle, event);
3444
3445 perf_output_end(&handle);
3446}
3447
3448/*
3449 * task tracking -- fork/exit
3450 *
3451 * enabled by: attr.comm | attr.mmap | attr.task
3452 */
3453
3454struct perf_task_event {
3455 struct task_struct *task;
3456 struct perf_event_context *task_ctx;
3457
3458 struct {
3459 struct perf_event_header header;
3460
3461 u32 pid;
3462 u32 ppid;
3463 u32 tid;
3464 u32 ptid;
3465 u64 time;
3466 } event_id;
3467};
3468
3469static void perf_event_task_output(struct perf_event *event,
3470 struct perf_task_event *task_event)
3471{
3472 struct perf_output_handle handle;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003473 struct task_struct *task = task_event->task;
Mike Galbraith8bb39f92010-03-26 11:11:33 +01003474 int size, ret;
3475
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003476 size = task_event->event_id.header.size;
3477 ret = perf_output_begin(&handle, event, size, 0, 0);
3478
Peter Zijlstraef607772010-05-18 10:50:41 +02003479 if (ret)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003480 return;
3481
3482 task_event->event_id.pid = perf_event_pid(event, task);
3483 task_event->event_id.ppid = perf_event_pid(event, current);
3484
3485 task_event->event_id.tid = perf_event_tid(event, task);
3486 task_event->event_id.ptid = perf_event_tid(event, current);
3487
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003488 perf_output_put(&handle, task_event->event_id);
3489
3490 perf_output_end(&handle);
3491}
3492
3493static int perf_event_task_match(struct perf_event *event)
3494{
Peter Zijlstra6f93d0a2010-02-14 11:12:04 +01003495 if (event->state < PERF_EVENT_STATE_INACTIVE)
Peter Zijlstra22e19082010-01-18 09:12:32 +01003496 return 0;
3497
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003498 if (event->cpu != -1 && event->cpu != smp_processor_id())
3499 return 0;
3500
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003501 if (event->attr.comm || event->attr.mmap || event->attr.task)
3502 return 1;
3503
3504 return 0;
3505}
3506
3507static void perf_event_task_ctx(struct perf_event_context *ctx,
3508 struct perf_task_event *task_event)
3509{
3510 struct perf_event *event;
3511
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003512 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3513 if (perf_event_task_match(event))
3514 perf_event_task_output(event, task_event);
3515 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003516}
3517
3518static void perf_event_task_event(struct perf_task_event *task_event)
3519{
3520 struct perf_cpu_context *cpuctx;
3521 struct perf_event_context *ctx = task_event->task_ctx;
3522
Peter Zijlstrad6ff86c2009-11-20 22:19:46 +01003523 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003524 cpuctx = &get_cpu_var(perf_cpu_context);
3525 perf_event_task_ctx(&cpuctx->ctx, task_event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003526 if (!ctx)
Peter Zijlstra6f93d0a2010-02-14 11:12:04 +01003527 ctx = rcu_dereference(current->perf_event_ctxp);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003528 if (ctx)
3529 perf_event_task_ctx(ctx, task_event);
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003530 put_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003531 rcu_read_unlock();
3532}
3533
3534static void perf_event_task(struct task_struct *task,
3535 struct perf_event_context *task_ctx,
3536 int new)
3537{
3538 struct perf_task_event task_event;
3539
3540 if (!atomic_read(&nr_comm_events) &&
3541 !atomic_read(&nr_mmap_events) &&
3542 !atomic_read(&nr_task_events))
3543 return;
3544
3545 task_event = (struct perf_task_event){
3546 .task = task,
3547 .task_ctx = task_ctx,
3548 .event_id = {
3549 .header = {
3550 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3551 .misc = 0,
3552 .size = sizeof(task_event.event_id),
3553 },
3554 /* .pid */
3555 /* .ppid */
3556 /* .tid */
3557 /* .ptid */
Peter Zijlstra6f93d0a2010-02-14 11:12:04 +01003558 .time = perf_clock(),
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003559 },
3560 };
3561
3562 perf_event_task_event(&task_event);
3563}
3564
3565void perf_event_fork(struct task_struct *task)
3566{
3567 perf_event_task(task, NULL, 1);
3568}
3569
3570/*
3571 * comm tracking
3572 */
3573
3574struct perf_comm_event {
3575 struct task_struct *task;
3576 char *comm;
3577 int comm_size;
3578
3579 struct {
3580 struct perf_event_header header;
3581
3582 u32 pid;
3583 u32 tid;
3584 } event_id;
3585};
3586
3587static void perf_event_comm_output(struct perf_event *event,
3588 struct perf_comm_event *comm_event)
3589{
3590 struct perf_output_handle handle;
3591 int size = comm_event->event_id.header.size;
3592 int ret = perf_output_begin(&handle, event, size, 0, 0);
3593
3594 if (ret)
3595 return;
3596
3597 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3598 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3599
3600 perf_output_put(&handle, comm_event->event_id);
3601 perf_output_copy(&handle, comm_event->comm,
3602 comm_event->comm_size);
3603 perf_output_end(&handle);
3604}
3605
3606static int perf_event_comm_match(struct perf_event *event)
3607{
Peter Zijlstra6f93d0a2010-02-14 11:12:04 +01003608 if (event->state < PERF_EVENT_STATE_INACTIVE)
Peter Zijlstra22e19082010-01-18 09:12:32 +01003609 return 0;
3610
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003611 if (event->cpu != -1 && event->cpu != smp_processor_id())
3612 return 0;
3613
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003614 if (event->attr.comm)
3615 return 1;
3616
3617 return 0;
3618}
3619
3620static void perf_event_comm_ctx(struct perf_event_context *ctx,
3621 struct perf_comm_event *comm_event)
3622{
3623 struct perf_event *event;
3624
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003625 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3626 if (perf_event_comm_match(event))
3627 perf_event_comm_output(event, comm_event);
3628 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003629}
3630
3631static void perf_event_comm_event(struct perf_comm_event *comm_event)
3632{
3633 struct perf_cpu_context *cpuctx;
3634 struct perf_event_context *ctx;
3635 unsigned int size;
3636 char comm[TASK_COMM_LEN];
3637
3638 memset(comm, 0, sizeof(comm));
Márton Németh96b02d72009-11-21 23:10:15 +01003639 strlcpy(comm, comm_event->task->comm, sizeof(comm));
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003640 size = ALIGN(strlen(comm)+1, sizeof(u64));
3641
3642 comm_event->comm = comm;
3643 comm_event->comm_size = size;
3644
3645 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3646
Peter Zijlstraf6595f32009-11-20 22:19:47 +01003647 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003648 cpuctx = &get_cpu_var(perf_cpu_context);
3649 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003650 ctx = rcu_dereference(current->perf_event_ctxp);
3651 if (ctx)
3652 perf_event_comm_ctx(ctx, comm_event);
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003653 put_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003654 rcu_read_unlock();
3655}
3656
3657void perf_event_comm(struct task_struct *task)
3658{
3659 struct perf_comm_event comm_event;
3660
3661 if (task->perf_event_ctxp)
3662 perf_event_enable_on_exec(task);
3663
3664 if (!atomic_read(&nr_comm_events))
3665 return;
3666
3667 comm_event = (struct perf_comm_event){
3668 .task = task,
3669 /* .comm */
3670 /* .comm_size */
3671 .event_id = {
3672 .header = {
3673 .type = PERF_RECORD_COMM,
3674 .misc = 0,
3675 /* .size */
3676 },
3677 /* .pid */
3678 /* .tid */
3679 },
3680 };
3681
3682 perf_event_comm_event(&comm_event);
3683}
3684
3685/*
3686 * mmap tracking
3687 */
3688
3689struct perf_mmap_event {
3690 struct vm_area_struct *vma;
3691
3692 const char *file_name;
3693 int file_size;
3694
3695 struct {
3696 struct perf_event_header header;
3697
3698 u32 pid;
3699 u32 tid;
3700 u64 start;
3701 u64 len;
3702 u64 pgoff;
3703 } event_id;
3704};
3705
3706static void perf_event_mmap_output(struct perf_event *event,
3707 struct perf_mmap_event *mmap_event)
3708{
3709 struct perf_output_handle handle;
3710 int size = mmap_event->event_id.header.size;
3711 int ret = perf_output_begin(&handle, event, size, 0, 0);
3712
3713 if (ret)
3714 return;
3715
3716 mmap_event->event_id.pid = perf_event_pid(event, current);
3717 mmap_event->event_id.tid = perf_event_tid(event, current);
3718
3719 perf_output_put(&handle, mmap_event->event_id);
3720 perf_output_copy(&handle, mmap_event->file_name,
3721 mmap_event->file_size);
3722 perf_output_end(&handle);
3723}
3724
3725static int perf_event_mmap_match(struct perf_event *event,
3726 struct perf_mmap_event *mmap_event)
3727{
Peter Zijlstra6f93d0a2010-02-14 11:12:04 +01003728 if (event->state < PERF_EVENT_STATE_INACTIVE)
Peter Zijlstra22e19082010-01-18 09:12:32 +01003729 return 0;
3730
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003731 if (event->cpu != -1 && event->cpu != smp_processor_id())
3732 return 0;
3733
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003734 if (event->attr.mmap)
3735 return 1;
3736
3737 return 0;
3738}
3739
3740static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3741 struct perf_mmap_event *mmap_event)
3742{
3743 struct perf_event *event;
3744
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003745 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3746 if (perf_event_mmap_match(event, mmap_event))
3747 perf_event_mmap_output(event, mmap_event);
3748 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003749}
3750
3751static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3752{
3753 struct perf_cpu_context *cpuctx;
3754 struct perf_event_context *ctx;
3755 struct vm_area_struct *vma = mmap_event->vma;
3756 struct file *file = vma->vm_file;
3757 unsigned int size;
3758 char tmp[16];
3759 char *buf = NULL;
3760 const char *name;
3761
3762 memset(tmp, 0, sizeof(tmp));
3763
3764 if (file) {
3765 /*
3766 * d_path works from the end of the buffer backwards, so we
3767 * need to add enough zero bytes after the string to handle
3768 * the 64bit alignment we do later.
3769 */
3770 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3771 if (!buf) {
3772 name = strncpy(tmp, "//enomem", sizeof(tmp));
3773 goto got_name;
3774 }
3775 name = d_path(&file->f_path, buf, PATH_MAX);
3776 if (IS_ERR(name)) {
3777 name = strncpy(tmp, "//toolong", sizeof(tmp));
3778 goto got_name;
3779 }
3780 } else {
3781 if (arch_vma_name(mmap_event->vma)) {
3782 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3783 sizeof(tmp));
3784 goto got_name;
3785 }
3786
3787 if (!vma->vm_mm) {
3788 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3789 goto got_name;
3790 }
3791
3792 name = strncpy(tmp, "//anon", sizeof(tmp));
3793 goto got_name;
3794 }
3795
3796got_name:
3797 size = ALIGN(strlen(name)+1, sizeof(u64));
3798
3799 mmap_event->file_name = name;
3800 mmap_event->file_size = size;
3801
3802 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3803
Peter Zijlstraf6d9dd22009-11-20 22:19:48 +01003804 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003805 cpuctx = &get_cpu_var(perf_cpu_context);
3806 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003807 ctx = rcu_dereference(current->perf_event_ctxp);
3808 if (ctx)
3809 perf_event_mmap_ctx(ctx, mmap_event);
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003810 put_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003811 rcu_read_unlock();
3812
3813 kfree(buf);
3814}
3815
3816void __perf_event_mmap(struct vm_area_struct *vma)
3817{
3818 struct perf_mmap_event mmap_event;
3819
3820 if (!atomic_read(&nr_mmap_events))
3821 return;
3822
3823 mmap_event = (struct perf_mmap_event){
3824 .vma = vma,
3825 /* .file_name */
3826 /* .file_size */
3827 .event_id = {
3828 .header = {
3829 .type = PERF_RECORD_MMAP,
Zhang, Yanmin39447b32010-04-19 13:32:41 +08003830 .misc = PERF_RECORD_MISC_USER,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003831 /* .size */
3832 },
3833 /* .pid */
3834 /* .tid */
3835 .start = vma->vm_start,
3836 .len = vma->vm_end - vma->vm_start,
Peter Zijlstra3a0304e2010-02-26 10:33:41 +01003837 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003838 },
3839 };
3840
3841 perf_event_mmap_event(&mmap_event);
3842}
3843
3844/*
3845 * IRQ throttle logging
3846 */
3847
3848static void perf_log_throttle(struct perf_event *event, int enable)
3849{
3850 struct perf_output_handle handle;
3851 int ret;
3852
3853 struct {
3854 struct perf_event_header header;
3855 u64 time;
3856 u64 id;
3857 u64 stream_id;
3858 } throttle_event = {
3859 .header = {
3860 .type = PERF_RECORD_THROTTLE,
3861 .misc = 0,
3862 .size = sizeof(throttle_event),
3863 },
3864 .time = perf_clock(),
3865 .id = primary_event_id(event),
3866 .stream_id = event->id,
3867 };
3868
3869 if (enable)
3870 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3871
3872 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3873 if (ret)
3874 return;
3875
3876 perf_output_put(&handle, throttle_event);
3877 perf_output_end(&handle);
3878}
3879
3880/*
3881 * Generic event overflow handling, sampling.
3882 */
3883
3884static int __perf_event_overflow(struct perf_event *event, int nmi,
3885 int throttle, struct perf_sample_data *data,
3886 struct pt_regs *regs)
3887{
3888 int events = atomic_read(&event->event_limit);
3889 struct hw_perf_event *hwc = &event->hw;
3890 int ret = 0;
3891
3892 throttle = (throttle && event->pmu->unthrottle != NULL);
3893
3894 if (!throttle) {
3895 hwc->interrupts++;
3896 } else {
3897 if (hwc->interrupts != MAX_INTERRUPTS) {
3898 hwc->interrupts++;
3899 if (HZ * hwc->interrupts >
3900 (u64)sysctl_perf_event_sample_rate) {
3901 hwc->interrupts = MAX_INTERRUPTS;
3902 perf_log_throttle(event, 0);
3903 ret = 1;
3904 }
3905 } else {
3906 /*
3907 * Keep re-disabling events even though on the previous
3908 * pass we disabled it - just in case we raced with a
3909 * sched-in and the event got enabled again:
3910 */
3911 ret = 1;
3912 }
3913 }
3914
3915 if (event->attr.freq) {
3916 u64 now = perf_clock();
Peter Zijlstraabd50712010-01-26 18:50:16 +01003917 s64 delta = now - hwc->freq_time_stamp;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003918
Peter Zijlstraabd50712010-01-26 18:50:16 +01003919 hwc->freq_time_stamp = now;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003920
Peter Zijlstraabd50712010-01-26 18:50:16 +01003921 if (delta > 0 && delta < 2*TICK_NSEC)
3922 perf_adjust_period(event, delta, hwc->last_period);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003923 }
3924
3925 /*
3926 * XXX event_limit might not quite work as expected on inherited
3927 * events
3928 */
3929
3930 event->pending_kill = POLL_IN;
3931 if (events && atomic_dec_and_test(&event->event_limit)) {
3932 ret = 1;
3933 event->pending_kill = POLL_HUP;
3934 if (nmi) {
3935 event->pending_disable = 1;
3936 perf_pending_queue(&event->pending,
3937 perf_pending_event);
3938 } else
3939 perf_event_disable(event);
3940 }
3941
Peter Zijlstra453f19e2009-11-20 22:19:43 +01003942 if (event->overflow_handler)
3943 event->overflow_handler(event, nmi, data, regs);
3944 else
3945 perf_event_output(event, nmi, data, regs);
3946
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003947 return ret;
3948}
3949
3950int perf_event_overflow(struct perf_event *event, int nmi,
3951 struct perf_sample_data *data,
3952 struct pt_regs *regs)
3953{
3954 return __perf_event_overflow(event, nmi, 1, data, regs);
3955}
3956
3957/*
3958 * Generic software event infrastructure
3959 */
3960
3961/*
3962 * We directly increment event->count and keep a second value in
3963 * event->hw.period_left to count intervals. This period event
3964 * is kept in the range [-sample_period, 0] so that we can use the
3965 * sign as trigger.
3966 */
3967
3968static u64 perf_swevent_set_period(struct perf_event *event)
3969{
3970 struct hw_perf_event *hwc = &event->hw;
3971 u64 period = hwc->last_period;
3972 u64 nr, offset;
3973 s64 old, val;
3974
3975 hwc->last_period = hwc->sample_period;
3976
3977again:
3978 old = val = atomic64_read(&hwc->period_left);
3979 if (val < 0)
3980 return 0;
3981
3982 nr = div64_u64(period + val, period);
3983 offset = nr * period;
3984 val -= offset;
3985 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3986 goto again;
3987
3988 return nr;
3989}
3990
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003991static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003992 int nmi, struct perf_sample_data *data,
3993 struct pt_regs *regs)
3994{
3995 struct hw_perf_event *hwc = &event->hw;
3996 int throttle = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003997
3998 data->period = event->hw.last_period;
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003999 if (!overflow)
4000 overflow = perf_swevent_set_period(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004001
4002 if (hwc->interrupts == MAX_INTERRUPTS)
4003 return;
4004
4005 for (; overflow; overflow--) {
4006 if (__perf_event_overflow(event, nmi, throttle,
4007 data, regs)) {
4008 /*
4009 * We inhibit the overflow from happening when
4010 * hwc->interrupts == MAX_INTERRUPTS.
4011 */
4012 break;
4013 }
4014 throttle = 1;
4015 }
4016}
4017
4018static void perf_swevent_unthrottle(struct perf_event *event)
4019{
4020 /*
4021 * Nothing to do, we already reset hwc->interrupts.
4022 */
4023}
4024
4025static void perf_swevent_add(struct perf_event *event, u64 nr,
4026 int nmi, struct perf_sample_data *data,
4027 struct pt_regs *regs)
4028{
4029 struct hw_perf_event *hwc = &event->hw;
4030
4031 atomic64_add(nr, &event->count);
4032
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004033 if (!regs)
4034 return;
4035
Peter Zijlstra0cff7842009-11-20 22:19:44 +01004036 if (!hwc->sample_period)
4037 return;
4038
4039 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4040 return perf_swevent_overflow(event, 1, nmi, data, regs);
4041
4042 if (atomic64_add_negative(nr, &hwc->period_left))
4043 return;
4044
4045 perf_swevent_overflow(event, 0, nmi, data, regs);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004046}
4047
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004048static int perf_exclude_event(struct perf_event *event,
4049 struct pt_regs *regs)
4050{
4051 if (regs) {
4052 if (event->attr.exclude_user && user_mode(regs))
4053 return 1;
4054
4055 if (event->attr.exclude_kernel && !user_mode(regs))
4056 return 1;
4057 }
4058
4059 return 0;
4060}
4061
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004062static int perf_swevent_match(struct perf_event *event,
4063 enum perf_type_id type,
Li Zefan6fb29152009-10-15 11:21:42 +08004064 u32 event_id,
4065 struct perf_sample_data *data,
4066 struct pt_regs *regs)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004067{
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004068 if (event->attr.type != type)
4069 return 0;
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004070
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004071 if (event->attr.config != event_id)
4072 return 0;
4073
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004074 if (perf_exclude_event(event, regs))
4075 return 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004076
4077 return 1;
4078}
4079
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004080static inline u64 swevent_hash(u64 type, u32 event_id)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004081{
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004082 u64 val = event_id | (type << 32);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004083
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004084 return hash_64(val, SWEVENT_HLIST_BITS);
4085}
4086
Frederic Weisbecker49f135e2010-05-20 10:17:46 +02004087static inline struct hlist_head *
4088__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004089{
Frederic Weisbecker49f135e2010-05-20 10:17:46 +02004090 u64 hash = swevent_hash(type, event_id);
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004091
Frederic Weisbecker49f135e2010-05-20 10:17:46 +02004092 return &hlist->heads[hash];
4093}
4094
4095/* For the read side: events when they trigger */
4096static inline struct hlist_head *
4097find_swevent_head_rcu(struct perf_cpu_context *ctx, u64 type, u32 event_id)
4098{
4099 struct swevent_hlist *hlist;
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004100
4101 hlist = rcu_dereference(ctx->swevent_hlist);
4102 if (!hlist)
4103 return NULL;
4104
Frederic Weisbecker49f135e2010-05-20 10:17:46 +02004105 return __find_swevent_head(hlist, type, event_id);
4106}
4107
4108/* For the event head insertion and removal in the hlist */
4109static inline struct hlist_head *
4110find_swevent_head(struct perf_cpu_context *ctx, struct perf_event *event)
4111{
4112 struct swevent_hlist *hlist;
4113 u32 event_id = event->attr.config;
4114 u64 type = event->attr.type;
4115
4116 /*
4117 * Event scheduling is always serialized against hlist allocation
4118 * and release. Which makes the protected version suitable here.
4119 * The context lock guarantees that.
4120 */
4121 hlist = rcu_dereference_protected(ctx->swevent_hlist,
4122 lockdep_is_held(&event->ctx->lock));
4123 if (!hlist)
4124 return NULL;
4125
4126 return __find_swevent_head(hlist, type, event_id);
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004127}
4128
4129static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4130 u64 nr, int nmi,
4131 struct perf_sample_data *data,
4132 struct pt_regs *regs)
4133{
4134 struct perf_cpu_context *cpuctx;
4135 struct perf_event *event;
4136 struct hlist_node *node;
4137 struct hlist_head *head;
4138
4139 cpuctx = &__get_cpu_var(perf_cpu_context);
4140
4141 rcu_read_lock();
4142
Frederic Weisbecker49f135e2010-05-20 10:17:46 +02004143 head = find_swevent_head_rcu(cpuctx, type, event_id);
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004144
4145 if (!head)
4146 goto end;
4147
4148 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
Li Zefan6fb29152009-10-15 11:21:42 +08004149 if (perf_swevent_match(event, type, event_id, data, regs))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004150 perf_swevent_add(event, nr, nmi, data, regs);
4151 }
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004152end:
4153 rcu_read_unlock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004154}
4155
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004156int perf_swevent_get_recursion_context(void)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004157{
Peter Zijlstra1c024eca2010-05-19 14:02:22 +02004158 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004159 int rctx;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004160
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004161 if (in_nmi())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004162 rctx = 3;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004163 else if (in_irq())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004164 rctx = 2;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004165 else if (in_softirq())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004166 rctx = 1;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004167 else
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004168 rctx = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004169
Peter Zijlstra1c024eca2010-05-19 14:02:22 +02004170 if (cpuctx->recursion[rctx])
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004171 return -1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004172
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004173 cpuctx->recursion[rctx]++;
4174 barrier();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004175
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004176 return rctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004177}
Ingo Molnar645e8cc2009-11-22 12:20:19 +01004178EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004179
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004180void perf_swevent_put_recursion_context(int rctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004181{
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004182 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4183 barrier();
Frederic Weisbeckerfe612672009-11-24 20:38:22 +01004184 cpuctx->recursion[rctx]--;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004185}
Ingo Molnar645e8cc2009-11-22 12:20:19 +01004186EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004187
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004188
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004189void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4190 struct pt_regs *regs, u64 addr)
4191{
Ingo Molnara4234bf2009-11-23 10:57:59 +01004192 struct perf_sample_data data;
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004193 int rctx;
4194
Peter Zijlstra1c024eca2010-05-19 14:02:22 +02004195 preempt_disable_notrace();
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004196 rctx = perf_swevent_get_recursion_context();
4197 if (rctx < 0)
4198 return;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004199
Peter Zijlstradc1d6282010-03-03 15:55:04 +01004200 perf_sample_data_init(&data, addr);
Ingo Molnara4234bf2009-11-23 10:57:59 +01004201
4202 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004203
4204 perf_swevent_put_recursion_context(rctx);
Peter Zijlstra1c024eca2010-05-19 14:02:22 +02004205 preempt_enable_notrace();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004206}
4207
4208static void perf_swevent_read(struct perf_event *event)
4209{
4210}
4211
4212static int perf_swevent_enable(struct perf_event *event)
4213{
4214 struct hw_perf_event *hwc = &event->hw;
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004215 struct perf_cpu_context *cpuctx;
4216 struct hlist_head *head;
4217
4218 cpuctx = &__get_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004219
4220 if (hwc->sample_period) {
4221 hwc->last_period = hwc->sample_period;
4222 perf_swevent_set_period(event);
4223 }
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004224
Frederic Weisbecker49f135e2010-05-20 10:17:46 +02004225 head = find_swevent_head(cpuctx, event);
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004226 if (WARN_ON_ONCE(!head))
4227 return -EINVAL;
4228
4229 hlist_add_head_rcu(&event->hlist_entry, head);
4230
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004231 return 0;
4232}
4233
4234static void perf_swevent_disable(struct perf_event *event)
4235{
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004236 hlist_del_rcu(&event->hlist_entry);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004237}
4238
4239static const struct pmu perf_ops_generic = {
4240 .enable = perf_swevent_enable,
4241 .disable = perf_swevent_disable,
4242 .read = perf_swevent_read,
4243 .unthrottle = perf_swevent_unthrottle,
4244};
4245
4246/*
4247 * hrtimer based swevent callback
4248 */
4249
4250static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4251{
4252 enum hrtimer_restart ret = HRTIMER_RESTART;
4253 struct perf_sample_data data;
4254 struct pt_regs *regs;
4255 struct perf_event *event;
4256 u64 period;
4257
Peter Zijlstradc1d6282010-03-03 15:55:04 +01004258 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004259 event->pmu->read(event);
4260
Peter Zijlstradc1d6282010-03-03 15:55:04 +01004261 perf_sample_data_init(&data, 0);
Xiao Guangrong59d069e2009-12-01 17:30:08 +08004262 data.period = event->hw.last_period;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004263 regs = get_irq_regs();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004264
Frederic Weisbeckerdf8290b2010-04-09 00:28:14 +02004265 if (regs && !perf_exclude_event(event, regs)) {
Soeren Sandmann54f44072009-10-22 18:34:08 +02004266 if (!(event->attr.exclude_idle && current->pid == 0))
4267 if (perf_event_overflow(event, 0, &data, regs))
4268 ret = HRTIMER_NORESTART;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004269 }
4270
4271 period = max_t(u64, 10000, event->hw.sample_period);
4272 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4273
4274 return ret;
4275}
4276
Soeren Sandmann721a6692009-09-15 14:33:08 +02004277static void perf_swevent_start_hrtimer(struct perf_event *event)
4278{
4279 struct hw_perf_event *hwc = &event->hw;
4280
4281 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4282 hwc->hrtimer.function = perf_swevent_hrtimer;
4283 if (hwc->sample_period) {
4284 u64 period;
4285
4286 if (hwc->remaining) {
4287 if (hwc->remaining < 0)
4288 period = 10000;
4289 else
4290 period = hwc->remaining;
4291 hwc->remaining = 0;
4292 } else {
4293 period = max_t(u64, 10000, hwc->sample_period);
4294 }
4295 __hrtimer_start_range_ns(&hwc->hrtimer,
4296 ns_to_ktime(period), 0,
4297 HRTIMER_MODE_REL, 0);
4298 }
4299}
4300
4301static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4302{
4303 struct hw_perf_event *hwc = &event->hw;
4304
4305 if (hwc->sample_period) {
4306 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4307 hwc->remaining = ktime_to_ns(remaining);
4308
4309 hrtimer_cancel(&hwc->hrtimer);
4310 }
4311}
4312
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004313/*
4314 * Software event: cpu wall time clock
4315 */
4316
4317static void cpu_clock_perf_event_update(struct perf_event *event)
4318{
4319 int cpu = raw_smp_processor_id();
4320 s64 prev;
4321 u64 now;
4322
4323 now = cpu_clock(cpu);
Xiao Guangrongec89a06f2009-12-09 11:30:36 +08004324 prev = atomic64_xchg(&event->hw.prev_count, now);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004325 atomic64_add(now - prev, &event->count);
4326}
4327
4328static int cpu_clock_perf_event_enable(struct perf_event *event)
4329{
4330 struct hw_perf_event *hwc = &event->hw;
4331 int cpu = raw_smp_processor_id();
4332
4333 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
Soeren Sandmann721a6692009-09-15 14:33:08 +02004334 perf_swevent_start_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004335
4336 return 0;
4337}
4338
4339static void cpu_clock_perf_event_disable(struct perf_event *event)
4340{
Soeren Sandmann721a6692009-09-15 14:33:08 +02004341 perf_swevent_cancel_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004342 cpu_clock_perf_event_update(event);
4343}
4344
4345static void cpu_clock_perf_event_read(struct perf_event *event)
4346{
4347 cpu_clock_perf_event_update(event);
4348}
4349
4350static const struct pmu perf_ops_cpu_clock = {
4351 .enable = cpu_clock_perf_event_enable,
4352 .disable = cpu_clock_perf_event_disable,
4353 .read = cpu_clock_perf_event_read,
4354};
4355
4356/*
4357 * Software event: task time clock
4358 */
4359
4360static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4361{
4362 u64 prev;
4363 s64 delta;
4364
4365 prev = atomic64_xchg(&event->hw.prev_count, now);
4366 delta = now - prev;
4367 atomic64_add(delta, &event->count);
4368}
4369
4370static int task_clock_perf_event_enable(struct perf_event *event)
4371{
4372 struct hw_perf_event *hwc = &event->hw;
4373 u64 now;
4374
4375 now = event->ctx->time;
4376
4377 atomic64_set(&hwc->prev_count, now);
Soeren Sandmann721a6692009-09-15 14:33:08 +02004378
4379 perf_swevent_start_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004380
4381 return 0;
4382}
4383
4384static void task_clock_perf_event_disable(struct perf_event *event)
4385{
Soeren Sandmann721a6692009-09-15 14:33:08 +02004386 perf_swevent_cancel_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004387 task_clock_perf_event_update(event, event->ctx->time);
4388
4389}
4390
4391static void task_clock_perf_event_read(struct perf_event *event)
4392{
4393 u64 time;
4394
4395 if (!in_nmi()) {
4396 update_context_time(event->ctx);
4397 time = event->ctx->time;
4398 } else {
4399 u64 now = perf_clock();
4400 u64 delta = now - event->ctx->timestamp;
4401 time = event->ctx->time + delta;
4402 }
4403
4404 task_clock_perf_event_update(event, time);
4405}
4406
4407static const struct pmu perf_ops_task_clock = {
4408 .enable = task_clock_perf_event_enable,
4409 .disable = task_clock_perf_event_disable,
4410 .read = task_clock_perf_event_read,
4411};
4412
Frederic Weisbecker49f135e2010-05-20 10:17:46 +02004413/* Deref the hlist from the update side */
4414static inline struct swevent_hlist *
4415swevent_hlist_deref(struct perf_cpu_context *cpuctx)
4416{
4417 return rcu_dereference_protected(cpuctx->swevent_hlist,
4418 lockdep_is_held(&cpuctx->hlist_mutex));
4419}
4420
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004421static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4422{
4423 struct swevent_hlist *hlist;
4424
4425 hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4426 kfree(hlist);
4427}
4428
4429static void swevent_hlist_release(struct perf_cpu_context *cpuctx)
4430{
Frederic Weisbecker49f135e2010-05-20 10:17:46 +02004431 struct swevent_hlist *hlist = swevent_hlist_deref(cpuctx);
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004432
Frederic Weisbecker49f135e2010-05-20 10:17:46 +02004433 if (!hlist)
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004434 return;
4435
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004436 rcu_assign_pointer(cpuctx->swevent_hlist, NULL);
4437 call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4438}
4439
4440static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4441{
4442 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4443
4444 mutex_lock(&cpuctx->hlist_mutex);
4445
4446 if (!--cpuctx->hlist_refcount)
4447 swevent_hlist_release(cpuctx);
4448
4449 mutex_unlock(&cpuctx->hlist_mutex);
4450}
4451
4452static void swevent_hlist_put(struct perf_event *event)
4453{
4454 int cpu;
4455
4456 if (event->cpu != -1) {
4457 swevent_hlist_put_cpu(event, event->cpu);
4458 return;
4459 }
4460
4461 for_each_possible_cpu(cpu)
4462 swevent_hlist_put_cpu(event, cpu);
4463}
4464
4465static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4466{
4467 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4468 int err = 0;
4469
4470 mutex_lock(&cpuctx->hlist_mutex);
4471
Frederic Weisbecker49f135e2010-05-20 10:17:46 +02004472 if (!swevent_hlist_deref(cpuctx) && cpu_online(cpu)) {
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004473 struct swevent_hlist *hlist;
4474
4475 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4476 if (!hlist) {
4477 err = -ENOMEM;
4478 goto exit;
4479 }
4480 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
4481 }
4482 cpuctx->hlist_refcount++;
4483 exit:
4484 mutex_unlock(&cpuctx->hlist_mutex);
4485
4486 return err;
4487}
4488
4489static int swevent_hlist_get(struct perf_event *event)
4490{
4491 int err;
4492 int cpu, failed_cpu;
4493
4494 if (event->cpu != -1)
4495 return swevent_hlist_get_cpu(event, event->cpu);
4496
4497 get_online_cpus();
4498 for_each_possible_cpu(cpu) {
4499 err = swevent_hlist_get_cpu(event, cpu);
4500 if (err) {
4501 failed_cpu = cpu;
4502 goto fail;
4503 }
4504 }
4505 put_online_cpus();
4506
4507 return 0;
4508 fail:
4509 for_each_possible_cpu(cpu) {
4510 if (cpu == failed_cpu)
4511 break;
4512 swevent_hlist_put_cpu(event, cpu);
4513 }
4514
4515 put_online_cpus();
4516 return err;
4517}
4518
Frederic Weisbecker95476b62010-04-14 23:42:18 +02004519#ifdef CONFIG_EVENT_TRACING
4520
Peter Zijlstra1c024eca2010-05-19 14:02:22 +02004521static const struct pmu perf_ops_tracepoint = {
4522 .enable = perf_trace_enable,
4523 .disable = perf_trace_disable,
4524 .read = perf_swevent_read,
4525 .unthrottle = perf_swevent_unthrottle,
4526};
Frederic Weisbecker95476b62010-04-14 23:42:18 +02004527
Peter Zijlstra1c024eca2010-05-19 14:02:22 +02004528static int perf_tp_filter_match(struct perf_event *event,
Frederic Weisbecker95476b62010-04-14 23:42:18 +02004529 struct perf_sample_data *data)
4530{
4531 void *record = data->raw->data;
4532
4533 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4534 return 1;
4535 return 0;
4536}
4537
Peter Zijlstra1c024eca2010-05-19 14:02:22 +02004538static int perf_tp_event_match(struct perf_event *event,
4539 struct perf_sample_data *data,
4540 struct pt_regs *regs)
4541{
Peter Zijlstra580d6072010-05-20 20:54:31 +02004542 /*
4543 * All tracepoints are from kernel-space.
4544 */
4545 if (event->attr.exclude_kernel)
Peter Zijlstra1c024eca2010-05-19 14:02:22 +02004546 return 0;
4547
4548 if (!perf_tp_filter_match(event, data))
4549 return 0;
4550
4551 return 1;
4552}
4553
4554void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4555 struct pt_regs *regs, struct hlist_head *head)
4556{
4557 struct perf_sample_data data;
4558 struct perf_event *event;
4559 struct hlist_node *node;
4560
4561 struct perf_raw_record raw = {
4562 .size = entry_size,
4563 .data = record,
4564 };
4565
4566 perf_sample_data_init(&data, addr);
4567 data.raw = &raw;
4568
4569 rcu_read_lock();
4570 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4571 if (perf_tp_event_match(event, &data, regs))
4572 perf_swevent_add(event, count, 1, &data, regs);
4573 }
4574 rcu_read_unlock();
4575}
4576EXPORT_SYMBOL_GPL(perf_tp_event);
4577
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004578static void tp_perf_event_destroy(struct perf_event *event)
4579{
Peter Zijlstra1c024eca2010-05-19 14:02:22 +02004580 perf_trace_destroy(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004581}
4582
4583static const struct pmu *tp_perf_event_init(struct perf_event *event)
4584{
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004585 int err;
4586
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004587 /*
4588 * Raw tracepoint data is a severe data leak, only allow root to
4589 * have these.
4590 */
4591 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4592 perf_paranoid_tracepoint_raw() &&
4593 !capable(CAP_SYS_ADMIN))
4594 return ERR_PTR(-EPERM);
4595
Peter Zijlstra1c024eca2010-05-19 14:02:22 +02004596 err = perf_trace_init(event);
4597 if (err)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004598 return NULL;
4599
4600 event->destroy = tp_perf_event_destroy;
4601
Peter Zijlstra1c024eca2010-05-19 14:02:22 +02004602 return &perf_ops_tracepoint;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004603}
Li Zefan6fb29152009-10-15 11:21:42 +08004604
4605static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4606{
4607 char *filter_str;
4608 int ret;
4609
4610 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4611 return -EINVAL;
4612
4613 filter_str = strndup_user(arg, PAGE_SIZE);
4614 if (IS_ERR(filter_str))
4615 return PTR_ERR(filter_str);
4616
4617 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4618
4619 kfree(filter_str);
4620 return ret;
4621}
4622
4623static void perf_event_free_filter(struct perf_event *event)
4624{
4625 ftrace_profile_free_filter(event);
4626}
4627
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004628#else
Li Zefan6fb29152009-10-15 11:21:42 +08004629
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004630static const struct pmu *tp_perf_event_init(struct perf_event *event)
4631{
4632 return NULL;
4633}
Li Zefan6fb29152009-10-15 11:21:42 +08004634
4635static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4636{
4637 return -ENOENT;
4638}
4639
4640static void perf_event_free_filter(struct perf_event *event)
4641{
4642}
4643
Li Zefan07b139c2009-12-21 14:27:35 +08004644#endif /* CONFIG_EVENT_TRACING */
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004645
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004646#ifdef CONFIG_HAVE_HW_BREAKPOINT
4647static void bp_perf_event_destroy(struct perf_event *event)
4648{
4649 release_bp_slot(event);
4650}
4651
4652static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4653{
4654 int err;
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004655
4656 err = register_perf_hw_breakpoint(bp);
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004657 if (err)
4658 return ERR_PTR(err);
4659
4660 bp->destroy = bp_perf_event_destroy;
4661
4662 return &perf_ops_bp;
4663}
4664
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004665void perf_bp_event(struct perf_event *bp, void *data)
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004666{
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004667 struct perf_sample_data sample;
4668 struct pt_regs *regs = data;
4669
Peter Zijlstradc1d6282010-03-03 15:55:04 +01004670 perf_sample_data_init(&sample, bp->attr.bp_addr);
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004671
4672 if (!perf_exclude_event(bp, regs))
4673 perf_swevent_add(bp, 1, 1, &sample, regs);
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004674}
4675#else
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004676static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4677{
4678 return NULL;
4679}
4680
4681void perf_bp_event(struct perf_event *bp, void *regs)
4682{
4683}
4684#endif
4685
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004686atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4687
4688static void sw_perf_event_destroy(struct perf_event *event)
4689{
4690 u64 event_id = event->attr.config;
4691
4692 WARN_ON(event->parent);
4693
4694 atomic_dec(&perf_swevent_enabled[event_id]);
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004695 swevent_hlist_put(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004696}
4697
4698static const struct pmu *sw_perf_event_init(struct perf_event *event)
4699{
4700 const struct pmu *pmu = NULL;
4701 u64 event_id = event->attr.config;
4702
4703 /*
4704 * Software events (currently) can't in general distinguish
4705 * between user, kernel and hypervisor events.
4706 * However, context switches and cpu migrations are considered
4707 * to be kernel events, and page faults are never hypervisor
4708 * events.
4709 */
4710 switch (event_id) {
4711 case PERF_COUNT_SW_CPU_CLOCK:
4712 pmu = &perf_ops_cpu_clock;
4713
4714 break;
4715 case PERF_COUNT_SW_TASK_CLOCK:
4716 /*
4717 * If the user instantiates this as a per-cpu event,
4718 * use the cpu_clock event instead.
4719 */
4720 if (event->ctx->task)
4721 pmu = &perf_ops_task_clock;
4722 else
4723 pmu = &perf_ops_cpu_clock;
4724
4725 break;
4726 case PERF_COUNT_SW_PAGE_FAULTS:
4727 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4728 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4729 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4730 case PERF_COUNT_SW_CPU_MIGRATIONS:
Anton Blanchardf7d79862009-10-18 01:09:29 +00004731 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4732 case PERF_COUNT_SW_EMULATION_FAULTS:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004733 if (!event->parent) {
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004734 int err;
4735
4736 err = swevent_hlist_get(event);
4737 if (err)
4738 return ERR_PTR(err);
4739
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004740 atomic_inc(&perf_swevent_enabled[event_id]);
4741 event->destroy = sw_perf_event_destroy;
4742 }
4743 pmu = &perf_ops_generic;
4744 break;
4745 }
4746
4747 return pmu;
4748}
4749
4750/*
4751 * Allocate and initialize a event structure
4752 */
4753static struct perf_event *
4754perf_event_alloc(struct perf_event_attr *attr,
4755 int cpu,
4756 struct perf_event_context *ctx,
4757 struct perf_event *group_leader,
4758 struct perf_event *parent_event,
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004759 perf_overflow_handler_t overflow_handler,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004760 gfp_t gfpflags)
4761{
4762 const struct pmu *pmu;
4763 struct perf_event *event;
4764 struct hw_perf_event *hwc;
4765 long err;
4766
4767 event = kzalloc(sizeof(*event), gfpflags);
4768 if (!event)
4769 return ERR_PTR(-ENOMEM);
4770
4771 /*
4772 * Single events are their own group leaders, with an
4773 * empty sibling list:
4774 */
4775 if (!group_leader)
4776 group_leader = event;
4777
4778 mutex_init(&event->child_mutex);
4779 INIT_LIST_HEAD(&event->child_list);
4780
4781 INIT_LIST_HEAD(&event->group_entry);
4782 INIT_LIST_HEAD(&event->event_entry);
4783 INIT_LIST_HEAD(&event->sibling_list);
4784 init_waitqueue_head(&event->waitq);
4785
4786 mutex_init(&event->mmap_mutex);
4787
4788 event->cpu = cpu;
4789 event->attr = *attr;
4790 event->group_leader = group_leader;
4791 event->pmu = NULL;
4792 event->ctx = ctx;
4793 event->oncpu = -1;
4794
4795 event->parent = parent_event;
4796
4797 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4798 event->id = atomic64_inc_return(&perf_event_id);
4799
4800 event->state = PERF_EVENT_STATE_INACTIVE;
4801
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004802 if (!overflow_handler && parent_event)
4803 overflow_handler = parent_event->overflow_handler;
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004804
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004805 event->overflow_handler = overflow_handler;
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004806
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004807 if (attr->disabled)
4808 event->state = PERF_EVENT_STATE_OFF;
4809
4810 pmu = NULL;
4811
4812 hwc = &event->hw;
4813 hwc->sample_period = attr->sample_period;
4814 if (attr->freq && attr->sample_freq)
4815 hwc->sample_period = 1;
4816 hwc->last_period = hwc->sample_period;
4817
4818 atomic64_set(&hwc->period_left, hwc->sample_period);
4819
4820 /*
4821 * we currently do not support PERF_FORMAT_GROUP on inherited events
4822 */
4823 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4824 goto done;
4825
4826 switch (attr->type) {
4827 case PERF_TYPE_RAW:
4828 case PERF_TYPE_HARDWARE:
4829 case PERF_TYPE_HW_CACHE:
4830 pmu = hw_perf_event_init(event);
4831 break;
4832
4833 case PERF_TYPE_SOFTWARE:
4834 pmu = sw_perf_event_init(event);
4835 break;
4836
4837 case PERF_TYPE_TRACEPOINT:
4838 pmu = tp_perf_event_init(event);
4839 break;
4840
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004841 case PERF_TYPE_BREAKPOINT:
4842 pmu = bp_perf_event_init(event);
4843 break;
4844
4845
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004846 default:
4847 break;
4848 }
4849done:
4850 err = 0;
4851 if (!pmu)
4852 err = -EINVAL;
4853 else if (IS_ERR(pmu))
4854 err = PTR_ERR(pmu);
4855
4856 if (err) {
4857 if (event->ns)
4858 put_pid_ns(event->ns);
4859 kfree(event);
4860 return ERR_PTR(err);
4861 }
4862
4863 event->pmu = pmu;
4864
4865 if (!event->parent) {
4866 atomic_inc(&nr_events);
4867 if (event->attr.mmap)
4868 atomic_inc(&nr_mmap_events);
4869 if (event->attr.comm)
4870 atomic_inc(&nr_comm_events);
4871 if (event->attr.task)
4872 atomic_inc(&nr_task_events);
4873 }
4874
4875 return event;
4876}
4877
4878static int perf_copy_attr(struct perf_event_attr __user *uattr,
4879 struct perf_event_attr *attr)
4880{
4881 u32 size;
4882 int ret;
4883
4884 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4885 return -EFAULT;
4886
4887 /*
4888 * zero the full structure, so that a short copy will be nice.
4889 */
4890 memset(attr, 0, sizeof(*attr));
4891
4892 ret = get_user(size, &uattr->size);
4893 if (ret)
4894 return ret;
4895
4896 if (size > PAGE_SIZE) /* silly large */
4897 goto err_size;
4898
4899 if (!size) /* abi compat */
4900 size = PERF_ATTR_SIZE_VER0;
4901
4902 if (size < PERF_ATTR_SIZE_VER0)
4903 goto err_size;
4904
4905 /*
4906 * If we're handed a bigger struct than we know of,
4907 * ensure all the unknown bits are 0 - i.e. new
4908 * user-space does not rely on any kernel feature
4909 * extensions we dont know about yet.
4910 */
4911 if (size > sizeof(*attr)) {
4912 unsigned char __user *addr;
4913 unsigned char __user *end;
4914 unsigned char val;
4915
4916 addr = (void __user *)uattr + sizeof(*attr);
4917 end = (void __user *)uattr + size;
4918
4919 for (; addr < end; addr++) {
4920 ret = get_user(val, addr);
4921 if (ret)
4922 return ret;
4923 if (val)
4924 goto err_size;
4925 }
4926 size = sizeof(*attr);
4927 }
4928
4929 ret = copy_from_user(attr, uattr, size);
4930 if (ret)
4931 return -EFAULT;
4932
4933 /*
4934 * If the type exists, the corresponding creation will verify
4935 * the attr->config.
4936 */
4937 if (attr->type >= PERF_TYPE_MAX)
4938 return -EINVAL;
4939
Mahesh Salgaonkarcd757642010-01-30 10:25:18 +05304940 if (attr->__reserved_1)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004941 return -EINVAL;
4942
4943 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4944 return -EINVAL;
4945
4946 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4947 return -EINVAL;
4948
4949out:
4950 return ret;
4951
4952err_size:
4953 put_user(sizeof(*attr), &uattr->size);
4954 ret = -E2BIG;
4955 goto out;
4956}
4957
Peter Zijlstraac9721f2010-05-27 12:54:41 +02004958static int
4959perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004960{
Peter Zijlstraac9721f2010-05-27 12:54:41 +02004961 struct perf_mmap_data *data = NULL, *old_data = NULL;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004962 int ret = -EINVAL;
4963
Peter Zijlstraac9721f2010-05-27 12:54:41 +02004964 if (!output_event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004965 goto set;
4966
Peter Zijlstraac9721f2010-05-27 12:54:41 +02004967 /* don't allow circular references */
4968 if (event == output_event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004969 goto out;
4970
Peter Zijlstra0f139302010-05-20 14:35:15 +02004971 /*
4972 * Don't allow cross-cpu buffers
4973 */
4974 if (output_event->cpu != event->cpu)
4975 goto out;
4976
4977 /*
4978 * If its not a per-cpu buffer, it must be the same task.
4979 */
4980 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
4981 goto out;
4982
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004983set:
4984 mutex_lock(&event->mmap_mutex);
Peter Zijlstraac9721f2010-05-27 12:54:41 +02004985 /* Can't redirect output if we've got an active mmap() */
4986 if (atomic_read(&event->mmap_count))
4987 goto unlock;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004988
Peter Zijlstraac9721f2010-05-27 12:54:41 +02004989 if (output_event) {
4990 /* get the buffer we want to redirect to */
4991 data = perf_mmap_data_get(output_event);
4992 if (!data)
4993 goto unlock;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004994 }
4995
Peter Zijlstraac9721f2010-05-27 12:54:41 +02004996 old_data = event->data;
4997 rcu_assign_pointer(event->data, data);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004998 ret = 0;
Peter Zijlstraac9721f2010-05-27 12:54:41 +02004999unlock:
5000 mutex_unlock(&event->mmap_mutex);
5001
5002 if (old_data)
5003 perf_mmap_data_put(old_data);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005004out:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005005 return ret;
5006}
5007
5008/**
5009 * sys_perf_event_open - open a performance event, associate it to a task/cpu
5010 *
5011 * @attr_uptr: event_id type attributes for monitoring/sampling
5012 * @pid: target pid
5013 * @cpu: target cpu
5014 * @group_fd: group leader event fd
5015 */
5016SYSCALL_DEFINE5(perf_event_open,
5017 struct perf_event_attr __user *, attr_uptr,
5018 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5019{
Peter Zijlstraac9721f2010-05-27 12:54:41 +02005020 struct perf_event *event, *group_leader = NULL, *output_event = NULL;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005021 struct perf_event_attr attr;
5022 struct perf_event_context *ctx;
5023 struct file *event_file = NULL;
5024 struct file *group_file = NULL;
Al Viroea635c62010-05-26 17:40:29 -04005025 int event_fd;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005026 int fput_needed = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005027 int err;
5028
5029 /* for future expandability... */
5030 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5031 return -EINVAL;
5032
5033 err = perf_copy_attr(attr_uptr, &attr);
5034 if (err)
5035 return err;
5036
5037 if (!attr.exclude_kernel) {
5038 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5039 return -EACCES;
5040 }
5041
5042 if (attr.freq) {
5043 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5044 return -EINVAL;
5045 }
5046
Al Viroea635c62010-05-26 17:40:29 -04005047 event_fd = get_unused_fd_flags(O_RDWR);
5048 if (event_fd < 0)
5049 return event_fd;
5050
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005051 /*
5052 * Get the target context (task or percpu):
5053 */
5054 ctx = find_get_context(pid, cpu);
Al Viroea635c62010-05-26 17:40:29 -04005055 if (IS_ERR(ctx)) {
5056 err = PTR_ERR(ctx);
5057 goto err_fd;
5058 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005059
Peter Zijlstraac9721f2010-05-27 12:54:41 +02005060 if (group_fd != -1) {
5061 group_leader = perf_fget_light(group_fd, &fput_needed);
5062 if (IS_ERR(group_leader)) {
5063 err = PTR_ERR(group_leader);
5064 goto err_put_context;
5065 }
5066 group_file = group_leader->filp;
5067 if (flags & PERF_FLAG_FD_OUTPUT)
5068 output_event = group_leader;
5069 if (flags & PERF_FLAG_FD_NO_GROUP)
5070 group_leader = NULL;
5071 }
5072
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005073 /*
5074 * Look up the group leader (we will attach this event to it):
5075 */
Peter Zijlstraac9721f2010-05-27 12:54:41 +02005076 if (group_leader) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005077 err = -EINVAL;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005078
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005079 /*
5080 * Do not allow a recursive hierarchy (this new sibling
5081 * becoming part of another group-sibling):
5082 */
5083 if (group_leader->group_leader != group_leader)
5084 goto err_put_context;
5085 /*
5086 * Do not allow to attach to a group in a different
5087 * task or CPU context:
5088 */
5089 if (group_leader->ctx != ctx)
5090 goto err_put_context;
5091 /*
5092 * Only a group leader can be exclusive or pinned
5093 */
5094 if (attr.exclusive || attr.pinned)
5095 goto err_put_context;
5096 }
5097
5098 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02005099 NULL, NULL, GFP_KERNEL);
Peter Zijlstraac9721f2010-05-27 12:54:41 +02005100 if (IS_ERR(event)) {
5101 err = PTR_ERR(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005102 goto err_put_context;
Peter Zijlstraac9721f2010-05-27 12:54:41 +02005103 }
5104
5105 if (output_event) {
5106 err = perf_event_set_output(event, output_event);
5107 if (err)
5108 goto err_free_put_context;
5109 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005110
Al Viroea635c62010-05-26 17:40:29 -04005111 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5112 if (IS_ERR(event_file)) {
5113 err = PTR_ERR(event_file);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005114 goto err_free_put_context;
Al Viroea635c62010-05-26 17:40:29 -04005115 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005116
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005117 event->filp = event_file;
5118 WARN_ON_ONCE(ctx->parent_ctx);
5119 mutex_lock(&ctx->mutex);
5120 perf_install_in_context(ctx, event, cpu);
5121 ++ctx->generation;
5122 mutex_unlock(&ctx->mutex);
5123
5124 event->owner = current;
5125 get_task_struct(current);
5126 mutex_lock(&current->perf_event_mutex);
5127 list_add_tail(&event->owner_entry, &current->perf_event_list);
5128 mutex_unlock(&current->perf_event_mutex);
5129
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005130 fput_light(group_file, fput_needed);
Al Viroea635c62010-05-26 17:40:29 -04005131 fd_install(event_fd, event_file);
5132 return event_fd;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005133
Al Viroea635c62010-05-26 17:40:29 -04005134err_free_put_context:
5135 free_event(event);
5136err_put_context:
5137 fput_light(group_file, fput_needed);
5138 put_ctx(ctx);
5139err_fd:
5140 put_unused_fd(event_fd);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005141 return err;
5142}
5143
Arjan van de Venfb0459d2009-09-25 12:25:56 +02005144/**
5145 * perf_event_create_kernel_counter
5146 *
5147 * @attr: attributes of the counter to create
5148 * @cpu: cpu in which the counter is bound
5149 * @pid: task to profile
5150 */
5151struct perf_event *
5152perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01005153 pid_t pid,
5154 perf_overflow_handler_t overflow_handler)
Arjan van de Venfb0459d2009-09-25 12:25:56 +02005155{
5156 struct perf_event *event;
5157 struct perf_event_context *ctx;
5158 int err;
5159
5160 /*
5161 * Get the target context (task or percpu):
5162 */
5163
5164 ctx = find_get_context(pid, cpu);
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01005165 if (IS_ERR(ctx)) {
5166 err = PTR_ERR(ctx);
5167 goto err_exit;
5168 }
Arjan van de Venfb0459d2009-09-25 12:25:56 +02005169
5170 event = perf_event_alloc(attr, cpu, ctx, NULL,
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01005171 NULL, overflow_handler, GFP_KERNEL);
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01005172 if (IS_ERR(event)) {
5173 err = PTR_ERR(event);
Arjan van de Venfb0459d2009-09-25 12:25:56 +02005174 goto err_put_context;
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01005175 }
Arjan van de Venfb0459d2009-09-25 12:25:56 +02005176
5177 event->filp = NULL;
5178 WARN_ON_ONCE(ctx->parent_ctx);
5179 mutex_lock(&ctx->mutex);
5180 perf_install_in_context(ctx, event, cpu);
5181 ++ctx->generation;
5182 mutex_unlock(&ctx->mutex);
5183
5184 event->owner = current;
5185 get_task_struct(current);
5186 mutex_lock(&current->perf_event_mutex);
5187 list_add_tail(&event->owner_entry, &current->perf_event_list);
5188 mutex_unlock(&current->perf_event_mutex);
5189
5190 return event;
5191
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01005192 err_put_context:
5193 put_ctx(ctx);
5194 err_exit:
5195 return ERR_PTR(err);
Arjan van de Venfb0459d2009-09-25 12:25:56 +02005196}
5197EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5198
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005199/*
5200 * inherit a event from parent task to child task:
5201 */
5202static struct perf_event *
5203inherit_event(struct perf_event *parent_event,
5204 struct task_struct *parent,
5205 struct perf_event_context *parent_ctx,
5206 struct task_struct *child,
5207 struct perf_event *group_leader,
5208 struct perf_event_context *child_ctx)
5209{
5210 struct perf_event *child_event;
5211
5212 /*
5213 * Instead of creating recursive hierarchies of events,
5214 * we link inherited events back to the original parent,
5215 * which has a filp for sure, which we use as the reference
5216 * count:
5217 */
5218 if (parent_event->parent)
5219 parent_event = parent_event->parent;
5220
5221 child_event = perf_event_alloc(&parent_event->attr,
5222 parent_event->cpu, child_ctx,
5223 group_leader, parent_event,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02005224 NULL, GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005225 if (IS_ERR(child_event))
5226 return child_event;
5227 get_ctx(child_ctx);
5228
5229 /*
5230 * Make the child state follow the state of the parent event,
5231 * not its attr.disabled bit. We hold the parent's mutex,
5232 * so we won't race with perf_event_{en, dis}able_family.
5233 */
5234 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5235 child_event->state = PERF_EVENT_STATE_INACTIVE;
5236 else
5237 child_event->state = PERF_EVENT_STATE_OFF;
5238
Peter Zijlstra75c9f322010-01-29 09:04:26 +01005239 if (parent_event->attr.freq) {
5240 u64 sample_period = parent_event->hw.sample_period;
5241 struct hw_perf_event *hwc = &child_event->hw;
5242
5243 hwc->sample_period = sample_period;
5244 hwc->last_period = sample_period;
5245
5246 atomic64_set(&hwc->period_left, sample_period);
5247 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005248
Peter Zijlstra453f19e2009-11-20 22:19:43 +01005249 child_event->overflow_handler = parent_event->overflow_handler;
5250
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005251 /*
5252 * Link it up in the child's context:
5253 */
5254 add_event_to_ctx(child_event, child_ctx);
5255
5256 /*
5257 * Get a reference to the parent filp - we will fput it
5258 * when the child event exits. This is safe to do because
5259 * we are in the parent and we know that the filp still
5260 * exists and has a nonzero count:
5261 */
5262 atomic_long_inc(&parent_event->filp->f_count);
5263
5264 /*
5265 * Link this into the parent event's child list
5266 */
5267 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5268 mutex_lock(&parent_event->child_mutex);
5269 list_add_tail(&child_event->child_list, &parent_event->child_list);
5270 mutex_unlock(&parent_event->child_mutex);
5271
5272 return child_event;
5273}
5274
5275static int inherit_group(struct perf_event *parent_event,
5276 struct task_struct *parent,
5277 struct perf_event_context *parent_ctx,
5278 struct task_struct *child,
5279 struct perf_event_context *child_ctx)
5280{
5281 struct perf_event *leader;
5282 struct perf_event *sub;
5283 struct perf_event *child_ctr;
5284
5285 leader = inherit_event(parent_event, parent, parent_ctx,
5286 child, NULL, child_ctx);
5287 if (IS_ERR(leader))
5288 return PTR_ERR(leader);
5289 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5290 child_ctr = inherit_event(sub, parent, parent_ctx,
5291 child, leader, child_ctx);
5292 if (IS_ERR(child_ctr))
5293 return PTR_ERR(child_ctr);
5294 }
5295 return 0;
5296}
5297
5298static void sync_child_event(struct perf_event *child_event,
5299 struct task_struct *child)
5300{
5301 struct perf_event *parent_event = child_event->parent;
5302 u64 child_val;
5303
5304 if (child_event->attr.inherit_stat)
5305 perf_event_read_event(child_event, child);
5306
5307 child_val = atomic64_read(&child_event->count);
5308
5309 /*
5310 * Add back the child's count to the parent's count:
5311 */
5312 atomic64_add(child_val, &parent_event->count);
5313 atomic64_add(child_event->total_time_enabled,
5314 &parent_event->child_total_time_enabled);
5315 atomic64_add(child_event->total_time_running,
5316 &parent_event->child_total_time_running);
5317
5318 /*
5319 * Remove this event from the parent's list
5320 */
5321 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5322 mutex_lock(&parent_event->child_mutex);
5323 list_del_init(&child_event->child_list);
5324 mutex_unlock(&parent_event->child_mutex);
5325
5326 /*
5327 * Release the parent event, if this was the last
5328 * reference to it.
5329 */
5330 fput(parent_event->filp);
5331}
5332
5333static void
5334__perf_event_exit_task(struct perf_event *child_event,
5335 struct perf_event_context *child_ctx,
5336 struct task_struct *child)
5337{
5338 struct perf_event *parent_event;
5339
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005340 perf_event_remove_from_context(child_event);
5341
5342 parent_event = child_event->parent;
5343 /*
5344 * It can happen that parent exits first, and has events
5345 * that are still around due to the child reference. These
5346 * events need to be zapped - but otherwise linger.
5347 */
5348 if (parent_event) {
5349 sync_child_event(child_event, child);
5350 free_event(child_event);
5351 }
5352}
5353
5354/*
5355 * When a child task exits, feed back event values to parent events.
5356 */
5357void perf_event_exit_task(struct task_struct *child)
5358{
5359 struct perf_event *child_event, *tmp;
5360 struct perf_event_context *child_ctx;
5361 unsigned long flags;
5362
5363 if (likely(!child->perf_event_ctxp)) {
5364 perf_event_task(child, NULL, 0);
5365 return;
5366 }
5367
5368 local_irq_save(flags);
5369 /*
5370 * We can't reschedule here because interrupts are disabled,
5371 * and either child is current or it is a task that can't be
5372 * scheduled, so we are now safe from rescheduling changing
5373 * our context.
5374 */
5375 child_ctx = child->perf_event_ctxp;
5376 __perf_event_task_sched_out(child_ctx);
5377
5378 /*
5379 * Take the context lock here so that if find_get_context is
5380 * reading child->perf_event_ctxp, we wait until it has
5381 * incremented the context's refcount before we do put_ctx below.
5382 */
Thomas Gleixnere625cce2009-11-17 18:02:06 +01005383 raw_spin_lock(&child_ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005384 child->perf_event_ctxp = NULL;
5385 /*
5386 * If this context is a clone; unclone it so it can't get
5387 * swapped to another process while we're removing all
5388 * the events from it.
5389 */
5390 unclone_ctx(child_ctx);
Peter Zijlstra5e942bb2009-11-23 11:37:26 +01005391 update_context_time(child_ctx);
Thomas Gleixnere625cce2009-11-17 18:02:06 +01005392 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005393
5394 /*
5395 * Report the task dead after unscheduling the events so that we
5396 * won't get any samples after PERF_RECORD_EXIT. We can however still
5397 * get a few PERF_RECORD_READ events.
5398 */
5399 perf_event_task(child, child_ctx, 0);
5400
5401 /*
5402 * We can recurse on the same lock type through:
5403 *
5404 * __perf_event_exit_task()
5405 * sync_child_event()
5406 * fput(parent_event->filp)
5407 * perf_release()
5408 * mutex_lock(&ctx->mutex)
5409 *
5410 * But since its the parent context it won't be the same instance.
5411 */
Peter Zijlstraa0507c82010-05-06 15:42:53 +02005412 mutex_lock(&child_ctx->mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005413
5414again:
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005415 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5416 group_entry)
5417 __perf_event_exit_task(child_event, child_ctx, child);
5418
5419 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005420 group_entry)
5421 __perf_event_exit_task(child_event, child_ctx, child);
5422
5423 /*
5424 * If the last event was a group event, it will have appended all
5425 * its siblings to the list, but we obtained 'tmp' before that which
5426 * will still point to the list head terminating the iteration.
5427 */
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005428 if (!list_empty(&child_ctx->pinned_groups) ||
5429 !list_empty(&child_ctx->flexible_groups))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005430 goto again;
5431
5432 mutex_unlock(&child_ctx->mutex);
5433
5434 put_ctx(child_ctx);
5435}
5436
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005437static void perf_free_event(struct perf_event *event,
5438 struct perf_event_context *ctx)
5439{
5440 struct perf_event *parent = event->parent;
5441
5442 if (WARN_ON_ONCE(!parent))
5443 return;
5444
5445 mutex_lock(&parent->child_mutex);
5446 list_del_init(&event->child_list);
5447 mutex_unlock(&parent->child_mutex);
5448
5449 fput(parent->filp);
5450
5451 list_del_event(event, ctx);
5452 free_event(event);
5453}
5454
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005455/*
5456 * free an unexposed, unused context as created by inheritance by
5457 * init_task below, used by fork() in case of fail.
5458 */
5459void perf_event_free_task(struct task_struct *task)
5460{
5461 struct perf_event_context *ctx = task->perf_event_ctxp;
5462 struct perf_event *event, *tmp;
5463
5464 if (!ctx)
5465 return;
5466
5467 mutex_lock(&ctx->mutex);
5468again:
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005469 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5470 perf_free_event(event, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005471
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005472 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5473 group_entry)
5474 perf_free_event(event, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005475
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005476 if (!list_empty(&ctx->pinned_groups) ||
5477 !list_empty(&ctx->flexible_groups))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005478 goto again;
5479
5480 mutex_unlock(&ctx->mutex);
5481
5482 put_ctx(ctx);
5483}
5484
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005485static int
5486inherit_task_group(struct perf_event *event, struct task_struct *parent,
5487 struct perf_event_context *parent_ctx,
5488 struct task_struct *child,
5489 int *inherited_all)
5490{
5491 int ret;
5492 struct perf_event_context *child_ctx = child->perf_event_ctxp;
5493
5494 if (!event->attr.inherit) {
5495 *inherited_all = 0;
5496 return 0;
5497 }
5498
5499 if (!child_ctx) {
5500 /*
5501 * This is executed from the parent task context, so
5502 * inherit events that have been marked for cloning.
5503 * First allocate and initialize a context for the
5504 * child.
5505 */
5506
5507 child_ctx = kzalloc(sizeof(struct perf_event_context),
5508 GFP_KERNEL);
5509 if (!child_ctx)
5510 return -ENOMEM;
5511
5512 __perf_event_init_context(child_ctx, child);
5513 child->perf_event_ctxp = child_ctx;
5514 get_task_struct(child);
5515 }
5516
5517 ret = inherit_group(event, parent, parent_ctx,
5518 child, child_ctx);
5519
5520 if (ret)
5521 *inherited_all = 0;
5522
5523 return ret;
5524}
5525
5526
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005527/*
5528 * Initialize the perf_event context in task_struct
5529 */
5530int perf_event_init_task(struct task_struct *child)
5531{
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005532 struct perf_event_context *child_ctx, *parent_ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005533 struct perf_event_context *cloned_ctx;
5534 struct perf_event *event;
5535 struct task_struct *parent = current;
5536 int inherited_all = 1;
5537 int ret = 0;
5538
5539 child->perf_event_ctxp = NULL;
5540
5541 mutex_init(&child->perf_event_mutex);
5542 INIT_LIST_HEAD(&child->perf_event_list);
5543
5544 if (likely(!parent->perf_event_ctxp))
5545 return 0;
5546
5547 /*
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005548 * If the parent's context is a clone, pin it so it won't get
5549 * swapped under us.
5550 */
5551 parent_ctx = perf_pin_task_context(parent);
5552
5553 /*
5554 * No need to check if parent_ctx != NULL here; since we saw
5555 * it non-NULL earlier, the only reason for it to become NULL
5556 * is if we exit, and since we're currently in the middle of
5557 * a fork we can't be exiting at the same time.
5558 */
5559
5560 /*
5561 * Lock the parent list. No need to lock the child - not PID
5562 * hashed yet and not running, so nobody can access it.
5563 */
5564 mutex_lock(&parent_ctx->mutex);
5565
5566 /*
5567 * We dont have to disable NMIs - we are only looking at
5568 * the list, not manipulating it:
5569 */
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005570 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5571 ret = inherit_task_group(event, parent, parent_ctx, child,
5572 &inherited_all);
5573 if (ret)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005574 break;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005575 }
5576
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005577 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5578 ret = inherit_task_group(event, parent, parent_ctx, child,
5579 &inherited_all);
5580 if (ret)
5581 break;
5582 }
5583
5584 child_ctx = child->perf_event_ctxp;
5585
Peter Zijlstra05cbaa22009-12-30 16:00:35 +01005586 if (child_ctx && inherited_all) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005587 /*
5588 * Mark the child context as a clone of the parent
5589 * context, or of whatever the parent is a clone of.
5590 * Note that if the parent is a clone, it could get
5591 * uncloned at any point, but that doesn't matter
5592 * because the list of events and the generation
5593 * count can't have changed since we took the mutex.
5594 */
5595 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5596 if (cloned_ctx) {
5597 child_ctx->parent_ctx = cloned_ctx;
5598 child_ctx->parent_gen = parent_ctx->parent_gen;
5599 } else {
5600 child_ctx->parent_ctx = parent_ctx;
5601 child_ctx->parent_gen = parent_ctx->generation;
5602 }
5603 get_ctx(child_ctx->parent_ctx);
5604 }
5605
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005606 mutex_unlock(&parent_ctx->mutex);
5607
5608 perf_unpin_context(parent_ctx);
5609
5610 return ret;
5611}
5612
Paul Mackerras220b1402010-03-10 20:45:52 +11005613static void __init perf_event_init_all_cpus(void)
5614{
5615 int cpu;
5616 struct perf_cpu_context *cpuctx;
5617
5618 for_each_possible_cpu(cpu) {
5619 cpuctx = &per_cpu(perf_cpu_context, cpu);
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02005620 mutex_init(&cpuctx->hlist_mutex);
Paul Mackerras220b1402010-03-10 20:45:52 +11005621 __perf_event_init_context(&cpuctx->ctx, NULL);
5622 }
5623}
5624
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005625static void __cpuinit perf_event_init_cpu(int cpu)
5626{
5627 struct perf_cpu_context *cpuctx;
5628
5629 cpuctx = &per_cpu(perf_cpu_context, cpu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005630
5631 spin_lock(&perf_resource_lock);
5632 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5633 spin_unlock(&perf_resource_lock);
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02005634
5635 mutex_lock(&cpuctx->hlist_mutex);
5636 if (cpuctx->hlist_refcount > 0) {
5637 struct swevent_hlist *hlist;
5638
5639 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5640 WARN_ON_ONCE(!hlist);
5641 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
5642 }
5643 mutex_unlock(&cpuctx->hlist_mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005644}
5645
5646#ifdef CONFIG_HOTPLUG_CPU
5647static void __perf_event_exit_cpu(void *info)
5648{
5649 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5650 struct perf_event_context *ctx = &cpuctx->ctx;
5651 struct perf_event *event, *tmp;
5652
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005653 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5654 __perf_event_remove_from_context(event);
5655 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005656 __perf_event_remove_from_context(event);
5657}
5658static void perf_event_exit_cpu(int cpu)
5659{
5660 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5661 struct perf_event_context *ctx = &cpuctx->ctx;
5662
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02005663 mutex_lock(&cpuctx->hlist_mutex);
5664 swevent_hlist_release(cpuctx);
5665 mutex_unlock(&cpuctx->hlist_mutex);
5666
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005667 mutex_lock(&ctx->mutex);
5668 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5669 mutex_unlock(&ctx->mutex);
5670}
5671#else
5672static inline void perf_event_exit_cpu(int cpu) { }
5673#endif
5674
5675static int __cpuinit
5676perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5677{
5678 unsigned int cpu = (long)hcpu;
5679
5680 switch (action) {
5681
5682 case CPU_UP_PREPARE:
5683 case CPU_UP_PREPARE_FROZEN:
5684 perf_event_init_cpu(cpu);
5685 break;
5686
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005687 case CPU_DOWN_PREPARE:
5688 case CPU_DOWN_PREPARE_FROZEN:
5689 perf_event_exit_cpu(cpu);
5690 break;
5691
5692 default:
5693 break;
5694 }
5695
5696 return NOTIFY_OK;
5697}
5698
5699/*
5700 * This has to have a higher priority than migration_notifier in sched.c.
5701 */
5702static struct notifier_block __cpuinitdata perf_cpu_nb = {
5703 .notifier_call = perf_cpu_notify,
5704 .priority = 20,
5705};
5706
5707void __init perf_event_init(void)
5708{
Paul Mackerras220b1402010-03-10 20:45:52 +11005709 perf_event_init_all_cpus();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005710 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5711 (void *)(long)smp_processor_id());
5712 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5713 (void *)(long)smp_processor_id());
5714 register_cpu_notifier(&perf_cpu_nb);
5715}
5716
Andi Kleenc9be0a32010-01-05 12:47:58 +01005717static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
5718 struct sysdev_class_attribute *attr,
5719 char *buf)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005720{
5721 return sprintf(buf, "%d\n", perf_reserved_percpu);
5722}
5723
5724static ssize_t
5725perf_set_reserve_percpu(struct sysdev_class *class,
Andi Kleenc9be0a32010-01-05 12:47:58 +01005726 struct sysdev_class_attribute *attr,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005727 const char *buf,
5728 size_t count)
5729{
5730 struct perf_cpu_context *cpuctx;
5731 unsigned long val;
5732 int err, cpu, mpt;
5733
5734 err = strict_strtoul(buf, 10, &val);
5735 if (err)
5736 return err;
5737 if (val > perf_max_events)
5738 return -EINVAL;
5739
5740 spin_lock(&perf_resource_lock);
5741 perf_reserved_percpu = val;
5742 for_each_online_cpu(cpu) {
5743 cpuctx = &per_cpu(perf_cpu_context, cpu);
Thomas Gleixnere625cce2009-11-17 18:02:06 +01005744 raw_spin_lock_irq(&cpuctx->ctx.lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005745 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5746 perf_max_events - perf_reserved_percpu);
5747 cpuctx->max_pertask = mpt;
Thomas Gleixnere625cce2009-11-17 18:02:06 +01005748 raw_spin_unlock_irq(&cpuctx->ctx.lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005749 }
5750 spin_unlock(&perf_resource_lock);
5751
5752 return count;
5753}
5754
Andi Kleenc9be0a32010-01-05 12:47:58 +01005755static ssize_t perf_show_overcommit(struct sysdev_class *class,
5756 struct sysdev_class_attribute *attr,
5757 char *buf)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005758{
5759 return sprintf(buf, "%d\n", perf_overcommit);
5760}
5761
5762static ssize_t
Andi Kleenc9be0a32010-01-05 12:47:58 +01005763perf_set_overcommit(struct sysdev_class *class,
5764 struct sysdev_class_attribute *attr,
5765 const char *buf, size_t count)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005766{
5767 unsigned long val;
5768 int err;
5769
5770 err = strict_strtoul(buf, 10, &val);
5771 if (err)
5772 return err;
5773 if (val > 1)
5774 return -EINVAL;
5775
5776 spin_lock(&perf_resource_lock);
5777 perf_overcommit = val;
5778 spin_unlock(&perf_resource_lock);
5779
5780 return count;
5781}
5782
5783static SYSDEV_CLASS_ATTR(
5784 reserve_percpu,
5785 0644,
5786 perf_show_reserve_percpu,
5787 perf_set_reserve_percpu
5788 );
5789
5790static SYSDEV_CLASS_ATTR(
5791 overcommit,
5792 0644,
5793 perf_show_overcommit,
5794 perf_set_overcommit
5795 );
5796
5797static struct attribute *perfclass_attrs[] = {
5798 &attr_reserve_percpu.attr,
5799 &attr_overcommit.attr,
5800 NULL
5801};
5802
5803static struct attribute_group perfclass_attr_group = {
5804 .attrs = perfclass_attrs,
5805 .name = "perf_events",
5806};
5807
5808static int __init perf_event_sysfs_init(void)
5809{
5810 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5811 &perfclass_attr_group);
5812}
5813device_initcall(perf_event_sysfs_init);