| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  * arch/sparc/math-emu/math.c | 
 | 3 |  * | 
 | 4 |  * Copyright (C) 1998 Peter Maydell (pmaydell@chiark.greenend.org.uk) | 
 | 5 |  * Copyright (C) 1997, 1999 Jakub Jelinek (jj@ultra.linux.cz) | 
 | 6 |  * Copyright (C) 1999 David S. Miller (davem@redhat.com) | 
 | 7 |  * | 
 | 8 |  * This is a good place to start if you're trying to understand the | 
 | 9 |  * emulation code, because it's pretty simple. What we do is | 
 | 10 |  * essentially analyse the instruction to work out what the operation | 
 | 11 |  * is and which registers are involved. We then execute the appropriate | 
 | 12 |  * FXXXX function. [The floating point queue introduces a minor wrinkle; | 
 | 13 |  * see below...] | 
 | 14 |  * The fxxxxx.c files each emulate a single insn. They look relatively | 
 | 15 |  * simple because the complexity is hidden away in an unholy tangle | 
 | 16 |  * of preprocessor macros. | 
 | 17 |  * | 
 | 18 |  * The first layer of macros is single.h, double.h, quad.h. Generally | 
 | 19 |  * these files define macros for working with floating point numbers | 
 | 20 |  * of the three IEEE formats. FP_ADD_D(R,A,B) is for adding doubles, | 
 | 21 |  * for instance. These macros are usually defined as calls to more | 
 | 22 |  * generic macros (in this case _FP_ADD(D,2,R,X,Y) where the number | 
 | 23 |  * of machine words required to store the given IEEE format is passed | 
 | 24 |  * as a parameter. [double.h and co check the number of bits in a word | 
 | 25 |  * and define FP_ADD_D & co appropriately]. | 
 | 26 |  * The generic macros are defined in op-common.h. This is where all | 
 | 27 |  * the grotty stuff like handling NaNs is coded. To handle the possible | 
 | 28 |  * word sizes macros in op-common.h use macros like _FP_FRAC_SLL_##wc() | 
 | 29 |  * where wc is the 'number of machine words' parameter (here 2). | 
 | 30 |  * These are defined in the third layer of macros: op-1.h, op-2.h | 
 | 31 |  * and op-4.h. These handle operations on floating point numbers composed | 
 | 32 |  * of 1,2 and 4 machine words respectively. [For example, on sparc64 | 
 | 33 |  * doubles are one machine word so macros in double.h eventually use | 
 | 34 |  * constructs in op-1.h, but on sparc32 they use op-2.h definitions.] | 
 | 35 |  * soft-fp.h is on the same level as op-common.h, and defines some | 
 | 36 |  * macros which are independent of both word size and FP format. | 
 | 37 |  * Finally, sfp-machine.h is the machine dependent part of the | 
 | 38 |  * code: it defines the word size and what type a word is. It also | 
 | 39 |  * defines how _FP_MUL_MEAT_t() maps to _FP_MUL_MEAT_n_* : op-n.h | 
 | 40 |  * provide several possible flavours of multiply algorithm, most | 
 | 41 |  * of which require that you supply some form of asm or C primitive to | 
 | 42 |  * do the actual multiply. (such asm primitives should be defined | 
 | 43 |  * in sfp-machine.h too). udivmodti4.c is the same sort of thing. | 
 | 44 |  * | 
 | 45 |  * There may be some errors here because I'm working from a | 
 | 46 |  * SPARC architecture manual V9, and what I really want is V8... | 
 | 47 |  * Also, the insns which can generate exceptions seem to be a | 
 | 48 |  * greater subset of the FPops than for V9 (for example, FCMPED | 
 | 49 |  * has to be emulated on V8). So I think I'm going to have | 
 | 50 |  * to emulate them all just to be on the safe side... | 
 | 51 |  * | 
 | 52 |  * Emulation routines originate from soft-fp package, which is | 
 | 53 |  * part of glibc and has appropriate copyrights in it (allegedly). | 
 | 54 |  * | 
 | 55 |  * NB: on sparc int == long == 4 bytes, long long == 8 bytes. | 
 | 56 |  * Most bits of the kernel seem to go for long rather than int, | 
 | 57 |  * so we follow that practice... | 
 | 58 |  */ | 
 | 59 |  | 
 | 60 | /* TODO: | 
 | 61 |  * fpsave() saves the FP queue but fpload() doesn't reload it. | 
 | 62 |  * Therefore when we context switch or change FPU ownership | 
 | 63 |  * we have to check to see if the queue had anything in it and | 
 | 64 |  * emulate it if it did. This is going to be a pain. | 
 | 65 |  */ | 
 | 66 |  | 
 | 67 | #include <linux/types.h> | 
 | 68 | #include <linux/sched.h> | 
 | 69 | #include <linux/mm.h> | 
 | 70 | #include <asm/uaccess.h> | 
 | 71 |  | 
| Sam Ravnborg | 774434b | 2008-11-16 20:06:33 -0800 | [diff] [blame] | 72 | #include "sfp-util_32.h" | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 73 | #include <math-emu/soft-fp.h> | 
 | 74 | #include <math-emu/single.h> | 
 | 75 | #include <math-emu/double.h> | 
 | 76 | #include <math-emu/quad.h> | 
 | 77 |  | 
 | 78 | #define FLOATFUNC(x) extern int x(void *,void *,void *) | 
 | 79 |  | 
 | 80 | /* The Vn labels indicate what version of the SPARC architecture gas thinks | 
 | 81 |  * each insn is. This is from the binutils source :-> | 
 | 82 |  */ | 
 | 83 | /* quadword instructions */ | 
 | 84 | #define FSQRTQ	0x02b		/* v8 */ | 
 | 85 | #define FADDQ	0x043		/* v8 */ | 
 | 86 | #define FSUBQ	0x047		/* v8 */ | 
 | 87 | #define FMULQ	0x04b		/* v8 */ | 
 | 88 | #define FDIVQ	0x04f		/* v8 */ | 
 | 89 | #define FDMULQ	0x06e		/* v8 */ | 
 | 90 | #define FQTOS	0x0c7		/* v8 */ | 
 | 91 | #define FQTOD	0x0cb		/* v8 */ | 
 | 92 | #define FITOQ	0x0cc		/* v8 */ | 
 | 93 | #define FSTOQ	0x0cd		/* v8 */ | 
 | 94 | #define FDTOQ	0x0ce		/* v8 */ | 
 | 95 | #define FQTOI	0x0d3		/* v8 */ | 
 | 96 | #define FCMPQ	0x053		/* v8 */ | 
 | 97 | #define FCMPEQ	0x057		/* v8 */ | 
 | 98 | /* single/double instructions (subnormal): should all work */ | 
 | 99 | #define FSQRTS	0x029		/* v7 */ | 
 | 100 | #define FSQRTD	0x02a		/* v7 */ | 
 | 101 | #define FADDS	0x041		/* v6 */ | 
 | 102 | #define FADDD	0x042		/* v6 */ | 
 | 103 | #define FSUBS	0x045		/* v6 */ | 
 | 104 | #define FSUBD	0x046		/* v6 */ | 
 | 105 | #define FMULS	0x049		/* v6 */ | 
 | 106 | #define FMULD	0x04a		/* v6 */ | 
 | 107 | #define FDIVS	0x04d		/* v6 */ | 
 | 108 | #define FDIVD	0x04e		/* v6 */ | 
 | 109 | #define FSMULD	0x069		/* v6 */ | 
 | 110 | #define FDTOS	0x0c6		/* v6 */ | 
 | 111 | #define FSTOD	0x0c9		/* v6 */ | 
 | 112 | #define FSTOI	0x0d1		/* v6 */ | 
 | 113 | #define FDTOI	0x0d2		/* v6 */ | 
 | 114 | #define FABSS	0x009		/* v6 */ | 
 | 115 | #define FCMPS	0x051		/* v6 */ | 
 | 116 | #define FCMPES	0x055		/* v6 */ | 
 | 117 | #define FCMPD	0x052		/* v6 */ | 
 | 118 | #define FCMPED	0x056		/* v6 */ | 
 | 119 | #define FMOVS	0x001		/* v6 */ | 
 | 120 | #define FNEGS	0x005		/* v6 */ | 
 | 121 | #define FITOS	0x0c4		/* v6 */ | 
 | 122 | #define FITOD	0x0c8		/* v6 */ | 
 | 123 |  | 
 | 124 | #define FSR_TEM_SHIFT	23UL | 
 | 125 | #define FSR_TEM_MASK	(0x1fUL << FSR_TEM_SHIFT) | 
 | 126 | #define FSR_AEXC_SHIFT	5UL | 
 | 127 | #define FSR_AEXC_MASK	(0x1fUL << FSR_AEXC_SHIFT) | 
 | 128 | #define FSR_CEXC_SHIFT	0UL | 
 | 129 | #define FSR_CEXC_MASK	(0x1fUL << FSR_CEXC_SHIFT) | 
 | 130 |  | 
 | 131 | static int do_one_mathemu(u32 insn, unsigned long *fsr, unsigned long *fregs); | 
 | 132 |  | 
 | 133 | /* Unlike the Sparc64 version (which has a struct fpustate), we | 
 | 134 |  * pass the taskstruct corresponding to the task which currently owns the | 
 | 135 |  * FPU. This is partly because we don't have the fpustate struct and | 
 | 136 |  * partly because the task owning the FPU isn't always current (as is | 
 | 137 |  * the case for the Sparc64 port). This is probably SMP-related... | 
 | 138 |  * This function returns 1 if all queued insns were emulated successfully. | 
 | 139 |  * The test for unimplemented FPop in kernel mode has been moved into | 
 | 140 |  * kernel/traps.c for simplicity. | 
 | 141 |  */ | 
 | 142 | int do_mathemu(struct pt_regs *regs, struct task_struct *fpt) | 
 | 143 | { | 
 | 144 | 	/* regs->pc isn't necessarily the PC at which the offending insn is sitting. | 
 | 145 | 	 * The FPU maintains a queue of FPops which cause traps. | 
 | 146 | 	 * When it hits an instruction that requires that the trapped op succeeded | 
 | 147 | 	 * (usually because it reads a reg. that the trapped op wrote) then it | 
 | 148 | 	 * causes this exception. We need to emulate all the insns on the queue | 
 | 149 | 	 * and then allow the op to proceed. | 
 | 150 | 	 * This code should also handle the case where the trap was precise, | 
 | 151 | 	 * in which case the queue length is zero and regs->pc points at the | 
 | 152 | 	 * single FPop to be emulated. (this case is untested, though :->) | 
 | 153 | 	 * You'll need this case if you want to be able to emulate all FPops | 
 | 154 | 	 * because the FPU either doesn't exist or has been software-disabled. | 
 | 155 | 	 * [The UltraSPARC makes FP a precise trap; this isn't as stupid as it | 
 | 156 | 	 * might sound because the Ultra does funky things with a superscalar | 
 | 157 | 	 * architecture.] | 
 | 158 | 	 */ | 
 | 159 |  | 
 | 160 | 	/* You wouldn't believe how often I typed 'ftp' when I meant 'fpt' :-> */ | 
 | 161 |  | 
 | 162 | 	int i; | 
 | 163 | 	int retcode = 0;                               /* assume all succeed */ | 
 | 164 | 	unsigned long insn; | 
 | 165 |  | 
 | 166 | #ifdef DEBUG_MATHEMU | 
 | 167 | 	printk("In do_mathemu()... pc is %08lx\n", regs->pc); | 
 | 168 | 	printk("fpqdepth is %ld\n", fpt->thread.fpqdepth); | 
 | 169 | 	for (i = 0; i < fpt->thread.fpqdepth; i++) | 
 | 170 | 		printk("%d: %08lx at %08lx\n", i, fpt->thread.fpqueue[i].insn, | 
 | 171 | 		       (unsigned long)fpt->thread.fpqueue[i].insn_addr); | 
 | 172 | #endif | 
 | 173 |  | 
 | 174 | 	if (fpt->thread.fpqdepth == 0) {                   /* no queue, guilty insn is at regs->pc */ | 
 | 175 | #ifdef DEBUG_MATHEMU | 
 | 176 | 		printk("precise trap at %08lx\n", regs->pc); | 
 | 177 | #endif | 
 | 178 | 		if (!get_user(insn, (u32 __user *) regs->pc)) { | 
 | 179 | 			retcode = do_one_mathemu(insn, &fpt->thread.fsr, fpt->thread.float_regs); | 
 | 180 | 			if (retcode) { | 
 | 181 | 				/* in this case we need to fix up PC & nPC */ | 
 | 182 | 				regs->pc = regs->npc; | 
 | 183 | 				regs->npc += 4; | 
 | 184 | 			} | 
 | 185 | 		} | 
 | 186 | 		return retcode; | 
 | 187 | 	} | 
 | 188 |  | 
 | 189 | 	/* Normal case: need to empty the queue... */ | 
 | 190 | 	for (i = 0; i < fpt->thread.fpqdepth; i++) { | 
 | 191 | 		retcode = do_one_mathemu(fpt->thread.fpqueue[i].insn, &(fpt->thread.fsr), fpt->thread.float_regs); | 
 | 192 | 		if (!retcode)                               /* insn failed, no point doing any more */ | 
 | 193 | 			break; | 
 | 194 | 	} | 
 | 195 | 	/* Now empty the queue and clear the queue_not_empty flag */ | 
 | 196 | 	if (retcode) | 
 | 197 | 		fpt->thread.fsr &= ~(0x3000 | FSR_CEXC_MASK); | 
 | 198 | 	else | 
 | 199 | 		fpt->thread.fsr &= ~0x3000; | 
 | 200 | 	fpt->thread.fpqdepth = 0; | 
 | 201 |  | 
 | 202 | 	return retcode; | 
 | 203 | } | 
 | 204 |  | 
 | 205 | /* All routines returning an exception to raise should detect | 
 | 206 |  * such exceptions _before_ rounding to be consistent with | 
 | 207 |  * the behavior of the hardware in the implemented cases | 
 | 208 |  * (and thus with the recommendations in the V9 architecture | 
 | 209 |  * manual). | 
 | 210 |  * | 
 | 211 |  * We return 0 if a SIGFPE should be sent, 1 otherwise. | 
 | 212 |  */ | 
 | 213 | static inline int record_exception(unsigned long *pfsr, int eflag) | 
 | 214 | { | 
 | 215 | 	unsigned long fsr = *pfsr; | 
 | 216 | 	int would_trap; | 
 | 217 |  | 
 | 218 | 	/* Determine if this exception would have generated a trap. */ | 
 | 219 | 	would_trap = (fsr & ((long)eflag << FSR_TEM_SHIFT)) != 0UL; | 
 | 220 |  | 
 | 221 | 	/* If trapping, we only want to signal one bit. */ | 
 | 222 | 	if (would_trap != 0) { | 
 | 223 | 		eflag &= ((fsr & FSR_TEM_MASK) >> FSR_TEM_SHIFT); | 
 | 224 | 		if ((eflag & (eflag - 1)) != 0) { | 
 | 225 | 			if (eflag & FP_EX_INVALID) | 
 | 226 | 				eflag = FP_EX_INVALID; | 
 | 227 | 			else if (eflag & FP_EX_OVERFLOW) | 
 | 228 | 				eflag = FP_EX_OVERFLOW; | 
 | 229 | 			else if (eflag & FP_EX_UNDERFLOW) | 
 | 230 | 				eflag = FP_EX_UNDERFLOW; | 
 | 231 | 			else if (eflag & FP_EX_DIVZERO) | 
 | 232 | 				eflag = FP_EX_DIVZERO; | 
 | 233 | 			else if (eflag & FP_EX_INEXACT) | 
 | 234 | 				eflag = FP_EX_INEXACT; | 
 | 235 | 		} | 
 | 236 | 	} | 
 | 237 |  | 
 | 238 | 	/* Set CEXC, here is the rule: | 
 | 239 | 	 * | 
 | 240 | 	 *    In general all FPU ops will set one and only one | 
 | 241 | 	 *    bit in the CEXC field, this is always the case | 
 | 242 | 	 *    when the IEEE exception trap is enabled in TEM. | 
 | 243 | 	 */ | 
 | 244 | 	fsr &= ~(FSR_CEXC_MASK); | 
 | 245 | 	fsr |= ((long)eflag << FSR_CEXC_SHIFT); | 
 | 246 |  | 
 | 247 | 	/* Set the AEXC field, rule is: | 
 | 248 | 	 * | 
 | 249 | 	 *    If a trap would not be generated, the | 
 | 250 | 	 *    CEXC just generated is OR'd into the | 
 | 251 | 	 *    existing value of AEXC. | 
 | 252 | 	 */ | 
 | 253 | 	if (would_trap == 0) | 
 | 254 | 		fsr |= ((long)eflag << FSR_AEXC_SHIFT); | 
 | 255 |  | 
 | 256 | 	/* If trapping, indicate fault trap type IEEE. */ | 
 | 257 | 	if (would_trap != 0) | 
 | 258 | 		fsr |= (1UL << 14); | 
 | 259 |  | 
 | 260 | 	*pfsr = fsr; | 
 | 261 |  | 
 | 262 | 	return (would_trap ? 0 : 1); | 
 | 263 | } | 
 | 264 |  | 
 | 265 | typedef union { | 
 | 266 | 	u32 s; | 
 | 267 | 	u64 d; | 
 | 268 | 	u64 q[2]; | 
 | 269 | } *argp; | 
 | 270 |  | 
 | 271 | static int do_one_mathemu(u32 insn, unsigned long *pfsr, unsigned long *fregs) | 
 | 272 | { | 
 | 273 | 	/* Emulate the given insn, updating fsr and fregs appropriately. */ | 
 | 274 | 	int type = 0; | 
 | 275 | 	/* r is rd, b is rs2 and a is rs1. The *u arg tells | 
 | 276 | 	   whether the argument should be packed/unpacked (0 - do not unpack/pack, 1 - unpack/pack) | 
 | 277 | 	   non-u args tells the size of the argument (0 - no argument, 1 - single, 2 - double, 3 - quad */ | 
 | 278 | #define TYPE(dummy, r, ru, b, bu, a, au) type = (au << 2) | (a << 0) | (bu << 5) | (b << 3) | (ru << 8) | (r << 6) | 
 | 279 | 	int freg; | 
 | 280 | 	argp rs1 = NULL, rs2 = NULL, rd = NULL; | 
 | 281 | 	FP_DECL_EX; | 
 | 282 | 	FP_DECL_S(SA); FP_DECL_S(SB); FP_DECL_S(SR); | 
 | 283 | 	FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DR); | 
 | 284 | 	FP_DECL_Q(QA); FP_DECL_Q(QB); FP_DECL_Q(QR); | 
 | 285 | 	int IR; | 
 | 286 | 	long fsr; | 
 | 287 |  | 
 | 288 | #ifdef DEBUG_MATHEMU | 
 | 289 | 	printk("In do_mathemu(), emulating %08lx\n", insn); | 
 | 290 | #endif | 
 | 291 |  | 
 | 292 | 	if ((insn & 0xc1f80000) == 0x81a00000)	/* FPOP1 */ { | 
 | 293 | 		switch ((insn >> 5) & 0x1ff) { | 
 | 294 | 		case FSQRTQ: TYPE(3,3,1,3,1,0,0); break; | 
 | 295 | 		case FADDQ: | 
 | 296 | 		case FSUBQ: | 
 | 297 | 		case FMULQ: | 
 | 298 | 		case FDIVQ: TYPE(3,3,1,3,1,3,1); break; | 
 | 299 | 		case FDMULQ: TYPE(3,3,1,2,1,2,1); break; | 
 | 300 | 		case FQTOS: TYPE(3,1,1,3,1,0,0); break; | 
 | 301 | 		case FQTOD: TYPE(3,2,1,3,1,0,0); break; | 
 | 302 | 		case FITOQ: TYPE(3,3,1,1,0,0,0); break; | 
 | 303 | 		case FSTOQ: TYPE(3,3,1,1,1,0,0); break; | 
 | 304 | 		case FDTOQ: TYPE(3,3,1,2,1,0,0); break; | 
 | 305 | 		case FQTOI: TYPE(3,1,0,3,1,0,0); break; | 
 | 306 | 		case FSQRTS: TYPE(2,1,1,1,1,0,0); break; | 
 | 307 | 		case FSQRTD: TYPE(2,2,1,2,1,0,0); break; | 
 | 308 | 		case FADDD: | 
 | 309 | 		case FSUBD: | 
 | 310 | 		case FMULD: | 
 | 311 | 		case FDIVD: TYPE(2,2,1,2,1,2,1); break; | 
 | 312 | 		case FADDS: | 
 | 313 | 		case FSUBS: | 
 | 314 | 		case FMULS: | 
 | 315 | 		case FDIVS: TYPE(2,1,1,1,1,1,1); break; | 
 | 316 | 		case FSMULD: TYPE(2,2,1,1,1,1,1); break; | 
 | 317 | 		case FDTOS: TYPE(2,1,1,2,1,0,0); break; | 
 | 318 | 		case FSTOD: TYPE(2,2,1,1,1,0,0); break; | 
 | 319 | 		case FSTOI: TYPE(2,1,0,1,1,0,0); break; | 
 | 320 | 		case FDTOI: TYPE(2,1,0,2,1,0,0); break; | 
 | 321 | 		case FITOS: TYPE(2,1,1,1,0,0,0); break; | 
 | 322 | 		case FITOD: TYPE(2,2,1,1,0,0,0); break; | 
 | 323 | 		case FMOVS: | 
 | 324 | 		case FABSS: | 
 | 325 | 		case FNEGS: TYPE(2,1,0,1,0,0,0); break; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 326 | 		} | 
 | 327 | 	} else if ((insn & 0xc1f80000) == 0x81a80000)	/* FPOP2 */ { | 
 | 328 | 		switch ((insn >> 5) & 0x1ff) { | 
 | 329 | 		case FCMPS: TYPE(3,0,0,1,1,1,1); break; | 
 | 330 | 		case FCMPES: TYPE(3,0,0,1,1,1,1); break; | 
 | 331 | 		case FCMPD: TYPE(3,0,0,2,1,2,1); break; | 
 | 332 | 		case FCMPED: TYPE(3,0,0,2,1,2,1); break; | 
 | 333 | 		case FCMPQ: TYPE(3,0,0,3,1,3,1); break; | 
 | 334 | 		case FCMPEQ: TYPE(3,0,0,3,1,3,1); break; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 335 | 		} | 
 | 336 | 	} | 
 | 337 |  | 
 | 338 | 	if (!type) {	/* oops, didn't recognise that FPop */ | 
 | 339 | #ifdef DEBUG_MATHEMU | 
 | 340 | 		printk("attempt to emulate unrecognised FPop!\n"); | 
 | 341 | #endif | 
 | 342 | 		return 0; | 
 | 343 | 	} | 
 | 344 |  | 
 | 345 | 	/* Decode the registers to be used */ | 
 | 346 | 	freg = (*pfsr >> 14) & 0xf; | 
 | 347 |  | 
 | 348 | 	*pfsr &= ~0x1c000;				/* clear the traptype bits */ | 
 | 349 | 	 | 
 | 350 | 	freg = ((insn >> 14) & 0x1f); | 
 | 351 | 	switch (type & 0x3) {				/* is rs1 single, double or quad? */ | 
 | 352 | 	case 3: | 
 | 353 | 		if (freg & 3) {				/* quadwords must have bits 4&5 of the */ | 
 | 354 | 							/* encoded reg. number set to zero. */ | 
 | 355 | 			*pfsr |= (6 << 14); | 
 | 356 | 			return 0;			/* simulate invalid_fp_register exception */ | 
 | 357 | 		} | 
 | 358 | 	/* fall through */ | 
 | 359 | 	case 2: | 
 | 360 | 		if (freg & 1) {				/* doublewords must have bit 5 zeroed */ | 
 | 361 | 			*pfsr |= (6 << 14); | 
 | 362 | 			return 0; | 
 | 363 | 		} | 
 | 364 | 	} | 
 | 365 | 	rs1 = (argp)&fregs[freg]; | 
 | 366 | 	switch (type & 0x7) { | 
 | 367 | 	case 7: FP_UNPACK_QP (QA, rs1); break; | 
 | 368 | 	case 6: FP_UNPACK_DP (DA, rs1); break; | 
 | 369 | 	case 5: FP_UNPACK_SP (SA, rs1); break; | 
 | 370 | 	} | 
 | 371 | 	freg = (insn & 0x1f); | 
 | 372 | 	switch ((type >> 3) & 0x3) {			/* same again for rs2 */ | 
 | 373 | 	case 3: | 
 | 374 | 		if (freg & 3) {				/* quadwords must have bits 4&5 of the */ | 
 | 375 | 							/* encoded reg. number set to zero. */ | 
 | 376 | 			*pfsr |= (6 << 14); | 
 | 377 | 			return 0;			/* simulate invalid_fp_register exception */ | 
 | 378 | 		} | 
 | 379 | 	/* fall through */ | 
 | 380 | 	case 2: | 
 | 381 | 		if (freg & 1) {				/* doublewords must have bit 5 zeroed */ | 
 | 382 | 			*pfsr |= (6 << 14); | 
 | 383 | 			return 0; | 
 | 384 | 		} | 
 | 385 | 	} | 
 | 386 | 	rs2 = (argp)&fregs[freg]; | 
 | 387 | 	switch ((type >> 3) & 0x7) { | 
 | 388 | 	case 7: FP_UNPACK_QP (QB, rs2); break; | 
 | 389 | 	case 6: FP_UNPACK_DP (DB, rs2); break; | 
 | 390 | 	case 5: FP_UNPACK_SP (SB, rs2); break; | 
 | 391 | 	} | 
 | 392 | 	freg = ((insn >> 25) & 0x1f); | 
 | 393 | 	switch ((type >> 6) & 0x3) {			/* and finally rd. This one's a bit different */ | 
 | 394 | 	case 0:						/* dest is fcc. (this must be FCMPQ or FCMPEQ) */ | 
 | 395 | 		if (freg) {				/* V8 has only one set of condition codes, so */ | 
 | 396 | 							/* anything but 0 in the rd field is an error */ | 
 | 397 | 			*pfsr |= (6 << 14);		/* (should probably flag as invalid opcode */ | 
 | 398 | 			return 0;			/* but SIGFPE will do :-> ) */ | 
 | 399 | 		} | 
 | 400 | 		break; | 
 | 401 | 	case 3: | 
 | 402 | 		if (freg & 3) {				/* quadwords must have bits 4&5 of the */ | 
 | 403 | 							/* encoded reg. number set to zero. */ | 
 | 404 | 			*pfsr |= (6 << 14); | 
 | 405 | 			return 0;			/* simulate invalid_fp_register exception */ | 
 | 406 | 		} | 
 | 407 | 	/* fall through */ | 
 | 408 | 	case 2: | 
 | 409 | 		if (freg & 1) {				/* doublewords must have bit 5 zeroed */ | 
 | 410 | 			*pfsr |= (6 << 14); | 
 | 411 | 			return 0; | 
 | 412 | 		} | 
 | 413 | 	/* fall through */ | 
 | 414 | 	case 1: | 
 | 415 | 		rd = (void *)&fregs[freg]; | 
 | 416 | 		break; | 
 | 417 | 	} | 
 | 418 | #ifdef DEBUG_MATHEMU | 
 | 419 | 	printk("executing insn...\n"); | 
 | 420 | #endif | 
 | 421 | 	/* do the Right Thing */ | 
 | 422 | 	switch ((insn >> 5) & 0x1ff) { | 
 | 423 | 	/* + */ | 
 | 424 | 	case FADDS: FP_ADD_S (SR, SA, SB); break; | 
 | 425 | 	case FADDD: FP_ADD_D (DR, DA, DB); break; | 
 | 426 | 	case FADDQ: FP_ADD_Q (QR, QA, QB); break; | 
 | 427 | 	/* - */ | 
 | 428 | 	case FSUBS: FP_SUB_S (SR, SA, SB); break; | 
 | 429 | 	case FSUBD: FP_SUB_D (DR, DA, DB); break; | 
 | 430 | 	case FSUBQ: FP_SUB_Q (QR, QA, QB); break; | 
 | 431 | 	/* * */ | 
 | 432 | 	case FMULS: FP_MUL_S (SR, SA, SB); break; | 
 | 433 | 	case FSMULD: FP_CONV (D, S, 2, 1, DA, SA); | 
 | 434 | 		     FP_CONV (D, S, 2, 1, DB, SB); | 
 | 435 | 	case FMULD: FP_MUL_D (DR, DA, DB); break; | 
 | 436 | 	case FDMULQ: FP_CONV (Q, D, 4, 2, QA, DA); | 
 | 437 | 		     FP_CONV (Q, D, 4, 2, QB, DB); | 
 | 438 | 	case FMULQ: FP_MUL_Q (QR, QA, QB); break; | 
 | 439 | 	/* / */ | 
 | 440 | 	case FDIVS: FP_DIV_S (SR, SA, SB); break; | 
 | 441 | 	case FDIVD: FP_DIV_D (DR, DA, DB); break; | 
 | 442 | 	case FDIVQ: FP_DIV_Q (QR, QA, QB); break; | 
 | 443 | 	/* sqrt */ | 
 | 444 | 	case FSQRTS: FP_SQRT_S (SR, SB); break; | 
 | 445 | 	case FSQRTD: FP_SQRT_D (DR, DB); break; | 
 | 446 | 	case FSQRTQ: FP_SQRT_Q (QR, QB); break; | 
 | 447 | 	/* mov */ | 
 | 448 | 	case FMOVS: rd->s = rs2->s; break; | 
 | 449 | 	case FABSS: rd->s = rs2->s & 0x7fffffff; break; | 
 | 450 | 	case FNEGS: rd->s = rs2->s ^ 0x80000000; break; | 
 | 451 | 	/* float to int */ | 
 | 452 | 	case FSTOI: FP_TO_INT_S (IR, SB, 32, 1); break; | 
 | 453 | 	case FDTOI: FP_TO_INT_D (IR, DB, 32, 1); break; | 
 | 454 | 	case FQTOI: FP_TO_INT_Q (IR, QB, 32, 1); break; | 
 | 455 | 	/* int to float */ | 
 | 456 | 	case FITOS: IR = rs2->s; FP_FROM_INT_S (SR, IR, 32, int); break; | 
 | 457 | 	case FITOD: IR = rs2->s; FP_FROM_INT_D (DR, IR, 32, int); break; | 
 | 458 | 	case FITOQ: IR = rs2->s; FP_FROM_INT_Q (QR, IR, 32, int); break; | 
 | 459 | 	/* float to float */ | 
 | 460 | 	case FSTOD: FP_CONV (D, S, 2, 1, DR, SB); break; | 
 | 461 | 	case FSTOQ: FP_CONV (Q, S, 4, 1, QR, SB); break; | 
 | 462 | 	case FDTOQ: FP_CONV (Q, D, 4, 2, QR, DB); break; | 
 | 463 | 	case FDTOS: FP_CONV (S, D, 1, 2, SR, DB); break; | 
 | 464 | 	case FQTOS: FP_CONV (S, Q, 1, 4, SR, QB); break; | 
 | 465 | 	case FQTOD: FP_CONV (D, Q, 2, 4, DR, QB); break; | 
 | 466 | 	/* comparison */ | 
 | 467 | 	case FCMPS: | 
 | 468 | 	case FCMPES: | 
 | 469 | 		FP_CMP_S(IR, SB, SA, 3); | 
 | 470 | 		if (IR == 3 && | 
 | 471 | 		    (((insn >> 5) & 0x1ff) == FCMPES || | 
 | 472 | 		     FP_ISSIGNAN_S(SA) || | 
 | 473 | 		     FP_ISSIGNAN_S(SB))) | 
 | 474 | 			FP_SET_EXCEPTION (FP_EX_INVALID); | 
 | 475 | 		break; | 
 | 476 | 	case FCMPD: | 
 | 477 | 	case FCMPED: | 
 | 478 | 		FP_CMP_D(IR, DB, DA, 3); | 
 | 479 | 		if (IR == 3 && | 
 | 480 | 		    (((insn >> 5) & 0x1ff) == FCMPED || | 
 | 481 | 		     FP_ISSIGNAN_D(DA) || | 
 | 482 | 		     FP_ISSIGNAN_D(DB))) | 
 | 483 | 			FP_SET_EXCEPTION (FP_EX_INVALID); | 
 | 484 | 		break; | 
 | 485 | 	case FCMPQ: | 
 | 486 | 	case FCMPEQ: | 
 | 487 | 		FP_CMP_Q(IR, QB, QA, 3); | 
 | 488 | 		if (IR == 3 && | 
 | 489 | 		    (((insn >> 5) & 0x1ff) == FCMPEQ || | 
 | 490 | 		     FP_ISSIGNAN_Q(QA) || | 
 | 491 | 		     FP_ISSIGNAN_Q(QB))) | 
 | 492 | 			FP_SET_EXCEPTION (FP_EX_INVALID); | 
 | 493 | 	} | 
 | 494 | 	if (!FP_INHIBIT_RESULTS) { | 
 | 495 | 		switch ((type >> 6) & 0x7) { | 
 | 496 | 		case 0: fsr = *pfsr; | 
 | 497 | 			if (IR == -1) IR = 2; | 
 | 498 | 			/* fcc is always fcc0 */ | 
 | 499 | 			fsr &= ~0xc00; fsr |= (IR << 10); break; | 
 | 500 | 			*pfsr = fsr; | 
 | 501 | 			break; | 
 | 502 | 		case 1: rd->s = IR; break; | 
 | 503 | 		case 5: FP_PACK_SP (rd, SR); break; | 
 | 504 | 		case 6: FP_PACK_DP (rd, DR); break; | 
 | 505 | 		case 7: FP_PACK_QP (rd, QR); break; | 
 | 506 | 		} | 
 | 507 | 	} | 
 | 508 | 	if (_fex == 0) | 
 | 509 | 		return 1;				/* success! */ | 
 | 510 | 	return record_exception(pfsr, _fex); | 
 | 511 | } |