| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  * Oct 15, 2000 Matt Domsch <Matt_Domsch@dell.com> | 
 | 3 |  * Nicer crc32 functions/docs submitted by linux@horizon.com.  Thanks! | 
 | 4 |  * Code was from the public domain, copyright abandoned.  Code was | 
 | 5 |  * subsequently included in the kernel, thus was re-licensed under the | 
 | 6 |  * GNU GPL v2. | 
 | 7 |  * | 
 | 8 |  * Oct 12, 2000 Matt Domsch <Matt_Domsch@dell.com> | 
 | 9 |  * Same crc32 function was used in 5 other places in the kernel. | 
 | 10 |  * I made one version, and deleted the others. | 
 | 11 |  * There are various incantations of crc32().  Some use a seed of 0 or ~0. | 
 | 12 |  * Some xor at the end with ~0.  The generic crc32() function takes | 
 | 13 |  * seed as an argument, and doesn't xor at the end.  Then individual | 
 | 14 |  * users can do whatever they need. | 
 | 15 |  *   drivers/net/smc9194.c uses seed ~0, doesn't xor with ~0. | 
 | 16 |  *   fs/jffs2 uses seed 0, doesn't xor with ~0. | 
 | 17 |  *   fs/partitions/efi.c uses seed ~0, xor's with ~0. | 
 | 18 |  * | 
 | 19 |  * This source code is licensed under the GNU General Public License, | 
 | 20 |  * Version 2.  See the file COPYING for more details. | 
 | 21 |  */ | 
 | 22 |  | 
 | 23 | #include <linux/crc32.h> | 
 | 24 | #include <linux/kernel.h> | 
 | 25 | #include <linux/module.h> | 
 | 26 | #include <linux/compiler.h> | 
 | 27 | #include <linux/types.h> | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 28 | #include <linux/init.h> | 
 | 29 | #include <asm/atomic.h> | 
 | 30 | #include "crc32defs.h" | 
 | 31 | #if CRC_LE_BITS == 8 | 
| Joakim Tjernlund | 4f2a9463 | 2010-03-05 13:43:55 -0800 | [diff] [blame] | 32 | # define tole(x) __constant_cpu_to_le32(x) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 33 | #else | 
| Joakim Tjernlund | 4f2a9463 | 2010-03-05 13:43:55 -0800 | [diff] [blame] | 34 | # define tole(x) (x) | 
 | 35 | #endif | 
 | 36 |  | 
 | 37 | #if CRC_BE_BITS == 8 | 
 | 38 | # define tobe(x) __constant_cpu_to_be32(x) | 
 | 39 | #else | 
 | 40 | # define tobe(x) (x) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 41 | #endif | 
 | 42 | #include "crc32table.h" | 
 | 43 |  | 
 | 44 | MODULE_AUTHOR("Matt Domsch <Matt_Domsch@dell.com>"); | 
 | 45 | MODULE_DESCRIPTION("Ethernet CRC32 calculations"); | 
 | 46 | MODULE_LICENSE("GPL"); | 
 | 47 |  | 
| Joakim Tjernlund | ddcaccb | 2009-12-14 18:01:33 -0800 | [diff] [blame] | 48 | #if CRC_LE_BITS == 8 || CRC_BE_BITS == 8 | 
 | 49 |  | 
 | 50 | static inline u32 | 
| Joakim Tjernlund | 836e2af | 2010-05-24 14:33:31 -0700 | [diff] [blame] | 51 | crc32_body(u32 crc, unsigned char const *buf, size_t len, const u32 (*tab)[256]) | 
| Joakim Tjernlund | ddcaccb | 2009-12-14 18:01:33 -0800 | [diff] [blame] | 52 | { | 
| Andrew Morton | 0d2daf5 | 2010-05-25 23:43:03 -0700 | [diff] [blame] | 53 | # ifdef __LITTLE_ENDIAN | 
| Joakim Tjernlund | 836e2af | 2010-05-24 14:33:31 -0700 | [diff] [blame] | 54 | #  define DO_CRC(x) crc = tab[0][(crc ^ (x)) & 255] ^ (crc >> 8) | 
 | 55 | #  define DO_CRC4 crc = tab[3][(crc) & 255] ^ \ | 
 | 56 | 		tab[2][(crc >> 8) & 255] ^ \ | 
 | 57 | 		tab[1][(crc >> 16) & 255] ^ \ | 
 | 58 | 		tab[0][(crc >> 24) & 255] | 
| Joakim Tjernlund | ddcaccb | 2009-12-14 18:01:33 -0800 | [diff] [blame] | 59 | # else | 
| Joakim Tjernlund | 836e2af | 2010-05-24 14:33:31 -0700 | [diff] [blame] | 60 | #  define DO_CRC(x) crc = tab[0][((crc >> 24) ^ (x)) & 255] ^ (crc << 8) | 
 | 61 | #  define DO_CRC4 crc = tab[0][(crc) & 255] ^ \ | 
 | 62 | 		tab[1][(crc >> 8) & 255] ^ \ | 
 | 63 | 		tab[2][(crc >> 16) & 255] ^ \ | 
 | 64 | 		tab[3][(crc >> 24) & 255] | 
| Joakim Tjernlund | ddcaccb | 2009-12-14 18:01:33 -0800 | [diff] [blame] | 65 | # endif | 
| Joakim Tjernlund | 4f2a9463 | 2010-03-05 13:43:55 -0800 | [diff] [blame] | 66 | 	const u32 *b; | 
| Joakim Tjernlund | ddcaccb | 2009-12-14 18:01:33 -0800 | [diff] [blame] | 67 | 	size_t    rem_len; | 
 | 68 |  | 
 | 69 | 	/* Align it */ | 
| Joakim Tjernlund | 4f2a9463 | 2010-03-05 13:43:55 -0800 | [diff] [blame] | 70 | 	if (unlikely((long)buf & 3 && len)) { | 
| Joakim Tjernlund | ddcaccb | 2009-12-14 18:01:33 -0800 | [diff] [blame] | 71 | 		do { | 
| Joakim Tjernlund | 4f2a9463 | 2010-03-05 13:43:55 -0800 | [diff] [blame] | 72 | 			DO_CRC(*buf++); | 
 | 73 | 		} while ((--len) && ((long)buf)&3); | 
| Joakim Tjernlund | ddcaccb | 2009-12-14 18:01:33 -0800 | [diff] [blame] | 74 | 	} | 
 | 75 | 	rem_len = len & 3; | 
 | 76 | 	/* load data 32 bits wide, xor data 32 bits wide. */ | 
 | 77 | 	len = len >> 2; | 
| Joakim Tjernlund | 4f2a9463 | 2010-03-05 13:43:55 -0800 | [diff] [blame] | 78 | 	b = (const u32 *)buf; | 
| Joakim Tjernlund | ddcaccb | 2009-12-14 18:01:33 -0800 | [diff] [blame] | 79 | 	for (--b; len; --len) { | 
 | 80 | 		crc ^= *++b; /* use pre increment for speed */ | 
| Joakim Tjernlund | 836e2af | 2010-05-24 14:33:31 -0700 | [diff] [blame] | 81 | 		DO_CRC4; | 
| Joakim Tjernlund | ddcaccb | 2009-12-14 18:01:33 -0800 | [diff] [blame] | 82 | 	} | 
 | 83 | 	len = rem_len; | 
 | 84 | 	/* And the last few bytes */ | 
 | 85 | 	if (len) { | 
 | 86 | 		u8 *p = (u8 *)(b + 1) - 1; | 
 | 87 | 		do { | 
 | 88 | 			DO_CRC(*++p); /* use pre increment for speed */ | 
 | 89 | 		} while (--len); | 
 | 90 | 	} | 
 | 91 | 	return crc; | 
| Joakim Tjernlund | 4f2a9463 | 2010-03-05 13:43:55 -0800 | [diff] [blame] | 92 | #undef DO_CRC | 
| Joakim Tjernlund | 836e2af | 2010-05-24 14:33:31 -0700 | [diff] [blame] | 93 | #undef DO_CRC4 | 
| Joakim Tjernlund | ddcaccb | 2009-12-14 18:01:33 -0800 | [diff] [blame] | 94 | } | 
 | 95 | #endif | 
| Randy Dunlap | 2f72100 | 2006-06-25 05:48:59 -0700 | [diff] [blame] | 96 | /** | 
 | 97 |  * crc32_le() - Calculate bitwise little-endian Ethernet AUTODIN II CRC32 | 
 | 98 |  * @crc: seed value for computation.  ~0 for Ethernet, sometimes 0 for | 
 | 99 |  *	other uses, or the previous crc32 value if computing incrementally. | 
 | 100 |  * @p: pointer to buffer over which CRC is run | 
 | 101 |  * @len: length of buffer @p | 
 | 102 |  */ | 
| Ralf Baechle | e8c4431 | 2007-10-18 03:07:07 -0700 | [diff] [blame] | 103 | u32 __pure crc32_le(u32 crc, unsigned char const *p, size_t len); | 
| Randy Dunlap | 2f72100 | 2006-06-25 05:48:59 -0700 | [diff] [blame] | 104 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 105 | #if CRC_LE_BITS == 1 | 
 | 106 | /* | 
 | 107 |  * In fact, the table-based code will work in this case, but it can be | 
 | 108 |  * simplified by inlining the table in ?: form. | 
 | 109 |  */ | 
 | 110 |  | 
| Ralf Baechle | e8c4431 | 2007-10-18 03:07:07 -0700 | [diff] [blame] | 111 | u32 __pure crc32_le(u32 crc, unsigned char const *p, size_t len) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 112 | { | 
 | 113 | 	int i; | 
 | 114 | 	while (len--) { | 
 | 115 | 		crc ^= *p++; | 
 | 116 | 		for (i = 0; i < 8; i++) | 
 | 117 | 			crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0); | 
 | 118 | 	} | 
 | 119 | 	return crc; | 
 | 120 | } | 
 | 121 | #else				/* Table-based approach */ | 
 | 122 |  | 
| Ralf Baechle | e8c4431 | 2007-10-18 03:07:07 -0700 | [diff] [blame] | 123 | u32 __pure crc32_le(u32 crc, unsigned char const *p, size_t len) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 124 | { | 
 | 125 | # if CRC_LE_BITS == 8 | 
| Joakim Tjernlund | 836e2af | 2010-05-24 14:33:31 -0700 | [diff] [blame] | 126 | 	const u32      (*tab)[] = crc32table_le; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 127 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 128 | 	crc = __cpu_to_le32(crc); | 
| Joakim Tjernlund | ddcaccb | 2009-12-14 18:01:33 -0800 | [diff] [blame] | 129 | 	crc = crc32_body(crc, p, len, tab); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 130 | 	return __le32_to_cpu(crc); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 131 | # elif CRC_LE_BITS == 4 | 
 | 132 | 	while (len--) { | 
 | 133 | 		crc ^= *p++; | 
 | 134 | 		crc = (crc >> 4) ^ crc32table_le[crc & 15]; | 
 | 135 | 		crc = (crc >> 4) ^ crc32table_le[crc & 15]; | 
 | 136 | 	} | 
 | 137 | 	return crc; | 
 | 138 | # elif CRC_LE_BITS == 2 | 
 | 139 | 	while (len--) { | 
 | 140 | 		crc ^= *p++; | 
 | 141 | 		crc = (crc >> 2) ^ crc32table_le[crc & 3]; | 
 | 142 | 		crc = (crc >> 2) ^ crc32table_le[crc & 3]; | 
 | 143 | 		crc = (crc >> 2) ^ crc32table_le[crc & 3]; | 
 | 144 | 		crc = (crc >> 2) ^ crc32table_le[crc & 3]; | 
 | 145 | 	} | 
 | 146 | 	return crc; | 
 | 147 | # endif | 
 | 148 | } | 
 | 149 | #endif | 
 | 150 |  | 
| Randy Dunlap | 2f72100 | 2006-06-25 05:48:59 -0700 | [diff] [blame] | 151 | /** | 
 | 152 |  * crc32_be() - Calculate bitwise big-endian Ethernet AUTODIN II CRC32 | 
 | 153 |  * @crc: seed value for computation.  ~0 for Ethernet, sometimes 0 for | 
 | 154 |  *	other uses, or the previous crc32 value if computing incrementally. | 
 | 155 |  * @p: pointer to buffer over which CRC is run | 
 | 156 |  * @len: length of buffer @p | 
 | 157 |  */ | 
| Ralf Baechle | e8c4431 | 2007-10-18 03:07:07 -0700 | [diff] [blame] | 158 | u32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len); | 
| Randy Dunlap | 2f72100 | 2006-06-25 05:48:59 -0700 | [diff] [blame] | 159 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 160 | #if CRC_BE_BITS == 1 | 
 | 161 | /* | 
 | 162 |  * In fact, the table-based code will work in this case, but it can be | 
 | 163 |  * simplified by inlining the table in ?: form. | 
 | 164 |  */ | 
 | 165 |  | 
| Ralf Baechle | e8c4431 | 2007-10-18 03:07:07 -0700 | [diff] [blame] | 166 | u32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 167 | { | 
 | 168 | 	int i; | 
 | 169 | 	while (len--) { | 
 | 170 | 		crc ^= *p++ << 24; | 
 | 171 | 		for (i = 0; i < 8; i++) | 
 | 172 | 			crc = | 
 | 173 | 			    (crc << 1) ^ ((crc & 0x80000000) ? CRCPOLY_BE : | 
 | 174 | 					  0); | 
 | 175 | 	} | 
 | 176 | 	return crc; | 
 | 177 | } | 
 | 178 |  | 
 | 179 | #else				/* Table-based approach */ | 
| Ralf Baechle | e8c4431 | 2007-10-18 03:07:07 -0700 | [diff] [blame] | 180 | u32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 181 | { | 
 | 182 | # if CRC_BE_BITS == 8 | 
| Joakim Tjernlund | 836e2af | 2010-05-24 14:33:31 -0700 | [diff] [blame] | 183 | 	const u32      (*tab)[] = crc32table_be; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 184 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 185 | 	crc = __cpu_to_be32(crc); | 
| Joakim Tjernlund | ddcaccb | 2009-12-14 18:01:33 -0800 | [diff] [blame] | 186 | 	crc = crc32_body(crc, p, len, tab); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 187 | 	return __be32_to_cpu(crc); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 188 | # elif CRC_BE_BITS == 4 | 
 | 189 | 	while (len--) { | 
 | 190 | 		crc ^= *p++ << 24; | 
 | 191 | 		crc = (crc << 4) ^ crc32table_be[crc >> 28]; | 
 | 192 | 		crc = (crc << 4) ^ crc32table_be[crc >> 28]; | 
 | 193 | 	} | 
 | 194 | 	return crc; | 
 | 195 | # elif CRC_BE_BITS == 2 | 
 | 196 | 	while (len--) { | 
 | 197 | 		crc ^= *p++ << 24; | 
 | 198 | 		crc = (crc << 2) ^ crc32table_be[crc >> 30]; | 
 | 199 | 		crc = (crc << 2) ^ crc32table_be[crc >> 30]; | 
 | 200 | 		crc = (crc << 2) ^ crc32table_be[crc >> 30]; | 
 | 201 | 		crc = (crc << 2) ^ crc32table_be[crc >> 30]; | 
 | 202 | 	} | 
 | 203 | 	return crc; | 
 | 204 | # endif | 
 | 205 | } | 
 | 206 | #endif | 
 | 207 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 208 | EXPORT_SYMBOL(crc32_le); | 
 | 209 | EXPORT_SYMBOL(crc32_be); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 210 |  | 
 | 211 | /* | 
 | 212 |  * A brief CRC tutorial. | 
 | 213 |  * | 
 | 214 |  * A CRC is a long-division remainder.  You add the CRC to the message, | 
 | 215 |  * and the whole thing (message+CRC) is a multiple of the given | 
 | 216 |  * CRC polynomial.  To check the CRC, you can either check that the | 
 | 217 |  * CRC matches the recomputed value, *or* you can check that the | 
 | 218 |  * remainder computed on the message+CRC is 0.  This latter approach | 
 | 219 |  * is used by a lot of hardware implementations, and is why so many | 
 | 220 |  * protocols put the end-of-frame flag after the CRC. | 
 | 221 |  * | 
 | 222 |  * It's actually the same long division you learned in school, except that | 
 | 223 |  * - We're working in binary, so the digits are only 0 and 1, and | 
 | 224 |  * - When dividing polynomials, there are no carries.  Rather than add and | 
 | 225 |  *   subtract, we just xor.  Thus, we tend to get a bit sloppy about | 
 | 226 |  *   the difference between adding and subtracting. | 
 | 227 |  * | 
 | 228 |  * A 32-bit CRC polynomial is actually 33 bits long.  But since it's | 
 | 229 |  * 33 bits long, bit 32 is always going to be set, so usually the CRC | 
 | 230 |  * is written in hex with the most significant bit omitted.  (If you're | 
 | 231 |  * familiar with the IEEE 754 floating-point format, it's the same idea.) | 
 | 232 |  * | 
 | 233 |  * Note that a CRC is computed over a string of *bits*, so you have | 
 | 234 |  * to decide on the endianness of the bits within each byte.  To get | 
 | 235 |  * the best error-detecting properties, this should correspond to the | 
 | 236 |  * order they're actually sent.  For example, standard RS-232 serial is | 
 | 237 |  * little-endian; the most significant bit (sometimes used for parity) | 
 | 238 |  * is sent last.  And when appending a CRC word to a message, you should | 
 | 239 |  * do it in the right order, matching the endianness. | 
 | 240 |  * | 
 | 241 |  * Just like with ordinary division, the remainder is always smaller than | 
 | 242 |  * the divisor (the CRC polynomial) you're dividing by.  Each step of the | 
 | 243 |  * division, you take one more digit (bit) of the dividend and append it | 
 | 244 |  * to the current remainder.  Then you figure out the appropriate multiple | 
 | 245 |  * of the divisor to subtract to being the remainder back into range. | 
 | 246 |  * In binary, it's easy - it has to be either 0 or 1, and to make the | 
 | 247 |  * XOR cancel, it's just a copy of bit 32 of the remainder. | 
 | 248 |  * | 
 | 249 |  * When computing a CRC, we don't care about the quotient, so we can | 
 | 250 |  * throw the quotient bit away, but subtract the appropriate multiple of | 
 | 251 |  * the polynomial from the remainder and we're back to where we started, | 
 | 252 |  * ready to process the next bit. | 
 | 253 |  * | 
 | 254 |  * A big-endian CRC written this way would be coded like: | 
 | 255 |  * for (i = 0; i < input_bits; i++) { | 
 | 256 |  * 	multiple = remainder & 0x80000000 ? CRCPOLY : 0; | 
 | 257 |  * 	remainder = (remainder << 1 | next_input_bit()) ^ multiple; | 
 | 258 |  * } | 
 | 259 |  * Notice how, to get at bit 32 of the shifted remainder, we look | 
 | 260 |  * at bit 31 of the remainder *before* shifting it. | 
 | 261 |  * | 
 | 262 |  * But also notice how the next_input_bit() bits we're shifting into | 
 | 263 |  * the remainder don't actually affect any decision-making until | 
 | 264 |  * 32 bits later.  Thus, the first 32 cycles of this are pretty boring. | 
 | 265 |  * Also, to add the CRC to a message, we need a 32-bit-long hole for it at | 
 | 266 |  * the end, so we have to add 32 extra cycles shifting in zeros at the | 
 | 267 |  * end of every message, | 
 | 268 |  * | 
 | 269 |  * So the standard trick is to rearrage merging in the next_input_bit() | 
 | 270 |  * until the moment it's needed.  Then the first 32 cycles can be precomputed, | 
 | 271 |  * and merging in the final 32 zero bits to make room for the CRC can be | 
 | 272 |  * skipped entirely. | 
 | 273 |  * This changes the code to: | 
 | 274 |  * for (i = 0; i < input_bits; i++) { | 
 | 275 |  *      remainder ^= next_input_bit() << 31; | 
 | 276 |  * 	multiple = (remainder & 0x80000000) ? CRCPOLY : 0; | 
 | 277 |  * 	remainder = (remainder << 1) ^ multiple; | 
 | 278 |  * } | 
 | 279 |  * With this optimization, the little-endian code is simpler: | 
 | 280 |  * for (i = 0; i < input_bits; i++) { | 
 | 281 |  *      remainder ^= next_input_bit(); | 
 | 282 |  * 	multiple = (remainder & 1) ? CRCPOLY : 0; | 
 | 283 |  * 	remainder = (remainder >> 1) ^ multiple; | 
 | 284 |  * } | 
 | 285 |  * | 
 | 286 |  * Note that the other details of endianness have been hidden in CRCPOLY | 
 | 287 |  * (which must be bit-reversed) and next_input_bit(). | 
 | 288 |  * | 
 | 289 |  * However, as long as next_input_bit is returning the bits in a sensible | 
 | 290 |  * order, we can actually do the merging 8 or more bits at a time rather | 
 | 291 |  * than one bit at a time: | 
 | 292 |  * for (i = 0; i < input_bytes; i++) { | 
 | 293 |  * 	remainder ^= next_input_byte() << 24; | 
 | 294 |  * 	for (j = 0; j < 8; j++) { | 
 | 295 |  * 		multiple = (remainder & 0x80000000) ? CRCPOLY : 0; | 
 | 296 |  * 		remainder = (remainder << 1) ^ multiple; | 
 | 297 |  * 	} | 
 | 298 |  * } | 
 | 299 |  * Or in little-endian: | 
 | 300 |  * for (i = 0; i < input_bytes; i++) { | 
 | 301 |  * 	remainder ^= next_input_byte(); | 
 | 302 |  * 	for (j = 0; j < 8; j++) { | 
 | 303 |  * 		multiple = (remainder & 1) ? CRCPOLY : 0; | 
 | 304 |  * 		remainder = (remainder << 1) ^ multiple; | 
 | 305 |  * 	} | 
 | 306 |  * } | 
 | 307 |  * If the input is a multiple of 32 bits, you can even XOR in a 32-bit | 
 | 308 |  * word at a time and increase the inner loop count to 32. | 
 | 309 |  * | 
 | 310 |  * You can also mix and match the two loop styles, for example doing the | 
 | 311 |  * bulk of a message byte-at-a-time and adding bit-at-a-time processing | 
 | 312 |  * for any fractional bytes at the end. | 
 | 313 |  * | 
 | 314 |  * The only remaining optimization is to the byte-at-a-time table method. | 
 | 315 |  * Here, rather than just shifting one bit of the remainder to decide | 
 | 316 |  * in the correct multiple to subtract, we can shift a byte at a time. | 
 | 317 |  * This produces a 40-bit (rather than a 33-bit) intermediate remainder, | 
 | 318 |  * but again the multiple of the polynomial to subtract depends only on | 
 | 319 |  * the high bits, the high 8 bits in this case.   | 
 | 320 |  * | 
| Joe Perches | 643d1f7 | 2008-02-03 17:48:52 +0200 | [diff] [blame] | 321 |  * The multiple we need in that case is the low 32 bits of a 40-bit | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 322 |  * value whose high 8 bits are given, and which is a multiple of the | 
 | 323 |  * generator polynomial.  This is simply the CRC-32 of the given | 
 | 324 |  * one-byte message. | 
 | 325 |  * | 
 | 326 |  * Two more details: normally, appending zero bits to a message which | 
 | 327 |  * is already a multiple of a polynomial produces a larger multiple of that | 
 | 328 |  * polynomial.  To enable a CRC to detect this condition, it's common to | 
 | 329 |  * invert the CRC before appending it.  This makes the remainder of the | 
 | 330 |  * message+crc come out not as zero, but some fixed non-zero value. | 
 | 331 |  * | 
 | 332 |  * The same problem applies to zero bits prepended to the message, and | 
 | 333 |  * a similar solution is used.  Instead of starting with a remainder of | 
 | 334 |  * 0, an initial remainder of all ones is used.  As long as you start | 
 | 335 |  * the same way on decoding, it doesn't make a difference. | 
 | 336 |  */ | 
 | 337 |  | 
 | 338 | #ifdef UNITTEST | 
 | 339 |  | 
 | 340 | #include <stdlib.h> | 
 | 341 | #include <stdio.h> | 
 | 342 |  | 
 | 343 | #if 0				/*Not used at present */ | 
 | 344 | static void | 
 | 345 | buf_dump(char const *prefix, unsigned char const *buf, size_t len) | 
 | 346 | { | 
 | 347 | 	fputs(prefix, stdout); | 
 | 348 | 	while (len--) | 
 | 349 | 		printf(" %02x", *buf++); | 
 | 350 | 	putchar('\n'); | 
 | 351 |  | 
 | 352 | } | 
 | 353 | #endif | 
 | 354 |  | 
 | 355 | static void bytereverse(unsigned char *buf, size_t len) | 
 | 356 | { | 
 | 357 | 	while (len--) { | 
| Akinobu Mita | 906d66d | 2006-12-08 02:36:25 -0800 | [diff] [blame] | 358 | 		unsigned char x = bitrev8(*buf); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 359 | 		*buf++ = x; | 
 | 360 | 	} | 
 | 361 | } | 
 | 362 |  | 
 | 363 | static void random_garbage(unsigned char *buf, size_t len) | 
 | 364 | { | 
 | 365 | 	while (len--) | 
 | 366 | 		*buf++ = (unsigned char) random(); | 
 | 367 | } | 
 | 368 |  | 
 | 369 | #if 0				/* Not used at present */ | 
 | 370 | static void store_le(u32 x, unsigned char *buf) | 
 | 371 | { | 
 | 372 | 	buf[0] = (unsigned char) x; | 
 | 373 | 	buf[1] = (unsigned char) (x >> 8); | 
 | 374 | 	buf[2] = (unsigned char) (x >> 16); | 
 | 375 | 	buf[3] = (unsigned char) (x >> 24); | 
 | 376 | } | 
 | 377 | #endif | 
 | 378 |  | 
 | 379 | static void store_be(u32 x, unsigned char *buf) | 
 | 380 | { | 
 | 381 | 	buf[0] = (unsigned char) (x >> 24); | 
 | 382 | 	buf[1] = (unsigned char) (x >> 16); | 
 | 383 | 	buf[2] = (unsigned char) (x >> 8); | 
 | 384 | 	buf[3] = (unsigned char) x; | 
 | 385 | } | 
 | 386 |  | 
 | 387 | /* | 
 | 388 |  * This checks that CRC(buf + CRC(buf)) = 0, and that | 
 | 389 |  * CRC commutes with bit-reversal.  This has the side effect | 
 | 390 |  * of bytewise bit-reversing the input buffer, and returns | 
 | 391 |  * the CRC of the reversed buffer. | 
 | 392 |  */ | 
 | 393 | static u32 test_step(u32 init, unsigned char *buf, size_t len) | 
 | 394 | { | 
 | 395 | 	u32 crc1, crc2; | 
 | 396 | 	size_t i; | 
 | 397 |  | 
 | 398 | 	crc1 = crc32_be(init, buf, len); | 
 | 399 | 	store_be(crc1, buf + len); | 
 | 400 | 	crc2 = crc32_be(init, buf, len + 4); | 
 | 401 | 	if (crc2) | 
 | 402 | 		printf("\nCRC cancellation fail: 0x%08x should be 0\n", | 
 | 403 | 		       crc2); | 
 | 404 |  | 
 | 405 | 	for (i = 0; i <= len + 4; i++) { | 
 | 406 | 		crc2 = crc32_be(init, buf, i); | 
 | 407 | 		crc2 = crc32_be(crc2, buf + i, len + 4 - i); | 
 | 408 | 		if (crc2) | 
 | 409 | 			printf("\nCRC split fail: 0x%08x\n", crc2); | 
 | 410 | 	} | 
 | 411 |  | 
 | 412 | 	/* Now swap it around for the other test */ | 
 | 413 |  | 
 | 414 | 	bytereverse(buf, len + 4); | 
| Akinobu Mita | 906d66d | 2006-12-08 02:36:25 -0800 | [diff] [blame] | 415 | 	init = bitrev32(init); | 
 | 416 | 	crc2 = bitrev32(crc1); | 
 | 417 | 	if (crc1 != bitrev32(crc2)) | 
| Dominik Hackl | cfc646f | 2005-08-07 09:42:53 -0700 | [diff] [blame] | 418 | 		printf("\nBit reversal fail: 0x%08x -> 0x%08x -> 0x%08x\n", | 
| Akinobu Mita | 906d66d | 2006-12-08 02:36:25 -0800 | [diff] [blame] | 419 | 		       crc1, crc2, bitrev32(crc2)); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 420 | 	crc1 = crc32_le(init, buf, len); | 
 | 421 | 	if (crc1 != crc2) | 
 | 422 | 		printf("\nCRC endianness fail: 0x%08x != 0x%08x\n", crc1, | 
 | 423 | 		       crc2); | 
 | 424 | 	crc2 = crc32_le(init, buf, len + 4); | 
 | 425 | 	if (crc2) | 
 | 426 | 		printf("\nCRC cancellation fail: 0x%08x should be 0\n", | 
 | 427 | 		       crc2); | 
 | 428 |  | 
 | 429 | 	for (i = 0; i <= len + 4; i++) { | 
 | 430 | 		crc2 = crc32_le(init, buf, i); | 
 | 431 | 		crc2 = crc32_le(crc2, buf + i, len + 4 - i); | 
 | 432 | 		if (crc2) | 
 | 433 | 			printf("\nCRC split fail: 0x%08x\n", crc2); | 
 | 434 | 	} | 
 | 435 |  | 
 | 436 | 	return crc1; | 
 | 437 | } | 
 | 438 |  | 
 | 439 | #define SIZE 64 | 
 | 440 | #define INIT1 0 | 
 | 441 | #define INIT2 0 | 
 | 442 |  | 
 | 443 | int main(void) | 
 | 444 | { | 
 | 445 | 	unsigned char buf1[SIZE + 4]; | 
 | 446 | 	unsigned char buf2[SIZE + 4]; | 
 | 447 | 	unsigned char buf3[SIZE + 4]; | 
 | 448 | 	int i, j; | 
 | 449 | 	u32 crc1, crc2, crc3; | 
 | 450 |  | 
 | 451 | 	for (i = 0; i <= SIZE; i++) { | 
 | 452 | 		printf("\rTesting length %d...", i); | 
 | 453 | 		fflush(stdout); | 
 | 454 | 		random_garbage(buf1, i); | 
 | 455 | 		random_garbage(buf2, i); | 
 | 456 | 		for (j = 0; j < i; j++) | 
 | 457 | 			buf3[j] = buf1[j] ^ buf2[j]; | 
 | 458 |  | 
 | 459 | 		crc1 = test_step(INIT1, buf1, i); | 
 | 460 | 		crc2 = test_step(INIT2, buf2, i); | 
 | 461 | 		/* Now check that CRC(buf1 ^ buf2) = CRC(buf1) ^ CRC(buf2) */ | 
 | 462 | 		crc3 = test_step(INIT1 ^ INIT2, buf3, i); | 
 | 463 | 		if (crc3 != (crc1 ^ crc2)) | 
 | 464 | 			printf("CRC XOR fail: 0x%08x != 0x%08x ^ 0x%08x\n", | 
 | 465 | 			       crc3, crc1, crc2); | 
 | 466 | 	} | 
 | 467 | 	printf("\nAll test complete.  No failures expected.\n"); | 
 | 468 | 	return 0; | 
 | 469 | } | 
 | 470 |  | 
 | 471 | #endif				/* UNITTEST */ |