| Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 1 | /* | 
|  | 2 | * Copyright 2010 Tilera Corporation. All Rights Reserved. | 
|  | 3 | * | 
|  | 4 | *   This program is free software; you can redistribute it and/or | 
|  | 5 | *   modify it under the terms of the GNU General Public License | 
|  | 6 | *   as published by the Free Software Foundation, version 2. | 
|  | 7 | * | 
|  | 8 | *   This program is distributed in the hope that it will be useful, but | 
|  | 9 | *   WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | 10 | *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | 
|  | 11 | *   NON INFRINGEMENT.  See the GNU General Public License for | 
|  | 12 | *   more details. | 
|  | 13 | */ | 
|  | 14 |  | 
|  | 15 | #include <linux/sched.h> | 
|  | 16 | #include <linux/kernel.h> | 
|  | 17 | #include <linux/errno.h> | 
|  | 18 | #include <linux/mm.h> | 
|  | 19 | #include <linux/swap.h> | 
| Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 20 | #include <linux/highmem.h> | 
|  | 21 | #include <linux/slab.h> | 
|  | 22 | #include <linux/pagemap.h> | 
|  | 23 | #include <linux/spinlock.h> | 
|  | 24 | #include <linux/cpumask.h> | 
|  | 25 | #include <linux/module.h> | 
|  | 26 | #include <linux/io.h> | 
|  | 27 | #include <linux/vmalloc.h> | 
|  | 28 | #include <linux/smp.h> | 
|  | 29 |  | 
|  | 30 | #include <asm/system.h> | 
|  | 31 | #include <asm/pgtable.h> | 
|  | 32 | #include <asm/pgalloc.h> | 
|  | 33 | #include <asm/fixmap.h> | 
|  | 34 | #include <asm/tlb.h> | 
|  | 35 | #include <asm/tlbflush.h> | 
|  | 36 | #include <asm/homecache.h> | 
|  | 37 |  | 
|  | 38 | #define K(x) ((x) << (PAGE_SHIFT-10)) | 
|  | 39 |  | 
|  | 40 | /* | 
|  | 41 | * The normal show_free_areas() is too verbose on Tile, with dozens | 
|  | 42 | * of processors and often four NUMA zones each with high and lowmem. | 
|  | 43 | */ | 
| David Rientjes | b2b755b | 2011-03-24 15:18:15 -0700 | [diff] [blame] | 44 | void show_mem(unsigned int filter) | 
| Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 45 | { | 
|  | 46 | struct zone *zone; | 
|  | 47 |  | 
| Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 48 | pr_err("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu" | 
| Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 49 | " free:%lu\n slab:%lu mapped:%lu pagetables:%lu bounce:%lu" | 
|  | 50 | " pagecache:%lu swap:%lu\n", | 
|  | 51 | (global_page_state(NR_ACTIVE_ANON) + | 
|  | 52 | global_page_state(NR_ACTIVE_FILE)), | 
|  | 53 | (global_page_state(NR_INACTIVE_ANON) + | 
|  | 54 | global_page_state(NR_INACTIVE_FILE)), | 
|  | 55 | global_page_state(NR_FILE_DIRTY), | 
|  | 56 | global_page_state(NR_WRITEBACK), | 
|  | 57 | global_page_state(NR_UNSTABLE_NFS), | 
|  | 58 | global_page_state(NR_FREE_PAGES), | 
|  | 59 | (global_page_state(NR_SLAB_RECLAIMABLE) + | 
|  | 60 | global_page_state(NR_SLAB_UNRECLAIMABLE)), | 
|  | 61 | global_page_state(NR_FILE_MAPPED), | 
|  | 62 | global_page_state(NR_PAGETABLE), | 
|  | 63 | global_page_state(NR_BOUNCE), | 
|  | 64 | global_page_state(NR_FILE_PAGES), | 
|  | 65 | nr_swap_pages); | 
|  | 66 |  | 
|  | 67 | for_each_zone(zone) { | 
|  | 68 | unsigned long flags, order, total = 0, largest_order = -1; | 
|  | 69 |  | 
|  | 70 | if (!populated_zone(zone)) | 
|  | 71 | continue; | 
|  | 72 |  | 
| Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 73 | spin_lock_irqsave(&zone->lock, flags); | 
|  | 74 | for (order = 0; order < MAX_ORDER; order++) { | 
|  | 75 | int nr = zone->free_area[order].nr_free; | 
|  | 76 | total += nr << order; | 
|  | 77 | if (nr) | 
|  | 78 | largest_order = order; | 
|  | 79 | } | 
|  | 80 | spin_unlock_irqrestore(&zone->lock, flags); | 
| Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 81 | pr_err("Node %d %7s: %lukB (largest %luKb)\n", | 
|  | 82 | zone_to_nid(zone), zone->name, | 
| Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 83 | K(total), largest_order ? K(1UL) << largest_order : 0); | 
|  | 84 | } | 
|  | 85 | } | 
|  | 86 |  | 
|  | 87 | /* | 
|  | 88 | * Associate a virtual page frame with a given physical page frame | 
|  | 89 | * and protection flags for that frame. | 
|  | 90 | */ | 
|  | 91 | static void set_pte_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags) | 
|  | 92 | { | 
|  | 93 | pgd_t *pgd; | 
|  | 94 | pud_t *pud; | 
|  | 95 | pmd_t *pmd; | 
|  | 96 | pte_t *pte; | 
|  | 97 |  | 
|  | 98 | pgd = swapper_pg_dir + pgd_index(vaddr); | 
|  | 99 | if (pgd_none(*pgd)) { | 
|  | 100 | BUG(); | 
|  | 101 | return; | 
|  | 102 | } | 
|  | 103 | pud = pud_offset(pgd, vaddr); | 
|  | 104 | if (pud_none(*pud)) { | 
|  | 105 | BUG(); | 
|  | 106 | return; | 
|  | 107 | } | 
|  | 108 | pmd = pmd_offset(pud, vaddr); | 
|  | 109 | if (pmd_none(*pmd)) { | 
|  | 110 | BUG(); | 
|  | 111 | return; | 
|  | 112 | } | 
|  | 113 | pte = pte_offset_kernel(pmd, vaddr); | 
|  | 114 | /* <pfn,flags> stored as-is, to permit clearing entries */ | 
|  | 115 | set_pte(pte, pfn_pte(pfn, flags)); | 
|  | 116 |  | 
|  | 117 | /* | 
|  | 118 | * It's enough to flush this one mapping. | 
|  | 119 | * This appears conservative since it is only called | 
|  | 120 | * from __set_fixmap. | 
|  | 121 | */ | 
|  | 122 | local_flush_tlb_page(NULL, vaddr, PAGE_SIZE); | 
|  | 123 | } | 
|  | 124 |  | 
| Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 125 | void __set_fixmap(enum fixed_addresses idx, unsigned long phys, pgprot_t flags) | 
|  | 126 | { | 
|  | 127 | unsigned long address = __fix_to_virt(idx); | 
|  | 128 |  | 
|  | 129 | if (idx >= __end_of_fixed_addresses) { | 
|  | 130 | BUG(); | 
|  | 131 | return; | 
|  | 132 | } | 
|  | 133 | set_pte_pfn(address, phys >> PAGE_SHIFT, flags); | 
|  | 134 | } | 
|  | 135 |  | 
|  | 136 | #if defined(CONFIG_HIGHPTE) | 
| Chris Metcalf | 38a6f42 | 2010-11-01 15:21:35 -0400 | [diff] [blame] | 137 | pte_t *_pte_offset_map(pmd_t *dir, unsigned long address) | 
| Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 138 | { | 
| Chris Metcalf | 38a6f42 | 2010-11-01 15:21:35 -0400 | [diff] [blame] | 139 | pte_t *pte = kmap_atomic(pmd_page(*dir)) + | 
| Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 140 | (pmd_ptfn(*dir) << HV_LOG2_PAGE_TABLE_ALIGN) & ~PAGE_MASK; | 
|  | 141 | return &pte[pte_index(address)]; | 
|  | 142 | } | 
|  | 143 | #endif | 
|  | 144 |  | 
| Chris Metcalf | 76c567f | 2011-02-28 16:37:34 -0500 | [diff] [blame] | 145 | /** | 
|  | 146 | * shatter_huge_page() - ensure a given address is mapped by a small page. | 
|  | 147 | * | 
|  | 148 | * This function converts a huge PTE mapping kernel LOWMEM into a bunch | 
|  | 149 | * of small PTEs with the same caching.  No cache flush required, but we | 
|  | 150 | * must do a global TLB flush. | 
|  | 151 | * | 
|  | 152 | * Any caller that wishes to modify a kernel mapping that might | 
|  | 153 | * have been made with a huge page should call this function, | 
|  | 154 | * since doing so properly avoids race conditions with installing the | 
|  | 155 | * newly-shattered page and then flushing all the TLB entries. | 
|  | 156 | * | 
|  | 157 | * @addr: Address at which to shatter any existing huge page. | 
|  | 158 | */ | 
|  | 159 | void shatter_huge_page(unsigned long addr) | 
|  | 160 | { | 
|  | 161 | pgd_t *pgd; | 
|  | 162 | pud_t *pud; | 
|  | 163 | pmd_t *pmd; | 
|  | 164 | unsigned long flags = 0;  /* happy compiler */ | 
|  | 165 | #ifdef __PAGETABLE_PMD_FOLDED | 
|  | 166 | struct list_head *pos; | 
|  | 167 | #endif | 
|  | 168 |  | 
|  | 169 | /* Get a pointer to the pmd entry that we need to change. */ | 
|  | 170 | addr &= HPAGE_MASK; | 
|  | 171 | BUG_ON(pgd_addr_invalid(addr)); | 
|  | 172 | BUG_ON(addr < PAGE_OFFSET);  /* only for kernel LOWMEM */ | 
|  | 173 | pgd = swapper_pg_dir + pgd_index(addr); | 
|  | 174 | pud = pud_offset(pgd, addr); | 
|  | 175 | BUG_ON(!pud_present(*pud)); | 
|  | 176 | pmd = pmd_offset(pud, addr); | 
|  | 177 | BUG_ON(!pmd_present(*pmd)); | 
|  | 178 | if (!pmd_huge_page(*pmd)) | 
|  | 179 | return; | 
|  | 180 |  | 
|  | 181 | /* | 
|  | 182 | * Grab the pgd_lock, since we may need it to walk the pgd_list, | 
|  | 183 | * and since we need some kind of lock here to avoid races. | 
|  | 184 | */ | 
|  | 185 | spin_lock_irqsave(&pgd_lock, flags); | 
|  | 186 | if (!pmd_huge_page(*pmd)) { | 
|  | 187 | /* Lost the race to convert the huge page. */ | 
|  | 188 | spin_unlock_irqrestore(&pgd_lock, flags); | 
|  | 189 | return; | 
|  | 190 | } | 
|  | 191 |  | 
|  | 192 | /* Shatter the huge page into the preallocated L2 page table. */ | 
|  | 193 | pmd_populate_kernel(&init_mm, pmd, | 
|  | 194 | get_prealloc_pte(pte_pfn(*(pte_t *)pmd))); | 
|  | 195 |  | 
|  | 196 | #ifdef __PAGETABLE_PMD_FOLDED | 
|  | 197 | /* Walk every pgd on the system and update the pmd there. */ | 
|  | 198 | list_for_each(pos, &pgd_list) { | 
|  | 199 | pmd_t *copy_pmd; | 
|  | 200 | pgd = list_to_pgd(pos) + pgd_index(addr); | 
|  | 201 | pud = pud_offset(pgd, addr); | 
|  | 202 | copy_pmd = pmd_offset(pud, addr); | 
|  | 203 | __set_pmd(copy_pmd, *pmd); | 
|  | 204 | } | 
|  | 205 | #endif | 
|  | 206 |  | 
|  | 207 | /* Tell every cpu to notice the change. */ | 
|  | 208 | flush_remote(0, 0, NULL, addr, HPAGE_SIZE, HPAGE_SIZE, | 
|  | 209 | cpu_possible_mask, NULL, 0); | 
|  | 210 |  | 
|  | 211 | /* Hold the lock until the TLB flush is finished to avoid races. */ | 
|  | 212 | spin_unlock_irqrestore(&pgd_lock, flags); | 
|  | 213 | } | 
|  | 214 |  | 
| Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 215 | /* | 
|  | 216 | * List of all pgd's needed so it can invalidate entries in both cached | 
|  | 217 | * and uncached pgd's. This is essentially codepath-based locking | 
|  | 218 | * against pageattr.c; it is the unique case in which a valid change | 
|  | 219 | * of kernel pagetables can't be lazily synchronized by vmalloc faults. | 
|  | 220 | * vmalloc faults work because attached pagetables are never freed. | 
|  | 221 | * The locking scheme was chosen on the basis of manfred's | 
|  | 222 | * recommendations and having no core impact whatsoever. | 
|  | 223 | * -- wli | 
|  | 224 | */ | 
|  | 225 | DEFINE_SPINLOCK(pgd_lock); | 
|  | 226 | LIST_HEAD(pgd_list); | 
|  | 227 |  | 
|  | 228 | static inline void pgd_list_add(pgd_t *pgd) | 
|  | 229 | { | 
|  | 230 | list_add(pgd_to_list(pgd), &pgd_list); | 
|  | 231 | } | 
|  | 232 |  | 
|  | 233 | static inline void pgd_list_del(pgd_t *pgd) | 
|  | 234 | { | 
|  | 235 | list_del(pgd_to_list(pgd)); | 
|  | 236 | } | 
|  | 237 |  | 
|  | 238 | #define KERNEL_PGD_INDEX_START pgd_index(PAGE_OFFSET) | 
|  | 239 | #define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_INDEX_START) | 
|  | 240 |  | 
|  | 241 | static void pgd_ctor(pgd_t *pgd) | 
|  | 242 | { | 
|  | 243 | unsigned long flags; | 
|  | 244 |  | 
|  | 245 | memset(pgd, 0, KERNEL_PGD_INDEX_START*sizeof(pgd_t)); | 
|  | 246 | spin_lock_irqsave(&pgd_lock, flags); | 
|  | 247 |  | 
|  | 248 | #ifndef __tilegx__ | 
|  | 249 | /* | 
|  | 250 | * Check that the user interrupt vector has no L2. | 
|  | 251 | * It never should for the swapper, and new page tables | 
|  | 252 | * should always start with an empty user interrupt vector. | 
|  | 253 | */ | 
|  | 254 | BUG_ON(((u64 *)swapper_pg_dir)[pgd_index(MEM_USER_INTRPT)] != 0); | 
|  | 255 | #endif | 
|  | 256 |  | 
| Chris Metcalf | 76c567f | 2011-02-28 16:37:34 -0500 | [diff] [blame] | 257 | memcpy(pgd + KERNEL_PGD_INDEX_START, | 
|  | 258 | swapper_pg_dir + KERNEL_PGD_INDEX_START, | 
|  | 259 | KERNEL_PGD_PTRS * sizeof(pgd_t)); | 
| Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 260 |  | 
|  | 261 | pgd_list_add(pgd); | 
|  | 262 | spin_unlock_irqrestore(&pgd_lock, flags); | 
|  | 263 | } | 
|  | 264 |  | 
|  | 265 | static void pgd_dtor(pgd_t *pgd) | 
|  | 266 | { | 
|  | 267 | unsigned long flags; /* can be called from interrupt context */ | 
|  | 268 |  | 
|  | 269 | spin_lock_irqsave(&pgd_lock, flags); | 
|  | 270 | pgd_list_del(pgd); | 
|  | 271 | spin_unlock_irqrestore(&pgd_lock, flags); | 
|  | 272 | } | 
|  | 273 |  | 
|  | 274 | pgd_t *pgd_alloc(struct mm_struct *mm) | 
|  | 275 | { | 
|  | 276 | pgd_t *pgd = kmem_cache_alloc(pgd_cache, GFP_KERNEL); | 
|  | 277 | if (pgd) | 
|  | 278 | pgd_ctor(pgd); | 
|  | 279 | return pgd; | 
|  | 280 | } | 
|  | 281 |  | 
|  | 282 | void pgd_free(struct mm_struct *mm, pgd_t *pgd) | 
|  | 283 | { | 
|  | 284 | pgd_dtor(pgd); | 
|  | 285 | kmem_cache_free(pgd_cache, pgd); | 
|  | 286 | } | 
|  | 287 |  | 
|  | 288 |  | 
|  | 289 | #define L2_USER_PGTABLE_PAGES (1 << L2_USER_PGTABLE_ORDER) | 
|  | 290 |  | 
|  | 291 | struct page *pte_alloc_one(struct mm_struct *mm, unsigned long address) | 
|  | 292 | { | 
| Chris Metcalf | 76c567f | 2011-02-28 16:37:34 -0500 | [diff] [blame] | 293 | gfp_t flags = GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO; | 
| Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 294 | struct page *p; | 
| Chris Metcalf | 76c567f | 2011-02-28 16:37:34 -0500 | [diff] [blame] | 295 | #if L2_USER_PGTABLE_ORDER > 0 | 
|  | 296 | int i; | 
|  | 297 | #endif | 
| Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 298 |  | 
|  | 299 | #ifdef CONFIG_HIGHPTE | 
|  | 300 | flags |= __GFP_HIGHMEM; | 
|  | 301 | #endif | 
|  | 302 |  | 
|  | 303 | p = alloc_pages(flags, L2_USER_PGTABLE_ORDER); | 
|  | 304 | if (p == NULL) | 
|  | 305 | return NULL; | 
|  | 306 |  | 
| Chris Metcalf | 76c567f | 2011-02-28 16:37:34 -0500 | [diff] [blame] | 307 | #if L2_USER_PGTABLE_ORDER > 0 | 
|  | 308 | /* | 
|  | 309 | * Make every page have a page_count() of one, not just the first. | 
|  | 310 | * We don't use __GFP_COMP since it doesn't look like it works | 
|  | 311 | * correctly with tlb_remove_page(). | 
|  | 312 | */ | 
|  | 313 | for (i = 1; i < L2_USER_PGTABLE_PAGES; ++i) { | 
|  | 314 | init_page_count(p+i); | 
|  | 315 | inc_zone_page_state(p+i, NR_PAGETABLE); | 
|  | 316 | } | 
|  | 317 | #endif | 
|  | 318 |  | 
| Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 319 | pgtable_page_ctor(p); | 
|  | 320 | return p; | 
|  | 321 | } | 
|  | 322 |  | 
|  | 323 | /* | 
|  | 324 | * Free page immediately (used in __pte_alloc if we raced with another | 
|  | 325 | * process).  We have to correct whatever pte_alloc_one() did before | 
|  | 326 | * returning the pages to the allocator. | 
|  | 327 | */ | 
|  | 328 | void pte_free(struct mm_struct *mm, struct page *p) | 
|  | 329 | { | 
| Chris Metcalf | 76c567f | 2011-02-28 16:37:34 -0500 | [diff] [blame] | 330 | int i; | 
|  | 331 |  | 
| Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 332 | pgtable_page_dtor(p); | 
| Chris Metcalf | 76c567f | 2011-02-28 16:37:34 -0500 | [diff] [blame] | 333 | __free_page(p); | 
|  | 334 |  | 
|  | 335 | for (i = 1; i < L2_USER_PGTABLE_PAGES; ++i) { | 
|  | 336 | __free_page(p+i); | 
|  | 337 | dec_zone_page_state(p+i, NR_PAGETABLE); | 
|  | 338 | } | 
| Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 339 | } | 
|  | 340 |  | 
|  | 341 | void __pte_free_tlb(struct mmu_gather *tlb, struct page *pte, | 
|  | 342 | unsigned long address) | 
|  | 343 | { | 
|  | 344 | int i; | 
|  | 345 |  | 
|  | 346 | pgtable_page_dtor(pte); | 
| Chris Metcalf | 76c567f | 2011-02-28 16:37:34 -0500 | [diff] [blame] | 347 | tlb_remove_page(tlb, pte); | 
|  | 348 |  | 
|  | 349 | for (i = 1; i < L2_USER_PGTABLE_PAGES; ++i) { | 
| Peter Zijlstra | 342d87e | 2011-01-25 18:31:12 +0100 | [diff] [blame] | 350 | tlb_remove_page(tlb, pte + i); | 
| Chris Metcalf | 76c567f | 2011-02-28 16:37:34 -0500 | [diff] [blame] | 351 | dec_zone_page_state(pte + i, NR_PAGETABLE); | 
|  | 352 | } | 
| Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 353 | } | 
|  | 354 |  | 
|  | 355 | #ifndef __tilegx__ | 
|  | 356 |  | 
|  | 357 | /* | 
|  | 358 | * FIXME: needs to be atomic vs hypervisor writes.  For now we make the | 
|  | 359 | * window of vulnerability a bit smaller by doing an unlocked 8-bit update. | 
|  | 360 | */ | 
|  | 361 | int ptep_test_and_clear_young(struct vm_area_struct *vma, | 
|  | 362 | unsigned long addr, pte_t *ptep) | 
|  | 363 | { | 
|  | 364 | #if HV_PTE_INDEX_ACCESSED < 8 || HV_PTE_INDEX_ACCESSED >= 16 | 
|  | 365 | # error Code assumes HV_PTE "accessed" bit in second byte | 
|  | 366 | #endif | 
|  | 367 | u8 *tmp = (u8 *)ptep; | 
|  | 368 | u8 second_byte = tmp[1]; | 
|  | 369 | if (!(second_byte & (1 << (HV_PTE_INDEX_ACCESSED - 8)))) | 
|  | 370 | return 0; | 
|  | 371 | tmp[1] = second_byte & ~(1 << (HV_PTE_INDEX_ACCESSED - 8)); | 
|  | 372 | return 1; | 
|  | 373 | } | 
|  | 374 |  | 
|  | 375 | /* | 
|  | 376 | * This implementation is atomic vs hypervisor writes, since the hypervisor | 
|  | 377 | * always writes the low word (where "accessed" and "dirty" are) and this | 
|  | 378 | * routine only writes the high word. | 
|  | 379 | */ | 
|  | 380 | void ptep_set_wrprotect(struct mm_struct *mm, | 
|  | 381 | unsigned long addr, pte_t *ptep) | 
|  | 382 | { | 
|  | 383 | #if HV_PTE_INDEX_WRITABLE < 32 | 
|  | 384 | # error Code assumes HV_PTE "writable" bit in high word | 
|  | 385 | #endif | 
|  | 386 | u32 *tmp = (u32 *)ptep; | 
|  | 387 | tmp[1] = tmp[1] & ~(1 << (HV_PTE_INDEX_WRITABLE - 32)); | 
|  | 388 | } | 
|  | 389 |  | 
|  | 390 | #endif | 
|  | 391 |  | 
|  | 392 | pte_t *virt_to_pte(struct mm_struct* mm, unsigned long addr) | 
|  | 393 | { | 
|  | 394 | pgd_t *pgd; | 
|  | 395 | pud_t *pud; | 
|  | 396 | pmd_t *pmd; | 
|  | 397 |  | 
|  | 398 | if (pgd_addr_invalid(addr)) | 
|  | 399 | return NULL; | 
|  | 400 |  | 
|  | 401 | pgd = mm ? pgd_offset(mm, addr) : swapper_pg_dir + pgd_index(addr); | 
|  | 402 | pud = pud_offset(pgd, addr); | 
|  | 403 | if (!pud_present(*pud)) | 
|  | 404 | return NULL; | 
|  | 405 | pmd = pmd_offset(pud, addr); | 
|  | 406 | if (pmd_huge_page(*pmd)) | 
|  | 407 | return (pte_t *)pmd; | 
|  | 408 | if (!pmd_present(*pmd)) | 
|  | 409 | return NULL; | 
|  | 410 | return pte_offset_kernel(pmd, addr); | 
|  | 411 | } | 
|  | 412 |  | 
|  | 413 | pgprot_t set_remote_cache_cpu(pgprot_t prot, int cpu) | 
|  | 414 | { | 
|  | 415 | unsigned int width = smp_width; | 
|  | 416 | int x = cpu % width; | 
|  | 417 | int y = cpu / width; | 
|  | 418 | BUG_ON(y >= smp_height); | 
|  | 419 | BUG_ON(hv_pte_get_mode(prot) != HV_PTE_MODE_CACHE_TILE_L3); | 
|  | 420 | BUG_ON(cpu < 0 || cpu >= NR_CPUS); | 
|  | 421 | BUG_ON(!cpu_is_valid_lotar(cpu)); | 
|  | 422 | return hv_pte_set_lotar(prot, HV_XY_TO_LOTAR(x, y)); | 
|  | 423 | } | 
|  | 424 |  | 
|  | 425 | int get_remote_cache_cpu(pgprot_t prot) | 
|  | 426 | { | 
|  | 427 | HV_LOTAR lotar = hv_pte_get_lotar(prot); | 
|  | 428 | int x = HV_LOTAR_X(lotar); | 
|  | 429 | int y = HV_LOTAR_Y(lotar); | 
|  | 430 | BUG_ON(hv_pte_get_mode(prot) != HV_PTE_MODE_CACHE_TILE_L3); | 
|  | 431 | return x + y * smp_width; | 
|  | 432 | } | 
|  | 433 |  | 
| Chris Metcalf | 76c567f | 2011-02-28 16:37:34 -0500 | [diff] [blame] | 434 | /* | 
|  | 435 | * Convert a kernel VA to a PA and homing information. | 
|  | 436 | */ | 
|  | 437 | int va_to_cpa_and_pte(void *va, unsigned long long *cpa, pte_t *pte) | 
| Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 438 | { | 
| Chris Metcalf | 76c567f | 2011-02-28 16:37:34 -0500 | [diff] [blame] | 439 | struct page *page = virt_to_page(va); | 
|  | 440 | pte_t null_pte = { 0 }; | 
|  | 441 |  | 
|  | 442 | *cpa = __pa(va); | 
|  | 443 |  | 
|  | 444 | /* Note that this is not writing a page table, just returning a pte. */ | 
|  | 445 | *pte = pte_set_home(null_pte, page_home(page)); | 
|  | 446 |  | 
|  | 447 | return 0; /* return non-zero if not hfh? */ | 
|  | 448 | } | 
|  | 449 | EXPORT_SYMBOL(va_to_cpa_and_pte); | 
|  | 450 |  | 
|  | 451 | void __set_pte(pte_t *ptep, pte_t pte) | 
|  | 452 | { | 
|  | 453 | #ifdef __tilegx__ | 
|  | 454 | *ptep = pte; | 
|  | 455 | #else | 
|  | 456 | # if HV_PTE_INDEX_PRESENT >= 32 || HV_PTE_INDEX_MIGRATING >= 32 | 
|  | 457 | #  error Must write the present and migrating bits last | 
|  | 458 | # endif | 
|  | 459 | if (pte_present(pte)) { | 
|  | 460 | ((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32); | 
|  | 461 | barrier(); | 
|  | 462 | ((u32 *)ptep)[0] = (u32)(pte_val(pte)); | 
|  | 463 | } else { | 
|  | 464 | ((u32 *)ptep)[0] = (u32)(pte_val(pte)); | 
|  | 465 | barrier(); | 
|  | 466 | ((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32); | 
|  | 467 | } | 
|  | 468 | #endif /* __tilegx__ */ | 
|  | 469 | } | 
|  | 470 |  | 
|  | 471 | void set_pte(pte_t *ptep, pte_t pte) | 
|  | 472 | { | 
|  | 473 | struct page *page = pfn_to_page(pte_pfn(pte)); | 
| Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 474 |  | 
|  | 475 | /* Update the home of a PTE if necessary */ | 
|  | 476 | pte = pte_set_home(pte, page_home(page)); | 
|  | 477 |  | 
| Chris Metcalf | 76c567f | 2011-02-28 16:37:34 -0500 | [diff] [blame] | 478 | __set_pte(ptep, pte); | 
| Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 479 | } | 
|  | 480 |  | 
|  | 481 | /* Can this mm load a PTE with cached_priority set? */ | 
|  | 482 | static inline int mm_is_priority_cached(struct mm_struct *mm) | 
|  | 483 | { | 
|  | 484 | return mm->context.priority_cached; | 
|  | 485 | } | 
|  | 486 |  | 
|  | 487 | /* | 
|  | 488 | * Add a priority mapping to an mm_context and | 
|  | 489 | * notify the hypervisor if this is the first one. | 
|  | 490 | */ | 
|  | 491 | void start_mm_caching(struct mm_struct *mm) | 
|  | 492 | { | 
|  | 493 | if (!mm_is_priority_cached(mm)) { | 
|  | 494 | mm->context.priority_cached = -1U; | 
|  | 495 | hv_set_caching(-1U); | 
|  | 496 | } | 
|  | 497 | } | 
|  | 498 |  | 
|  | 499 | /* | 
|  | 500 | * Validate and return the priority_cached flag.  We know if it's zero | 
|  | 501 | * that we don't need to scan, since we immediately set it non-zero | 
|  | 502 | * when we first consider a MAP_CACHE_PRIORITY mapping. | 
|  | 503 | * | 
|  | 504 | * We only _try_ to acquire the mmap_sem semaphore; if we can't acquire it, | 
|  | 505 | * since we're in an interrupt context (servicing switch_mm) we don't | 
|  | 506 | * worry about it and don't unset the "priority_cached" field. | 
|  | 507 | * Presumably we'll come back later and have more luck and clear | 
|  | 508 | * the value then; for now we'll just keep the cache marked for priority. | 
|  | 509 | */ | 
|  | 510 | static unsigned int update_priority_cached(struct mm_struct *mm) | 
|  | 511 | { | 
|  | 512 | if (mm->context.priority_cached && down_write_trylock(&mm->mmap_sem)) { | 
|  | 513 | struct vm_area_struct *vm; | 
|  | 514 | for (vm = mm->mmap; vm; vm = vm->vm_next) { | 
|  | 515 | if (hv_pte_get_cached_priority(vm->vm_page_prot)) | 
|  | 516 | break; | 
|  | 517 | } | 
|  | 518 | if (vm == NULL) | 
|  | 519 | mm->context.priority_cached = 0; | 
|  | 520 | up_write(&mm->mmap_sem); | 
|  | 521 | } | 
|  | 522 | return mm->context.priority_cached; | 
|  | 523 | } | 
|  | 524 |  | 
|  | 525 | /* Set caching correctly for an mm that we are switching to. */ | 
|  | 526 | void check_mm_caching(struct mm_struct *prev, struct mm_struct *next) | 
|  | 527 | { | 
|  | 528 | if (!mm_is_priority_cached(next)) { | 
|  | 529 | /* | 
|  | 530 | * If the new mm doesn't use priority caching, just see if we | 
|  | 531 | * need the hv_set_caching(), or can assume it's already zero. | 
|  | 532 | */ | 
|  | 533 | if (mm_is_priority_cached(prev)) | 
|  | 534 | hv_set_caching(0); | 
|  | 535 | } else { | 
|  | 536 | hv_set_caching(update_priority_cached(next)); | 
|  | 537 | } | 
|  | 538 | } | 
|  | 539 |  | 
|  | 540 | #if CHIP_HAS_MMIO() | 
|  | 541 |  | 
|  | 542 | /* Map an arbitrary MMIO address, homed according to pgprot, into VA space. */ | 
|  | 543 | void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size, | 
|  | 544 | pgprot_t home) | 
|  | 545 | { | 
|  | 546 | void *addr; | 
|  | 547 | struct vm_struct *area; | 
|  | 548 | unsigned long offset, last_addr; | 
|  | 549 | pgprot_t pgprot; | 
|  | 550 |  | 
|  | 551 | /* Don't allow wraparound or zero size */ | 
|  | 552 | last_addr = phys_addr + size - 1; | 
|  | 553 | if (!size || last_addr < phys_addr) | 
|  | 554 | return NULL; | 
|  | 555 |  | 
|  | 556 | /* Create a read/write, MMIO VA mapping homed at the requested shim. */ | 
|  | 557 | pgprot = PAGE_KERNEL; | 
|  | 558 | pgprot = hv_pte_set_mode(pgprot, HV_PTE_MODE_MMIO); | 
|  | 559 | pgprot = hv_pte_set_lotar(pgprot, hv_pte_get_lotar(home)); | 
|  | 560 |  | 
|  | 561 | /* | 
|  | 562 | * Mappings have to be page-aligned | 
|  | 563 | */ | 
|  | 564 | offset = phys_addr & ~PAGE_MASK; | 
|  | 565 | phys_addr &= PAGE_MASK; | 
|  | 566 | size = PAGE_ALIGN(last_addr+1) - phys_addr; | 
|  | 567 |  | 
|  | 568 | /* | 
|  | 569 | * Ok, go for it.. | 
|  | 570 | */ | 
|  | 571 | area = get_vm_area(size, VM_IOREMAP /* | other flags? */); | 
|  | 572 | if (!area) | 
|  | 573 | return NULL; | 
|  | 574 | area->phys_addr = phys_addr; | 
|  | 575 | addr = area->addr; | 
|  | 576 | if (ioremap_page_range((unsigned long)addr, (unsigned long)addr + size, | 
|  | 577 | phys_addr, pgprot)) { | 
|  | 578 | remove_vm_area((void *)(PAGE_MASK & (unsigned long) addr)); | 
|  | 579 | return NULL; | 
|  | 580 | } | 
|  | 581 | return (__force void __iomem *) (offset + (char *)addr); | 
|  | 582 | } | 
|  | 583 | EXPORT_SYMBOL(ioremap_prot); | 
|  | 584 |  | 
|  | 585 | /* Map a PCI MMIO bus address into VA space. */ | 
|  | 586 | void __iomem *ioremap(resource_size_t phys_addr, unsigned long size) | 
|  | 587 | { | 
|  | 588 | panic("ioremap for PCI MMIO is not supported"); | 
|  | 589 | } | 
|  | 590 | EXPORT_SYMBOL(ioremap); | 
|  | 591 |  | 
|  | 592 | /* Unmap an MMIO VA mapping. */ | 
|  | 593 | void iounmap(volatile void __iomem *addr_in) | 
|  | 594 | { | 
|  | 595 | volatile void __iomem *addr = (volatile void __iomem *) | 
|  | 596 | (PAGE_MASK & (unsigned long __force)addr_in); | 
|  | 597 | #if 1 | 
|  | 598 | vunmap((void * __force)addr); | 
|  | 599 | #else | 
|  | 600 | /* x86 uses this complicated flow instead of vunmap().  Is | 
|  | 601 | * there any particular reason we should do the same? */ | 
|  | 602 | struct vm_struct *p, *o; | 
|  | 603 |  | 
|  | 604 | /* Use the vm area unlocked, assuming the caller | 
|  | 605 | ensures there isn't another iounmap for the same address | 
|  | 606 | in parallel. Reuse of the virtual address is prevented by | 
|  | 607 | leaving it in the global lists until we're done with it. | 
|  | 608 | cpa takes care of the direct mappings. */ | 
|  | 609 | read_lock(&vmlist_lock); | 
|  | 610 | for (p = vmlist; p; p = p->next) { | 
|  | 611 | if (p->addr == addr) | 
|  | 612 | break; | 
|  | 613 | } | 
|  | 614 | read_unlock(&vmlist_lock); | 
|  | 615 |  | 
|  | 616 | if (!p) { | 
| Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 617 | pr_err("iounmap: bad address %p\n", addr); | 
| Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 618 | dump_stack(); | 
|  | 619 | return; | 
|  | 620 | } | 
|  | 621 |  | 
|  | 622 | /* Finally remove it */ | 
|  | 623 | o = remove_vm_area((void *)addr); | 
|  | 624 | BUG_ON(p != o || o == NULL); | 
|  | 625 | kfree(p); | 
|  | 626 | #endif | 
|  | 627 | } | 
|  | 628 | EXPORT_SYMBOL(iounmap); | 
|  | 629 |  | 
|  | 630 | #endif /* CHIP_HAS_MMIO() */ |