blob: 2876a37cdfc4c2dcf1eccfedbe40f475dd363c72 [file] [log] [blame]
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
Peter Zijlstra21805082007-08-25 18:41:53 +020018 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020021 */
22
Arjan van de Ven97455122008-01-25 21:08:34 +010023#include <linux/latencytop.h>
Christian Ehrhardt1983a922009-11-30 12:16:47 +010024#include <linux/sched.h>
Sisir Koppaka3436ae12011-03-26 18:22:55 +053025#include <linux/cpumask.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020026#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
Peter Zijlstracbee9f82012-10-25 14:16:43 +020029#include <linux/mempolicy.h>
Mel Gormane14808b2012-11-19 10:59:15 +000030#include <linux/migrate.h>
Peter Zijlstracbee9f82012-10-25 14:16:43 +020031#include <linux/task_work.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020032
33#include <trace/events/sched.h>
34
35#include "sched.h"
Arjan van de Ven97455122008-01-25 21:08:34 +010036
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020037/*
Peter Zijlstra21805082007-08-25 18:41:53 +020038 * Targeted preemption latency for CPU-bound tasks:
Takuya Yoshikawa864616e2010-10-14 16:09:13 +090039 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020040 *
Peter Zijlstra21805082007-08-25 18:41:53 +020041 * NOTE: this latency value is not the same as the concept of
Ingo Molnard274a4c2007-10-15 17:00:14 +020042 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020045 *
Ingo Molnard274a4c2007-10-15 17:00:14 +020046 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020048 */
Mike Galbraith21406922010-03-11 17:17:15 +010049unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020051
52/*
Christian Ehrhardt1983a922009-11-30 12:16:47 +010053 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
64/*
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010065 * Minimal preemption granularity for CPU-bound tasks:
Takuya Yoshikawa864616e2010-10-14 16:09:13 +090066 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010067 */
Ingo Molnar0bf377b2010-09-12 08:14:52 +020068unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010070
71/*
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
Ingo Molnar0bf377b2010-09-12 08:14:52 +020074static unsigned int sched_nr_latency = 8;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010075
76/*
Mike Galbraith2bba22c2009-09-09 15:41:37 +020077 * After fork, child runs first. If set to 0 (default) then
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020078 * parent will (try to) run first.
79 */
Mike Galbraith2bba22c2009-09-09 15:41:37 +020080unsigned int sysctl_sched_child_runs_first __read_mostly;
Peter Zijlstra21805082007-08-25 18:41:53 +020081
82/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020083 * SCHED_OTHER wake-up granularity.
Mike Galbraith172e0822009-09-09 15:41:37 +020084 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020085 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
Mike Galbraith172e0822009-09-09 15:41:37 +020090unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +010091unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020092
Ingo Molnarda84d962007-10-15 17:00:18 +020093const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
Paul Turnera7a4f8a2010-11-15 15:47:06 -080095/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
Paul Turnerec12cb72011-07-21 09:43:30 -0700102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
Paul Gortmaker85276322013-04-19 15:10:50 -0400116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
Peter Zijlstra029632f2011-10-25 10:00:11 +0200134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
181#if BITS_PER_LONG == 32
182# define WMULT_CONST (~0UL)
183#else
184# define WMULT_CONST (1UL << 32)
185#endif
186
187#define WMULT_SHIFT 32
188
189/*
190 * Shift right and round:
191 */
192#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194/*
195 * delta *= weight / lw
196 */
197static unsigned long
198calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200{
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234}
235
236
237const struct sched_class fair_sched_class;
Peter Zijlstraa4c2f002008-10-17 19:27:03 +0200238
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200239/**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
243#ifdef CONFIG_FAIR_GROUP_SCHED
244
245/* cpu runqueue to which this cfs_rq is attached */
246static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247{
248 return cfs_rq->rq;
249}
250
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200251/* An entity is a task if it doesn't "own" a runqueue */
252#define entity_is_task(se) (!se->my_q)
253
Peter Zijlstra8f488942009-07-24 12:25:30 +0200254static inline struct task_struct *task_of(struct sched_entity *se)
255{
256#ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258#endif
259 return container_of(se, struct task_struct, se);
260}
261
Peter Zijlstrab7581492008-04-19 19:45:00 +0200262/* Walk up scheduling entities hierarchy */
263#define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267{
268 return p->se.cfs_rq;
269}
270
271/* runqueue on which this entity is (to be) queued */
272static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273{
274 return se->cfs_rq;
275}
276
277/* runqueue "owned" by this group */
278static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279{
280 return grp->my_q;
281}
282
Paul Turneraff3e492012-10-04 13:18:30 +0200283static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
Paul Turner9ee474f2012-10-04 13:18:30 +0200285
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
Paul Turner67e86252010-11-15 15:47:05 -0800289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
Paul Turner67e86252010-11-15 15:47:05 -0800299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 }
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800303
304 cfs_rq->on_list = 1;
Paul Turner9ee474f2012-10-04 13:18:30 +0200305 /* We should have no load, but we need to update last_decay. */
Paul Turneraff3e492012-10-04 13:18:30 +0200306 update_cfs_rq_blocked_load(cfs_rq, 0);
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800307 }
308}
309
310static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311{
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316}
317
Peter Zijlstrab7581492008-04-19 19:45:00 +0200318/* Iterate thr' all leaf cfs_rq's on a runqueue */
319#define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322/* Do the two (enqueued) entities belong to the same group ? */
323static inline int
324is_same_group(struct sched_entity *se, struct sched_entity *pse)
325{
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330}
331
332static inline struct sched_entity *parent_entity(struct sched_entity *se)
333{
334 return se->parent;
335}
336
Peter Zijlstra464b7522008-10-24 11:06:15 +0200337/* return depth at which a sched entity is present in the hierarchy */
338static inline int depth_se(struct sched_entity *se)
339{
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346}
347
348static void
349find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350{
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378}
379
Peter Zijlstra8f488942009-07-24 12:25:30 +0200380#else /* !CONFIG_FAIR_GROUP_SCHED */
381
382static inline struct task_struct *task_of(struct sched_entity *se)
383{
384 return container_of(se, struct task_struct, se);
385}
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200386
387static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388{
389 return container_of(cfs_rq, struct rq, cfs);
390}
391
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200392#define entity_is_task(se) 1
393
Peter Zijlstrab7581492008-04-19 19:45:00 +0200394#define for_each_sched_entity(se) \
395 for (; se; se = NULL)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200396
Peter Zijlstrab7581492008-04-19 19:45:00 +0200397static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200398{
Peter Zijlstrab7581492008-04-19 19:45:00 +0200399 return &task_rq(p)->cfs;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200400}
401
Peter Zijlstrab7581492008-04-19 19:45:00 +0200402static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403{
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408}
409
410/* runqueue "owned" by this group */
411static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412{
413 return NULL;
414}
415
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800416static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417{
418}
419
420static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421{
422}
423
Peter Zijlstrab7581492008-04-19 19:45:00 +0200424#define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427static inline int
428is_same_group(struct sched_entity *se, struct sched_entity *pse)
429{
430 return 1;
431}
432
433static inline struct sched_entity *parent_entity(struct sched_entity *se)
434{
435 return NULL;
436}
437
Peter Zijlstra464b7522008-10-24 11:06:15 +0200438static inline void
439find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440{
441}
442
Peter Zijlstrab7581492008-04-19 19:45:00 +0200443#endif /* CONFIG_FAIR_GROUP_SCHED */
444
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -0700445static __always_inline
446void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200447
448/**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
Andrei Epure1bf08232013-03-12 21:12:24 +0200452static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
Peter Zijlstra02e04312007-10-15 17:00:07 +0200453{
Andrei Epure1bf08232013-03-12 21:12:24 +0200454 s64 delta = (s64)(vruntime - max_vruntime);
Peter Zijlstra368059a2007-10-15 17:00:11 +0200455 if (delta > 0)
Andrei Epure1bf08232013-03-12 21:12:24 +0200456 max_vruntime = vruntime;
Peter Zijlstra02e04312007-10-15 17:00:07 +0200457
Andrei Epure1bf08232013-03-12 21:12:24 +0200458 return max_vruntime;
Peter Zijlstra02e04312007-10-15 17:00:07 +0200459}
460
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200461static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
Peter Zijlstrab0ffd242007-10-15 17:00:12 +0200462{
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468}
469
Fabio Checconi54fdc582009-07-16 12:32:27 +0200470static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472{
473 return (s64)(a->vruntime - b->vruntime) < 0;
474}
475
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200476static void update_min_vruntime(struct cfs_rq *cfs_rq)
477{
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
Peter Zijlstrae17036d2009-01-15 14:53:39 +0100488 if (!cfs_rq->curr)
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
Andrei Epure1bf08232013-03-12 21:12:24 +0200494 /* ensure we never gain time by being placed backwards. */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
Peter Zijlstra3fe16982011-04-05 17:23:48 +0200496#ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499#endif
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200500}
501
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200502/*
503 * Enqueue an entity into the rb-tree:
504 */
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200505static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200506{
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
Stephan Baerwolf2bd2d6f2011-07-20 14:46:59 +0200522 if (entity_before(se, entry)) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200534 if (leftmost)
Ingo Molnar57cb4992007-10-15 17:00:11 +0200535 cfs_rq->rb_leftmost = &se->run_node;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200539}
540
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200541static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200542{
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100548 }
Ingo Molnare9acbff2007-10-15 17:00:04 +0200549
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200551}
552
Peter Zijlstra029632f2011-10-25 10:00:11 +0200553struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200554{
Peter Zijlstraf4b67552008-11-04 21:25:07 +0100555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200561}
562
Rik van Rielac53db52011-02-01 09:51:03 -0500563static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564{
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571}
572
573#ifdef CONFIG_SCHED_DEBUG
Peter Zijlstra029632f2011-10-25 10:00:11 +0200574struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200575{
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200577
Balbir Singh70eee742008-02-22 13:25:53 +0530578 if (!last)
579 return NULL;
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100580
581 return rb_entry(last, struct sched_entity, run_node);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200582}
583
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200584/**************************************************************
585 * Scheduling class statistics methods:
586 */
587
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100588int sched_proc_update_handler(struct ctl_table *table, int write,
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700589 void __user *buffer, size_t *lenp,
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100590 loff_t *ppos)
591{
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100593 int factor = get_update_sysctl_factor();
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100601#define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100606#undef WRT_SYSCTL
607
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100608 return 0;
609}
610#endif
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200611
612/*
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200613 * delta /= w
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200614 */
615static inline unsigned long
616calc_delta_fair(unsigned long delta, struct sched_entity *se)
617{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200620
621 return delta;
622}
623
624/*
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200625 * The idea is to set a period in which each task runs once.
626 *
Borislav Petkov532b1852012-08-08 16:16:04 +0200627 * When there are too many tasks (sched_nr_latency) we have to stretch
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200632static u64 __sched_period(unsigned long nr_running)
633{
634 u64 period = sysctl_sched_latency;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100635 unsigned long nr_latency = sched_nr_latency;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200636
637 if (unlikely(nr_running > nr_latency)) {
Peter Zijlstra4bf0b772008-01-25 21:08:21 +0100638 period = sysctl_sched_min_granularity;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200639 period *= nr_running;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200640 }
641
642 return period;
643}
644
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200645/*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200649 * s = p*P[w/rw]
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200650 */
Peter Zijlstra6d0f0eb2007-10-15 17:00:05 +0200651static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Peter Zijlstra21805082007-08-25 18:41:53 +0200652{
Mike Galbraith0a582442009-01-02 12:16:42 +0100653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200654
Mike Galbraith0a582442009-01-02 12:16:42 +0100655 for_each_sched_entity(se) {
Lin Ming6272d682009-01-15 17:17:15 +0100656 struct load_weight *load;
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200657 struct load_weight lw;
Lin Ming6272d682009-01-15 17:17:15 +0100658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200661
Mike Galbraith0a582442009-01-02 12:16:42 +0100662 if (unlikely(!se->on_rq)) {
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200663 lw = cfs_rq->load;
Mike Galbraith0a582442009-01-02 12:16:42 +0100664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200671}
672
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200673/*
Andrei Epure660cc002013-03-11 12:03:20 +0200674 * We calculate the vruntime slice of a to-be-inserted task.
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200675 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200676 * vs = s/w
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200677 */
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200678static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200679{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200681}
682
Alex Shia75cdaa2013-06-20 10:18:47 +0800683#ifdef CONFIG_SMP
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100684static unsigned long task_h_load(struct task_struct *p);
685
Alex Shia75cdaa2013-06-20 10:18:47 +0800686static inline void __update_task_entity_contrib(struct sched_entity *se);
687
688/* Give new task start runnable values to heavy its load in infant time */
689void init_task_runnable_average(struct task_struct *p)
690{
691 u32 slice;
692
693 p->se.avg.decay_count = 0;
694 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
695 p->se.avg.runnable_avg_sum = slice;
696 p->se.avg.runnable_avg_period = slice;
697 __update_task_entity_contrib(&p->se);
698}
699#else
700void init_task_runnable_average(struct task_struct *p)
701{
702}
703#endif
704
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200705/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200706 * Update the current task's runtime statistics. Skip current tasks that
707 * are not in our scheduling class.
708 */
709static inline void
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200710__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
711 unsigned long delta_exec)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200712{
Ingo Molnarbbdba7c2007-10-15 17:00:06 +0200713 unsigned long delta_exec_weighted;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200714
Lucas De Marchi41acab82010-03-10 23:37:45 -0300715 schedstat_set(curr->statistics.exec_max,
716 max((u64)delta_exec, curr->statistics.exec_max));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200717
718 curr->sum_exec_runtime += delta_exec;
Ingo Molnar7a62eab2007-10-15 17:00:06 +0200719 schedstat_add(cfs_rq, exec_clock, delta_exec);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200720 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +0100721
Ingo Molnare9acbff2007-10-15 17:00:04 +0200722 curr->vruntime += delta_exec_weighted;
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200723 update_min_vruntime(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200724}
725
Ingo Molnarb7cc0892007-08-09 11:16:47 +0200726static void update_curr(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200727{
Ingo Molnar429d43b2007-10-15 17:00:03 +0200728 struct sched_entity *curr = cfs_rq->curr;
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200729 u64 now = rq_clock_task(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200730 unsigned long delta_exec;
731
732 if (unlikely(!curr))
733 return;
734
735 /*
736 * Get the amount of time the current task was running
737 * since the last time we changed load (this cannot
738 * overflow on 32 bits):
739 */
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200740 delta_exec = (unsigned long)(now - curr->exec_start);
Peter Zijlstra34f28ec2008-12-16 08:45:31 +0100741 if (!delta_exec)
742 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200743
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200744 __update_curr(cfs_rq, curr, delta_exec);
745 curr->exec_start = now;
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100746
747 if (entity_is_task(curr)) {
748 struct task_struct *curtask = task_of(curr);
749
Ingo Molnarf977bb42009-09-13 18:15:54 +0200750 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100751 cpuacct_charge(curtask, delta_exec);
Frank Mayharf06febc2008-09-12 09:54:39 -0700752 account_group_exec_runtime(curtask, delta_exec);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100753 }
Paul Turnerec12cb72011-07-21 09:43:30 -0700754
755 account_cfs_rq_runtime(cfs_rq, delta_exec);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200756}
757
758static inline void
Ingo Molnar5870db52007-08-09 11:16:47 +0200759update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200760{
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200761 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200762}
763
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200764/*
765 * Task is being enqueued - update stats:
766 */
Ingo Molnard2417e52007-08-09 11:16:47 +0200767static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200768{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200769 /*
770 * Are we enqueueing a waiting task? (for current tasks
771 * a dequeue/enqueue event is a NOP)
772 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200773 if (se != cfs_rq->curr)
Ingo Molnar5870db52007-08-09 11:16:47 +0200774 update_stats_wait_start(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200775}
776
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200777static void
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200778update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200779{
Lucas De Marchi41acab82010-03-10 23:37:45 -0300780 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200781 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
Lucas De Marchi41acab82010-03-10 23:37:45 -0300782 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
783 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200784 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200785#ifdef CONFIG_SCHEDSTATS
786 if (entity_is_task(se)) {
787 trace_sched_stat_wait(task_of(se),
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200788 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200789 }
790#endif
Lucas De Marchi41acab82010-03-10 23:37:45 -0300791 schedstat_set(se->statistics.wait_start, 0);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200792}
793
794static inline void
Ingo Molnar19b6a2e2007-08-09 11:16:48 +0200795update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200796{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200797 /*
798 * Mark the end of the wait period if dequeueing a
799 * waiting task:
800 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200801 if (se != cfs_rq->curr)
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200802 update_stats_wait_end(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200803}
804
805/*
806 * We are picking a new current task - update its stats:
807 */
808static inline void
Ingo Molnar79303e92007-08-09 11:16:47 +0200809update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200810{
811 /*
812 * We are starting a new run period:
813 */
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200814 se->exec_start = rq_clock_task(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200815}
816
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200817/**************************************************
818 * Scheduling class queueing methods:
819 */
820
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200821#ifdef CONFIG_NUMA_BALANCING
822/*
Mel Gorman598f0ec2013-10-07 11:28:55 +0100823 * Approximate time to scan a full NUMA task in ms. The task scan period is
824 * calculated based on the tasks virtual memory size and
825 * numa_balancing_scan_size.
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200826 */
Mel Gorman598f0ec2013-10-07 11:28:55 +0100827unsigned int sysctl_numa_balancing_scan_period_min = 1000;
828unsigned int sysctl_numa_balancing_scan_period_max = 60000;
829unsigned int sysctl_numa_balancing_scan_period_reset = 60000;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200830
831/* Portion of address space to scan in MB */
832unsigned int sysctl_numa_balancing_scan_size = 256;
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200833
Peter Zijlstra4b96a292012-10-25 14:16:47 +0200834/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
835unsigned int sysctl_numa_balancing_scan_delay = 1000;
836
Mel Gorman598f0ec2013-10-07 11:28:55 +0100837static unsigned int task_nr_scan_windows(struct task_struct *p)
838{
839 unsigned long rss = 0;
840 unsigned long nr_scan_pages;
841
842 /*
843 * Calculations based on RSS as non-present and empty pages are skipped
844 * by the PTE scanner and NUMA hinting faults should be trapped based
845 * on resident pages
846 */
847 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
848 rss = get_mm_rss(p->mm);
849 if (!rss)
850 rss = nr_scan_pages;
851
852 rss = round_up(rss, nr_scan_pages);
853 return rss / nr_scan_pages;
854}
855
856/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
857#define MAX_SCAN_WINDOW 2560
858
859static unsigned int task_scan_min(struct task_struct *p)
860{
861 unsigned int scan, floor;
862 unsigned int windows = 1;
863
864 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
865 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
866 floor = 1000 / windows;
867
868 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
869 return max_t(unsigned int, floor, scan);
870}
871
872static unsigned int task_scan_max(struct task_struct *p)
873{
874 unsigned int smin = task_scan_min(p);
875 unsigned int smax;
876
877 /* Watch for min being lower than max due to floor calculations */
878 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
879 return max(smin, smax);
880}
881
Mel Gorman3a7053b2013-10-07 11:29:00 +0100882/*
883 * Once a preferred node is selected the scheduler balancer will prefer moving
884 * a task to that node for sysctl_numa_balancing_settle_count number of PTE
885 * scans. This will give the process the chance to accumulate more faults on
886 * the preferred node but still allow the scheduler to move the task again if
887 * the nodes CPUs are overloaded.
888 */
Rik van Riel6fe6b2d2013-10-07 11:29:08 +0100889unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
Mel Gorman3a7053b2013-10-07 11:29:00 +0100890
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100891struct numa_group {
892 atomic_t refcount;
893
894 spinlock_t lock; /* nr_tasks, tasks */
895 int nr_tasks;
Mel Gormane29cf082013-10-07 11:29:22 +0100896 pid_t gid;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100897 struct list_head task_list;
898
899 struct rcu_head rcu;
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100900 atomic_long_t total_faults;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100901 atomic_long_t faults[0];
902};
903
Mel Gormane29cf082013-10-07 11:29:22 +0100904pid_t task_numa_group_id(struct task_struct *p)
905{
906 return p->numa_group ? p->numa_group->gid : 0;
907}
908
Mel Gormanac8e8952013-10-07 11:29:03 +0100909static inline int task_faults_idx(int nid, int priv)
910{
911 return 2 * nid + priv;
912}
913
914static inline unsigned long task_faults(struct task_struct *p, int nid)
915{
916 if (!p->numa_faults)
917 return 0;
918
919 return p->numa_faults[task_faults_idx(nid, 0)] +
920 p->numa_faults[task_faults_idx(nid, 1)];
921}
922
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100923static inline unsigned long group_faults(struct task_struct *p, int nid)
924{
925 if (!p->numa_group)
926 return 0;
927
928 return atomic_long_read(&p->numa_group->faults[2*nid]) +
929 atomic_long_read(&p->numa_group->faults[2*nid+1]);
930}
931
932/*
933 * These return the fraction of accesses done by a particular task, or
934 * task group, on a particular numa node. The group weight is given a
935 * larger multiplier, in order to group tasks together that are almost
936 * evenly spread out between numa nodes.
937 */
938static inline unsigned long task_weight(struct task_struct *p, int nid)
939{
940 unsigned long total_faults;
941
942 if (!p->numa_faults)
943 return 0;
944
945 total_faults = p->total_numa_faults;
946
947 if (!total_faults)
948 return 0;
949
950 return 1000 * task_faults(p, nid) / total_faults;
951}
952
953static inline unsigned long group_weight(struct task_struct *p, int nid)
954{
955 unsigned long total_faults;
956
957 if (!p->numa_group)
958 return 0;
959
960 total_faults = atomic_long_read(&p->numa_group->total_faults);
961
962 if (!total_faults)
963 return 0;
964
965 return 1200 * group_faults(p, nid) / total_faults;
966}
967
Mel Gormane6628d52013-10-07 11:29:02 +0100968static unsigned long weighted_cpuload(const int cpu);
Mel Gorman58d081b2013-10-07 11:29:10 +0100969static unsigned long source_load(int cpu, int type);
970static unsigned long target_load(int cpu, int type);
971static unsigned long power_of(int cpu);
972static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
Mel Gormane6628d52013-10-07 11:29:02 +0100973
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100974/* Cached statistics for all CPUs within a node */
Mel Gorman58d081b2013-10-07 11:29:10 +0100975struct numa_stats {
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100976 unsigned long nr_running;
Mel Gorman58d081b2013-10-07 11:29:10 +0100977 unsigned long load;
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100978
979 /* Total compute capacity of CPUs on a node */
980 unsigned long power;
981
982 /* Approximate capacity in terms of runnable tasks on a node */
983 unsigned long capacity;
984 int has_capacity;
Mel Gorman58d081b2013-10-07 11:29:10 +0100985};
Mel Gormane6628d52013-10-07 11:29:02 +0100986
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100987/*
988 * XXX borrowed from update_sg_lb_stats
989 */
990static void update_numa_stats(struct numa_stats *ns, int nid)
991{
992 int cpu;
993
994 memset(ns, 0, sizeof(*ns));
995 for_each_cpu(cpu, cpumask_of_node(nid)) {
996 struct rq *rq = cpu_rq(cpu);
997
998 ns->nr_running += rq->nr_running;
999 ns->load += weighted_cpuload(cpu);
1000 ns->power += power_of(cpu);
1001 }
1002
1003 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1004 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1005 ns->has_capacity = (ns->nr_running < ns->capacity);
1006}
1007
Mel Gorman58d081b2013-10-07 11:29:10 +01001008struct task_numa_env {
1009 struct task_struct *p;
1010
1011 int src_cpu, src_nid;
1012 int dst_cpu, dst_nid;
1013
1014 struct numa_stats src_stats, dst_stats;
1015
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001016 int imbalance_pct, idx;
1017
1018 struct task_struct *best_task;
1019 long best_imp;
Mel Gorman58d081b2013-10-07 11:29:10 +01001020 int best_cpu;
1021};
1022
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001023static void task_numa_assign(struct task_numa_env *env,
1024 struct task_struct *p, long imp)
1025{
1026 if (env->best_task)
1027 put_task_struct(env->best_task);
1028 if (p)
1029 get_task_struct(p);
1030
1031 env->best_task = p;
1032 env->best_imp = imp;
1033 env->best_cpu = env->dst_cpu;
1034}
1035
1036/*
1037 * This checks if the overall compute and NUMA accesses of the system would
1038 * be improved if the source tasks was migrated to the target dst_cpu taking
1039 * into account that it might be best if task running on the dst_cpu should
1040 * be exchanged with the source task
1041 */
1042static void task_numa_compare(struct task_numa_env *env, long imp)
1043{
1044 struct rq *src_rq = cpu_rq(env->src_cpu);
1045 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1046 struct task_struct *cur;
1047 long dst_load, src_load;
1048 long load;
1049
1050 rcu_read_lock();
1051 cur = ACCESS_ONCE(dst_rq->curr);
1052 if (cur->pid == 0) /* idle */
1053 cur = NULL;
1054
1055 /*
1056 * "imp" is the fault differential for the source task between the
1057 * source and destination node. Calculate the total differential for
1058 * the source task and potential destination task. The more negative
1059 * the value is, the more rmeote accesses that would be expected to
1060 * be incurred if the tasks were swapped.
1061 */
1062 if (cur) {
1063 /* Skip this swap candidate if cannot move to the source cpu */
1064 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1065 goto unlock;
1066
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001067 imp += task_weight(cur, env->src_nid) +
1068 group_weight(cur, env->src_nid) -
1069 task_weight(cur, env->dst_nid) -
1070 group_weight(cur, env->dst_nid);
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001071 }
1072
1073 if (imp < env->best_imp)
1074 goto unlock;
1075
1076 if (!cur) {
1077 /* Is there capacity at our destination? */
1078 if (env->src_stats.has_capacity &&
1079 !env->dst_stats.has_capacity)
1080 goto unlock;
1081
1082 goto balance;
1083 }
1084
1085 /* Balance doesn't matter much if we're running a task per cpu */
1086 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1087 goto assign;
1088
1089 /*
1090 * In the overloaded case, try and keep the load balanced.
1091 */
1092balance:
1093 dst_load = env->dst_stats.load;
1094 src_load = env->src_stats.load;
1095
1096 /* XXX missing power terms */
1097 load = task_h_load(env->p);
1098 dst_load += load;
1099 src_load -= load;
1100
1101 if (cur) {
1102 load = task_h_load(cur);
1103 dst_load -= load;
1104 src_load += load;
1105 }
1106
1107 /* make src_load the smaller */
1108 if (dst_load < src_load)
1109 swap(dst_load, src_load);
1110
1111 if (src_load * env->imbalance_pct < dst_load * 100)
1112 goto unlock;
1113
1114assign:
1115 task_numa_assign(env, cur, imp);
1116unlock:
1117 rcu_read_unlock();
1118}
1119
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001120static void task_numa_find_cpu(struct task_numa_env *env, long imp)
1121{
1122 int cpu;
1123
1124 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1125 /* Skip this CPU if the source task cannot migrate */
1126 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1127 continue;
1128
1129 env->dst_cpu = cpu;
1130 task_numa_compare(env, imp);
1131 }
1132}
1133
Mel Gorman58d081b2013-10-07 11:29:10 +01001134static int task_numa_migrate(struct task_struct *p)
Mel Gormane6628d52013-10-07 11:29:02 +01001135{
Mel Gorman58d081b2013-10-07 11:29:10 +01001136 struct task_numa_env env = {
1137 .p = p,
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001138
Mel Gorman58d081b2013-10-07 11:29:10 +01001139 .src_cpu = task_cpu(p),
Ingo Molnarb32e86b2013-10-07 11:29:30 +01001140 .src_nid = task_node(p),
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001141
1142 .imbalance_pct = 112,
1143
1144 .best_task = NULL,
1145 .best_imp = 0,
1146 .best_cpu = -1
Mel Gorman58d081b2013-10-07 11:29:10 +01001147 };
1148 struct sched_domain *sd;
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001149 unsigned long weight;
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001150 int nid, ret;
1151 long imp;
Mel Gormane6628d52013-10-07 11:29:02 +01001152
Mel Gorman58d081b2013-10-07 11:29:10 +01001153 /*
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001154 * Pick the lowest SD_NUMA domain, as that would have the smallest
1155 * imbalance and would be the first to start moving tasks about.
1156 *
1157 * And we want to avoid any moving of tasks about, as that would create
1158 * random movement of tasks -- counter the numa conditions we're trying
1159 * to satisfy here.
Mel Gorman58d081b2013-10-07 11:29:10 +01001160 */
Mel Gormane6628d52013-10-07 11:29:02 +01001161 rcu_read_lock();
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001162 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1163 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
Mel Gormane6628d52013-10-07 11:29:02 +01001164 rcu_read_unlock();
1165
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001166 weight = task_weight(p, env.src_nid) + group_weight(p, env.src_nid);
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001167 update_numa_stats(&env.src_stats, env.src_nid);
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001168 env.dst_nid = p->numa_preferred_nid;
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001169 imp = task_weight(p, env.dst_nid) + group_weight(p, env.dst_nid) - weight;
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001170 update_numa_stats(&env.dst_stats, env.dst_nid);
Mel Gorman58d081b2013-10-07 11:29:10 +01001171
Rik van Riele1dda8a2013-10-07 11:29:19 +01001172 /* If the preferred nid has capacity, try to use it. */
1173 if (env.dst_stats.has_capacity)
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001174 task_numa_find_cpu(&env, imp);
Rik van Riele1dda8a2013-10-07 11:29:19 +01001175
1176 /* No space available on the preferred nid. Look elsewhere. */
1177 if (env.best_cpu == -1) {
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001178 for_each_online_node(nid) {
1179 if (nid == env.src_nid || nid == p->numa_preferred_nid)
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001180 continue;
1181
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001182 /* Only consider nodes where both task and groups benefit */
1183 imp = task_weight(p, nid) + group_weight(p, nid) - weight;
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001184 if (imp < 0)
1185 continue;
1186
1187 env.dst_nid = nid;
1188 update_numa_stats(&env.dst_stats, env.dst_nid);
1189 task_numa_find_cpu(&env, imp);
Mel Gorman58d081b2013-10-07 11:29:10 +01001190 }
1191 }
1192
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001193 /* No better CPU than the current one was found. */
1194 if (env.best_cpu == -1)
1195 return -EAGAIN;
1196
1197 if (env.best_task == NULL) {
1198 int ret = migrate_task_to(p, env.best_cpu);
1199 return ret;
1200 }
1201
1202 ret = migrate_swap(p, env.best_task);
1203 put_task_struct(env.best_task);
1204 return ret;
Mel Gormane6628d52013-10-07 11:29:02 +01001205}
1206
Mel Gorman6b9a7462013-10-07 11:29:11 +01001207/* Attempt to migrate a task to a CPU on the preferred node. */
1208static void numa_migrate_preferred(struct task_struct *p)
1209{
1210 /* Success if task is already running on preferred CPU */
1211 p->numa_migrate_retry = 0;
Rik van Riel06ea5e02013-10-07 11:29:12 +01001212 if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid) {
1213 /*
1214 * If migration is temporarily disabled due to a task migration
1215 * then re-enable it now as the task is running on its
1216 * preferred node and memory should migrate locally
1217 */
1218 if (!p->numa_migrate_seq)
1219 p->numa_migrate_seq++;
Mel Gorman6b9a7462013-10-07 11:29:11 +01001220 return;
Rik van Riel06ea5e02013-10-07 11:29:12 +01001221 }
Mel Gorman6b9a7462013-10-07 11:29:11 +01001222
1223 /* This task has no NUMA fault statistics yet */
1224 if (unlikely(p->numa_preferred_nid == -1))
1225 return;
1226
1227 /* Otherwise, try migrate to a CPU on the preferred node */
1228 if (task_numa_migrate(p) != 0)
1229 p->numa_migrate_retry = jiffies + HZ*5;
1230}
1231
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001232static void task_numa_placement(struct task_struct *p)
1233{
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001234 int seq, nid, max_nid = -1, max_group_nid = -1;
1235 unsigned long max_faults = 0, max_group_faults = 0;
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001236 spinlock_t *group_lock = NULL;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001237
Hugh Dickins2832bc12012-12-19 17:42:16 -08001238 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001239 if (p->numa_scan_seq == seq)
1240 return;
1241 p->numa_scan_seq = seq;
Mel Gorman3a7053b2013-10-07 11:29:00 +01001242 p->numa_migrate_seq++;
Mel Gorman598f0ec2013-10-07 11:28:55 +01001243 p->numa_scan_period_max = task_scan_max(p);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001244
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001245 /* If the task is part of a group prevent parallel updates to group stats */
1246 if (p->numa_group) {
1247 group_lock = &p->numa_group->lock;
1248 spin_lock(group_lock);
1249 }
1250
Mel Gorman688b7582013-10-07 11:28:58 +01001251 /* Find the node with the highest number of faults */
1252 for_each_online_node(nid) {
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001253 unsigned long faults = 0, group_faults = 0;
Mel Gormanac8e8952013-10-07 11:29:03 +01001254 int priv, i;
Mel Gorman745d6142013-10-07 11:28:59 +01001255
Mel Gormanac8e8952013-10-07 11:29:03 +01001256 for (priv = 0; priv < 2; priv++) {
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001257 long diff;
1258
Mel Gormanac8e8952013-10-07 11:29:03 +01001259 i = task_faults_idx(nid, priv);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001260 diff = -p->numa_faults[i];
Mel Gorman745d6142013-10-07 11:28:59 +01001261
Mel Gormanac8e8952013-10-07 11:29:03 +01001262 /* Decay existing window, copy faults since last scan */
1263 p->numa_faults[i] >>= 1;
1264 p->numa_faults[i] += p->numa_faults_buffer[i];
1265 p->numa_faults_buffer[i] = 0;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001266
1267 faults += p->numa_faults[i];
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001268 diff += p->numa_faults[i];
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001269 p->total_numa_faults += diff;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001270 if (p->numa_group) {
1271 /* safe because we can only change our own group */
1272 atomic_long_add(diff, &p->numa_group->faults[i]);
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001273 atomic_long_add(diff, &p->numa_group->total_faults);
1274 group_faults += atomic_long_read(&p->numa_group->faults[i]);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001275 }
Mel Gormanac8e8952013-10-07 11:29:03 +01001276 }
1277
Mel Gorman688b7582013-10-07 11:28:58 +01001278 if (faults > max_faults) {
1279 max_faults = faults;
1280 max_nid = nid;
1281 }
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001282
1283 if (group_faults > max_group_faults) {
1284 max_group_faults = group_faults;
1285 max_group_nid = nid;
1286 }
1287 }
1288
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001289 if (p->numa_group) {
1290 /*
1291 * If the preferred task and group nids are different,
1292 * iterate over the nodes again to find the best place.
1293 */
1294 if (max_nid != max_group_nid) {
1295 unsigned long weight, max_weight = 0;
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001296
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001297 for_each_online_node(nid) {
1298 weight = task_weight(p, nid) + group_weight(p, nid);
1299 if (weight > max_weight) {
1300 max_weight = weight;
1301 max_nid = nid;
1302 }
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001303 }
1304 }
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001305
1306 spin_unlock(group_lock);
Mel Gorman688b7582013-10-07 11:28:58 +01001307 }
1308
Mel Gorman6b9a7462013-10-07 11:29:11 +01001309 /* Preferred node as the node with the most faults */
Mel Gorman3a7053b2013-10-07 11:29:00 +01001310 if (max_faults && max_nid != p->numa_preferred_nid) {
Mel Gormane6628d52013-10-07 11:29:02 +01001311 /* Update the preferred nid and migrate task if possible */
Mel Gorman688b7582013-10-07 11:28:58 +01001312 p->numa_preferred_nid = max_nid;
Rik van Riel6fe6b2d2013-10-07 11:29:08 +01001313 p->numa_migrate_seq = 1;
Mel Gorman6b9a7462013-10-07 11:29:11 +01001314 numa_migrate_preferred(p);
Mel Gorman3a7053b2013-10-07 11:29:00 +01001315 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001316}
1317
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001318static inline int get_numa_group(struct numa_group *grp)
1319{
1320 return atomic_inc_not_zero(&grp->refcount);
1321}
1322
1323static inline void put_numa_group(struct numa_group *grp)
1324{
1325 if (atomic_dec_and_test(&grp->refcount))
1326 kfree_rcu(grp, rcu);
1327}
1328
1329static void double_lock(spinlock_t *l1, spinlock_t *l2)
1330{
1331 if (l1 > l2)
1332 swap(l1, l2);
1333
1334 spin_lock(l1);
1335 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1336}
1337
1338static void task_numa_group(struct task_struct *p, int cpupid)
1339{
1340 struct numa_group *grp, *my_grp;
1341 struct task_struct *tsk;
1342 bool join = false;
1343 int cpu = cpupid_to_cpu(cpupid);
1344 int i;
1345
1346 if (unlikely(!p->numa_group)) {
1347 unsigned int size = sizeof(struct numa_group) +
1348 2*nr_node_ids*sizeof(atomic_long_t);
1349
1350 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1351 if (!grp)
1352 return;
1353
1354 atomic_set(&grp->refcount, 1);
1355 spin_lock_init(&grp->lock);
1356 INIT_LIST_HEAD(&grp->task_list);
Mel Gormane29cf082013-10-07 11:29:22 +01001357 grp->gid = p->pid;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001358
1359 for (i = 0; i < 2*nr_node_ids; i++)
1360 atomic_long_set(&grp->faults[i], p->numa_faults[i]);
1361
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001362 atomic_long_set(&grp->total_faults, p->total_numa_faults);
1363
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001364 list_add(&p->numa_entry, &grp->task_list);
1365 grp->nr_tasks++;
1366 rcu_assign_pointer(p->numa_group, grp);
1367 }
1368
1369 rcu_read_lock();
1370 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1371
1372 if (!cpupid_match_pid(tsk, cpupid))
1373 goto unlock;
1374
1375 grp = rcu_dereference(tsk->numa_group);
1376 if (!grp)
1377 goto unlock;
1378
1379 my_grp = p->numa_group;
1380 if (grp == my_grp)
1381 goto unlock;
1382
1383 /*
1384 * Only join the other group if its bigger; if we're the bigger group,
1385 * the other task will join us.
1386 */
1387 if (my_grp->nr_tasks > grp->nr_tasks)
1388 goto unlock;
1389
1390 /*
1391 * Tie-break on the grp address.
1392 */
1393 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1394 goto unlock;
1395
1396 if (!get_numa_group(grp))
1397 goto unlock;
1398
1399 join = true;
1400
1401unlock:
1402 rcu_read_unlock();
1403
1404 if (!join)
1405 return;
1406
1407 for (i = 0; i < 2*nr_node_ids; i++) {
1408 atomic_long_sub(p->numa_faults[i], &my_grp->faults[i]);
1409 atomic_long_add(p->numa_faults[i], &grp->faults[i]);
1410 }
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001411 atomic_long_sub(p->total_numa_faults, &my_grp->total_faults);
1412 atomic_long_add(p->total_numa_faults, &grp->total_faults);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001413
1414 double_lock(&my_grp->lock, &grp->lock);
1415
1416 list_move(&p->numa_entry, &grp->task_list);
1417 my_grp->nr_tasks--;
1418 grp->nr_tasks++;
1419
1420 spin_unlock(&my_grp->lock);
1421 spin_unlock(&grp->lock);
1422
1423 rcu_assign_pointer(p->numa_group, grp);
1424
1425 put_numa_group(my_grp);
1426}
1427
1428void task_numa_free(struct task_struct *p)
1429{
1430 struct numa_group *grp = p->numa_group;
1431 int i;
Rik van Riel82727012013-10-07 11:29:28 +01001432 void *numa_faults = p->numa_faults;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001433
1434 if (grp) {
1435 for (i = 0; i < 2*nr_node_ids; i++)
1436 atomic_long_sub(p->numa_faults[i], &grp->faults[i]);
1437
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001438 atomic_long_sub(p->total_numa_faults, &grp->total_faults);
1439
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001440 spin_lock(&grp->lock);
1441 list_del(&p->numa_entry);
1442 grp->nr_tasks--;
1443 spin_unlock(&grp->lock);
1444 rcu_assign_pointer(p->numa_group, NULL);
1445 put_numa_group(grp);
1446 }
1447
Rik van Riel82727012013-10-07 11:29:28 +01001448 p->numa_faults = NULL;
1449 p->numa_faults_buffer = NULL;
1450 kfree(numa_faults);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001451}
1452
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001453/*
1454 * Got a PROT_NONE fault for a page on @node.
1455 */
Peter Zijlstra6688cc02013-10-07 11:29:24 +01001456void task_numa_fault(int last_cpupid, int node, int pages, int flags)
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001457{
1458 struct task_struct *p = current;
Peter Zijlstra6688cc02013-10-07 11:29:24 +01001459 bool migrated = flags & TNF_MIGRATED;
Mel Gormanac8e8952013-10-07 11:29:03 +01001460 int priv;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001461
Dave Kleikamp10e84b92013-07-31 13:53:35 -07001462 if (!numabalancing_enabled)
Mel Gorman1a687c22012-11-22 11:16:36 +00001463 return;
1464
Mel Gorman9ff1d9f2013-10-07 11:29:04 +01001465 /* for example, ksmd faulting in a user's mm */
1466 if (!p->mm)
1467 return;
1468
Rik van Riel82727012013-10-07 11:29:28 +01001469 /* Do not worry about placement if exiting */
1470 if (p->state == TASK_DEAD)
1471 return;
1472
Mel Gormanf809ca92013-10-07 11:28:57 +01001473 /* Allocate buffer to track faults on a per-node basis */
1474 if (unlikely(!p->numa_faults)) {
Mel Gormanac8e8952013-10-07 11:29:03 +01001475 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
Mel Gormanf809ca92013-10-07 11:28:57 +01001476
Mel Gorman745d6142013-10-07 11:28:59 +01001477 /* numa_faults and numa_faults_buffer share the allocation */
1478 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
Mel Gormanf809ca92013-10-07 11:28:57 +01001479 if (!p->numa_faults)
1480 return;
Mel Gorman745d6142013-10-07 11:28:59 +01001481
1482 BUG_ON(p->numa_faults_buffer);
Mel Gormanac8e8952013-10-07 11:29:03 +01001483 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001484 p->total_numa_faults = 0;
Mel Gormanf809ca92013-10-07 11:28:57 +01001485 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001486
Mel Gormanfb003b82012-11-15 09:01:14 +00001487 /*
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001488 * First accesses are treated as private, otherwise consider accesses
1489 * to be private if the accessing pid has not changed
1490 */
1491 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1492 priv = 1;
1493 } else {
1494 priv = cpupid_match_pid(p, last_cpupid);
Peter Zijlstra6688cc02013-10-07 11:29:24 +01001495 if (!priv && !(flags & TNF_NO_GROUP))
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001496 task_numa_group(p, last_cpupid);
1497 }
1498
1499 /*
Mel Gormanb8593bf2012-11-21 01:18:23 +00001500 * If pages are properly placed (did not migrate) then scan slower.
1501 * This is reset periodically in case of phase changes
Mel Gormanfb003b82012-11-15 09:01:14 +00001502 */
Mel Gorman598f0ec2013-10-07 11:28:55 +01001503 if (!migrated) {
1504 /* Initialise if necessary */
1505 if (!p->numa_scan_period_max)
1506 p->numa_scan_period_max = task_scan_max(p);
1507
1508 p->numa_scan_period = min(p->numa_scan_period_max,
1509 p->numa_scan_period + 10);
1510 }
Mel Gormanfb003b82012-11-15 09:01:14 +00001511
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001512 task_numa_placement(p);
Mel Gormanf809ca92013-10-07 11:28:57 +01001513
Mel Gorman6b9a7462013-10-07 11:29:11 +01001514 /* Retry task to preferred node migration if it previously failed */
1515 if (p->numa_migrate_retry && time_after(jiffies, p->numa_migrate_retry))
1516 numa_migrate_preferred(p);
1517
Ingo Molnarb32e86b2013-10-07 11:29:30 +01001518 if (migrated)
1519 p->numa_pages_migrated += pages;
1520
Mel Gormanac8e8952013-10-07 11:29:03 +01001521 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001522}
1523
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001524static void reset_ptenuma_scan(struct task_struct *p)
1525{
1526 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1527 p->mm->numa_scan_offset = 0;
1528}
1529
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001530/*
1531 * The expensive part of numa migration is done from task_work context.
1532 * Triggered from task_tick_numa().
1533 */
1534void task_numa_work(struct callback_head *work)
1535{
1536 unsigned long migrate, next_scan, now = jiffies;
1537 struct task_struct *p = current;
1538 struct mm_struct *mm = p->mm;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001539 struct vm_area_struct *vma;
Mel Gorman9f406042012-11-14 18:34:32 +00001540 unsigned long start, end;
Mel Gorman598f0ec2013-10-07 11:28:55 +01001541 unsigned long nr_pte_updates = 0;
Mel Gorman9f406042012-11-14 18:34:32 +00001542 long pages;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001543
1544 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1545
1546 work->next = work; /* protect against double add */
1547 /*
1548 * Who cares about NUMA placement when they're dying.
1549 *
1550 * NOTE: make sure not to dereference p->mm before this check,
1551 * exit_task_work() happens _after_ exit_mm() so we could be called
1552 * without p->mm even though we still had it when we enqueued this
1553 * work.
1554 */
1555 if (p->flags & PF_EXITING)
1556 return;
1557
Mel Gorman7e8d16b2013-10-07 11:28:54 +01001558 if (!mm->numa_next_reset || !mm->numa_next_scan) {
1559 mm->numa_next_scan = now +
1560 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1561 mm->numa_next_reset = now +
1562 msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1563 }
1564
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001565 /*
Mel Gormanb8593bf2012-11-21 01:18:23 +00001566 * Reset the scan period if enough time has gone by. Objective is that
1567 * scanning will be reduced if pages are properly placed. As tasks
1568 * can enter different phases this needs to be re-examined. Lacking
1569 * proper tracking of reference behaviour, this blunt hammer is used.
1570 */
1571 migrate = mm->numa_next_reset;
1572 if (time_after(now, migrate)) {
Mel Gorman598f0ec2013-10-07 11:28:55 +01001573 p->numa_scan_period = task_scan_min(p);
Mel Gormanb8593bf2012-11-21 01:18:23 +00001574 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1575 xchg(&mm->numa_next_reset, next_scan);
1576 }
1577
1578 /*
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001579 * Enforce maximal scan/migration frequency..
1580 */
1581 migrate = mm->numa_next_scan;
1582 if (time_before(now, migrate))
1583 return;
1584
Mel Gorman598f0ec2013-10-07 11:28:55 +01001585 if (p->numa_scan_period == 0) {
1586 p->numa_scan_period_max = task_scan_max(p);
1587 p->numa_scan_period = task_scan_min(p);
1588 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001589
Mel Gormanfb003b82012-11-15 09:01:14 +00001590 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001591 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1592 return;
1593
Mel Gormane14808b2012-11-19 10:59:15 +00001594 /*
Peter Zijlstra19a78d12013-10-07 11:28:51 +01001595 * Delay this task enough that another task of this mm will likely win
1596 * the next time around.
1597 */
1598 p->node_stamp += 2 * TICK_NSEC;
1599
Mel Gorman9f406042012-11-14 18:34:32 +00001600 start = mm->numa_scan_offset;
1601 pages = sysctl_numa_balancing_scan_size;
1602 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1603 if (!pages)
1604 return;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001605
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001606 down_read(&mm->mmap_sem);
Mel Gorman9f406042012-11-14 18:34:32 +00001607 vma = find_vma(mm, start);
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001608 if (!vma) {
1609 reset_ptenuma_scan(p);
Mel Gorman9f406042012-11-14 18:34:32 +00001610 start = 0;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001611 vma = mm->mmap;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001612 }
Mel Gorman9f406042012-11-14 18:34:32 +00001613 for (; vma; vma = vma->vm_next) {
Mel Gormanfc3147242013-10-07 11:29:09 +01001614 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001615 continue;
1616
Mel Gorman4591ce4f2013-10-07 11:29:13 +01001617 /*
1618 * Shared library pages mapped by multiple processes are not
1619 * migrated as it is expected they are cache replicated. Avoid
1620 * hinting faults in read-only file-backed mappings or the vdso
1621 * as migrating the pages will be of marginal benefit.
1622 */
1623 if (!vma->vm_mm ||
1624 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1625 continue;
1626
Mel Gorman9f406042012-11-14 18:34:32 +00001627 do {
1628 start = max(start, vma->vm_start);
1629 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1630 end = min(end, vma->vm_end);
Mel Gorman598f0ec2013-10-07 11:28:55 +01001631 nr_pte_updates += change_prot_numa(vma, start, end);
1632
1633 /*
1634 * Scan sysctl_numa_balancing_scan_size but ensure that
1635 * at least one PTE is updated so that unused virtual
1636 * address space is quickly skipped.
1637 */
1638 if (nr_pte_updates)
1639 pages -= (end - start) >> PAGE_SHIFT;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001640
Mel Gorman9f406042012-11-14 18:34:32 +00001641 start = end;
1642 if (pages <= 0)
1643 goto out;
1644 } while (end != vma->vm_end);
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001645 }
1646
Mel Gorman9f406042012-11-14 18:34:32 +00001647out:
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001648 /*
Mel Gormanf307cd12013-10-07 11:28:56 +01001649 * If the whole process was scanned without updates then no NUMA
1650 * hinting faults are being recorded and scan rate should be lower.
1651 */
1652 if (mm->numa_scan_offset == 0 && !nr_pte_updates) {
1653 p->numa_scan_period = min(p->numa_scan_period_max,
1654 p->numa_scan_period << 1);
1655
1656 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1657 mm->numa_next_scan = next_scan;
1658 }
1659
1660 /*
Peter Zijlstrac69307d2013-10-07 11:28:41 +01001661 * It is possible to reach the end of the VMA list but the last few
1662 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1663 * would find the !migratable VMA on the next scan but not reset the
1664 * scanner to the start so check it now.
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001665 */
1666 if (vma)
Mel Gorman9f406042012-11-14 18:34:32 +00001667 mm->numa_scan_offset = start;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001668 else
1669 reset_ptenuma_scan(p);
1670 up_read(&mm->mmap_sem);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001671}
1672
1673/*
1674 * Drive the periodic memory faults..
1675 */
1676void task_tick_numa(struct rq *rq, struct task_struct *curr)
1677{
1678 struct callback_head *work = &curr->numa_work;
1679 u64 period, now;
1680
1681 /*
1682 * We don't care about NUMA placement if we don't have memory.
1683 */
1684 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1685 return;
1686
1687 /*
1688 * Using runtime rather than walltime has the dual advantage that
1689 * we (mostly) drive the selection from busy threads and that the
1690 * task needs to have done some actual work before we bother with
1691 * NUMA placement.
1692 */
1693 now = curr->se.sum_exec_runtime;
1694 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1695
1696 if (now - curr->node_stamp > period) {
Peter Zijlstra4b96a292012-10-25 14:16:47 +02001697 if (!curr->node_stamp)
Mel Gorman598f0ec2013-10-07 11:28:55 +01001698 curr->numa_scan_period = task_scan_min(curr);
Peter Zijlstra19a78d12013-10-07 11:28:51 +01001699 curr->node_stamp += period;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001700
1701 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1702 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1703 task_work_add(curr, work, true);
1704 }
1705 }
1706}
1707#else
1708static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1709{
1710}
1711#endif /* CONFIG_NUMA_BALANCING */
1712
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001713static void
1714account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1715{
1716 update_load_add(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +02001717 if (!parent_entity(se))
Peter Zijlstra029632f2011-10-25 10:00:11 +02001718 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
Peter Zijlstra367456c2012-02-20 21:49:09 +01001719#ifdef CONFIG_SMP
1720 if (entity_is_task(se))
Peter Zijlstraeb953082012-04-17 13:38:40 +02001721 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
Peter Zijlstra367456c2012-02-20 21:49:09 +01001722#endif
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001723 cfs_rq->nr_running++;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001724}
1725
1726static void
1727account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1728{
1729 update_load_sub(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +02001730 if (!parent_entity(se))
Peter Zijlstra029632f2011-10-25 10:00:11 +02001731 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
Peter Zijlstra367456c2012-02-20 21:49:09 +01001732 if (entity_is_task(se))
Bharata B Raob87f1722008-09-25 09:53:54 +05301733 list_del_init(&se->group_node);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001734 cfs_rq->nr_running--;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001735}
1736
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001737#ifdef CONFIG_FAIR_GROUP_SCHED
1738# ifdef CONFIG_SMP
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001739static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1740{
1741 long tg_weight;
1742
1743 /*
1744 * Use this CPU's actual weight instead of the last load_contribution
1745 * to gain a more accurate current total weight. See
1746 * update_cfs_rq_load_contribution().
1747 */
Alex Shibf5b9862013-06-20 10:18:54 +08001748 tg_weight = atomic_long_read(&tg->load_avg);
Paul Turner82958362012-10-04 13:18:31 +02001749 tg_weight -= cfs_rq->tg_load_contrib;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001750 tg_weight += cfs_rq->load.weight;
1751
1752 return tg_weight;
1753}
1754
Paul Turner6d5ab292011-01-21 20:45:01 -08001755static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001756{
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001757 long tg_weight, load, shares;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001758
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001759 tg_weight = calc_tg_weight(tg, cfs_rq);
Paul Turner6d5ab292011-01-21 20:45:01 -08001760 load = cfs_rq->load.weight;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001761
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001762 shares = (tg->shares * load);
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001763 if (tg_weight)
1764 shares /= tg_weight;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001765
1766 if (shares < MIN_SHARES)
1767 shares = MIN_SHARES;
1768 if (shares > tg->shares)
1769 shares = tg->shares;
1770
1771 return shares;
1772}
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001773# else /* CONFIG_SMP */
Paul Turner6d5ab292011-01-21 20:45:01 -08001774static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001775{
1776 return tg->shares;
1777}
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001778# endif /* CONFIG_SMP */
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001779static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1780 unsigned long weight)
1781{
Paul Turner19e5eeb2010-12-15 19:10:18 -08001782 if (se->on_rq) {
1783 /* commit outstanding execution time */
1784 if (cfs_rq->curr == se)
1785 update_curr(cfs_rq);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001786 account_entity_dequeue(cfs_rq, se);
Paul Turner19e5eeb2010-12-15 19:10:18 -08001787 }
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001788
1789 update_load_set(&se->load, weight);
1790
1791 if (se->on_rq)
1792 account_entity_enqueue(cfs_rq, se);
1793}
1794
Paul Turner82958362012-10-04 13:18:31 +02001795static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1796
Paul Turner6d5ab292011-01-21 20:45:01 -08001797static void update_cfs_shares(struct cfs_rq *cfs_rq)
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001798{
1799 struct task_group *tg;
1800 struct sched_entity *se;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001801 long shares;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001802
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001803 tg = cfs_rq->tg;
1804 se = tg->se[cpu_of(rq_of(cfs_rq))];
Paul Turner64660c82011-07-21 09:43:36 -07001805 if (!se || throttled_hierarchy(cfs_rq))
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001806 return;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001807#ifndef CONFIG_SMP
1808 if (likely(se->load.weight == tg->shares))
1809 return;
1810#endif
Paul Turner6d5ab292011-01-21 20:45:01 -08001811 shares = calc_cfs_shares(cfs_rq, tg);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001812
1813 reweight_entity(cfs_rq_of(se), se, shares);
1814}
1815#else /* CONFIG_FAIR_GROUP_SCHED */
Paul Turner6d5ab292011-01-21 20:45:01 -08001816static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001817{
1818}
1819#endif /* CONFIG_FAIR_GROUP_SCHED */
1820
Alex Shi141965c2013-06-26 13:05:39 +08001821#ifdef CONFIG_SMP
Paul Turner9d85f212012-10-04 13:18:29 +02001822/*
Paul Turner5b51f2f2012-10-04 13:18:32 +02001823 * We choose a half-life close to 1 scheduling period.
1824 * Note: The tables below are dependent on this value.
1825 */
1826#define LOAD_AVG_PERIOD 32
1827#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1828#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1829
1830/* Precomputed fixed inverse multiplies for multiplication by y^n */
1831static const u32 runnable_avg_yN_inv[] = {
1832 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1833 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1834 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1835 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1836 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1837 0x85aac367, 0x82cd8698,
1838};
1839
1840/*
1841 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1842 * over-estimates when re-combining.
1843 */
1844static const u32 runnable_avg_yN_sum[] = {
1845 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1846 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1847 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1848};
1849
1850/*
Paul Turner9d85f212012-10-04 13:18:29 +02001851 * Approximate:
1852 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1853 */
1854static __always_inline u64 decay_load(u64 val, u64 n)
1855{
Paul Turner5b51f2f2012-10-04 13:18:32 +02001856 unsigned int local_n;
1857
1858 if (!n)
1859 return val;
1860 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1861 return 0;
1862
1863 /* after bounds checking we can collapse to 32-bit */
1864 local_n = n;
1865
1866 /*
1867 * As y^PERIOD = 1/2, we can combine
1868 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1869 * With a look-up table which covers k^n (n<PERIOD)
1870 *
1871 * To achieve constant time decay_load.
1872 */
1873 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1874 val >>= local_n / LOAD_AVG_PERIOD;
1875 local_n %= LOAD_AVG_PERIOD;
Paul Turner9d85f212012-10-04 13:18:29 +02001876 }
1877
Paul Turner5b51f2f2012-10-04 13:18:32 +02001878 val *= runnable_avg_yN_inv[local_n];
1879 /* We don't use SRR here since we always want to round down. */
1880 return val >> 32;
1881}
1882
1883/*
1884 * For updates fully spanning n periods, the contribution to runnable
1885 * average will be: \Sum 1024*y^n
1886 *
1887 * We can compute this reasonably efficiently by combining:
1888 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1889 */
1890static u32 __compute_runnable_contrib(u64 n)
1891{
1892 u32 contrib = 0;
1893
1894 if (likely(n <= LOAD_AVG_PERIOD))
1895 return runnable_avg_yN_sum[n];
1896 else if (unlikely(n >= LOAD_AVG_MAX_N))
1897 return LOAD_AVG_MAX;
1898
1899 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1900 do {
1901 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1902 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1903
1904 n -= LOAD_AVG_PERIOD;
1905 } while (n > LOAD_AVG_PERIOD);
1906
1907 contrib = decay_load(contrib, n);
1908 return contrib + runnable_avg_yN_sum[n];
Paul Turner9d85f212012-10-04 13:18:29 +02001909}
1910
1911/*
1912 * We can represent the historical contribution to runnable average as the
1913 * coefficients of a geometric series. To do this we sub-divide our runnable
1914 * history into segments of approximately 1ms (1024us); label the segment that
1915 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1916 *
1917 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1918 * p0 p1 p2
1919 * (now) (~1ms ago) (~2ms ago)
1920 *
1921 * Let u_i denote the fraction of p_i that the entity was runnable.
1922 *
1923 * We then designate the fractions u_i as our co-efficients, yielding the
1924 * following representation of historical load:
1925 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1926 *
1927 * We choose y based on the with of a reasonably scheduling period, fixing:
1928 * y^32 = 0.5
1929 *
1930 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1931 * approximately half as much as the contribution to load within the last ms
1932 * (u_0).
1933 *
1934 * When a period "rolls over" and we have new u_0`, multiplying the previous
1935 * sum again by y is sufficient to update:
1936 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1937 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1938 */
1939static __always_inline int __update_entity_runnable_avg(u64 now,
1940 struct sched_avg *sa,
1941 int runnable)
1942{
Paul Turner5b51f2f2012-10-04 13:18:32 +02001943 u64 delta, periods;
1944 u32 runnable_contrib;
Paul Turner9d85f212012-10-04 13:18:29 +02001945 int delta_w, decayed = 0;
1946
1947 delta = now - sa->last_runnable_update;
1948 /*
1949 * This should only happen when time goes backwards, which it
1950 * unfortunately does during sched clock init when we swap over to TSC.
1951 */
1952 if ((s64)delta < 0) {
1953 sa->last_runnable_update = now;
1954 return 0;
1955 }
1956
1957 /*
1958 * Use 1024ns as the unit of measurement since it's a reasonable
1959 * approximation of 1us and fast to compute.
1960 */
1961 delta >>= 10;
1962 if (!delta)
1963 return 0;
1964 sa->last_runnable_update = now;
1965
1966 /* delta_w is the amount already accumulated against our next period */
1967 delta_w = sa->runnable_avg_period % 1024;
1968 if (delta + delta_w >= 1024) {
1969 /* period roll-over */
1970 decayed = 1;
1971
1972 /*
1973 * Now that we know we're crossing a period boundary, figure
1974 * out how much from delta we need to complete the current
1975 * period and accrue it.
1976 */
1977 delta_w = 1024 - delta_w;
Paul Turner5b51f2f2012-10-04 13:18:32 +02001978 if (runnable)
1979 sa->runnable_avg_sum += delta_w;
1980 sa->runnable_avg_period += delta_w;
Paul Turner9d85f212012-10-04 13:18:29 +02001981
Paul Turner5b51f2f2012-10-04 13:18:32 +02001982 delta -= delta_w;
Paul Turner9d85f212012-10-04 13:18:29 +02001983
Paul Turner5b51f2f2012-10-04 13:18:32 +02001984 /* Figure out how many additional periods this update spans */
1985 periods = delta / 1024;
1986 delta %= 1024;
1987
1988 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1989 periods + 1);
1990 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1991 periods + 1);
1992
1993 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
1994 runnable_contrib = __compute_runnable_contrib(periods);
1995 if (runnable)
1996 sa->runnable_avg_sum += runnable_contrib;
1997 sa->runnable_avg_period += runnable_contrib;
Paul Turner9d85f212012-10-04 13:18:29 +02001998 }
1999
2000 /* Remainder of delta accrued against u_0` */
2001 if (runnable)
2002 sa->runnable_avg_sum += delta;
2003 sa->runnable_avg_period += delta;
2004
2005 return decayed;
2006}
2007
Paul Turner9ee474f2012-10-04 13:18:30 +02002008/* Synchronize an entity's decay with its parenting cfs_rq.*/
Paul Turneraff3e492012-10-04 13:18:30 +02002009static inline u64 __synchronize_entity_decay(struct sched_entity *se)
Paul Turner9ee474f2012-10-04 13:18:30 +02002010{
2011 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2012 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2013
2014 decays -= se->avg.decay_count;
2015 if (!decays)
Paul Turneraff3e492012-10-04 13:18:30 +02002016 return 0;
Paul Turner9ee474f2012-10-04 13:18:30 +02002017
2018 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2019 se->avg.decay_count = 0;
Paul Turneraff3e492012-10-04 13:18:30 +02002020
2021 return decays;
Paul Turner9ee474f2012-10-04 13:18:30 +02002022}
2023
Paul Turnerc566e8e2012-10-04 13:18:30 +02002024#ifdef CONFIG_FAIR_GROUP_SCHED
2025static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2026 int force_update)
2027{
2028 struct task_group *tg = cfs_rq->tg;
Alex Shibf5b9862013-06-20 10:18:54 +08002029 long tg_contrib;
Paul Turnerc566e8e2012-10-04 13:18:30 +02002030
2031 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2032 tg_contrib -= cfs_rq->tg_load_contrib;
2033
Alex Shibf5b9862013-06-20 10:18:54 +08002034 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2035 atomic_long_add(tg_contrib, &tg->load_avg);
Paul Turnerc566e8e2012-10-04 13:18:30 +02002036 cfs_rq->tg_load_contrib += tg_contrib;
2037 }
2038}
Paul Turner8165e142012-10-04 13:18:31 +02002039
Paul Turnerbb17f652012-10-04 13:18:31 +02002040/*
2041 * Aggregate cfs_rq runnable averages into an equivalent task_group
2042 * representation for computing load contributions.
2043 */
2044static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2045 struct cfs_rq *cfs_rq)
2046{
2047 struct task_group *tg = cfs_rq->tg;
2048 long contrib;
2049
2050 /* The fraction of a cpu used by this cfs_rq */
2051 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
2052 sa->runnable_avg_period + 1);
2053 contrib -= cfs_rq->tg_runnable_contrib;
2054
2055 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2056 atomic_add(contrib, &tg->runnable_avg);
2057 cfs_rq->tg_runnable_contrib += contrib;
2058 }
2059}
2060
Paul Turner8165e142012-10-04 13:18:31 +02002061static inline void __update_group_entity_contrib(struct sched_entity *se)
2062{
2063 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2064 struct task_group *tg = cfs_rq->tg;
Paul Turnerbb17f652012-10-04 13:18:31 +02002065 int runnable_avg;
2066
Paul Turner8165e142012-10-04 13:18:31 +02002067 u64 contrib;
2068
2069 contrib = cfs_rq->tg_load_contrib * tg->shares;
Alex Shibf5b9862013-06-20 10:18:54 +08002070 se->avg.load_avg_contrib = div_u64(contrib,
2071 atomic_long_read(&tg->load_avg) + 1);
Paul Turnerbb17f652012-10-04 13:18:31 +02002072
2073 /*
2074 * For group entities we need to compute a correction term in the case
2075 * that they are consuming <1 cpu so that we would contribute the same
2076 * load as a task of equal weight.
2077 *
2078 * Explicitly co-ordinating this measurement would be expensive, but
2079 * fortunately the sum of each cpus contribution forms a usable
2080 * lower-bound on the true value.
2081 *
2082 * Consider the aggregate of 2 contributions. Either they are disjoint
2083 * (and the sum represents true value) or they are disjoint and we are
2084 * understating by the aggregate of their overlap.
2085 *
2086 * Extending this to N cpus, for a given overlap, the maximum amount we
2087 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2088 * cpus that overlap for this interval and w_i is the interval width.
2089 *
2090 * On a small machine; the first term is well-bounded which bounds the
2091 * total error since w_i is a subset of the period. Whereas on a
2092 * larger machine, while this first term can be larger, if w_i is the
2093 * of consequential size guaranteed to see n_i*w_i quickly converge to
2094 * our upper bound of 1-cpu.
2095 */
2096 runnable_avg = atomic_read(&tg->runnable_avg);
2097 if (runnable_avg < NICE_0_LOAD) {
2098 se->avg.load_avg_contrib *= runnable_avg;
2099 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2100 }
Paul Turner8165e142012-10-04 13:18:31 +02002101}
Paul Turnerc566e8e2012-10-04 13:18:30 +02002102#else
2103static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2104 int force_update) {}
Paul Turnerbb17f652012-10-04 13:18:31 +02002105static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2106 struct cfs_rq *cfs_rq) {}
Paul Turner8165e142012-10-04 13:18:31 +02002107static inline void __update_group_entity_contrib(struct sched_entity *se) {}
Paul Turnerc566e8e2012-10-04 13:18:30 +02002108#endif
2109
Paul Turner8165e142012-10-04 13:18:31 +02002110static inline void __update_task_entity_contrib(struct sched_entity *se)
2111{
2112 u32 contrib;
2113
2114 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2115 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2116 contrib /= (se->avg.runnable_avg_period + 1);
2117 se->avg.load_avg_contrib = scale_load(contrib);
2118}
2119
Paul Turner2dac7542012-10-04 13:18:30 +02002120/* Compute the current contribution to load_avg by se, return any delta */
2121static long __update_entity_load_avg_contrib(struct sched_entity *se)
2122{
2123 long old_contrib = se->avg.load_avg_contrib;
2124
Paul Turner8165e142012-10-04 13:18:31 +02002125 if (entity_is_task(se)) {
2126 __update_task_entity_contrib(se);
2127 } else {
Paul Turnerbb17f652012-10-04 13:18:31 +02002128 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
Paul Turner8165e142012-10-04 13:18:31 +02002129 __update_group_entity_contrib(se);
2130 }
Paul Turner2dac7542012-10-04 13:18:30 +02002131
2132 return se->avg.load_avg_contrib - old_contrib;
2133}
2134
Paul Turner9ee474f2012-10-04 13:18:30 +02002135static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2136 long load_contrib)
2137{
2138 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2139 cfs_rq->blocked_load_avg -= load_contrib;
2140 else
2141 cfs_rq->blocked_load_avg = 0;
2142}
2143
Paul Turnerf1b17282012-10-04 13:18:31 +02002144static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2145
Paul Turner9d85f212012-10-04 13:18:29 +02002146/* Update a sched_entity's runnable average */
Paul Turner9ee474f2012-10-04 13:18:30 +02002147static inline void update_entity_load_avg(struct sched_entity *se,
2148 int update_cfs_rq)
Paul Turner9d85f212012-10-04 13:18:29 +02002149{
Paul Turner2dac7542012-10-04 13:18:30 +02002150 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2151 long contrib_delta;
Paul Turnerf1b17282012-10-04 13:18:31 +02002152 u64 now;
Paul Turner2dac7542012-10-04 13:18:30 +02002153
Paul Turnerf1b17282012-10-04 13:18:31 +02002154 /*
2155 * For a group entity we need to use their owned cfs_rq_clock_task() in
2156 * case they are the parent of a throttled hierarchy.
2157 */
2158 if (entity_is_task(se))
2159 now = cfs_rq_clock_task(cfs_rq);
2160 else
2161 now = cfs_rq_clock_task(group_cfs_rq(se));
2162
2163 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
Paul Turner2dac7542012-10-04 13:18:30 +02002164 return;
2165
2166 contrib_delta = __update_entity_load_avg_contrib(se);
Paul Turner9ee474f2012-10-04 13:18:30 +02002167
2168 if (!update_cfs_rq)
2169 return;
2170
Paul Turner2dac7542012-10-04 13:18:30 +02002171 if (se->on_rq)
2172 cfs_rq->runnable_load_avg += contrib_delta;
Paul Turner9ee474f2012-10-04 13:18:30 +02002173 else
2174 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2175}
2176
2177/*
2178 * Decay the load contributed by all blocked children and account this so that
2179 * their contribution may appropriately discounted when they wake up.
2180 */
Paul Turneraff3e492012-10-04 13:18:30 +02002181static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
Paul Turner9ee474f2012-10-04 13:18:30 +02002182{
Paul Turnerf1b17282012-10-04 13:18:31 +02002183 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
Paul Turner9ee474f2012-10-04 13:18:30 +02002184 u64 decays;
2185
2186 decays = now - cfs_rq->last_decay;
Paul Turneraff3e492012-10-04 13:18:30 +02002187 if (!decays && !force_update)
Paul Turner9ee474f2012-10-04 13:18:30 +02002188 return;
2189
Alex Shi25099402013-06-20 10:18:55 +08002190 if (atomic_long_read(&cfs_rq->removed_load)) {
2191 unsigned long removed_load;
2192 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
Paul Turneraff3e492012-10-04 13:18:30 +02002193 subtract_blocked_load_contrib(cfs_rq, removed_load);
2194 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002195
Paul Turneraff3e492012-10-04 13:18:30 +02002196 if (decays) {
2197 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2198 decays);
2199 atomic64_add(decays, &cfs_rq->decay_counter);
2200 cfs_rq->last_decay = now;
2201 }
Paul Turnerc566e8e2012-10-04 13:18:30 +02002202
2203 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
Paul Turner9d85f212012-10-04 13:18:29 +02002204}
Ben Segall18bf2802012-10-04 12:51:20 +02002205
2206static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2207{
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002208 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
Paul Turnerbb17f652012-10-04 13:18:31 +02002209 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
Ben Segall18bf2802012-10-04 12:51:20 +02002210}
Paul Turner2dac7542012-10-04 13:18:30 +02002211
2212/* Add the load generated by se into cfs_rq's child load-average */
2213static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002214 struct sched_entity *se,
2215 int wakeup)
Paul Turner2dac7542012-10-04 13:18:30 +02002216{
Paul Turneraff3e492012-10-04 13:18:30 +02002217 /*
2218 * We track migrations using entity decay_count <= 0, on a wake-up
2219 * migration we use a negative decay count to track the remote decays
2220 * accumulated while sleeping.
Alex Shia75cdaa2013-06-20 10:18:47 +08002221 *
2222 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2223 * are seen by enqueue_entity_load_avg() as a migration with an already
2224 * constructed load_avg_contrib.
Paul Turneraff3e492012-10-04 13:18:30 +02002225 */
2226 if (unlikely(se->avg.decay_count <= 0)) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002227 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
Paul Turneraff3e492012-10-04 13:18:30 +02002228 if (se->avg.decay_count) {
2229 /*
2230 * In a wake-up migration we have to approximate the
2231 * time sleeping. This is because we can't synchronize
2232 * clock_task between the two cpus, and it is not
2233 * guaranteed to be read-safe. Instead, we can
2234 * approximate this using our carried decays, which are
2235 * explicitly atomically readable.
2236 */
2237 se->avg.last_runnable_update -= (-se->avg.decay_count)
2238 << 20;
2239 update_entity_load_avg(se, 0);
2240 /* Indicate that we're now synchronized and on-rq */
2241 se->avg.decay_count = 0;
2242 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002243 wakeup = 0;
2244 } else {
Alex Shi282cf492013-06-20 10:18:48 +08002245 /*
2246 * Task re-woke on same cpu (or else migrate_task_rq_fair()
2247 * would have made count negative); we must be careful to avoid
2248 * double-accounting blocked time after synchronizing decays.
2249 */
2250 se->avg.last_runnable_update += __synchronize_entity_decay(se)
2251 << 20;
Paul Turner9ee474f2012-10-04 13:18:30 +02002252 }
2253
Paul Turneraff3e492012-10-04 13:18:30 +02002254 /* migrated tasks did not contribute to our blocked load */
2255 if (wakeup) {
Paul Turner9ee474f2012-10-04 13:18:30 +02002256 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
Paul Turneraff3e492012-10-04 13:18:30 +02002257 update_entity_load_avg(se, 0);
2258 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002259
Paul Turner2dac7542012-10-04 13:18:30 +02002260 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
Paul Turneraff3e492012-10-04 13:18:30 +02002261 /* we force update consideration on load-balancer moves */
2262 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
Paul Turner2dac7542012-10-04 13:18:30 +02002263}
2264
Paul Turner9ee474f2012-10-04 13:18:30 +02002265/*
2266 * Remove se's load from this cfs_rq child load-average, if the entity is
2267 * transitioning to a blocked state we track its projected decay using
2268 * blocked_load_avg.
2269 */
Paul Turner2dac7542012-10-04 13:18:30 +02002270static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002271 struct sched_entity *se,
2272 int sleep)
Paul Turner2dac7542012-10-04 13:18:30 +02002273{
Paul Turner9ee474f2012-10-04 13:18:30 +02002274 update_entity_load_avg(se, 1);
Paul Turneraff3e492012-10-04 13:18:30 +02002275 /* we force update consideration on load-balancer moves */
2276 update_cfs_rq_blocked_load(cfs_rq, !sleep);
Paul Turner9ee474f2012-10-04 13:18:30 +02002277
Paul Turner2dac7542012-10-04 13:18:30 +02002278 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
Paul Turner9ee474f2012-10-04 13:18:30 +02002279 if (sleep) {
2280 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2281 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2282 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
Paul Turner2dac7542012-10-04 13:18:30 +02002283}
Vincent Guittot642dbc32013-04-18 18:34:26 +02002284
2285/*
2286 * Update the rq's load with the elapsed running time before entering
2287 * idle. if the last scheduled task is not a CFS task, idle_enter will
2288 * be the only way to update the runnable statistic.
2289 */
2290void idle_enter_fair(struct rq *this_rq)
2291{
2292 update_rq_runnable_avg(this_rq, 1);
2293}
2294
2295/*
2296 * Update the rq's load with the elapsed idle time before a task is
2297 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2298 * be the only way to update the runnable statistic.
2299 */
2300void idle_exit_fair(struct rq *this_rq)
2301{
2302 update_rq_runnable_avg(this_rq, 0);
2303}
2304
Paul Turner9d85f212012-10-04 13:18:29 +02002305#else
Paul Turner9ee474f2012-10-04 13:18:30 +02002306static inline void update_entity_load_avg(struct sched_entity *se,
2307 int update_cfs_rq) {}
Ben Segall18bf2802012-10-04 12:51:20 +02002308static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
Paul Turner2dac7542012-10-04 13:18:30 +02002309static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002310 struct sched_entity *se,
2311 int wakeup) {}
Paul Turner2dac7542012-10-04 13:18:30 +02002312static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002313 struct sched_entity *se,
2314 int sleep) {}
Paul Turneraff3e492012-10-04 13:18:30 +02002315static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2316 int force_update) {}
Paul Turner9d85f212012-10-04 13:18:29 +02002317#endif
2318
Ingo Molnar2396af62007-08-09 11:16:48 +02002319static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002320{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002321#ifdef CONFIG_SCHEDSTATS
Peter Zijlstrae4143142009-07-23 20:13:26 +02002322 struct task_struct *tsk = NULL;
2323
2324 if (entity_is_task(se))
2325 tsk = task_of(se);
2326
Lucas De Marchi41acab82010-03-10 23:37:45 -03002327 if (se->statistics.sleep_start) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002328 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002329
2330 if ((s64)delta < 0)
2331 delta = 0;
2332
Lucas De Marchi41acab82010-03-10 23:37:45 -03002333 if (unlikely(delta > se->statistics.sleep_max))
2334 se->statistics.sleep_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002335
Peter Zijlstra8c79a042012-01-30 14:51:37 +01002336 se->statistics.sleep_start = 0;
Lucas De Marchi41acab82010-03-10 23:37:45 -03002337 se->statistics.sum_sleep_runtime += delta;
Arjan van de Ven97455122008-01-25 21:08:34 +01002338
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002339 if (tsk) {
Peter Zijlstrae4143142009-07-23 20:13:26 +02002340 account_scheduler_latency(tsk, delta >> 10, 1);
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002341 trace_sched_stat_sleep(tsk, delta);
2342 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002343 }
Lucas De Marchi41acab82010-03-10 23:37:45 -03002344 if (se->statistics.block_start) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002345 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002346
2347 if ((s64)delta < 0)
2348 delta = 0;
2349
Lucas De Marchi41acab82010-03-10 23:37:45 -03002350 if (unlikely(delta > se->statistics.block_max))
2351 se->statistics.block_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002352
Peter Zijlstra8c79a042012-01-30 14:51:37 +01002353 se->statistics.block_start = 0;
Lucas De Marchi41acab82010-03-10 23:37:45 -03002354 se->statistics.sum_sleep_runtime += delta;
Ingo Molnar30084fb2007-10-02 14:13:08 +02002355
Peter Zijlstrae4143142009-07-23 20:13:26 +02002356 if (tsk) {
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -07002357 if (tsk->in_iowait) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03002358 se->statistics.iowait_sum += delta;
2359 se->statistics.iowait_count++;
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002360 trace_sched_stat_iowait(tsk, delta);
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -07002361 }
2362
Andrew Vaginb781a602011-11-28 12:03:35 +03002363 trace_sched_stat_blocked(tsk, delta);
2364
Peter Zijlstrae4143142009-07-23 20:13:26 +02002365 /*
2366 * Blocking time is in units of nanosecs, so shift by
2367 * 20 to get a milliseconds-range estimation of the
2368 * amount of time that the task spent sleeping:
2369 */
2370 if (unlikely(prof_on == SLEEP_PROFILING)) {
2371 profile_hits(SLEEP_PROFILING,
2372 (void *)get_wchan(tsk),
2373 delta >> 20);
2374 }
2375 account_scheduler_latency(tsk, delta >> 10, 0);
Ingo Molnar30084fb2007-10-02 14:13:08 +02002376 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002377 }
2378#endif
2379}
2380
Peter Zijlstraddc97292007-10-15 17:00:10 +02002381static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2382{
2383#ifdef CONFIG_SCHED_DEBUG
2384 s64 d = se->vruntime - cfs_rq->min_vruntime;
2385
2386 if (d < 0)
2387 d = -d;
2388
2389 if (d > 3*sysctl_sched_latency)
2390 schedstat_inc(cfs_rq, nr_spread_over);
2391#endif
2392}
2393
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002394static void
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002395place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2396{
Peter Zijlstra1af5f732008-10-24 11:06:13 +02002397 u64 vruntime = cfs_rq->min_vruntime;
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +02002398
Peter Zijlstra2cb86002007-11-09 22:39:37 +01002399 /*
2400 * The 'current' period is already promised to the current tasks,
2401 * however the extra weight of the new task will slow them down a
2402 * little, place the new task so that it fits in the slot that
2403 * stays open at the end.
2404 */
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +02002405 if (initial && sched_feat(START_DEBIT))
Peter Zijlstraf9c0b092008-10-17 19:27:04 +02002406 vruntime += sched_vslice(cfs_rq, se);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002407
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002408 /* sleeps up to a single latency don't count. */
Mike Galbraith5ca98802010-03-11 17:17:17 +01002409 if (!initial) {
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002410 unsigned long thresh = sysctl_sched_latency;
Peter Zijlstraa7be37a2008-06-27 13:41:11 +02002411
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002412 /*
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002413 * Halve their sleep time's effect, to allow
2414 * for a gentler effect of sleepers:
2415 */
2416 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2417 thresh >>= 1;
Ingo Molnar51e03042009-09-16 08:54:45 +02002418
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002419 vruntime -= thresh;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002420 }
2421
Mike Galbraithb5d9d732009-09-08 11:12:28 +02002422 /* ensure we never gain time by being placed backwards. */
Viresh Kumar16c8f1c2012-11-08 13:33:46 +05302423 se->vruntime = max_vruntime(se->vruntime, vruntime);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002424}
2425
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002426static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2427
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002428static void
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002429enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002430{
2431 /*
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002432 * Update the normalized vruntime before updating min_vruntime
Kamalesh Babulal0fc576d2013-06-27 11:24:18 +05302433 * through calling update_curr().
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002434 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002435 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002436 se->vruntime += cfs_rq->min_vruntime;
2437
2438 /*
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002439 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002440 */
Ingo Molnarb7cc0892007-08-09 11:16:47 +02002441 update_curr(cfs_rq);
Paul Turnerf269ae02012-10-04 13:18:31 +02002442 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002443 account_entity_enqueue(cfs_rq, se);
2444 update_cfs_shares(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002445
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002446 if (flags & ENQUEUE_WAKEUP) {
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002447 place_entity(cfs_rq, se, 0);
Ingo Molnar2396af62007-08-09 11:16:48 +02002448 enqueue_sleeper(cfs_rq, se);
Ingo Molnare9acbff2007-10-15 17:00:04 +02002449 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002450
Ingo Molnard2417e52007-08-09 11:16:47 +02002451 update_stats_enqueue(cfs_rq, se);
Peter Zijlstraddc97292007-10-15 17:00:10 +02002452 check_spread(cfs_rq, se);
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002453 if (se != cfs_rq->curr)
2454 __enqueue_entity(cfs_rq, se);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002455 se->on_rq = 1;
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -08002456
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002457 if (cfs_rq->nr_running == 1) {
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -08002458 list_add_leaf_cfs_rq(cfs_rq);
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002459 check_enqueue_throttle(cfs_rq);
2460 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002461}
2462
Rik van Riel2c13c9192011-02-01 09:48:37 -05002463static void __clear_buddies_last(struct sched_entity *se)
Peter Zijlstra2002c692008-11-11 11:52:33 +01002464{
Rik van Riel2c13c9192011-02-01 09:48:37 -05002465 for_each_sched_entity(se) {
2466 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2467 if (cfs_rq->last == se)
2468 cfs_rq->last = NULL;
2469 else
2470 break;
2471 }
2472}
Peter Zijlstra2002c692008-11-11 11:52:33 +01002473
Rik van Riel2c13c9192011-02-01 09:48:37 -05002474static void __clear_buddies_next(struct sched_entity *se)
2475{
2476 for_each_sched_entity(se) {
2477 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2478 if (cfs_rq->next == se)
2479 cfs_rq->next = NULL;
2480 else
2481 break;
2482 }
Peter Zijlstra2002c692008-11-11 11:52:33 +01002483}
2484
Rik van Rielac53db52011-02-01 09:51:03 -05002485static void __clear_buddies_skip(struct sched_entity *se)
2486{
2487 for_each_sched_entity(se) {
2488 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2489 if (cfs_rq->skip == se)
2490 cfs_rq->skip = NULL;
2491 else
2492 break;
2493 }
2494}
2495
Peter Zijlstraa571bbe2009-01-28 14:51:40 +01002496static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2497{
Rik van Riel2c13c9192011-02-01 09:48:37 -05002498 if (cfs_rq->last == se)
2499 __clear_buddies_last(se);
2500
2501 if (cfs_rq->next == se)
2502 __clear_buddies_next(se);
Rik van Rielac53db52011-02-01 09:51:03 -05002503
2504 if (cfs_rq->skip == se)
2505 __clear_buddies_skip(se);
Peter Zijlstraa571bbe2009-01-28 14:51:40 +01002506}
2507
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07002508static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
Paul Turnerd8b49862011-07-21 09:43:41 -07002509
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002510static void
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002511dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002512{
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002513 /*
2514 * Update run-time statistics of the 'current'.
2515 */
2516 update_curr(cfs_rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002517 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002518
Ingo Molnar19b6a2e2007-08-09 11:16:48 +02002519 update_stats_dequeue(cfs_rq, se);
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002520 if (flags & DEQUEUE_SLEEP) {
Peter Zijlstra67e9fb22007-10-15 17:00:10 +02002521#ifdef CONFIG_SCHEDSTATS
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002522 if (entity_is_task(se)) {
2523 struct task_struct *tsk = task_of(se);
2524
2525 if (tsk->state & TASK_INTERRUPTIBLE)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002526 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002527 if (tsk->state & TASK_UNINTERRUPTIBLE)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002528 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002529 }
Dmitry Adamushkodb36cc72007-10-15 17:00:06 +02002530#endif
Peter Zijlstra67e9fb22007-10-15 17:00:10 +02002531 }
2532
Peter Zijlstra2002c692008-11-11 11:52:33 +01002533 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +01002534
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002535 if (se != cfs_rq->curr)
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002536 __dequeue_entity(cfs_rq, se);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002537 se->on_rq = 0;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002538 account_entity_dequeue(cfs_rq, se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002539
2540 /*
2541 * Normalize the entity after updating the min_vruntime because the
2542 * update can refer to the ->curr item and we need to reflect this
2543 * movement in our normalized position.
2544 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002545 if (!(flags & DEQUEUE_SLEEP))
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002546 se->vruntime -= cfs_rq->min_vruntime;
Peter Zijlstra1e876232011-05-17 16:21:10 -07002547
Paul Turnerd8b49862011-07-21 09:43:41 -07002548 /* return excess runtime on last dequeue */
2549 return_cfs_rq_runtime(cfs_rq);
2550
Peter Zijlstra1e876232011-05-17 16:21:10 -07002551 update_min_vruntime(cfs_rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002552 update_cfs_shares(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002553}
2554
2555/*
2556 * Preempt the current task with a newly woken task if needed:
2557 */
Peter Zijlstra7c92e542007-09-05 14:32:49 +02002558static void
Ingo Molnar2e09bf52007-10-15 17:00:05 +02002559check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002560{
Peter Zijlstra11697832007-09-05 14:32:49 +02002561 unsigned long ideal_runtime, delta_exec;
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002562 struct sched_entity *se;
2563 s64 delta;
Peter Zijlstra11697832007-09-05 14:32:49 +02002564
Peter Zijlstra6d0f0eb2007-10-15 17:00:05 +02002565 ideal_runtime = sched_slice(cfs_rq, curr);
Peter Zijlstra11697832007-09-05 14:32:49 +02002566 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +01002567 if (delta_exec > ideal_runtime) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002568 resched_task(rq_of(cfs_rq)->curr);
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +01002569 /*
2570 * The current task ran long enough, ensure it doesn't get
2571 * re-elected due to buddy favours.
2572 */
2573 clear_buddies(cfs_rq, curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +02002574 return;
2575 }
2576
2577 /*
2578 * Ensure that a task that missed wakeup preemption by a
2579 * narrow margin doesn't have to wait for a full slice.
2580 * This also mitigates buddy induced latencies under load.
2581 */
Mike Galbraithf685cea2009-10-23 23:09:22 +02002582 if (delta_exec < sysctl_sched_min_granularity)
2583 return;
2584
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002585 se = __pick_first_entity(cfs_rq);
2586 delta = curr->vruntime - se->vruntime;
Mike Galbraithf685cea2009-10-23 23:09:22 +02002587
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002588 if (delta < 0)
2589 return;
Mike Galbraithd7d82942011-01-05 05:41:17 +01002590
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002591 if (delta > ideal_runtime)
2592 resched_task(rq_of(cfs_rq)->curr);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002593}
2594
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002595static void
Ingo Molnar8494f412007-08-09 11:16:48 +02002596set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002597{
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002598 /* 'current' is not kept within the tree. */
2599 if (se->on_rq) {
2600 /*
2601 * Any task has to be enqueued before it get to execute on
2602 * a CPU. So account for the time it spent waiting on the
2603 * runqueue.
2604 */
2605 update_stats_wait_end(cfs_rq, se);
2606 __dequeue_entity(cfs_rq, se);
2607 }
2608
Ingo Molnar79303e92007-08-09 11:16:47 +02002609 update_stats_curr_start(cfs_rq, se);
Ingo Molnar429d43b2007-10-15 17:00:03 +02002610 cfs_rq->curr = se;
Ingo Molnareba1ed42007-10-15 17:00:02 +02002611#ifdef CONFIG_SCHEDSTATS
2612 /*
2613 * Track our maximum slice length, if the CPU's load is at
2614 * least twice that of our own weight (i.e. dont track it
2615 * when there are only lesser-weight tasks around):
2616 */
Dmitry Adamushko495eca42007-10-15 17:00:06 +02002617 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03002618 se->statistics.slice_max = max(se->statistics.slice_max,
Ingo Molnareba1ed42007-10-15 17:00:02 +02002619 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2620 }
2621#endif
Peter Zijlstra4a55b452007-09-05 14:32:49 +02002622 se->prev_sum_exec_runtime = se->sum_exec_runtime;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002623}
2624
Peter Zijlstra3f3a4902008-10-24 11:06:16 +02002625static int
2626wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2627
Rik van Rielac53db52011-02-01 09:51:03 -05002628/*
2629 * Pick the next process, keeping these things in mind, in this order:
2630 * 1) keep things fair between processes/task groups
2631 * 2) pick the "next" process, since someone really wants that to run
2632 * 3) pick the "last" process, for cache locality
2633 * 4) do not run the "skip" process, if something else is available
2634 */
Peter Zijlstraf4b67552008-11-04 21:25:07 +01002635static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002636{
Rik van Rielac53db52011-02-01 09:51:03 -05002637 struct sched_entity *se = __pick_first_entity(cfs_rq);
Mike Galbraithf685cea2009-10-23 23:09:22 +02002638 struct sched_entity *left = se;
Peter Zijlstraf4b67552008-11-04 21:25:07 +01002639
Rik van Rielac53db52011-02-01 09:51:03 -05002640 /*
2641 * Avoid running the skip buddy, if running something else can
2642 * be done without getting too unfair.
2643 */
2644 if (cfs_rq->skip == se) {
2645 struct sched_entity *second = __pick_next_entity(se);
2646 if (second && wakeup_preempt_entity(second, left) < 1)
2647 se = second;
2648 }
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002649
Mike Galbraithf685cea2009-10-23 23:09:22 +02002650 /*
2651 * Prefer last buddy, try to return the CPU to a preempted task.
2652 */
2653 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2654 se = cfs_rq->last;
2655
Rik van Rielac53db52011-02-01 09:51:03 -05002656 /*
2657 * Someone really wants this to run. If it's not unfair, run it.
2658 */
2659 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2660 se = cfs_rq->next;
2661
Mike Galbraithf685cea2009-10-23 23:09:22 +02002662 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +01002663
2664 return se;
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002665}
2666
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002667static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2668
Ingo Molnarab6cde22007-08-09 11:16:48 +02002669static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002670{
2671 /*
2672 * If still on the runqueue then deactivate_task()
2673 * was not called and update_curr() has to be done:
2674 */
2675 if (prev->on_rq)
Ingo Molnarb7cc0892007-08-09 11:16:47 +02002676 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002677
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002678 /* throttle cfs_rqs exceeding runtime */
2679 check_cfs_rq_runtime(cfs_rq);
2680
Peter Zijlstraddc97292007-10-15 17:00:10 +02002681 check_spread(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002682 if (prev->on_rq) {
Ingo Molnar5870db52007-08-09 11:16:47 +02002683 update_stats_wait_start(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002684 /* Put 'current' back into the tree. */
2685 __enqueue_entity(cfs_rq, prev);
Paul Turner9d85f212012-10-04 13:18:29 +02002686 /* in !on_rq case, update occurred at dequeue */
Paul Turner9ee474f2012-10-04 13:18:30 +02002687 update_entity_load_avg(prev, 1);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002688 }
Ingo Molnar429d43b2007-10-15 17:00:03 +02002689 cfs_rq->curr = NULL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002690}
2691
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002692static void
2693entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002694{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002695 /*
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002696 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002697 */
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002698 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002699
Paul Turner43365bd2010-12-15 19:10:17 -08002700 /*
Paul Turner9d85f212012-10-04 13:18:29 +02002701 * Ensure that runnable average is periodically updated.
2702 */
Paul Turner9ee474f2012-10-04 13:18:30 +02002703 update_entity_load_avg(curr, 1);
Paul Turneraff3e492012-10-04 13:18:30 +02002704 update_cfs_rq_blocked_load(cfs_rq, 1);
Peter Zijlstrabf0bd942013-07-26 23:48:42 +02002705 update_cfs_shares(cfs_rq);
Paul Turner9d85f212012-10-04 13:18:29 +02002706
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002707#ifdef CONFIG_SCHED_HRTICK
2708 /*
2709 * queued ticks are scheduled to match the slice, so don't bother
2710 * validating it and just reschedule.
2711 */
Harvey Harrison983ed7a2008-04-24 18:17:55 -07002712 if (queued) {
2713 resched_task(rq_of(cfs_rq)->curr);
2714 return;
2715 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002716 /*
2717 * don't let the period tick interfere with the hrtick preemption
2718 */
2719 if (!sched_feat(DOUBLE_TICK) &&
2720 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2721 return;
2722#endif
2723
Yong Zhang2c2efae2011-07-29 16:20:33 +08002724 if (cfs_rq->nr_running > 1)
Ingo Molnar2e09bf52007-10-15 17:00:05 +02002725 check_preempt_tick(cfs_rq, curr);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002726}
2727
Paul Turnerab84d312011-07-21 09:43:28 -07002728
2729/**************************************************
2730 * CFS bandwidth control machinery
2731 */
2732
2733#ifdef CONFIG_CFS_BANDWIDTH
Peter Zijlstra029632f2011-10-25 10:00:11 +02002734
2735#ifdef HAVE_JUMP_LABEL
Ingo Molnarc5905af2012-02-24 08:31:31 +01002736static struct static_key __cfs_bandwidth_used;
Peter Zijlstra029632f2011-10-25 10:00:11 +02002737
2738static inline bool cfs_bandwidth_used(void)
2739{
Ingo Molnarc5905af2012-02-24 08:31:31 +01002740 return static_key_false(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002741}
2742
2743void account_cfs_bandwidth_used(int enabled, int was_enabled)
2744{
2745 /* only need to count groups transitioning between enabled/!enabled */
2746 if (enabled && !was_enabled)
Ingo Molnarc5905af2012-02-24 08:31:31 +01002747 static_key_slow_inc(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002748 else if (!enabled && was_enabled)
Ingo Molnarc5905af2012-02-24 08:31:31 +01002749 static_key_slow_dec(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002750}
2751#else /* HAVE_JUMP_LABEL */
2752static bool cfs_bandwidth_used(void)
2753{
2754 return true;
2755}
2756
2757void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2758#endif /* HAVE_JUMP_LABEL */
2759
Paul Turnerab84d312011-07-21 09:43:28 -07002760/*
2761 * default period for cfs group bandwidth.
2762 * default: 0.1s, units: nanoseconds
2763 */
2764static inline u64 default_cfs_period(void)
2765{
2766 return 100000000ULL;
2767}
Paul Turnerec12cb72011-07-21 09:43:30 -07002768
2769static inline u64 sched_cfs_bandwidth_slice(void)
2770{
2771 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2772}
2773
Paul Turnera9cf55b2011-07-21 09:43:32 -07002774/*
2775 * Replenish runtime according to assigned quota and update expiration time.
2776 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2777 * additional synchronization around rq->lock.
2778 *
2779 * requires cfs_b->lock
2780 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02002781void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
Paul Turnera9cf55b2011-07-21 09:43:32 -07002782{
2783 u64 now;
2784
2785 if (cfs_b->quota == RUNTIME_INF)
2786 return;
2787
2788 now = sched_clock_cpu(smp_processor_id());
2789 cfs_b->runtime = cfs_b->quota;
2790 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2791}
2792
Peter Zijlstra029632f2011-10-25 10:00:11 +02002793static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2794{
2795 return &tg->cfs_bandwidth;
2796}
2797
Paul Turnerf1b17282012-10-04 13:18:31 +02002798/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2799static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2800{
2801 if (unlikely(cfs_rq->throttle_count))
2802 return cfs_rq->throttled_clock_task;
2803
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002804 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
Paul Turnerf1b17282012-10-04 13:18:31 +02002805}
2806
Paul Turner85dac902011-07-21 09:43:33 -07002807/* returns 0 on failure to allocate runtime */
2808static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
Paul Turnerec12cb72011-07-21 09:43:30 -07002809{
2810 struct task_group *tg = cfs_rq->tg;
2811 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002812 u64 amount = 0, min_amount, expires;
Paul Turnerec12cb72011-07-21 09:43:30 -07002813
2814 /* note: this is a positive sum as runtime_remaining <= 0 */
2815 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2816
2817 raw_spin_lock(&cfs_b->lock);
2818 if (cfs_b->quota == RUNTIME_INF)
2819 amount = min_amount;
Paul Turner58088ad2011-07-21 09:43:31 -07002820 else {
Paul Turnera9cf55b2011-07-21 09:43:32 -07002821 /*
2822 * If the bandwidth pool has become inactive, then at least one
2823 * period must have elapsed since the last consumption.
2824 * Refresh the global state and ensure bandwidth timer becomes
2825 * active.
2826 */
2827 if (!cfs_b->timer_active) {
2828 __refill_cfs_bandwidth_runtime(cfs_b);
Paul Turner58088ad2011-07-21 09:43:31 -07002829 __start_cfs_bandwidth(cfs_b);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002830 }
Paul Turner58088ad2011-07-21 09:43:31 -07002831
2832 if (cfs_b->runtime > 0) {
2833 amount = min(cfs_b->runtime, min_amount);
2834 cfs_b->runtime -= amount;
2835 cfs_b->idle = 0;
2836 }
Paul Turnerec12cb72011-07-21 09:43:30 -07002837 }
Paul Turnera9cf55b2011-07-21 09:43:32 -07002838 expires = cfs_b->runtime_expires;
Paul Turnerec12cb72011-07-21 09:43:30 -07002839 raw_spin_unlock(&cfs_b->lock);
2840
2841 cfs_rq->runtime_remaining += amount;
Paul Turnera9cf55b2011-07-21 09:43:32 -07002842 /*
2843 * we may have advanced our local expiration to account for allowed
2844 * spread between our sched_clock and the one on which runtime was
2845 * issued.
2846 */
2847 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2848 cfs_rq->runtime_expires = expires;
Paul Turner85dac902011-07-21 09:43:33 -07002849
2850 return cfs_rq->runtime_remaining > 0;
Paul Turnera9cf55b2011-07-21 09:43:32 -07002851}
2852
2853/*
2854 * Note: This depends on the synchronization provided by sched_clock and the
2855 * fact that rq->clock snapshots this value.
2856 */
2857static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2858{
2859 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002860
2861 /* if the deadline is ahead of our clock, nothing to do */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002862 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
Paul Turnera9cf55b2011-07-21 09:43:32 -07002863 return;
2864
2865 if (cfs_rq->runtime_remaining < 0)
2866 return;
2867
2868 /*
2869 * If the local deadline has passed we have to consider the
2870 * possibility that our sched_clock is 'fast' and the global deadline
2871 * has not truly expired.
2872 *
2873 * Fortunately we can check determine whether this the case by checking
2874 * whether the global deadline has advanced.
2875 */
2876
2877 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2878 /* extend local deadline, drift is bounded above by 2 ticks */
2879 cfs_rq->runtime_expires += TICK_NSEC;
2880 } else {
2881 /* global deadline is ahead, expiration has passed */
2882 cfs_rq->runtime_remaining = 0;
2883 }
Paul Turnerec12cb72011-07-21 09:43:30 -07002884}
2885
2886static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2887 unsigned long delta_exec)
2888{
Paul Turnera9cf55b2011-07-21 09:43:32 -07002889 /* dock delta_exec before expiring quota (as it could span periods) */
Paul Turnerec12cb72011-07-21 09:43:30 -07002890 cfs_rq->runtime_remaining -= delta_exec;
Paul Turnera9cf55b2011-07-21 09:43:32 -07002891 expire_cfs_rq_runtime(cfs_rq);
2892
2893 if (likely(cfs_rq->runtime_remaining > 0))
Paul Turnerec12cb72011-07-21 09:43:30 -07002894 return;
2895
Paul Turner85dac902011-07-21 09:43:33 -07002896 /*
2897 * if we're unable to extend our runtime we resched so that the active
2898 * hierarchy can be throttled
2899 */
2900 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2901 resched_task(rq_of(cfs_rq)->curr);
Paul Turnerec12cb72011-07-21 09:43:30 -07002902}
2903
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07002904static __always_inline
2905void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
Paul Turnerec12cb72011-07-21 09:43:30 -07002906{
Paul Turner56f570e2011-11-07 20:26:33 -08002907 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
Paul Turnerec12cb72011-07-21 09:43:30 -07002908 return;
2909
2910 __account_cfs_rq_runtime(cfs_rq, delta_exec);
2911}
2912
Paul Turner85dac902011-07-21 09:43:33 -07002913static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2914{
Paul Turner56f570e2011-11-07 20:26:33 -08002915 return cfs_bandwidth_used() && cfs_rq->throttled;
Paul Turner85dac902011-07-21 09:43:33 -07002916}
2917
Paul Turner64660c82011-07-21 09:43:36 -07002918/* check whether cfs_rq, or any parent, is throttled */
2919static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2920{
Paul Turner56f570e2011-11-07 20:26:33 -08002921 return cfs_bandwidth_used() && cfs_rq->throttle_count;
Paul Turner64660c82011-07-21 09:43:36 -07002922}
2923
2924/*
2925 * Ensure that neither of the group entities corresponding to src_cpu or
2926 * dest_cpu are members of a throttled hierarchy when performing group
2927 * load-balance operations.
2928 */
2929static inline int throttled_lb_pair(struct task_group *tg,
2930 int src_cpu, int dest_cpu)
2931{
2932 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2933
2934 src_cfs_rq = tg->cfs_rq[src_cpu];
2935 dest_cfs_rq = tg->cfs_rq[dest_cpu];
2936
2937 return throttled_hierarchy(src_cfs_rq) ||
2938 throttled_hierarchy(dest_cfs_rq);
2939}
2940
2941/* updated child weight may affect parent so we have to do this bottom up */
2942static int tg_unthrottle_up(struct task_group *tg, void *data)
2943{
2944 struct rq *rq = data;
2945 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2946
2947 cfs_rq->throttle_count--;
2948#ifdef CONFIG_SMP
2949 if (!cfs_rq->throttle_count) {
Paul Turnerf1b17282012-10-04 13:18:31 +02002950 /* adjust cfs_rq_clock_task() */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002951 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
Paul Turnerf1b17282012-10-04 13:18:31 +02002952 cfs_rq->throttled_clock_task;
Paul Turner64660c82011-07-21 09:43:36 -07002953 }
2954#endif
2955
2956 return 0;
2957}
2958
2959static int tg_throttle_down(struct task_group *tg, void *data)
2960{
2961 struct rq *rq = data;
2962 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2963
Paul Turner82958362012-10-04 13:18:31 +02002964 /* group is entering throttled state, stop time */
2965 if (!cfs_rq->throttle_count)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002966 cfs_rq->throttled_clock_task = rq_clock_task(rq);
Paul Turner64660c82011-07-21 09:43:36 -07002967 cfs_rq->throttle_count++;
2968
2969 return 0;
2970}
2971
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002972static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
Paul Turner85dac902011-07-21 09:43:33 -07002973{
2974 struct rq *rq = rq_of(cfs_rq);
2975 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2976 struct sched_entity *se;
2977 long task_delta, dequeue = 1;
2978
2979 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2980
Paul Turnerf1b17282012-10-04 13:18:31 +02002981 /* freeze hierarchy runnable averages while throttled */
Paul Turner64660c82011-07-21 09:43:36 -07002982 rcu_read_lock();
2983 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2984 rcu_read_unlock();
Paul Turner85dac902011-07-21 09:43:33 -07002985
2986 task_delta = cfs_rq->h_nr_running;
2987 for_each_sched_entity(se) {
2988 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2989 /* throttled entity or throttle-on-deactivate */
2990 if (!se->on_rq)
2991 break;
2992
2993 if (dequeue)
2994 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2995 qcfs_rq->h_nr_running -= task_delta;
2996
2997 if (qcfs_rq->load.weight)
2998 dequeue = 0;
2999 }
3000
3001 if (!se)
3002 rq->nr_running -= task_delta;
3003
3004 cfs_rq->throttled = 1;
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003005 cfs_rq->throttled_clock = rq_clock(rq);
Paul Turner85dac902011-07-21 09:43:33 -07003006 raw_spin_lock(&cfs_b->lock);
3007 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3008 raw_spin_unlock(&cfs_b->lock);
3009}
3010
Peter Zijlstra029632f2011-10-25 10:00:11 +02003011void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
Paul Turner671fd9d2011-07-21 09:43:34 -07003012{
3013 struct rq *rq = rq_of(cfs_rq);
3014 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3015 struct sched_entity *se;
3016 int enqueue = 1;
3017 long task_delta;
3018
Michael Wang22b958d2013-06-04 14:23:39 +08003019 se = cfs_rq->tg->se[cpu_of(rq)];
Paul Turner671fd9d2011-07-21 09:43:34 -07003020
3021 cfs_rq->throttled = 0;
Frederic Weisbecker1a55af22013-04-12 01:51:01 +02003022
3023 update_rq_clock(rq);
3024
Paul Turner671fd9d2011-07-21 09:43:34 -07003025 raw_spin_lock(&cfs_b->lock);
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003026 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
Paul Turner671fd9d2011-07-21 09:43:34 -07003027 list_del_rcu(&cfs_rq->throttled_list);
3028 raw_spin_unlock(&cfs_b->lock);
3029
Paul Turner64660c82011-07-21 09:43:36 -07003030 /* update hierarchical throttle state */
3031 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3032
Paul Turner671fd9d2011-07-21 09:43:34 -07003033 if (!cfs_rq->load.weight)
3034 return;
3035
3036 task_delta = cfs_rq->h_nr_running;
3037 for_each_sched_entity(se) {
3038 if (se->on_rq)
3039 enqueue = 0;
3040
3041 cfs_rq = cfs_rq_of(se);
3042 if (enqueue)
3043 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3044 cfs_rq->h_nr_running += task_delta;
3045
3046 if (cfs_rq_throttled(cfs_rq))
3047 break;
3048 }
3049
3050 if (!se)
3051 rq->nr_running += task_delta;
3052
3053 /* determine whether we need to wake up potentially idle cpu */
3054 if (rq->curr == rq->idle && rq->cfs.nr_running)
3055 resched_task(rq->curr);
3056}
3057
3058static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3059 u64 remaining, u64 expires)
3060{
3061 struct cfs_rq *cfs_rq;
3062 u64 runtime = remaining;
3063
3064 rcu_read_lock();
3065 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3066 throttled_list) {
3067 struct rq *rq = rq_of(cfs_rq);
3068
3069 raw_spin_lock(&rq->lock);
3070 if (!cfs_rq_throttled(cfs_rq))
3071 goto next;
3072
3073 runtime = -cfs_rq->runtime_remaining + 1;
3074 if (runtime > remaining)
3075 runtime = remaining;
3076 remaining -= runtime;
3077
3078 cfs_rq->runtime_remaining += runtime;
3079 cfs_rq->runtime_expires = expires;
3080
3081 /* we check whether we're throttled above */
3082 if (cfs_rq->runtime_remaining > 0)
3083 unthrottle_cfs_rq(cfs_rq);
3084
3085next:
3086 raw_spin_unlock(&rq->lock);
3087
3088 if (!remaining)
3089 break;
3090 }
3091 rcu_read_unlock();
3092
3093 return remaining;
3094}
3095
Paul Turner58088ad2011-07-21 09:43:31 -07003096/*
3097 * Responsible for refilling a task_group's bandwidth and unthrottling its
3098 * cfs_rqs as appropriate. If there has been no activity within the last
3099 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3100 * used to track this state.
3101 */
3102static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3103{
Paul Turner671fd9d2011-07-21 09:43:34 -07003104 u64 runtime, runtime_expires;
3105 int idle = 1, throttled;
Paul Turner58088ad2011-07-21 09:43:31 -07003106
3107 raw_spin_lock(&cfs_b->lock);
3108 /* no need to continue the timer with no bandwidth constraint */
3109 if (cfs_b->quota == RUNTIME_INF)
3110 goto out_unlock;
3111
Paul Turner671fd9d2011-07-21 09:43:34 -07003112 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3113 /* idle depends on !throttled (for the case of a large deficit) */
3114 idle = cfs_b->idle && !throttled;
Nikhil Raoe8da1b12011-07-21 09:43:40 -07003115 cfs_b->nr_periods += overrun;
Paul Turner671fd9d2011-07-21 09:43:34 -07003116
Paul Turnera9cf55b2011-07-21 09:43:32 -07003117 /* if we're going inactive then everything else can be deferred */
3118 if (idle)
3119 goto out_unlock;
3120
3121 __refill_cfs_bandwidth_runtime(cfs_b);
3122
Paul Turner671fd9d2011-07-21 09:43:34 -07003123 if (!throttled) {
3124 /* mark as potentially idle for the upcoming period */
3125 cfs_b->idle = 1;
3126 goto out_unlock;
3127 }
Paul Turner58088ad2011-07-21 09:43:31 -07003128
Nikhil Raoe8da1b12011-07-21 09:43:40 -07003129 /* account preceding periods in which throttling occurred */
3130 cfs_b->nr_throttled += overrun;
3131
Paul Turner671fd9d2011-07-21 09:43:34 -07003132 /*
3133 * There are throttled entities so we must first use the new bandwidth
3134 * to unthrottle them before making it generally available. This
3135 * ensures that all existing debts will be paid before a new cfs_rq is
3136 * allowed to run.
3137 */
3138 runtime = cfs_b->runtime;
3139 runtime_expires = cfs_b->runtime_expires;
3140 cfs_b->runtime = 0;
3141
3142 /*
3143 * This check is repeated as we are holding onto the new bandwidth
3144 * while we unthrottle. This can potentially race with an unthrottled
3145 * group trying to acquire new bandwidth from the global pool.
3146 */
3147 while (throttled && runtime > 0) {
3148 raw_spin_unlock(&cfs_b->lock);
3149 /* we can't nest cfs_b->lock while distributing bandwidth */
3150 runtime = distribute_cfs_runtime(cfs_b, runtime,
3151 runtime_expires);
3152 raw_spin_lock(&cfs_b->lock);
3153
3154 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3155 }
3156
3157 /* return (any) remaining runtime */
3158 cfs_b->runtime = runtime;
3159 /*
3160 * While we are ensured activity in the period following an
3161 * unthrottle, this also covers the case in which the new bandwidth is
3162 * insufficient to cover the existing bandwidth deficit. (Forcing the
3163 * timer to remain active while there are any throttled entities.)
3164 */
3165 cfs_b->idle = 0;
Paul Turner58088ad2011-07-21 09:43:31 -07003166out_unlock:
3167 if (idle)
3168 cfs_b->timer_active = 0;
3169 raw_spin_unlock(&cfs_b->lock);
3170
3171 return idle;
3172}
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003173
Paul Turnerd8b49862011-07-21 09:43:41 -07003174/* a cfs_rq won't donate quota below this amount */
3175static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3176/* minimum remaining period time to redistribute slack quota */
3177static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3178/* how long we wait to gather additional slack before distributing */
3179static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3180
3181/* are we near the end of the current quota period? */
3182static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3183{
3184 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3185 u64 remaining;
3186
3187 /* if the call-back is running a quota refresh is already occurring */
3188 if (hrtimer_callback_running(refresh_timer))
3189 return 1;
3190
3191 /* is a quota refresh about to occur? */
3192 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3193 if (remaining < min_expire)
3194 return 1;
3195
3196 return 0;
3197}
3198
3199static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3200{
3201 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3202
3203 /* if there's a quota refresh soon don't bother with slack */
3204 if (runtime_refresh_within(cfs_b, min_left))
3205 return;
3206
3207 start_bandwidth_timer(&cfs_b->slack_timer,
3208 ns_to_ktime(cfs_bandwidth_slack_period));
3209}
3210
3211/* we know any runtime found here is valid as update_curr() precedes return */
3212static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3213{
3214 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3215 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3216
3217 if (slack_runtime <= 0)
3218 return;
3219
3220 raw_spin_lock(&cfs_b->lock);
3221 if (cfs_b->quota != RUNTIME_INF &&
3222 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3223 cfs_b->runtime += slack_runtime;
3224
3225 /* we are under rq->lock, defer unthrottling using a timer */
3226 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3227 !list_empty(&cfs_b->throttled_cfs_rq))
3228 start_cfs_slack_bandwidth(cfs_b);
3229 }
3230 raw_spin_unlock(&cfs_b->lock);
3231
3232 /* even if it's not valid for return we don't want to try again */
3233 cfs_rq->runtime_remaining -= slack_runtime;
3234}
3235
3236static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3237{
Paul Turner56f570e2011-11-07 20:26:33 -08003238 if (!cfs_bandwidth_used())
3239 return;
3240
Paul Turnerfccfdc62011-11-07 20:26:34 -08003241 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
Paul Turnerd8b49862011-07-21 09:43:41 -07003242 return;
3243
3244 __return_cfs_rq_runtime(cfs_rq);
3245}
3246
3247/*
3248 * This is done with a timer (instead of inline with bandwidth return) since
3249 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3250 */
3251static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3252{
3253 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3254 u64 expires;
3255
3256 /* confirm we're still not at a refresh boundary */
3257 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
3258 return;
3259
3260 raw_spin_lock(&cfs_b->lock);
3261 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3262 runtime = cfs_b->runtime;
3263 cfs_b->runtime = 0;
3264 }
3265 expires = cfs_b->runtime_expires;
3266 raw_spin_unlock(&cfs_b->lock);
3267
3268 if (!runtime)
3269 return;
3270
3271 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3272
3273 raw_spin_lock(&cfs_b->lock);
3274 if (expires == cfs_b->runtime_expires)
3275 cfs_b->runtime = runtime;
3276 raw_spin_unlock(&cfs_b->lock);
3277}
3278
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003279/*
3280 * When a group wakes up we want to make sure that its quota is not already
3281 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3282 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3283 */
3284static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3285{
Paul Turner56f570e2011-11-07 20:26:33 -08003286 if (!cfs_bandwidth_used())
3287 return;
3288
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003289 /* an active group must be handled by the update_curr()->put() path */
3290 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3291 return;
3292
3293 /* ensure the group is not already throttled */
3294 if (cfs_rq_throttled(cfs_rq))
3295 return;
3296
3297 /* update runtime allocation */
3298 account_cfs_rq_runtime(cfs_rq, 0);
3299 if (cfs_rq->runtime_remaining <= 0)
3300 throttle_cfs_rq(cfs_rq);
3301}
3302
3303/* conditionally throttle active cfs_rq's from put_prev_entity() */
3304static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3305{
Paul Turner56f570e2011-11-07 20:26:33 -08003306 if (!cfs_bandwidth_used())
3307 return;
3308
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003309 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3310 return;
3311
3312 /*
3313 * it's possible for a throttled entity to be forced into a running
3314 * state (e.g. set_curr_task), in this case we're finished.
3315 */
3316 if (cfs_rq_throttled(cfs_rq))
3317 return;
3318
3319 throttle_cfs_rq(cfs_rq);
3320}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003321
Peter Zijlstra029632f2011-10-25 10:00:11 +02003322static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3323{
3324 struct cfs_bandwidth *cfs_b =
3325 container_of(timer, struct cfs_bandwidth, slack_timer);
3326 do_sched_cfs_slack_timer(cfs_b);
3327
3328 return HRTIMER_NORESTART;
3329}
3330
3331static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3332{
3333 struct cfs_bandwidth *cfs_b =
3334 container_of(timer, struct cfs_bandwidth, period_timer);
3335 ktime_t now;
3336 int overrun;
3337 int idle = 0;
3338
3339 for (;;) {
3340 now = hrtimer_cb_get_time(timer);
3341 overrun = hrtimer_forward(timer, now, cfs_b->period);
3342
3343 if (!overrun)
3344 break;
3345
3346 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3347 }
3348
3349 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3350}
3351
3352void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3353{
3354 raw_spin_lock_init(&cfs_b->lock);
3355 cfs_b->runtime = 0;
3356 cfs_b->quota = RUNTIME_INF;
3357 cfs_b->period = ns_to_ktime(default_cfs_period());
3358
3359 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3360 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3361 cfs_b->period_timer.function = sched_cfs_period_timer;
3362 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3363 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3364}
3365
3366static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3367{
3368 cfs_rq->runtime_enabled = 0;
3369 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3370}
3371
3372/* requires cfs_b->lock, may release to reprogram timer */
3373void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3374{
3375 /*
3376 * The timer may be active because we're trying to set a new bandwidth
3377 * period or because we're racing with the tear-down path
3378 * (timer_active==0 becomes visible before the hrtimer call-back
3379 * terminates). In either case we ensure that it's re-programmed
3380 */
3381 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
3382 raw_spin_unlock(&cfs_b->lock);
3383 /* ensure cfs_b->lock is available while we wait */
3384 hrtimer_cancel(&cfs_b->period_timer);
3385
3386 raw_spin_lock(&cfs_b->lock);
3387 /* if someone else restarted the timer then we're done */
3388 if (cfs_b->timer_active)
3389 return;
3390 }
3391
3392 cfs_b->timer_active = 1;
3393 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3394}
3395
3396static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3397{
3398 hrtimer_cancel(&cfs_b->period_timer);
3399 hrtimer_cancel(&cfs_b->slack_timer);
3400}
3401
Arnd Bergmann38dc3342013-01-25 14:14:22 +00003402static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
Peter Zijlstra029632f2011-10-25 10:00:11 +02003403{
3404 struct cfs_rq *cfs_rq;
3405
3406 for_each_leaf_cfs_rq(rq, cfs_rq) {
3407 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3408
3409 if (!cfs_rq->runtime_enabled)
3410 continue;
3411
3412 /*
3413 * clock_task is not advancing so we just need to make sure
3414 * there's some valid quota amount
3415 */
3416 cfs_rq->runtime_remaining = cfs_b->quota;
3417 if (cfs_rq_throttled(cfs_rq))
3418 unthrottle_cfs_rq(cfs_rq);
3419 }
3420}
3421
3422#else /* CONFIG_CFS_BANDWIDTH */
Paul Turnerf1b17282012-10-04 13:18:31 +02003423static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3424{
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003425 return rq_clock_task(rq_of(cfs_rq));
Paul Turnerf1b17282012-10-04 13:18:31 +02003426}
3427
3428static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3429 unsigned long delta_exec) {}
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003430static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3431static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07003432static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
Paul Turner85dac902011-07-21 09:43:33 -07003433
3434static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3435{
3436 return 0;
3437}
Paul Turner64660c82011-07-21 09:43:36 -07003438
3439static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3440{
3441 return 0;
3442}
3443
3444static inline int throttled_lb_pair(struct task_group *tg,
3445 int src_cpu, int dest_cpu)
3446{
3447 return 0;
3448}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003449
3450void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3451
3452#ifdef CONFIG_FAIR_GROUP_SCHED
3453static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
Paul Turnerab84d312011-07-21 09:43:28 -07003454#endif
3455
Peter Zijlstra029632f2011-10-25 10:00:11 +02003456static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3457{
3458 return NULL;
3459}
3460static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
Peter Boonstoppela4c96ae2012-08-09 15:34:47 -07003461static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003462
3463#endif /* CONFIG_CFS_BANDWIDTH */
3464
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003465/**************************************************
3466 * CFS operations on tasks:
3467 */
3468
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003469#ifdef CONFIG_SCHED_HRTICK
3470static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3471{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003472 struct sched_entity *se = &p->se;
3473 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3474
3475 WARN_ON(task_rq(p) != rq);
3476
Mike Galbraithb39e66e2011-11-22 15:20:07 +01003477 if (cfs_rq->nr_running > 1) {
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003478 u64 slice = sched_slice(cfs_rq, se);
3479 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3480 s64 delta = slice - ran;
3481
3482 if (delta < 0) {
3483 if (rq->curr == p)
3484 resched_task(p);
3485 return;
3486 }
3487
3488 /*
3489 * Don't schedule slices shorter than 10000ns, that just
3490 * doesn't make sense. Rely on vruntime for fairness.
3491 */
Peter Zijlstra31656512008-07-18 18:01:23 +02003492 if (rq->curr != p)
Peter Zijlstra157124c2008-07-28 11:53:11 +02003493 delta = max_t(s64, 10000LL, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003494
Peter Zijlstra31656512008-07-18 18:01:23 +02003495 hrtick_start(rq, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003496 }
3497}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003498
3499/*
3500 * called from enqueue/dequeue and updates the hrtick when the
3501 * current task is from our class and nr_running is low enough
3502 * to matter.
3503 */
3504static void hrtick_update(struct rq *rq)
3505{
3506 struct task_struct *curr = rq->curr;
3507
Mike Galbraithb39e66e2011-11-22 15:20:07 +01003508 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003509 return;
3510
3511 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3512 hrtick_start_fair(rq, curr);
3513}
Dhaval Giani55e12e52008-06-24 23:39:43 +05303514#else /* !CONFIG_SCHED_HRTICK */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003515static inline void
3516hrtick_start_fair(struct rq *rq, struct task_struct *p)
3517{
3518}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003519
3520static inline void hrtick_update(struct rq *rq)
3521{
3522}
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003523#endif
3524
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003525/*
3526 * The enqueue_task method is called before nr_running is
3527 * increased. Here we update the fair scheduling stats and
3528 * then put the task into the rbtree:
3529 */
Thomas Gleixnerea87bb72010-01-20 20:58:57 +00003530static void
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003531enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003532{
3533 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003534 struct sched_entity *se = &p->se;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003535
3536 for_each_sched_entity(se) {
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003537 if (se->on_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003538 break;
3539 cfs_rq = cfs_rq_of(se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003540 enqueue_entity(cfs_rq, se, flags);
Paul Turner85dac902011-07-21 09:43:33 -07003541
3542 /*
3543 * end evaluation on encountering a throttled cfs_rq
3544 *
3545 * note: in the case of encountering a throttled cfs_rq we will
3546 * post the final h_nr_running increment below.
3547 */
3548 if (cfs_rq_throttled(cfs_rq))
3549 break;
Paul Turner953bfcd2011-07-21 09:43:27 -07003550 cfs_rq->h_nr_running++;
Paul Turner85dac902011-07-21 09:43:33 -07003551
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003552 flags = ENQUEUE_WAKEUP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003553 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003554
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003555 for_each_sched_entity(se) {
Lin Ming0f317142011-07-22 09:14:31 +08003556 cfs_rq = cfs_rq_of(se);
Paul Turner953bfcd2011-07-21 09:43:27 -07003557 cfs_rq->h_nr_running++;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003558
Paul Turner85dac902011-07-21 09:43:33 -07003559 if (cfs_rq_throttled(cfs_rq))
3560 break;
3561
Linus Torvalds17bc14b2012-12-14 07:20:43 -08003562 update_cfs_shares(cfs_rq);
Paul Turner9ee474f2012-10-04 13:18:30 +02003563 update_entity_load_avg(se, 1);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003564 }
3565
Ben Segall18bf2802012-10-04 12:51:20 +02003566 if (!se) {
3567 update_rq_runnable_avg(rq, rq->nr_running);
Paul Turner85dac902011-07-21 09:43:33 -07003568 inc_nr_running(rq);
Ben Segall18bf2802012-10-04 12:51:20 +02003569 }
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003570 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003571}
3572
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003573static void set_next_buddy(struct sched_entity *se);
3574
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003575/*
3576 * The dequeue_task method is called before nr_running is
3577 * decreased. We remove the task from the rbtree and
3578 * update the fair scheduling stats:
3579 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003580static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003581{
3582 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003583 struct sched_entity *se = &p->se;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003584 int task_sleep = flags & DEQUEUE_SLEEP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003585
3586 for_each_sched_entity(se) {
3587 cfs_rq = cfs_rq_of(se);
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003588 dequeue_entity(cfs_rq, se, flags);
Paul Turner85dac902011-07-21 09:43:33 -07003589
3590 /*
3591 * end evaluation on encountering a throttled cfs_rq
3592 *
3593 * note: in the case of encountering a throttled cfs_rq we will
3594 * post the final h_nr_running decrement below.
3595 */
3596 if (cfs_rq_throttled(cfs_rq))
3597 break;
Paul Turner953bfcd2011-07-21 09:43:27 -07003598 cfs_rq->h_nr_running--;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003599
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003600 /* Don't dequeue parent if it has other entities besides us */
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003601 if (cfs_rq->load.weight) {
3602 /*
3603 * Bias pick_next to pick a task from this cfs_rq, as
3604 * p is sleeping when it is within its sched_slice.
3605 */
3606 if (task_sleep && parent_entity(se))
3607 set_next_buddy(parent_entity(se));
Paul Turner9598c822011-07-06 22:30:37 -07003608
3609 /* avoid re-evaluating load for this entity */
3610 se = parent_entity(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003611 break;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003612 }
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003613 flags |= DEQUEUE_SLEEP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003614 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003615
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003616 for_each_sched_entity(se) {
Lin Ming0f317142011-07-22 09:14:31 +08003617 cfs_rq = cfs_rq_of(se);
Paul Turner953bfcd2011-07-21 09:43:27 -07003618 cfs_rq->h_nr_running--;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003619
Paul Turner85dac902011-07-21 09:43:33 -07003620 if (cfs_rq_throttled(cfs_rq))
3621 break;
3622
Linus Torvalds17bc14b2012-12-14 07:20:43 -08003623 update_cfs_shares(cfs_rq);
Paul Turner9ee474f2012-10-04 13:18:30 +02003624 update_entity_load_avg(se, 1);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003625 }
3626
Ben Segall18bf2802012-10-04 12:51:20 +02003627 if (!se) {
Paul Turner85dac902011-07-21 09:43:33 -07003628 dec_nr_running(rq);
Ben Segall18bf2802012-10-04 12:51:20 +02003629 update_rq_runnable_avg(rq, 1);
3630 }
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003631 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003632}
3633
Gregory Haskinse7693a32008-01-25 21:08:09 +01003634#ifdef CONFIG_SMP
Peter Zijlstra029632f2011-10-25 10:00:11 +02003635/* Used instead of source_load when we know the type == 0 */
3636static unsigned long weighted_cpuload(const int cpu)
3637{
Alex Shib92486c2013-06-20 10:18:50 +08003638 return cpu_rq(cpu)->cfs.runnable_load_avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003639}
3640
3641/*
3642 * Return a low guess at the load of a migration-source cpu weighted
3643 * according to the scheduling class and "nice" value.
3644 *
3645 * We want to under-estimate the load of migration sources, to
3646 * balance conservatively.
3647 */
3648static unsigned long source_load(int cpu, int type)
3649{
3650 struct rq *rq = cpu_rq(cpu);
3651 unsigned long total = weighted_cpuload(cpu);
3652
3653 if (type == 0 || !sched_feat(LB_BIAS))
3654 return total;
3655
3656 return min(rq->cpu_load[type-1], total);
3657}
3658
3659/*
3660 * Return a high guess at the load of a migration-target cpu weighted
3661 * according to the scheduling class and "nice" value.
3662 */
3663static unsigned long target_load(int cpu, int type)
3664{
3665 struct rq *rq = cpu_rq(cpu);
3666 unsigned long total = weighted_cpuload(cpu);
3667
3668 if (type == 0 || !sched_feat(LB_BIAS))
3669 return total;
3670
3671 return max(rq->cpu_load[type-1], total);
3672}
3673
3674static unsigned long power_of(int cpu)
3675{
3676 return cpu_rq(cpu)->cpu_power;
3677}
3678
3679static unsigned long cpu_avg_load_per_task(int cpu)
3680{
3681 struct rq *rq = cpu_rq(cpu);
3682 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
Alex Shib92486c2013-06-20 10:18:50 +08003683 unsigned long load_avg = rq->cfs.runnable_load_avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003684
3685 if (nr_running)
Alex Shib92486c2013-06-20 10:18:50 +08003686 return load_avg / nr_running;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003687
3688 return 0;
3689}
3690
Michael Wang62470412013-07-04 12:55:51 +08003691static void record_wakee(struct task_struct *p)
3692{
3693 /*
3694 * Rough decay (wiping) for cost saving, don't worry
3695 * about the boundary, really active task won't care
3696 * about the loss.
3697 */
3698 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3699 current->wakee_flips = 0;
3700 current->wakee_flip_decay_ts = jiffies;
3701 }
3702
3703 if (current->last_wakee != p) {
3704 current->last_wakee = p;
3705 current->wakee_flips++;
3706 }
3707}
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003708
Peter Zijlstra74f8e4b2011-04-05 17:23:47 +02003709static void task_waking_fair(struct task_struct *p)
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003710{
3711 struct sched_entity *se = &p->se;
3712 struct cfs_rq *cfs_rq = cfs_rq_of(se);
Peter Zijlstra3fe16982011-04-05 17:23:48 +02003713 u64 min_vruntime;
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003714
Peter Zijlstra3fe16982011-04-05 17:23:48 +02003715#ifndef CONFIG_64BIT
3716 u64 min_vruntime_copy;
Peter Zijlstra74f8e4b2011-04-05 17:23:47 +02003717
Peter Zijlstra3fe16982011-04-05 17:23:48 +02003718 do {
3719 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3720 smp_rmb();
3721 min_vruntime = cfs_rq->min_vruntime;
3722 } while (min_vruntime != min_vruntime_copy);
3723#else
3724 min_vruntime = cfs_rq->min_vruntime;
3725#endif
3726
3727 se->vruntime -= min_vruntime;
Michael Wang62470412013-07-04 12:55:51 +08003728 record_wakee(p);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003729}
3730
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003731#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02003732/*
3733 * effective_load() calculates the load change as seen from the root_task_group
3734 *
3735 * Adding load to a group doesn't make a group heavier, but can cause movement
3736 * of group shares between cpus. Assuming the shares were perfectly aligned one
3737 * can calculate the shift in shares.
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003738 *
3739 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3740 * on this @cpu and results in a total addition (subtraction) of @wg to the
3741 * total group weight.
3742 *
3743 * Given a runqueue weight distribution (rw_i) we can compute a shares
3744 * distribution (s_i) using:
3745 *
3746 * s_i = rw_i / \Sum rw_j (1)
3747 *
3748 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3749 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3750 * shares distribution (s_i):
3751 *
3752 * rw_i = { 2, 4, 1, 0 }
3753 * s_i = { 2/7, 4/7, 1/7, 0 }
3754 *
3755 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3756 * task used to run on and the CPU the waker is running on), we need to
3757 * compute the effect of waking a task on either CPU and, in case of a sync
3758 * wakeup, compute the effect of the current task going to sleep.
3759 *
3760 * So for a change of @wl to the local @cpu with an overall group weight change
3761 * of @wl we can compute the new shares distribution (s'_i) using:
3762 *
3763 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3764 *
3765 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3766 * differences in waking a task to CPU 0. The additional task changes the
3767 * weight and shares distributions like:
3768 *
3769 * rw'_i = { 3, 4, 1, 0 }
3770 * s'_i = { 3/8, 4/8, 1/8, 0 }
3771 *
3772 * We can then compute the difference in effective weight by using:
3773 *
3774 * dw_i = S * (s'_i - s_i) (3)
3775 *
3776 * Where 'S' is the group weight as seen by its parent.
3777 *
3778 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3779 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3780 * 4/7) times the weight of the group.
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02003781 */
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003782static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003783{
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003784 struct sched_entity *se = tg->se[cpu];
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02003785
Mel Gorman58d081b2013-10-07 11:29:10 +01003786 if (!tg->parent || !wl) /* the trivial, non-cgroup case */
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02003787 return wl;
3788
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003789 for_each_sched_entity(se) {
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003790 long w, W;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003791
Paul Turner977dda72011-01-14 17:57:50 -08003792 tg = se->my_q->tg;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003793
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003794 /*
3795 * W = @wg + \Sum rw_j
3796 */
3797 W = wg + calc_tg_weight(tg, se->my_q);
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003798
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003799 /*
3800 * w = rw_i + @wl
3801 */
3802 w = se->my_q->load.weight + wl;
Peter Zijlstra940959e2008-09-23 15:33:42 +02003803
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003804 /*
3805 * wl = S * s'_i; see (2)
3806 */
3807 if (W > 0 && w < W)
3808 wl = (w * tg->shares) / W;
Paul Turner977dda72011-01-14 17:57:50 -08003809 else
3810 wl = tg->shares;
Peter Zijlstra940959e2008-09-23 15:33:42 +02003811
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003812 /*
3813 * Per the above, wl is the new se->load.weight value; since
3814 * those are clipped to [MIN_SHARES, ...) do so now. See
3815 * calc_cfs_shares().
3816 */
Paul Turner977dda72011-01-14 17:57:50 -08003817 if (wl < MIN_SHARES)
3818 wl = MIN_SHARES;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003819
3820 /*
3821 * wl = dw_i = S * (s'_i - s_i); see (3)
3822 */
Paul Turner977dda72011-01-14 17:57:50 -08003823 wl -= se->load.weight;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003824
3825 /*
3826 * Recursively apply this logic to all parent groups to compute
3827 * the final effective load change on the root group. Since
3828 * only the @tg group gets extra weight, all parent groups can
3829 * only redistribute existing shares. @wl is the shift in shares
3830 * resulting from this level per the above.
3831 */
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003832 wg = 0;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003833 }
3834
3835 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003836}
3837#else
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003838
Mel Gorman58d081b2013-10-07 11:29:10 +01003839static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003840{
Peter Zijlstra83378262008-06-27 13:41:37 +02003841 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003842}
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003843
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003844#endif
3845
Michael Wang62470412013-07-04 12:55:51 +08003846static int wake_wide(struct task_struct *p)
3847{
Peter Zijlstra7d9ffa82013-07-04 12:56:46 +08003848 int factor = this_cpu_read(sd_llc_size);
Michael Wang62470412013-07-04 12:55:51 +08003849
3850 /*
3851 * Yeah, it's the switching-frequency, could means many wakee or
3852 * rapidly switch, use factor here will just help to automatically
3853 * adjust the loose-degree, so bigger node will lead to more pull.
3854 */
3855 if (p->wakee_flips > factor) {
3856 /*
3857 * wakee is somewhat hot, it needs certain amount of cpu
3858 * resource, so if waker is far more hot, prefer to leave
3859 * it alone.
3860 */
3861 if (current->wakee_flips > (factor * p->wakee_flips))
3862 return 1;
3863 }
3864
3865 return 0;
3866}
3867
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003868static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003869{
Paul Turnere37b6a72011-01-21 20:44:59 -08003870 s64 this_load, load;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003871 int idx, this_cpu, prev_cpu;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003872 unsigned long tl_per_task;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003873 struct task_group *tg;
Peter Zijlstra83378262008-06-27 13:41:37 +02003874 unsigned long weight;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02003875 int balanced;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003876
Michael Wang62470412013-07-04 12:55:51 +08003877 /*
3878 * If we wake multiple tasks be careful to not bounce
3879 * ourselves around too much.
3880 */
3881 if (wake_wide(p))
3882 return 0;
3883
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003884 idx = sd->wake_idx;
3885 this_cpu = smp_processor_id();
3886 prev_cpu = task_cpu(p);
3887 load = source_load(prev_cpu, idx);
3888 this_load = target_load(this_cpu, idx);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003889
3890 /*
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003891 * If sync wakeup then subtract the (maximum possible)
3892 * effect of the currently running task from the load
3893 * of the current CPU:
3894 */
Peter Zijlstra83378262008-06-27 13:41:37 +02003895 if (sync) {
3896 tg = task_group(current);
3897 weight = current->se.load.weight;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003898
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003899 this_load += effective_load(tg, this_cpu, -weight, -weight);
Peter Zijlstra83378262008-06-27 13:41:37 +02003900 load += effective_load(tg, prev_cpu, 0, -weight);
3901 }
3902
3903 tg = task_group(p);
3904 weight = p->se.load.weight;
3905
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02003906 /*
3907 * In low-load situations, where prev_cpu is idle and this_cpu is idle
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003908 * due to the sync cause above having dropped this_load to 0, we'll
3909 * always have an imbalance, but there's really nothing you can do
3910 * about that, so that's good too.
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02003911 *
3912 * Otherwise check if either cpus are near enough in load to allow this
3913 * task to be woken on this_cpu.
3914 */
Paul Turnere37b6a72011-01-21 20:44:59 -08003915 if (this_load > 0) {
3916 s64 this_eff_load, prev_eff_load;
Peter Zijlstrae51fd5e2010-05-31 12:37:30 +02003917
3918 this_eff_load = 100;
3919 this_eff_load *= power_of(prev_cpu);
3920 this_eff_load *= this_load +
3921 effective_load(tg, this_cpu, weight, weight);
3922
3923 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3924 prev_eff_load *= power_of(this_cpu);
3925 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3926
3927 balanced = this_eff_load <= prev_eff_load;
3928 } else
3929 balanced = true;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02003930
3931 /*
3932 * If the currently running task will sleep within
3933 * a reasonable amount of time then attract this newly
3934 * woken task:
3935 */
Peter Zijlstra2fb76352008-10-08 09:16:04 +02003936 if (sync && balanced)
3937 return 1;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02003938
Lucas De Marchi41acab82010-03-10 23:37:45 -03003939 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
Mike Galbraithb3137bc2008-05-29 11:11:41 +02003940 tl_per_task = cpu_avg_load_per_task(this_cpu);
3941
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003942 if (balanced ||
3943 (this_load <= load &&
3944 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003945 /*
3946 * This domain has SD_WAKE_AFFINE and
3947 * p is cache cold in this domain, and
3948 * there is no bad imbalance.
3949 */
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003950 schedstat_inc(sd, ttwu_move_affine);
Lucas De Marchi41acab82010-03-10 23:37:45 -03003951 schedstat_inc(p, se.statistics.nr_wakeups_affine);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003952
3953 return 1;
3954 }
3955 return 0;
3956}
3957
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003958/*
3959 * find_idlest_group finds and returns the least busy CPU group within the
3960 * domain.
3961 */
3962static struct sched_group *
Peter Zijlstra78e7ed52009-09-03 13:16:51 +02003963find_idlest_group(struct sched_domain *sd, struct task_struct *p,
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02003964 int this_cpu, int load_idx)
Gregory Haskinse7693a32008-01-25 21:08:09 +01003965{
Andi Kleenb3bd3de2010-08-10 14:17:51 -07003966 struct sched_group *idlest = NULL, *group = sd->groups;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003967 unsigned long min_load = ULONG_MAX, this_load = 0;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003968 int imbalance = 100 + (sd->imbalance_pct-100)/2;
Gregory Haskinse7693a32008-01-25 21:08:09 +01003969
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003970 do {
3971 unsigned long load, avg_load;
3972 int local_group;
3973 int i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01003974
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003975 /* Skip over this group if it has no CPUs allowed */
3976 if (!cpumask_intersects(sched_group_cpus(group),
Peter Zijlstrafa17b502011-06-16 12:23:22 +02003977 tsk_cpus_allowed(p)))
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003978 continue;
3979
3980 local_group = cpumask_test_cpu(this_cpu,
3981 sched_group_cpus(group));
3982
3983 /* Tally up the load of all CPUs in the group */
3984 avg_load = 0;
3985
3986 for_each_cpu(i, sched_group_cpus(group)) {
3987 /* Bias balancing toward cpus of our domain */
3988 if (local_group)
3989 load = source_load(i, load_idx);
3990 else
3991 load = target_load(i, load_idx);
3992
3993 avg_load += load;
3994 }
3995
3996 /* Adjust by relative CPU power of the group */
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02003997 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003998
3999 if (local_group) {
4000 this_load = avg_load;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004001 } else if (avg_load < min_load) {
4002 min_load = avg_load;
4003 idlest = group;
4004 }
4005 } while (group = group->next, group != sd->groups);
4006
4007 if (!idlest || 100*this_load < imbalance*min_load)
4008 return NULL;
4009 return idlest;
4010}
4011
4012/*
4013 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4014 */
4015static int
4016find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4017{
4018 unsigned long load, min_load = ULONG_MAX;
4019 int idlest = -1;
4020 int i;
4021
4022 /* Traverse only the allowed CPUs */
Peter Zijlstrafa17b502011-06-16 12:23:22 +02004023 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004024 load = weighted_cpuload(i);
4025
4026 if (load < min_load || (load == min_load && i == this_cpu)) {
4027 min_load = load;
4028 idlest = i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004029 }
4030 }
4031
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004032 return idlest;
4033}
Gregory Haskinse7693a32008-01-25 21:08:09 +01004034
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004035/*
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004036 * Try and locate an idle CPU in the sched_domain.
4037 */
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004038static int select_idle_sibling(struct task_struct *p, int target)
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004039{
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004040 struct sched_domain *sd;
Linus Torvalds37407ea2012-09-16 12:29:43 -07004041 struct sched_group *sg;
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004042 int i = task_cpu(p);
4043
4044 if (idle_cpu(target))
4045 return target;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004046
4047 /*
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004048 * If the prevous cpu is cache affine and idle, don't be stupid.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004049 */
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004050 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4051 return i;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004052
4053 /*
Linus Torvalds37407ea2012-09-16 12:29:43 -07004054 * Otherwise, iterate the domains and find an elegible idle cpu.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004055 */
Peter Zijlstra518cd622011-12-07 15:07:31 +01004056 sd = rcu_dereference(per_cpu(sd_llc, target));
Suresh Siddha77e81362011-11-17 11:08:23 -08004057 for_each_lower_domain(sd) {
Linus Torvalds37407ea2012-09-16 12:29:43 -07004058 sg = sd->groups;
4059 do {
4060 if (!cpumask_intersects(sched_group_cpus(sg),
4061 tsk_cpus_allowed(p)))
4062 goto next;
Mike Galbraith970e1782012-06-12 05:18:32 +02004063
Linus Torvalds37407ea2012-09-16 12:29:43 -07004064 for_each_cpu(i, sched_group_cpus(sg)) {
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004065 if (i == target || !idle_cpu(i))
Linus Torvalds37407ea2012-09-16 12:29:43 -07004066 goto next;
4067 }
4068
4069 target = cpumask_first_and(sched_group_cpus(sg),
4070 tsk_cpus_allowed(p));
4071 goto done;
4072next:
4073 sg = sg->next;
4074 } while (sg != sd->groups);
4075 }
4076done:
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004077 return target;
4078}
4079
4080/*
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004081 * sched_balance_self: balance the current task (running on cpu) in domains
4082 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
4083 * SD_BALANCE_EXEC.
4084 *
4085 * Balance, ie. select the least loaded group.
4086 *
4087 * Returns the target CPU number, or the same CPU if no balancing is needed.
4088 *
4089 * preempt must be disabled.
4090 */
Peter Zijlstra0017d732010-03-24 18:34:10 +01004091static int
Peter Zijlstraac66f542013-10-07 11:29:16 +01004092select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004093{
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02004094 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004095 int cpu = smp_processor_id();
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004096 int new_cpu = cpu;
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004097 int want_affine = 0;
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004098 int sync = wake_flags & WF_SYNC;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004099
Peter Zijlstra29baa742012-04-23 12:11:21 +02004100 if (p->nr_cpus_allowed == 1)
Mike Galbraith76854c72011-11-22 15:18:24 +01004101 return prev_cpu;
4102
Peter Zijlstra0763a662009-09-14 19:37:39 +02004103 if (sd_flag & SD_BALANCE_WAKE) {
Peter Zijlstrafa17b502011-06-16 12:23:22 +02004104 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004105 want_affine = 1;
4106 new_cpu = prev_cpu;
4107 }
Gregory Haskinse7693a32008-01-25 21:08:09 +01004108
Peter Zijlstradce840a2011-04-07 14:09:50 +02004109 rcu_read_lock();
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004110 for_each_domain(cpu, tmp) {
Peter Zijlstrae4f42882009-12-16 18:04:34 +01004111 if (!(tmp->flags & SD_LOAD_BALANCE))
4112 continue;
4113
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004114 /*
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004115 * If both cpu and prev_cpu are part of this domain,
4116 * cpu is a valid SD_WAKE_AFFINE target.
Peter Zijlstrafe3bcfe2009-11-12 15:55:29 +01004117 */
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004118 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4119 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4120 affine_sd = tmp;
Alex Shif03542a2012-07-26 08:55:34 +08004121 break;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004122 }
4123
Alex Shif03542a2012-07-26 08:55:34 +08004124 if (tmp->flags & sd_flag)
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02004125 sd = tmp;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004126 }
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004127
Mike Galbraith8b911ac2010-03-11 17:17:16 +01004128 if (affine_sd) {
Alex Shif03542a2012-07-26 08:55:34 +08004129 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
Peter Zijlstradce840a2011-04-07 14:09:50 +02004130 prev_cpu = cpu;
4131
4132 new_cpu = select_idle_sibling(p, prev_cpu);
4133 goto unlock;
Mike Galbraith8b911ac2010-03-11 17:17:16 +01004134 }
Peter Zijlstra3b640892009-09-16 13:44:33 +02004135
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004136 while (sd) {
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004137 int load_idx = sd->forkexec_idx;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004138 struct sched_group *group;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004139 int weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004140
Peter Zijlstra0763a662009-09-14 19:37:39 +02004141 if (!(sd->flags & sd_flag)) {
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004142 sd = sd->child;
4143 continue;
4144 }
4145
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004146 if (sd_flag & SD_BALANCE_WAKE)
4147 load_idx = sd->wake_idx;
4148
4149 group = find_idlest_group(sd, p, cpu, load_idx);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004150 if (!group) {
4151 sd = sd->child;
4152 continue;
4153 }
4154
Peter Zijlstrad7c33c42009-09-11 12:45:38 +02004155 new_cpu = find_idlest_cpu(group, p, cpu);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004156 if (new_cpu == -1 || new_cpu == cpu) {
4157 /* Now try balancing at a lower domain level of cpu */
4158 sd = sd->child;
4159 continue;
4160 }
4161
4162 /* Now try balancing at a lower domain level of new_cpu */
4163 cpu = new_cpu;
Peter Zijlstra669c55e2010-04-16 14:59:29 +02004164 weight = sd->span_weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004165 sd = NULL;
4166 for_each_domain(cpu, tmp) {
Peter Zijlstra669c55e2010-04-16 14:59:29 +02004167 if (weight <= tmp->span_weight)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004168 break;
Peter Zijlstra0763a662009-09-14 19:37:39 +02004169 if (tmp->flags & sd_flag)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004170 sd = tmp;
4171 }
4172 /* while loop will break here if sd == NULL */
Gregory Haskinse7693a32008-01-25 21:08:09 +01004173 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02004174unlock:
4175 rcu_read_unlock();
Gregory Haskinse7693a32008-01-25 21:08:09 +01004176
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004177 return new_cpu;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004178}
Paul Turner0a74bef2012-10-04 13:18:30 +02004179
4180/*
4181 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4182 * cfs_rq_of(p) references at time of call are still valid and identify the
4183 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4184 * other assumptions, including the state of rq->lock, should be made.
4185 */
4186static void
4187migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4188{
Paul Turneraff3e492012-10-04 13:18:30 +02004189 struct sched_entity *se = &p->se;
4190 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4191
4192 /*
4193 * Load tracking: accumulate removed load so that it can be processed
4194 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4195 * to blocked load iff they have a positive decay-count. It can never
4196 * be negative here since on-rq tasks have decay-count == 0.
4197 */
4198 if (se->avg.decay_count) {
4199 se->avg.decay_count = -__synchronize_entity_decay(se);
Alex Shi25099402013-06-20 10:18:55 +08004200 atomic_long_add(se->avg.load_avg_contrib,
4201 &cfs_rq->removed_load);
Paul Turneraff3e492012-10-04 13:18:30 +02004202 }
Paul Turner0a74bef2012-10-04 13:18:30 +02004203}
Gregory Haskinse7693a32008-01-25 21:08:09 +01004204#endif /* CONFIG_SMP */
4205
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004206static unsigned long
4207wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004208{
4209 unsigned long gran = sysctl_sched_wakeup_granularity;
4210
4211 /*
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004212 * Since its curr running now, convert the gran from real-time
4213 * to virtual-time in his units.
Mike Galbraith13814d42010-03-11 17:17:04 +01004214 *
4215 * By using 'se' instead of 'curr' we penalize light tasks, so
4216 * they get preempted easier. That is, if 'se' < 'curr' then
4217 * the resulting gran will be larger, therefore penalizing the
4218 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4219 * be smaller, again penalizing the lighter task.
4220 *
4221 * This is especially important for buddies when the leftmost
4222 * task is higher priority than the buddy.
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004223 */
Shaohua Lif4ad9bd2011-04-08 12:53:09 +08004224 return calc_delta_fair(gran, se);
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004225}
4226
4227/*
Peter Zijlstra464b7522008-10-24 11:06:15 +02004228 * Should 'se' preempt 'curr'.
4229 *
4230 * |s1
4231 * |s2
4232 * |s3
4233 * g
4234 * |<--->|c
4235 *
4236 * w(c, s1) = -1
4237 * w(c, s2) = 0
4238 * w(c, s3) = 1
4239 *
4240 */
4241static int
4242wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4243{
4244 s64 gran, vdiff = curr->vruntime - se->vruntime;
4245
4246 if (vdiff <= 0)
4247 return -1;
4248
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004249 gran = wakeup_gran(curr, se);
Peter Zijlstra464b7522008-10-24 11:06:15 +02004250 if (vdiff > gran)
4251 return 1;
4252
4253 return 0;
4254}
4255
Peter Zijlstra02479092008-11-04 21:25:10 +01004256static void set_last_buddy(struct sched_entity *se)
4257{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004258 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4259 return;
4260
4261 for_each_sched_entity(se)
4262 cfs_rq_of(se)->last = se;
Peter Zijlstra02479092008-11-04 21:25:10 +01004263}
4264
4265static void set_next_buddy(struct sched_entity *se)
4266{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004267 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4268 return;
4269
4270 for_each_sched_entity(se)
4271 cfs_rq_of(se)->next = se;
Peter Zijlstra02479092008-11-04 21:25:10 +01004272}
4273
Rik van Rielac53db52011-02-01 09:51:03 -05004274static void set_skip_buddy(struct sched_entity *se)
4275{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004276 for_each_sched_entity(se)
4277 cfs_rq_of(se)->skip = se;
Rik van Rielac53db52011-02-01 09:51:03 -05004278}
4279
Peter Zijlstra464b7522008-10-24 11:06:15 +02004280/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004281 * Preempt the current task with a newly woken task if needed:
4282 */
Peter Zijlstra5a9b86f2009-09-16 13:47:58 +02004283static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004284{
4285 struct task_struct *curr = rq->curr;
Srivatsa Vaddagiri8651a862007-10-15 17:00:12 +02004286 struct sched_entity *se = &curr->se, *pse = &p->se;
Mike Galbraith03e89e42008-12-16 08:45:30 +01004287 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +02004288 int scale = cfs_rq->nr_running >= sched_nr_latency;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004289 int next_buddy_marked = 0;
Mike Galbraith03e89e42008-12-16 08:45:30 +01004290
Ingo Molnar4ae7d5c2008-03-19 01:42:00 +01004291 if (unlikely(se == pse))
4292 return;
4293
Paul Turner5238cdd2011-07-21 09:43:37 -07004294 /*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004295 * This is possible from callers such as move_task(), in which we
Paul Turner5238cdd2011-07-21 09:43:37 -07004296 * unconditionally check_prempt_curr() after an enqueue (which may have
4297 * lead to a throttle). This both saves work and prevents false
4298 * next-buddy nomination below.
4299 */
4300 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4301 return;
4302
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004303 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
Mike Galbraith3cb63d52009-09-11 12:01:17 +02004304 set_next_buddy(pse);
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004305 next_buddy_marked = 1;
4306 }
Peter Zijlstra57fdc262008-09-23 15:33:45 +02004307
Bharata B Raoaec0a512008-08-28 14:42:49 +05304308 /*
4309 * We can come here with TIF_NEED_RESCHED already set from new task
4310 * wake up path.
Paul Turner5238cdd2011-07-21 09:43:37 -07004311 *
4312 * Note: this also catches the edge-case of curr being in a throttled
4313 * group (e.g. via set_curr_task), since update_curr() (in the
4314 * enqueue of curr) will have resulted in resched being set. This
4315 * prevents us from potentially nominating it as a false LAST_BUDDY
4316 * below.
Bharata B Raoaec0a512008-08-28 14:42:49 +05304317 */
4318 if (test_tsk_need_resched(curr))
4319 return;
4320
Darren Harta2f5c9a2011-02-22 13:04:33 -08004321 /* Idle tasks are by definition preempted by non-idle tasks. */
4322 if (unlikely(curr->policy == SCHED_IDLE) &&
4323 likely(p->policy != SCHED_IDLE))
4324 goto preempt;
4325
Ingo Molnar91c234b2007-10-15 17:00:18 +02004326 /*
Darren Harta2f5c9a2011-02-22 13:04:33 -08004327 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4328 * is driven by the tick):
Ingo Molnar91c234b2007-10-15 17:00:18 +02004329 */
Ingo Molnar8ed92e52012-10-14 14:28:50 +02004330 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
Ingo Molnar91c234b2007-10-15 17:00:18 +02004331 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004332
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004333 find_matching_se(&se, &pse);
Paul Turner9bbd7372011-07-05 19:07:21 -07004334 update_curr(cfs_rq_of(se));
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004335 BUG_ON(!pse);
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004336 if (wakeup_preempt_entity(se, pse) == 1) {
4337 /*
4338 * Bias pick_next to pick the sched entity that is
4339 * triggering this preemption.
4340 */
4341 if (!next_buddy_marked)
4342 set_next_buddy(pse);
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004343 goto preempt;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004344 }
Jupyung Leea65ac742009-11-17 18:51:40 +09004345
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004346 return;
4347
4348preempt:
4349 resched_task(curr);
4350 /*
4351 * Only set the backward buddy when the current task is still
4352 * on the rq. This can happen when a wakeup gets interleaved
4353 * with schedule on the ->pre_schedule() or idle_balance()
4354 * point, either of which can * drop the rq lock.
4355 *
4356 * Also, during early boot the idle thread is in the fair class,
4357 * for obvious reasons its a bad idea to schedule back to it.
4358 */
4359 if (unlikely(!se->on_rq || curr == rq->idle))
4360 return;
4361
4362 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4363 set_last_buddy(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004364}
4365
Ingo Molnarfb8d4722007-08-09 11:16:48 +02004366static struct task_struct *pick_next_task_fair(struct rq *rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004367{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004368 struct task_struct *p;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004369 struct cfs_rq *cfs_rq = &rq->cfs;
4370 struct sched_entity *se;
4371
Tim Blechmann36ace272009-11-24 11:55:45 +01004372 if (!cfs_rq->nr_running)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004373 return NULL;
4374
4375 do {
Ingo Molnar9948f4b2007-08-09 11:16:48 +02004376 se = pick_next_entity(cfs_rq);
Peter Zijlstraf4b67552008-11-04 21:25:07 +01004377 set_next_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004378 cfs_rq = group_cfs_rq(se);
4379 } while (cfs_rq);
4380
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004381 p = task_of(se);
Mike Galbraithb39e66e2011-11-22 15:20:07 +01004382 if (hrtick_enabled(rq))
4383 hrtick_start_fair(rq, p);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004384
4385 return p;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004386}
4387
4388/*
4389 * Account for a descheduled task:
4390 */
Ingo Molnar31ee5292007-08-09 11:16:49 +02004391static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004392{
4393 struct sched_entity *se = &prev->se;
4394 struct cfs_rq *cfs_rq;
4395
4396 for_each_sched_entity(se) {
4397 cfs_rq = cfs_rq_of(se);
Ingo Molnarab6cde22007-08-09 11:16:48 +02004398 put_prev_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004399 }
4400}
4401
Rik van Rielac53db52011-02-01 09:51:03 -05004402/*
4403 * sched_yield() is very simple
4404 *
4405 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4406 */
4407static void yield_task_fair(struct rq *rq)
4408{
4409 struct task_struct *curr = rq->curr;
4410 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4411 struct sched_entity *se = &curr->se;
4412
4413 /*
4414 * Are we the only task in the tree?
4415 */
4416 if (unlikely(rq->nr_running == 1))
4417 return;
4418
4419 clear_buddies(cfs_rq, se);
4420
4421 if (curr->policy != SCHED_BATCH) {
4422 update_rq_clock(rq);
4423 /*
4424 * Update run-time statistics of the 'current'.
4425 */
4426 update_curr(cfs_rq);
Mike Galbraith916671c2011-11-22 15:21:26 +01004427 /*
4428 * Tell update_rq_clock() that we've just updated,
4429 * so we don't do microscopic update in schedule()
4430 * and double the fastpath cost.
4431 */
4432 rq->skip_clock_update = 1;
Rik van Rielac53db52011-02-01 09:51:03 -05004433 }
4434
4435 set_skip_buddy(se);
4436}
4437
Mike Galbraithd95f4122011-02-01 09:50:51 -05004438static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4439{
4440 struct sched_entity *se = &p->se;
4441
Paul Turner5238cdd2011-07-21 09:43:37 -07004442 /* throttled hierarchies are not runnable */
4443 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
Mike Galbraithd95f4122011-02-01 09:50:51 -05004444 return false;
4445
4446 /* Tell the scheduler that we'd really like pse to run next. */
4447 set_next_buddy(se);
4448
Mike Galbraithd95f4122011-02-01 09:50:51 -05004449 yield_task_fair(rq);
4450
4451 return true;
4452}
4453
Peter Williams681f3e62007-10-24 18:23:51 +02004454#ifdef CONFIG_SMP
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004455/**************************************************
Peter Zijlstrae9c84cb2012-07-03 13:53:26 +02004456 * Fair scheduling class load-balancing methods.
4457 *
4458 * BASICS
4459 *
4460 * The purpose of load-balancing is to achieve the same basic fairness the
4461 * per-cpu scheduler provides, namely provide a proportional amount of compute
4462 * time to each task. This is expressed in the following equation:
4463 *
4464 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4465 *
4466 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4467 * W_i,0 is defined as:
4468 *
4469 * W_i,0 = \Sum_j w_i,j (2)
4470 *
4471 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4472 * is derived from the nice value as per prio_to_weight[].
4473 *
4474 * The weight average is an exponential decay average of the instantaneous
4475 * weight:
4476 *
4477 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4478 *
4479 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4480 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4481 * can also include other factors [XXX].
4482 *
4483 * To achieve this balance we define a measure of imbalance which follows
4484 * directly from (1):
4485 *
4486 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4487 *
4488 * We them move tasks around to minimize the imbalance. In the continuous
4489 * function space it is obvious this converges, in the discrete case we get
4490 * a few fun cases generally called infeasible weight scenarios.
4491 *
4492 * [XXX expand on:
4493 * - infeasible weights;
4494 * - local vs global optima in the discrete case. ]
4495 *
4496 *
4497 * SCHED DOMAINS
4498 *
4499 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4500 * for all i,j solution, we create a tree of cpus that follows the hardware
4501 * topology where each level pairs two lower groups (or better). This results
4502 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4503 * tree to only the first of the previous level and we decrease the frequency
4504 * of load-balance at each level inv. proportional to the number of cpus in
4505 * the groups.
4506 *
4507 * This yields:
4508 *
4509 * log_2 n 1 n
4510 * \Sum { --- * --- * 2^i } = O(n) (5)
4511 * i = 0 2^i 2^i
4512 * `- size of each group
4513 * | | `- number of cpus doing load-balance
4514 * | `- freq
4515 * `- sum over all levels
4516 *
4517 * Coupled with a limit on how many tasks we can migrate every balance pass,
4518 * this makes (5) the runtime complexity of the balancer.
4519 *
4520 * An important property here is that each CPU is still (indirectly) connected
4521 * to every other cpu in at most O(log n) steps:
4522 *
4523 * The adjacency matrix of the resulting graph is given by:
4524 *
4525 * log_2 n
4526 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4527 * k = 0
4528 *
4529 * And you'll find that:
4530 *
4531 * A^(log_2 n)_i,j != 0 for all i,j (7)
4532 *
4533 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4534 * The task movement gives a factor of O(m), giving a convergence complexity
4535 * of:
4536 *
4537 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4538 *
4539 *
4540 * WORK CONSERVING
4541 *
4542 * In order to avoid CPUs going idle while there's still work to do, new idle
4543 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4544 * tree itself instead of relying on other CPUs to bring it work.
4545 *
4546 * This adds some complexity to both (5) and (8) but it reduces the total idle
4547 * time.
4548 *
4549 * [XXX more?]
4550 *
4551 *
4552 * CGROUPS
4553 *
4554 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4555 *
4556 * s_k,i
4557 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4558 * S_k
4559 *
4560 * Where
4561 *
4562 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4563 *
4564 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4565 *
4566 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4567 * property.
4568 *
4569 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4570 * rewrite all of this once again.]
4571 */
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004572
Hiroshi Shimamotoed387b72012-01-31 11:40:32 +09004573static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4574
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004575#define LBF_ALL_PINNED 0x01
Peter Zijlstra367456c2012-02-20 21:49:09 +01004576#define LBF_NEED_BREAK 0x02
Peter Zijlstra62633222013-08-19 12:41:09 +02004577#define LBF_DST_PINNED 0x04
4578#define LBF_SOME_PINNED 0x08
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004579
4580struct lb_env {
4581 struct sched_domain *sd;
4582
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004583 struct rq *src_rq;
Prashanth Nageshappa85c1e7d2012-06-19 17:47:34 +05304584 int src_cpu;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004585
4586 int dst_cpu;
4587 struct rq *dst_rq;
4588
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304589 struct cpumask *dst_grpmask;
4590 int new_dst_cpu;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004591 enum cpu_idle_type idle;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004592 long imbalance;
Michael Wangb9403132012-07-12 16:10:13 +08004593 /* The set of CPUs under consideration for load-balancing */
4594 struct cpumask *cpus;
4595
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004596 unsigned int flags;
Peter Zijlstra367456c2012-02-20 21:49:09 +01004597
4598 unsigned int loop;
4599 unsigned int loop_break;
4600 unsigned int loop_max;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004601};
4602
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004603/*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004604 * move_task - move a task from one runqueue to another runqueue.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004605 * Both runqueues must be locked.
4606 */
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004607static void move_task(struct task_struct *p, struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004608{
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004609 deactivate_task(env->src_rq, p, 0);
4610 set_task_cpu(p, env->dst_cpu);
4611 activate_task(env->dst_rq, p, 0);
4612 check_preempt_curr(env->dst_rq, p, 0);
Rik van Riel6fe6b2d2013-10-07 11:29:08 +01004613#ifdef CONFIG_NUMA_BALANCING
4614 if (p->numa_preferred_nid != -1) {
4615 int src_nid = cpu_to_node(env->src_cpu);
4616 int dst_nid = cpu_to_node(env->dst_cpu);
4617
4618 /*
4619 * If the load balancer has moved the task then limit
4620 * migrations from taking place in the short term in
4621 * case this is a short-lived migration.
4622 */
4623 if (src_nid != dst_nid && dst_nid != p->numa_preferred_nid)
4624 p->numa_migrate_seq = 0;
4625 }
4626#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004627}
4628
4629/*
Peter Zijlstra029632f2011-10-25 10:00:11 +02004630 * Is this task likely cache-hot:
4631 */
4632static int
4633task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4634{
4635 s64 delta;
4636
4637 if (p->sched_class != &fair_sched_class)
4638 return 0;
4639
4640 if (unlikely(p->policy == SCHED_IDLE))
4641 return 0;
4642
4643 /*
4644 * Buddy candidates are cache hot:
4645 */
4646 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4647 (&p->se == cfs_rq_of(&p->se)->next ||
4648 &p->se == cfs_rq_of(&p->se)->last))
4649 return 1;
4650
4651 if (sysctl_sched_migration_cost == -1)
4652 return 1;
4653 if (sysctl_sched_migration_cost == 0)
4654 return 0;
4655
4656 delta = now - p->se.exec_start;
4657
4658 return delta < (s64)sysctl_sched_migration_cost;
4659}
4660
Mel Gorman3a7053b2013-10-07 11:29:00 +01004661#ifdef CONFIG_NUMA_BALANCING
4662/* Returns true if the destination node has incurred more faults */
4663static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4664{
4665 int src_nid, dst_nid;
4666
4667 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4668 !(env->sd->flags & SD_NUMA)) {
4669 return false;
4670 }
4671
4672 src_nid = cpu_to_node(env->src_cpu);
4673 dst_nid = cpu_to_node(env->dst_cpu);
4674
Mel Gorman83e1d2c2013-10-07 11:29:27 +01004675 if (src_nid == dst_nid)
Mel Gorman3a7053b2013-10-07 11:29:00 +01004676 return false;
4677
Mel Gorman83e1d2c2013-10-07 11:29:27 +01004678 /* Always encourage migration to the preferred node. */
4679 if (dst_nid == p->numa_preferred_nid)
4680 return true;
4681
4682 /* After the task has settled, check if the new node is better. */
4683 if (p->numa_migrate_seq >= sysctl_numa_balancing_settle_count &&
4684 task_weight(p, dst_nid) + group_weight(p, dst_nid) >
4685 task_weight(p, src_nid) + group_weight(p, src_nid))
Mel Gorman3a7053b2013-10-07 11:29:00 +01004686 return true;
4687
4688 return false;
4689}
Mel Gorman7a0f3082013-10-07 11:29:01 +01004690
4691
4692static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4693{
4694 int src_nid, dst_nid;
4695
4696 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4697 return false;
4698
4699 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4700 return false;
4701
4702 src_nid = cpu_to_node(env->src_cpu);
4703 dst_nid = cpu_to_node(env->dst_cpu);
4704
Mel Gorman83e1d2c2013-10-07 11:29:27 +01004705 if (src_nid == dst_nid)
Mel Gorman7a0f3082013-10-07 11:29:01 +01004706 return false;
4707
Mel Gorman83e1d2c2013-10-07 11:29:27 +01004708 /* Migrating away from the preferred node is always bad. */
4709 if (src_nid == p->numa_preferred_nid)
4710 return true;
4711
4712 /* After the task has settled, check if the new node is worse. */
4713 if (p->numa_migrate_seq >= sysctl_numa_balancing_settle_count &&
4714 task_weight(p, dst_nid) + group_weight(p, dst_nid) <
4715 task_weight(p, src_nid) + group_weight(p, src_nid))
Mel Gorman7a0f3082013-10-07 11:29:01 +01004716 return true;
4717
4718 return false;
4719}
4720
Mel Gorman3a7053b2013-10-07 11:29:00 +01004721#else
4722static inline bool migrate_improves_locality(struct task_struct *p,
4723 struct lb_env *env)
4724{
4725 return false;
4726}
Mel Gorman7a0f3082013-10-07 11:29:01 +01004727
4728static inline bool migrate_degrades_locality(struct task_struct *p,
4729 struct lb_env *env)
4730{
4731 return false;
4732}
Mel Gorman3a7053b2013-10-07 11:29:00 +01004733#endif
4734
Peter Zijlstra029632f2011-10-25 10:00:11 +02004735/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004736 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4737 */
4738static
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004739int can_migrate_task(struct task_struct *p, struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004740{
4741 int tsk_cache_hot = 0;
4742 /*
4743 * We do not migrate tasks that are:
Joonsoo Kimd3198082013-04-23 17:27:40 +09004744 * 1) throttled_lb_pair, or
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004745 * 2) cannot be migrated to this CPU due to cpus_allowed, or
Joonsoo Kimd3198082013-04-23 17:27:40 +09004746 * 3) running (obviously), or
4747 * 4) are cache-hot on their current CPU.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004748 */
Joonsoo Kimd3198082013-04-23 17:27:40 +09004749 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4750 return 0;
4751
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004752 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004753 int cpu;
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304754
Lucas De Marchi41acab82010-03-10 23:37:45 -03004755 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304756
Peter Zijlstra62633222013-08-19 12:41:09 +02004757 env->flags |= LBF_SOME_PINNED;
4758
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304759 /*
4760 * Remember if this task can be migrated to any other cpu in
4761 * our sched_group. We may want to revisit it if we couldn't
4762 * meet load balance goals by pulling other tasks on src_cpu.
4763 *
4764 * Also avoid computing new_dst_cpu if we have already computed
4765 * one in current iteration.
4766 */
Peter Zijlstra62633222013-08-19 12:41:09 +02004767 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304768 return 0;
4769
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004770 /* Prevent to re-select dst_cpu via env's cpus */
4771 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4772 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
Peter Zijlstra62633222013-08-19 12:41:09 +02004773 env->flags |= LBF_DST_PINNED;
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004774 env->new_dst_cpu = cpu;
4775 break;
4776 }
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304777 }
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004778
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004779 return 0;
4780 }
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304781
4782 /* Record that we found atleast one task that could run on dst_cpu */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004783 env->flags &= ~LBF_ALL_PINNED;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004784
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004785 if (task_running(env->src_rq, p)) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03004786 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004787 return 0;
4788 }
4789
4790 /*
4791 * Aggressive migration if:
Mel Gorman3a7053b2013-10-07 11:29:00 +01004792 * 1) destination numa is preferred
4793 * 2) task is cache cold, or
4794 * 3) too many balance attempts have failed.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004795 */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02004796 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
Mel Gorman7a0f3082013-10-07 11:29:01 +01004797 if (!tsk_cache_hot)
4798 tsk_cache_hot = migrate_degrades_locality(p, env);
Mel Gorman3a7053b2013-10-07 11:29:00 +01004799
4800 if (migrate_improves_locality(p, env)) {
4801#ifdef CONFIG_SCHEDSTATS
4802 if (tsk_cache_hot) {
4803 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4804 schedstat_inc(p, se.statistics.nr_forced_migrations);
4805 }
4806#endif
4807 return 1;
4808 }
4809
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004810 if (!tsk_cache_hot ||
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004811 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
Zhang Hang4e2dcb72013-04-10 14:04:55 +08004812
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004813 if (tsk_cache_hot) {
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004814 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
Lucas De Marchi41acab82010-03-10 23:37:45 -03004815 schedstat_inc(p, se.statistics.nr_forced_migrations);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004816 }
Zhang Hang4e2dcb72013-04-10 14:04:55 +08004817
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004818 return 1;
4819 }
4820
Zhang Hang4e2dcb72013-04-10 14:04:55 +08004821 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4822 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004823}
4824
Peter Zijlstra897c3952009-12-17 17:45:42 +01004825/*
4826 * move_one_task tries to move exactly one task from busiest to this_rq, as
4827 * part of active balancing operations within "domain".
4828 * Returns 1 if successful and 0 otherwise.
4829 *
4830 * Called with both runqueues locked.
4831 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004832static int move_one_task(struct lb_env *env)
Peter Zijlstra897c3952009-12-17 17:45:42 +01004833{
4834 struct task_struct *p, *n;
Peter Zijlstra897c3952009-12-17 17:45:42 +01004835
Peter Zijlstra367456c2012-02-20 21:49:09 +01004836 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
Peter Zijlstra367456c2012-02-20 21:49:09 +01004837 if (!can_migrate_task(p, env))
4838 continue;
Peter Zijlstra897c3952009-12-17 17:45:42 +01004839
Peter Zijlstra367456c2012-02-20 21:49:09 +01004840 move_task(p, env);
4841 /*
4842 * Right now, this is only the second place move_task()
4843 * is called, so we can safely collect move_task()
4844 * stats here rather than inside move_task().
4845 */
4846 schedstat_inc(env->sd, lb_gained[env->idle]);
4847 return 1;
Peter Zijlstra897c3952009-12-17 17:45:42 +01004848 }
Peter Zijlstra897c3952009-12-17 17:45:42 +01004849 return 0;
4850}
4851
Peter Zijlstraeb953082012-04-17 13:38:40 +02004852static const unsigned int sched_nr_migrate_break = 32;
4853
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004854/*
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004855 * move_tasks tries to move up to imbalance weighted load from busiest to
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004856 * this_rq, as part of a balancing operation within domain "sd".
4857 * Returns 1 if successful and 0 otherwise.
4858 *
4859 * Called with both runqueues locked.
4860 */
4861static int move_tasks(struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004862{
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004863 struct list_head *tasks = &env->src_rq->cfs_tasks;
4864 struct task_struct *p;
Peter Zijlstra367456c2012-02-20 21:49:09 +01004865 unsigned long load;
4866 int pulled = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004867
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004868 if (env->imbalance <= 0)
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004869 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004870
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004871 while (!list_empty(tasks)) {
4872 p = list_first_entry(tasks, struct task_struct, se.group_node);
4873
Peter Zijlstra367456c2012-02-20 21:49:09 +01004874 env->loop++;
4875 /* We've more or less seen every task there is, call it quits */
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004876 if (env->loop > env->loop_max)
Peter Zijlstra367456c2012-02-20 21:49:09 +01004877 break;
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004878
4879 /* take a breather every nr_migrate tasks */
Peter Zijlstra367456c2012-02-20 21:49:09 +01004880 if (env->loop > env->loop_break) {
Peter Zijlstraeb953082012-04-17 13:38:40 +02004881 env->loop_break += sched_nr_migrate_break;
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004882 env->flags |= LBF_NEED_BREAK;
Peter Zijlstraee00e662009-12-17 17:25:20 +01004883 break;
Peter Zijlstraa195f002011-09-22 15:30:18 +02004884 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004885
Joonsoo Kimd3198082013-04-23 17:27:40 +09004886 if (!can_migrate_task(p, env))
Peter Zijlstra367456c2012-02-20 21:49:09 +01004887 goto next;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004888
Peter Zijlstra367456c2012-02-20 21:49:09 +01004889 load = task_h_load(p);
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004890
Peter Zijlstraeb953082012-04-17 13:38:40 +02004891 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
Peter Zijlstra367456c2012-02-20 21:49:09 +01004892 goto next;
4893
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004894 if ((load / 2) > env->imbalance)
Peter Zijlstra367456c2012-02-20 21:49:09 +01004895 goto next;
4896
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004897 move_task(p, env);
Peter Zijlstraee00e662009-12-17 17:25:20 +01004898 pulled++;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004899 env->imbalance -= load;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004900
4901#ifdef CONFIG_PREEMPT
Peter Zijlstraee00e662009-12-17 17:25:20 +01004902 /*
4903 * NEWIDLE balancing is a source of latency, so preemptible
4904 * kernels will stop after the first task is pulled to minimize
4905 * the critical section.
4906 */
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004907 if (env->idle == CPU_NEWLY_IDLE)
Peter Zijlstraee00e662009-12-17 17:25:20 +01004908 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004909#endif
4910
Peter Zijlstraee00e662009-12-17 17:25:20 +01004911 /*
4912 * We only want to steal up to the prescribed amount of
4913 * weighted load.
4914 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004915 if (env->imbalance <= 0)
Peter Zijlstraee00e662009-12-17 17:25:20 +01004916 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004917
Peter Zijlstra367456c2012-02-20 21:49:09 +01004918 continue;
4919next:
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004920 list_move_tail(&p->se.group_node, tasks);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004921 }
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004922
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004923 /*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004924 * Right now, this is one of only two places move_task() is called,
4925 * so we can safely collect move_task() stats here rather than
4926 * inside move_task().
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004927 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004928 schedstat_add(env->sd, lb_gained[env->idle], pulled);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004929
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004930 return pulled;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004931}
4932
Peter Zijlstra230059de2009-12-17 17:47:12 +01004933#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004934/*
4935 * update tg->load_weight by folding this cpu's load_avg
4936 */
Paul Turner48a16752012-10-04 13:18:31 +02004937static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004938{
Paul Turner48a16752012-10-04 13:18:31 +02004939 struct sched_entity *se = tg->se[cpu];
4940 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004941
Paul Turner48a16752012-10-04 13:18:31 +02004942 /* throttled entities do not contribute to load */
4943 if (throttled_hierarchy(cfs_rq))
4944 return;
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004945
Paul Turneraff3e492012-10-04 13:18:30 +02004946 update_cfs_rq_blocked_load(cfs_rq, 1);
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004947
Paul Turner82958362012-10-04 13:18:31 +02004948 if (se) {
4949 update_entity_load_avg(se, 1);
4950 /*
4951 * We pivot on our runnable average having decayed to zero for
4952 * list removal. This generally implies that all our children
4953 * have also been removed (modulo rounding error or bandwidth
4954 * control); however, such cases are rare and we can fix these
4955 * at enqueue.
4956 *
4957 * TODO: fix up out-of-order children on enqueue.
4958 */
4959 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
4960 list_del_leaf_cfs_rq(cfs_rq);
4961 } else {
Paul Turner48a16752012-10-04 13:18:31 +02004962 struct rq *rq = rq_of(cfs_rq);
Paul Turner82958362012-10-04 13:18:31 +02004963 update_rq_runnable_avg(rq, rq->nr_running);
4964 }
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004965}
4966
Paul Turner48a16752012-10-04 13:18:31 +02004967static void update_blocked_averages(int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004968{
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004969 struct rq *rq = cpu_rq(cpu);
Paul Turner48a16752012-10-04 13:18:31 +02004970 struct cfs_rq *cfs_rq;
4971 unsigned long flags;
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004972
Paul Turner48a16752012-10-04 13:18:31 +02004973 raw_spin_lock_irqsave(&rq->lock, flags);
4974 update_rq_clock(rq);
Peter Zijlstra9763b672011-07-13 13:09:25 +02004975 /*
4976 * Iterates the task_group tree in a bottom up fashion, see
4977 * list_add_leaf_cfs_rq() for details.
4978 */
Paul Turner64660c82011-07-21 09:43:36 -07004979 for_each_leaf_cfs_rq(rq, cfs_rq) {
Paul Turner48a16752012-10-04 13:18:31 +02004980 /*
4981 * Note: We may want to consider periodically releasing
4982 * rq->lock about these updates so that creating many task
4983 * groups does not result in continually extending hold time.
4984 */
4985 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
Paul Turner64660c82011-07-21 09:43:36 -07004986 }
Paul Turner48a16752012-10-04 13:18:31 +02004987
4988 raw_spin_unlock_irqrestore(&rq->lock, flags);
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004989}
4990
Peter Zijlstra9763b672011-07-13 13:09:25 +02004991/*
Vladimir Davydov68520792013-07-15 17:49:19 +04004992 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
Peter Zijlstra9763b672011-07-13 13:09:25 +02004993 * This needs to be done in a top-down fashion because the load of a child
4994 * group is a fraction of its parents load.
4995 */
Vladimir Davydov68520792013-07-15 17:49:19 +04004996static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
Peter Zijlstra9763b672011-07-13 13:09:25 +02004997{
Vladimir Davydov68520792013-07-15 17:49:19 +04004998 struct rq *rq = rq_of(cfs_rq);
4999 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005000 unsigned long now = jiffies;
Vladimir Davydov68520792013-07-15 17:49:19 +04005001 unsigned long load;
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005002
Vladimir Davydov68520792013-07-15 17:49:19 +04005003 if (cfs_rq->last_h_load_update == now)
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005004 return;
5005
Vladimir Davydov68520792013-07-15 17:49:19 +04005006 cfs_rq->h_load_next = NULL;
5007 for_each_sched_entity(se) {
5008 cfs_rq = cfs_rq_of(se);
5009 cfs_rq->h_load_next = se;
5010 if (cfs_rq->last_h_load_update == now)
5011 break;
5012 }
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005013
Vladimir Davydov68520792013-07-15 17:49:19 +04005014 if (!se) {
Vladimir Davydov7e3115e2013-09-14 19:39:46 +04005015 cfs_rq->h_load = cfs_rq->runnable_load_avg;
Vladimir Davydov68520792013-07-15 17:49:19 +04005016 cfs_rq->last_h_load_update = now;
5017 }
5018
5019 while ((se = cfs_rq->h_load_next) != NULL) {
5020 load = cfs_rq->h_load;
5021 load = div64_ul(load * se->avg.load_avg_contrib,
5022 cfs_rq->runnable_load_avg + 1);
5023 cfs_rq = group_cfs_rq(se);
5024 cfs_rq->h_load = load;
5025 cfs_rq->last_h_load_update = now;
5026 }
Peter Zijlstra9763b672011-07-13 13:09:25 +02005027}
5028
Peter Zijlstra367456c2012-02-20 21:49:09 +01005029static unsigned long task_h_load(struct task_struct *p)
Peter Zijlstra230059de2009-12-17 17:47:12 +01005030{
Peter Zijlstra367456c2012-02-20 21:49:09 +01005031 struct cfs_rq *cfs_rq = task_cfs_rq(p);
Peter Zijlstra230059de2009-12-17 17:47:12 +01005032
Vladimir Davydov68520792013-07-15 17:49:19 +04005033 update_cfs_rq_h_load(cfs_rq);
Alex Shia003a252013-06-20 10:18:51 +08005034 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5035 cfs_rq->runnable_load_avg + 1);
Peter Zijlstra230059de2009-12-17 17:47:12 +01005036}
5037#else
Paul Turner48a16752012-10-04 13:18:31 +02005038static inline void update_blocked_averages(int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005039{
5040}
5041
Peter Zijlstra367456c2012-02-20 21:49:09 +01005042static unsigned long task_h_load(struct task_struct *p)
5043{
Alex Shia003a252013-06-20 10:18:51 +08005044 return p->se.avg.load_avg_contrib;
Peter Zijlstra230059de2009-12-17 17:47:12 +01005045}
5046#endif
5047
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005048/********** Helpers for find_busiest_group ************************/
5049/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005050 * sg_lb_stats - stats of a sched_group required for load_balancing
5051 */
5052struct sg_lb_stats {
5053 unsigned long avg_load; /*Avg load across the CPUs of the group */
5054 unsigned long group_load; /* Total load over the CPUs of the group */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005055 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005056 unsigned long load_per_task;
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005057 unsigned long group_power;
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005058 unsigned int sum_nr_running; /* Nr tasks running in the group */
5059 unsigned int group_capacity;
5060 unsigned int idle_cpus;
5061 unsigned int group_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005062 int group_imb; /* Is there an imbalance in the group ? */
Nikhil Raofab47622010-10-15 13:12:29 -07005063 int group_has_capacity; /* Is there extra capacity in the group? */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005064};
5065
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005066/*
5067 * sd_lb_stats - Structure to store the statistics of a sched_domain
5068 * during load balancing.
5069 */
5070struct sd_lb_stats {
5071 struct sched_group *busiest; /* Busiest group in this sd */
5072 struct sched_group *local; /* Local group in this sd */
5073 unsigned long total_load; /* Total load of all groups in sd */
5074 unsigned long total_pwr; /* Total power of all groups in sd */
5075 unsigned long avg_load; /* Average load across all groups in sd */
5076
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005077 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005078 struct sg_lb_stats local_stat; /* Statistics of the local group */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005079};
5080
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005081static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5082{
5083 /*
5084 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5085 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5086 * We must however clear busiest_stat::avg_load because
5087 * update_sd_pick_busiest() reads this before assignment.
5088 */
5089 *sds = (struct sd_lb_stats){
5090 .busiest = NULL,
5091 .local = NULL,
5092 .total_load = 0UL,
5093 .total_pwr = 0UL,
5094 .busiest_stat = {
5095 .avg_load = 0UL,
5096 },
5097 };
5098}
5099
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005100/**
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005101 * get_sd_load_idx - Obtain the load index for a given sched domain.
5102 * @sd: The sched_domain whose load_idx is to be obtained.
5103 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
Yacine Belkadie69f6182013-07-12 20:45:47 +02005104 *
5105 * Return: The load index.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005106 */
5107static inline int get_sd_load_idx(struct sched_domain *sd,
5108 enum cpu_idle_type idle)
5109{
5110 int load_idx;
5111
5112 switch (idle) {
5113 case CPU_NOT_IDLE:
5114 load_idx = sd->busy_idx;
5115 break;
5116
5117 case CPU_NEWLY_IDLE:
5118 load_idx = sd->newidle_idx;
5119 break;
5120 default:
5121 load_idx = sd->idle_idx;
5122 break;
5123 }
5124
5125 return load_idx;
5126}
5127
Li Zefan15f803c2013-03-05 16:07:11 +08005128static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005129{
Nikhil Rao1399fa72011-05-18 10:09:39 -07005130 return SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005131}
5132
5133unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5134{
5135 return default_scale_freq_power(sd, cpu);
5136}
5137
Li Zefan15f803c2013-03-05 16:07:11 +08005138static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005139{
Peter Zijlstra669c55e2010-04-16 14:59:29 +02005140 unsigned long weight = sd->span_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005141 unsigned long smt_gain = sd->smt_gain;
5142
5143 smt_gain /= weight;
5144
5145 return smt_gain;
5146}
5147
5148unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5149{
5150 return default_scale_smt_power(sd, cpu);
5151}
5152
Li Zefan15f803c2013-03-05 16:07:11 +08005153static unsigned long scale_rt_power(int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005154{
5155 struct rq *rq = cpu_rq(cpu);
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005156 u64 total, available, age_stamp, avg;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005157
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005158 /*
5159 * Since we're reading these variables without serialization make sure
5160 * we read them once before doing sanity checks on them.
5161 */
5162 age_stamp = ACCESS_ONCE(rq->age_stamp);
5163 avg = ACCESS_ONCE(rq->rt_avg);
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005164
Frederic Weisbecker78becc22013-04-12 01:51:02 +02005165 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005166
5167 if (unlikely(total < avg)) {
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005168 /* Ensures that power won't end up being negative */
5169 available = 0;
5170 } else {
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005171 available = total - avg;
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005172 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005173
Nikhil Rao1399fa72011-05-18 10:09:39 -07005174 if (unlikely((s64)total < SCHED_POWER_SCALE))
5175 total = SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005176
Nikhil Rao1399fa72011-05-18 10:09:39 -07005177 total >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005178
5179 return div_u64(available, total);
5180}
5181
5182static void update_cpu_power(struct sched_domain *sd, int cpu)
5183{
Peter Zijlstra669c55e2010-04-16 14:59:29 +02005184 unsigned long weight = sd->span_weight;
Nikhil Rao1399fa72011-05-18 10:09:39 -07005185 unsigned long power = SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005186 struct sched_group *sdg = sd->groups;
5187
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005188 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5189 if (sched_feat(ARCH_POWER))
5190 power *= arch_scale_smt_power(sd, cpu);
5191 else
5192 power *= default_scale_smt_power(sd, cpu);
5193
Nikhil Rao1399fa72011-05-18 10:09:39 -07005194 power >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005195 }
5196
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005197 sdg->sgp->power_orig = power;
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005198
5199 if (sched_feat(ARCH_POWER))
5200 power *= arch_scale_freq_power(sd, cpu);
5201 else
5202 power *= default_scale_freq_power(sd, cpu);
5203
Nikhil Rao1399fa72011-05-18 10:09:39 -07005204 power >>= SCHED_POWER_SHIFT;
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005205
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005206 power *= scale_rt_power(cpu);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005207 power >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005208
5209 if (!power)
5210 power = 1;
5211
Peter Zijlstrae51fd5e2010-05-31 12:37:30 +02005212 cpu_rq(cpu)->cpu_power = power;
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005213 sdg->sgp->power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005214}
5215
Peter Zijlstra029632f2011-10-25 10:00:11 +02005216void update_group_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005217{
5218 struct sched_domain *child = sd->child;
5219 struct sched_group *group, *sdg = sd->groups;
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005220 unsigned long power, power_orig;
Vincent Guittot4ec44122011-12-12 20:21:08 +01005221 unsigned long interval;
5222
5223 interval = msecs_to_jiffies(sd->balance_interval);
5224 interval = clamp(interval, 1UL, max_load_balance_interval);
5225 sdg->sgp->next_update = jiffies + interval;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005226
5227 if (!child) {
5228 update_cpu_power(sd, cpu);
5229 return;
5230 }
5231
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005232 power_orig = power = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005233
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005234 if (child->flags & SD_OVERLAP) {
5235 /*
5236 * SD_OVERLAP domains cannot assume that child groups
5237 * span the current group.
5238 */
5239
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005240 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5241 struct sched_group *sg = cpu_rq(cpu)->sd->groups;
5242
5243 power_orig += sg->sgp->power_orig;
5244 power += sg->sgp->power;
5245 }
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005246 } else {
5247 /*
5248 * !SD_OVERLAP domains can assume that child groups
5249 * span the current group.
5250 */
5251
5252 group = child->groups;
5253 do {
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005254 power_orig += group->sgp->power_orig;
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005255 power += group->sgp->power;
5256 group = group->next;
5257 } while (group != child->groups);
5258 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005259
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005260 sdg->sgp->power_orig = power_orig;
5261 sdg->sgp->power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005262}
5263
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005264/*
5265 * Try and fix up capacity for tiny siblings, this is needed when
5266 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5267 * which on its own isn't powerful enough.
5268 *
5269 * See update_sd_pick_busiest() and check_asym_packing().
5270 */
5271static inline int
5272fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5273{
5274 /*
Nikhil Rao1399fa72011-05-18 10:09:39 -07005275 * Only siblings can have significantly less than SCHED_POWER_SCALE
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005276 */
Peter Zijlstraa6c75f22011-04-07 14:09:52 +02005277 if (!(sd->flags & SD_SHARE_CPUPOWER))
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005278 return 0;
5279
5280 /*
5281 * If ~90% of the cpu_power is still there, we're good.
5282 */
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005283 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005284 return 1;
5285
5286 return 0;
5287}
5288
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005289/*
5290 * Group imbalance indicates (and tries to solve) the problem where balancing
5291 * groups is inadequate due to tsk_cpus_allowed() constraints.
5292 *
5293 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5294 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5295 * Something like:
5296 *
5297 * { 0 1 2 3 } { 4 5 6 7 }
5298 * * * * *
5299 *
5300 * If we were to balance group-wise we'd place two tasks in the first group and
5301 * two tasks in the second group. Clearly this is undesired as it will overload
5302 * cpu 3 and leave one of the cpus in the second group unused.
5303 *
5304 * The current solution to this issue is detecting the skew in the first group
Peter Zijlstra62633222013-08-19 12:41:09 +02005305 * by noticing the lower domain failed to reach balance and had difficulty
5306 * moving tasks due to affinity constraints.
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005307 *
5308 * When this is so detected; this group becomes a candidate for busiest; see
5309 * update_sd_pick_busiest(). And calculcate_imbalance() and
Peter Zijlstra62633222013-08-19 12:41:09 +02005310 * find_busiest_group() avoid some of the usual balance conditions to allow it
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005311 * to create an effective group imbalance.
5312 *
5313 * This is a somewhat tricky proposition since the next run might not find the
5314 * group imbalance and decide the groups need to be balanced again. A most
5315 * subtle and fragile situation.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005316 */
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005317
Peter Zijlstra62633222013-08-19 12:41:09 +02005318static inline int sg_imbalanced(struct sched_group *group)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005319{
Peter Zijlstra62633222013-08-19 12:41:09 +02005320 return group->sgp->imbalance;
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005321}
5322
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005323/*
5324 * Compute the group capacity.
5325 *
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005326 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5327 * first dividing out the smt factor and computing the actual number of cores
5328 * and limit power unit capacity with that.
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005329 */
5330static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5331{
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005332 unsigned int capacity, smt, cpus;
5333 unsigned int power, power_orig;
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005334
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005335 power = group->sgp->power;
5336 power_orig = group->sgp->power_orig;
5337 cpus = group->group_weight;
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005338
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005339 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5340 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5341 capacity = cpus / smt; /* cores */
5342
5343 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005344 if (!capacity)
5345 capacity = fix_small_capacity(env->sd, group);
5346
5347 return capacity;
5348}
5349
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005350/**
5351 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5352 * @env: The load balancing environment.
5353 * @group: sched_group whose statistics are to be updated.
5354 * @load_idx: Load index of sched_domain of this_cpu for load calc.
5355 * @local_group: Does group contain this_cpu.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005356 * @sgs: variable to hold the statistics for this group.
5357 */
5358static inline void update_sg_lb_stats(struct lb_env *env,
5359 struct sched_group *group, int load_idx,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005360 int local_group, struct sg_lb_stats *sgs)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005361{
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005362 unsigned long nr_running;
5363 unsigned long load;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005364 int i;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005365
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005366 memset(sgs, 0, sizeof(*sgs));
5367
Michael Wangb9403132012-07-12 16:10:13 +08005368 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005369 struct rq *rq = cpu_rq(i);
5370
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02005371 nr_running = rq->nr_running;
5372
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005373 /* Bias balancing toward cpus of our domain */
Peter Zijlstra62633222013-08-19 12:41:09 +02005374 if (local_group)
Peter Zijlstra04f733b2012-05-11 00:12:02 +02005375 load = target_load(i, load_idx);
Peter Zijlstra62633222013-08-19 12:41:09 +02005376 else
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005377 load = source_load(i, load_idx);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005378
5379 sgs->group_load += load;
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02005380 sgs->sum_nr_running += nr_running;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005381 sgs->sum_weighted_load += weighted_cpuload(i);
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005382 if (idle_cpu(i))
5383 sgs->idle_cpus++;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005384 }
5385
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005386 /* Adjust by relative CPU power of the group */
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005387 sgs->group_power = group->sgp->power;
5388 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005389
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005390 if (sgs->sum_nr_running)
Peter Zijlstra38d0f772013-08-15 19:47:56 +02005391 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005392
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005393 sgs->group_weight = group->group_weight;
Nikhil Raofab47622010-10-15 13:12:29 -07005394
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005395 sgs->group_imb = sg_imbalanced(group);
5396 sgs->group_capacity = sg_capacity(env, group);
5397
Nikhil Raofab47622010-10-15 13:12:29 -07005398 if (sgs->group_capacity > sgs->sum_nr_running)
5399 sgs->group_has_capacity = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005400}
5401
5402/**
Michael Neuling532cb4c2010-06-08 14:57:02 +10005403 * update_sd_pick_busiest - return 1 on busiest group
Randy Dunlapcd968912012-06-08 13:18:33 -07005404 * @env: The load balancing environment.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005405 * @sds: sched_domain statistics
5406 * @sg: sched_group candidate to be checked for being the busiest
Michael Neulingb6b12292010-06-10 12:06:21 +10005407 * @sgs: sched_group statistics
Michael Neuling532cb4c2010-06-08 14:57:02 +10005408 *
5409 * Determine if @sg is a busier group than the previously selected
5410 * busiest group.
Yacine Belkadie69f6182013-07-12 20:45:47 +02005411 *
5412 * Return: %true if @sg is a busier group than the previously selected
5413 * busiest group. %false otherwise.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005414 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005415static bool update_sd_pick_busiest(struct lb_env *env,
Michael Neuling532cb4c2010-06-08 14:57:02 +10005416 struct sd_lb_stats *sds,
5417 struct sched_group *sg,
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005418 struct sg_lb_stats *sgs)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005419{
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005420 if (sgs->avg_load <= sds->busiest_stat.avg_load)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005421 return false;
5422
5423 if (sgs->sum_nr_running > sgs->group_capacity)
5424 return true;
5425
5426 if (sgs->group_imb)
5427 return true;
5428
5429 /*
5430 * ASYM_PACKING needs to move all the work to the lowest
5431 * numbered CPUs in the group, therefore mark all groups
5432 * higher than ourself as busy.
5433 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005434 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5435 env->dst_cpu < group_first_cpu(sg)) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10005436 if (!sds->busiest)
5437 return true;
5438
5439 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5440 return true;
5441 }
5442
5443 return false;
5444}
5445
5446/**
Hui Kang461819a2011-10-11 23:00:59 -04005447 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
Randy Dunlapcd968912012-06-08 13:18:33 -07005448 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005449 * @balance: Should we balance.
5450 * @sds: variable to hold the statistics for this sched_domain.
5451 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005452static inline void update_sd_lb_stats(struct lb_env *env,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005453 struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005454{
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005455 struct sched_domain *child = env->sd->child;
5456 struct sched_group *sg = env->sd->groups;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005457 struct sg_lb_stats tmp_sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005458 int load_idx, prefer_sibling = 0;
5459
5460 if (child && child->flags & SD_PREFER_SIBLING)
5461 prefer_sibling = 1;
5462
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005463 load_idx = get_sd_load_idx(env->sd, env->idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005464
5465 do {
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005466 struct sg_lb_stats *sgs = &tmp_sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005467 int local_group;
5468
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005469 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005470 if (local_group) {
5471 sds->local = sg;
5472 sgs = &sds->local_stat;
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005473
5474 if (env->idle != CPU_NEWLY_IDLE ||
5475 time_after_eq(jiffies, sg->sgp->next_update))
5476 update_group_power(env->sd, env->dst_cpu);
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005477 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005478
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005479 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005480
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005481 if (local_group)
5482 goto next_group;
5483
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005484 /*
5485 * In case the child domain prefers tasks go to siblings
Michael Neuling532cb4c2010-06-08 14:57:02 +10005486 * first, lower the sg capacity to one so that we'll try
Nikhil Rao75dd3212010-10-15 13:12:30 -07005487 * and move all the excess tasks away. We lower the capacity
5488 * of a group only if the local group has the capacity to fit
5489 * these excess tasks, i.e. nr_running < group_capacity. The
5490 * extra check prevents the case where you always pull from the
5491 * heaviest group when it is already under-utilized (possible
5492 * with a large weight task outweighs the tasks on the system).
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005493 */
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005494 if (prefer_sibling && sds->local &&
5495 sds->local_stat.group_has_capacity)
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005496 sgs->group_capacity = min(sgs->group_capacity, 1U);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005497
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005498 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10005499 sds->busiest = sg;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005500 sds->busiest_stat = *sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005501 }
5502
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005503next_group:
5504 /* Now, start updating sd_lb_stats */
5505 sds->total_load += sgs->group_load;
5506 sds->total_pwr += sgs->group_power;
5507
Michael Neuling532cb4c2010-06-08 14:57:02 +10005508 sg = sg->next;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005509 } while (sg != env->sd->groups);
Michael Neuling532cb4c2010-06-08 14:57:02 +10005510}
5511
Michael Neuling532cb4c2010-06-08 14:57:02 +10005512/**
5513 * check_asym_packing - Check to see if the group is packed into the
5514 * sched doman.
5515 *
5516 * This is primarily intended to used at the sibling level. Some
5517 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5518 * case of POWER7, it can move to lower SMT modes only when higher
5519 * threads are idle. When in lower SMT modes, the threads will
5520 * perform better since they share less core resources. Hence when we
5521 * have idle threads, we want them to be the higher ones.
5522 *
5523 * This packing function is run on idle threads. It checks to see if
5524 * the busiest CPU in this domain (core in the P7 case) has a higher
5525 * CPU number than the packing function is being run on. Here we are
5526 * assuming lower CPU number will be equivalent to lower a SMT thread
5527 * number.
5528 *
Yacine Belkadie69f6182013-07-12 20:45:47 +02005529 * Return: 1 when packing is required and a task should be moved to
Michael Neulingb6b12292010-06-10 12:06:21 +10005530 * this CPU. The amount of the imbalance is returned in *imbalance.
5531 *
Randy Dunlapcd968912012-06-08 13:18:33 -07005532 * @env: The load balancing environment.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005533 * @sds: Statistics of the sched_domain which is to be packed
Michael Neuling532cb4c2010-06-08 14:57:02 +10005534 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005535static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005536{
5537 int busiest_cpu;
5538
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005539 if (!(env->sd->flags & SD_ASYM_PACKING))
Michael Neuling532cb4c2010-06-08 14:57:02 +10005540 return 0;
5541
5542 if (!sds->busiest)
5543 return 0;
5544
5545 busiest_cpu = group_first_cpu(sds->busiest);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005546 if (env->dst_cpu > busiest_cpu)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005547 return 0;
5548
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005549 env->imbalance = DIV_ROUND_CLOSEST(
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005550 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5551 SCHED_POWER_SCALE);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005552
Michael Neuling532cb4c2010-06-08 14:57:02 +10005553 return 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005554}
5555
5556/**
5557 * fix_small_imbalance - Calculate the minor imbalance that exists
5558 * amongst the groups of a sched_domain, during
5559 * load balancing.
Randy Dunlapcd968912012-06-08 13:18:33 -07005560 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005561 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005562 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005563static inline
5564void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005565{
5566 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5567 unsigned int imbn = 2;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005568 unsigned long scaled_busy_load_per_task;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005569 struct sg_lb_stats *local, *busiest;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005570
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005571 local = &sds->local_stat;
5572 busiest = &sds->busiest_stat;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005573
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005574 if (!local->sum_nr_running)
5575 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5576 else if (busiest->load_per_task > local->load_per_task)
5577 imbn = 1;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005578
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005579 scaled_busy_load_per_task =
5580 (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005581 busiest->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005582
Vladimir Davydov3029ede2013-09-15 17:49:14 +04005583 if (busiest->avg_load + scaled_busy_load_per_task >=
5584 local->avg_load + (scaled_busy_load_per_task * imbn)) {
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005585 env->imbalance = busiest->load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005586 return;
5587 }
5588
5589 /*
5590 * OK, we don't have enough imbalance to justify moving tasks,
5591 * however we may be able to increase total CPU power used by
5592 * moving them.
5593 */
5594
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005595 pwr_now += busiest->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005596 min(busiest->load_per_task, busiest->avg_load);
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005597 pwr_now += local->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005598 min(local->load_per_task, local->avg_load);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005599 pwr_now /= SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005600
5601 /* Amount of load we'd subtract */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005602 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005603 busiest->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005604 if (busiest->avg_load > tmp) {
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005605 pwr_move += busiest->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005606 min(busiest->load_per_task,
5607 busiest->avg_load - tmp);
5608 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005609
5610 /* Amount of load we'd add */
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005611 if (busiest->avg_load * busiest->group_power <
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005612 busiest->load_per_task * SCHED_POWER_SCALE) {
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005613 tmp = (busiest->avg_load * busiest->group_power) /
5614 local->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005615 } else {
5616 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005617 local->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005618 }
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005619 pwr_move += local->group_power *
5620 min(local->load_per_task, local->avg_load + tmp);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005621 pwr_move /= SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005622
5623 /* Move if we gain throughput */
5624 if (pwr_move > pwr_now)
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005625 env->imbalance = busiest->load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005626}
5627
5628/**
5629 * calculate_imbalance - Calculate the amount of imbalance present within the
5630 * groups of a given sched_domain during load balance.
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005631 * @env: load balance environment
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005632 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005633 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005634static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005635{
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005636 unsigned long max_pull, load_above_capacity = ~0UL;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005637 struct sg_lb_stats *local, *busiest;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005638
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005639 local = &sds->local_stat;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005640 busiest = &sds->busiest_stat;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005641
5642 if (busiest->group_imb) {
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005643 /*
5644 * In the group_imb case we cannot rely on group-wide averages
5645 * to ensure cpu-load equilibrium, look at wider averages. XXX
5646 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005647 busiest->load_per_task =
5648 min(busiest->load_per_task, sds->avg_load);
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005649 }
5650
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005651 /*
5652 * In the presence of smp nice balancing, certain scenarios can have
5653 * max load less than avg load(as we skip the groups at or below
5654 * its cpu_power, while calculating max_load..)
5655 */
Vladimir Davydovb1885552013-09-15 17:49:13 +04005656 if (busiest->avg_load <= sds->avg_load ||
5657 local->avg_load >= sds->avg_load) {
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005658 env->imbalance = 0;
5659 return fix_small_imbalance(env, sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005660 }
5661
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005662 if (!busiest->group_imb) {
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005663 /*
5664 * Don't want to pull so many tasks that a group would go idle.
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005665 * Except of course for the group_imb case, since then we might
5666 * have to drop below capacity to reach cpu-load equilibrium.
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005667 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005668 load_above_capacity =
5669 (busiest->sum_nr_running - busiest->group_capacity);
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005670
Nikhil Rao1399fa72011-05-18 10:09:39 -07005671 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005672 load_above_capacity /= busiest->group_power;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005673 }
5674
5675 /*
5676 * We're trying to get all the cpus to the average_load, so we don't
5677 * want to push ourselves above the average load, nor do we wish to
5678 * reduce the max loaded cpu below the average load. At the same time,
5679 * we also don't want to reduce the group load below the group capacity
5680 * (so that we can implement power-savings policies etc). Thus we look
5681 * for the minimum possible imbalance.
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005682 */
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005683 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005684
5685 /* How much load to actually move to equalise the imbalance */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005686 env->imbalance = min(
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005687 max_pull * busiest->group_power,
5688 (sds->avg_load - local->avg_load) * local->group_power
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005689 ) / SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005690
5691 /*
5692 * if *imbalance is less than the average load per runnable task
Lucas De Marchi25985ed2011-03-30 22:57:33 -03005693 * there is no guarantee that any tasks will be moved so we'll have
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005694 * a think about bumping its value to force at least one task to be
5695 * moved
5696 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005697 if (env->imbalance < busiest->load_per_task)
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005698 return fix_small_imbalance(env, sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005699}
Nikhil Raofab47622010-10-15 13:12:29 -07005700
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005701/******* find_busiest_group() helpers end here *********************/
5702
5703/**
5704 * find_busiest_group - Returns the busiest group within the sched_domain
5705 * if there is an imbalance. If there isn't an imbalance, and
5706 * the user has opted for power-savings, it returns a group whose
5707 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5708 * such a group exists.
5709 *
5710 * Also calculates the amount of weighted load which should be moved
5711 * to restore balance.
5712 *
Randy Dunlapcd968912012-06-08 13:18:33 -07005713 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005714 *
Yacine Belkadie69f6182013-07-12 20:45:47 +02005715 * Return: - The busiest group if imbalance exists.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005716 * - If no imbalance and user has opted for power-savings balance,
5717 * return the least loaded group whose CPUs can be
5718 * put to idle by rebalancing its tasks onto our group.
5719 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005720static struct sched_group *find_busiest_group(struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005721{
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005722 struct sg_lb_stats *local, *busiest;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005723 struct sd_lb_stats sds;
5724
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005725 init_sd_lb_stats(&sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005726
5727 /*
5728 * Compute the various statistics relavent for load balancing at
5729 * this level.
5730 */
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005731 update_sd_lb_stats(env, &sds);
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005732 local = &sds.local_stat;
5733 busiest = &sds.busiest_stat;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005734
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005735 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5736 check_asym_packing(env, &sds))
Michael Neuling532cb4c2010-06-08 14:57:02 +10005737 return sds.busiest;
5738
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005739 /* There is no busy sibling group to pull tasks from */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005740 if (!sds.busiest || busiest->sum_nr_running == 0)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005741 goto out_balanced;
5742
Nikhil Rao1399fa72011-05-18 10:09:39 -07005743 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
Ken Chenb0432d82011-04-07 17:23:22 -07005744
Peter Zijlstra866ab432011-02-21 18:56:47 +01005745 /*
5746 * If the busiest group is imbalanced the below checks don't
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005747 * work because they assume all things are equal, which typically
Peter Zijlstra866ab432011-02-21 18:56:47 +01005748 * isn't true due to cpus_allowed constraints and the like.
5749 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005750 if (busiest->group_imb)
Peter Zijlstra866ab432011-02-21 18:56:47 +01005751 goto force_balance;
5752
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005753 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005754 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5755 !busiest->group_has_capacity)
Nikhil Raofab47622010-10-15 13:12:29 -07005756 goto force_balance;
5757
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005758 /*
5759 * If the local group is more busy than the selected busiest group
5760 * don't try and pull any tasks.
5761 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005762 if (local->avg_load >= busiest->avg_load)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005763 goto out_balanced;
5764
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005765 /*
5766 * Don't pull any tasks if this group is already above the domain
5767 * average load.
5768 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005769 if (local->avg_load >= sds.avg_load)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005770 goto out_balanced;
5771
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005772 if (env->idle == CPU_IDLE) {
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005773 /*
5774 * This cpu is idle. If the busiest group load doesn't
5775 * have more tasks than the number of available cpu's and
5776 * there is no imbalance between this and busiest group
5777 * wrt to idle cpu's, it is balanced.
5778 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005779 if ((local->idle_cpus < busiest->idle_cpus) &&
5780 busiest->sum_nr_running <= busiest->group_weight)
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005781 goto out_balanced;
Peter Zijlstrac186faf2011-02-21 18:52:53 +01005782 } else {
5783 /*
5784 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5785 * imbalance_pct to be conservative.
5786 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005787 if (100 * busiest->avg_load <=
5788 env->sd->imbalance_pct * local->avg_load)
Peter Zijlstrac186faf2011-02-21 18:52:53 +01005789 goto out_balanced;
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005790 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005791
Nikhil Raofab47622010-10-15 13:12:29 -07005792force_balance:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005793 /* Looks like there is an imbalance. Compute it */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005794 calculate_imbalance(env, &sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005795 return sds.busiest;
5796
5797out_balanced:
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005798 env->imbalance = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005799 return NULL;
5800}
5801
5802/*
5803 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5804 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005805static struct rq *find_busiest_queue(struct lb_env *env,
Michael Wangb9403132012-07-12 16:10:13 +08005806 struct sched_group *group)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005807{
5808 struct rq *busiest = NULL, *rq;
Joonsoo Kim95a79b82013-08-06 17:36:41 +09005809 unsigned long busiest_load = 0, busiest_power = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005810 int i;
5811
Peter Zijlstra6906a402013-08-19 15:20:21 +02005812 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005813 unsigned long power = power_of(i);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005814 unsigned long capacity = DIV_ROUND_CLOSEST(power,
5815 SCHED_POWER_SCALE);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005816 unsigned long wl;
5817
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005818 if (!capacity)
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005819 capacity = fix_small_capacity(env->sd, group);
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005820
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005821 rq = cpu_rq(i);
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01005822 wl = weighted_cpuload(i);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005823
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01005824 /*
5825 * When comparing with imbalance, use weighted_cpuload()
5826 * which is not scaled with the cpu power.
5827 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005828 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005829 continue;
5830
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01005831 /*
5832 * For the load comparisons with the other cpu's, consider
5833 * the weighted_cpuload() scaled with the cpu power, so that
5834 * the load can be moved away from the cpu that is potentially
5835 * running at a lower capacity.
Joonsoo Kim95a79b82013-08-06 17:36:41 +09005836 *
5837 * Thus we're looking for max(wl_i / power_i), crosswise
5838 * multiplication to rid ourselves of the division works out
5839 * to: wl_i * power_j > wl_j * power_i; where j is our
5840 * previous maximum.
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01005841 */
Joonsoo Kim95a79b82013-08-06 17:36:41 +09005842 if (wl * busiest_power > busiest_load * power) {
5843 busiest_load = wl;
5844 busiest_power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005845 busiest = rq;
5846 }
5847 }
5848
5849 return busiest;
5850}
5851
5852/*
5853 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
5854 * so long as it is large enough.
5855 */
5856#define MAX_PINNED_INTERVAL 512
5857
5858/* Working cpumask for load_balance and load_balance_newidle. */
Joonsoo Kime6252c32013-04-23 17:27:41 +09005859DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005860
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005861static int need_active_balance(struct lb_env *env)
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01005862{
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005863 struct sched_domain *sd = env->sd;
5864
5865 if (env->idle == CPU_NEWLY_IDLE) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10005866
5867 /*
5868 * ASYM_PACKING needs to force migrate tasks from busy but
5869 * higher numbered CPUs in order to pack all tasks in the
5870 * lowest numbered CPUs.
5871 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005872 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005873 return 1;
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01005874 }
5875
5876 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
5877}
5878
Tejun Heo969c7922010-05-06 18:49:21 +02005879static int active_load_balance_cpu_stop(void *data);
5880
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005881static int should_we_balance(struct lb_env *env)
5882{
5883 struct sched_group *sg = env->sd->groups;
5884 struct cpumask *sg_cpus, *sg_mask;
5885 int cpu, balance_cpu = -1;
5886
5887 /*
5888 * In the newly idle case, we will allow all the cpu's
5889 * to do the newly idle load balance.
5890 */
5891 if (env->idle == CPU_NEWLY_IDLE)
5892 return 1;
5893
5894 sg_cpus = sched_group_cpus(sg);
5895 sg_mask = sched_group_mask(sg);
5896 /* Try to find first idle cpu */
5897 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
5898 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
5899 continue;
5900
5901 balance_cpu = cpu;
5902 break;
5903 }
5904
5905 if (balance_cpu == -1)
5906 balance_cpu = group_balance_cpu(sg);
5907
5908 /*
5909 * First idle cpu or the first cpu(busiest) in this sched group
5910 * is eligible for doing load balancing at this and above domains.
5911 */
Joonsoo Kimb0cff9d2013-09-10 15:54:49 +09005912 return balance_cpu == env->dst_cpu;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005913}
5914
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005915/*
5916 * Check this_cpu to ensure it is balanced within domain. Attempt to move
5917 * tasks if there is an imbalance.
5918 */
5919static int load_balance(int this_cpu, struct rq *this_rq,
5920 struct sched_domain *sd, enum cpu_idle_type idle,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005921 int *continue_balancing)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005922{
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305923 int ld_moved, cur_ld_moved, active_balance = 0;
Peter Zijlstra62633222013-08-19 12:41:09 +02005924 struct sched_domain *sd_parent = sd->parent;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005925 struct sched_group *group;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005926 struct rq *busiest;
5927 unsigned long flags;
Joonsoo Kime6252c32013-04-23 17:27:41 +09005928 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005929
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005930 struct lb_env env = {
5931 .sd = sd,
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005932 .dst_cpu = this_cpu,
5933 .dst_rq = this_rq,
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305934 .dst_grpmask = sched_group_cpus(sd->groups),
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005935 .idle = idle,
Peter Zijlstraeb953082012-04-17 13:38:40 +02005936 .loop_break = sched_nr_migrate_break,
Michael Wangb9403132012-07-12 16:10:13 +08005937 .cpus = cpus,
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005938 };
5939
Joonsoo Kimcfc03112013-04-23 17:27:39 +09005940 /*
5941 * For NEWLY_IDLE load_balancing, we don't need to consider
5942 * other cpus in our group
5943 */
Joonsoo Kime02e60c2013-04-23 17:27:42 +09005944 if (idle == CPU_NEWLY_IDLE)
Joonsoo Kimcfc03112013-04-23 17:27:39 +09005945 env.dst_grpmask = NULL;
Joonsoo Kimcfc03112013-04-23 17:27:39 +09005946
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005947 cpumask_copy(cpus, cpu_active_mask);
5948
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005949 schedstat_inc(sd, lb_count[idle]);
5950
5951redo:
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005952 if (!should_we_balance(&env)) {
5953 *continue_balancing = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005954 goto out_balanced;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005955 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005956
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005957 group = find_busiest_group(&env);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005958 if (!group) {
5959 schedstat_inc(sd, lb_nobusyg[idle]);
5960 goto out_balanced;
5961 }
5962
Michael Wangb9403132012-07-12 16:10:13 +08005963 busiest = find_busiest_queue(&env, group);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005964 if (!busiest) {
5965 schedstat_inc(sd, lb_nobusyq[idle]);
5966 goto out_balanced;
5967 }
5968
Michael Wang78feefc2012-08-06 16:41:59 +08005969 BUG_ON(busiest == env.dst_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005970
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005971 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005972
5973 ld_moved = 0;
5974 if (busiest->nr_running > 1) {
5975 /*
5976 * Attempt to move tasks. If find_busiest_group has found
5977 * an imbalance but busiest->nr_running <= 1, the group is
5978 * still unbalanced. ld_moved simply stays zero, so it is
5979 * correctly treated as an imbalance.
5980 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005981 env.flags |= LBF_ALL_PINNED;
Peter Zijlstrac82513e2012-04-26 13:12:27 +02005982 env.src_cpu = busiest->cpu;
5983 env.src_rq = busiest;
5984 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005985
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005986more_balance:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005987 local_irq_save(flags);
Michael Wang78feefc2012-08-06 16:41:59 +08005988 double_rq_lock(env.dst_rq, busiest);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305989
5990 /*
5991 * cur_ld_moved - load moved in current iteration
5992 * ld_moved - cumulative load moved across iterations
5993 */
5994 cur_ld_moved = move_tasks(&env);
5995 ld_moved += cur_ld_moved;
Michael Wang78feefc2012-08-06 16:41:59 +08005996 double_rq_unlock(env.dst_rq, busiest);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005997 local_irq_restore(flags);
5998
5999 /*
6000 * some other cpu did the load balance for us.
6001 */
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306002 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6003 resched_cpu(env.dst_cpu);
6004
Joonsoo Kimf1cd0852013-04-23 17:27:37 +09006005 if (env.flags & LBF_NEED_BREAK) {
6006 env.flags &= ~LBF_NEED_BREAK;
6007 goto more_balance;
6008 }
6009
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306010 /*
6011 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6012 * us and move them to an alternate dst_cpu in our sched_group
6013 * where they can run. The upper limit on how many times we
6014 * iterate on same src_cpu is dependent on number of cpus in our
6015 * sched_group.
6016 *
6017 * This changes load balance semantics a bit on who can move
6018 * load to a given_cpu. In addition to the given_cpu itself
6019 * (or a ilb_cpu acting on its behalf where given_cpu is
6020 * nohz-idle), we now have balance_cpu in a position to move
6021 * load to given_cpu. In rare situations, this may cause
6022 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6023 * _independently_ and at _same_ time to move some load to
6024 * given_cpu) causing exceess load to be moved to given_cpu.
6025 * This however should not happen so much in practice and
6026 * moreover subsequent load balance cycles should correct the
6027 * excess load moved.
6028 */
Peter Zijlstra62633222013-08-19 12:41:09 +02006029 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306030
Vladimir Davydov7aff2e32013-09-15 21:30:13 +04006031 /* Prevent to re-select dst_cpu via env's cpus */
6032 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6033
Michael Wang78feefc2012-08-06 16:41:59 +08006034 env.dst_rq = cpu_rq(env.new_dst_cpu);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306035 env.dst_cpu = env.new_dst_cpu;
Peter Zijlstra62633222013-08-19 12:41:09 +02006036 env.flags &= ~LBF_DST_PINNED;
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306037 env.loop = 0;
6038 env.loop_break = sched_nr_migrate_break;
Joonsoo Kime02e60c2013-04-23 17:27:42 +09006039
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306040 /*
6041 * Go back to "more_balance" rather than "redo" since we
6042 * need to continue with same src_cpu.
6043 */
6044 goto more_balance;
6045 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006046
Peter Zijlstra62633222013-08-19 12:41:09 +02006047 /*
6048 * We failed to reach balance because of affinity.
6049 */
6050 if (sd_parent) {
6051 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6052
6053 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6054 *group_imbalance = 1;
6055 } else if (*group_imbalance)
6056 *group_imbalance = 0;
6057 }
6058
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006059 /* All tasks on this runqueue were pinned by CPU affinity */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006060 if (unlikely(env.flags & LBF_ALL_PINNED)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006061 cpumask_clear_cpu(cpu_of(busiest), cpus);
Prashanth Nageshappabbf18b12012-06-19 17:52:07 +05306062 if (!cpumask_empty(cpus)) {
6063 env.loop = 0;
6064 env.loop_break = sched_nr_migrate_break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006065 goto redo;
Prashanth Nageshappabbf18b12012-06-19 17:52:07 +05306066 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006067 goto out_balanced;
6068 }
6069 }
6070
6071 if (!ld_moved) {
6072 schedstat_inc(sd, lb_failed[idle]);
Venkatesh Pallipadi58b26c42010-09-10 18:19:17 -07006073 /*
6074 * Increment the failure counter only on periodic balance.
6075 * We do not want newidle balance, which can be very
6076 * frequent, pollute the failure counter causing
6077 * excessive cache_hot migrations and active balances.
6078 */
6079 if (idle != CPU_NEWLY_IDLE)
6080 sd->nr_balance_failed++;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006081
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006082 if (need_active_balance(&env)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006083 raw_spin_lock_irqsave(&busiest->lock, flags);
6084
Tejun Heo969c7922010-05-06 18:49:21 +02006085 /* don't kick the active_load_balance_cpu_stop,
6086 * if the curr task on busiest cpu can't be
6087 * moved to this_cpu
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006088 */
6089 if (!cpumask_test_cpu(this_cpu,
Peter Zijlstrafa17b502011-06-16 12:23:22 +02006090 tsk_cpus_allowed(busiest->curr))) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006091 raw_spin_unlock_irqrestore(&busiest->lock,
6092 flags);
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006093 env.flags |= LBF_ALL_PINNED;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006094 goto out_one_pinned;
6095 }
6096
Tejun Heo969c7922010-05-06 18:49:21 +02006097 /*
6098 * ->active_balance synchronizes accesses to
6099 * ->active_balance_work. Once set, it's cleared
6100 * only after active load balance is finished.
6101 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006102 if (!busiest->active_balance) {
6103 busiest->active_balance = 1;
6104 busiest->push_cpu = this_cpu;
6105 active_balance = 1;
6106 }
6107 raw_spin_unlock_irqrestore(&busiest->lock, flags);
Tejun Heo969c7922010-05-06 18:49:21 +02006108
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006109 if (active_balance) {
Tejun Heo969c7922010-05-06 18:49:21 +02006110 stop_one_cpu_nowait(cpu_of(busiest),
6111 active_load_balance_cpu_stop, busiest,
6112 &busiest->active_balance_work);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006113 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006114
6115 /*
6116 * We've kicked active balancing, reset the failure
6117 * counter.
6118 */
6119 sd->nr_balance_failed = sd->cache_nice_tries+1;
6120 }
6121 } else
6122 sd->nr_balance_failed = 0;
6123
6124 if (likely(!active_balance)) {
6125 /* We were unbalanced, so reset the balancing interval */
6126 sd->balance_interval = sd->min_interval;
6127 } else {
6128 /*
6129 * If we've begun active balancing, start to back off. This
6130 * case may not be covered by the all_pinned logic if there
6131 * is only 1 task on the busy runqueue (because we don't call
6132 * move_tasks).
6133 */
6134 if (sd->balance_interval < sd->max_interval)
6135 sd->balance_interval *= 2;
6136 }
6137
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006138 goto out;
6139
6140out_balanced:
6141 schedstat_inc(sd, lb_balanced[idle]);
6142
6143 sd->nr_balance_failed = 0;
6144
6145out_one_pinned:
6146 /* tune up the balancing interval */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006147 if (((env.flags & LBF_ALL_PINNED) &&
Peter Zijlstra5b54b562011-09-22 15:23:13 +02006148 sd->balance_interval < MAX_PINNED_INTERVAL) ||
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006149 (sd->balance_interval < sd->max_interval))
6150 sd->balance_interval *= 2;
6151
Venkatesh Pallipadi46e49b32011-02-14 14:38:50 -08006152 ld_moved = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006153out:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006154 return ld_moved;
6155}
6156
6157/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006158 * idle_balance is called by schedule() if this_cpu is about to become
6159 * idle. Attempts to pull tasks from other CPUs.
6160 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006161void idle_balance(int this_cpu, struct rq *this_rq)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006162{
6163 struct sched_domain *sd;
6164 int pulled_task = 0;
6165 unsigned long next_balance = jiffies + HZ;
Jason Low9bd721c2013-09-13 11:26:52 -07006166 u64 curr_cost = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006167
Frederic Weisbecker78becc22013-04-12 01:51:02 +02006168 this_rq->idle_stamp = rq_clock(this_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006169
6170 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6171 return;
6172
Peter Zijlstraf492e122009-12-23 15:29:42 +01006173 /*
6174 * Drop the rq->lock, but keep IRQ/preempt disabled.
6175 */
6176 raw_spin_unlock(&this_rq->lock);
6177
Paul Turner48a16752012-10-04 13:18:31 +02006178 update_blocked_averages(this_cpu);
Peter Zijlstradce840a2011-04-07 14:09:50 +02006179 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006180 for_each_domain(this_cpu, sd) {
6181 unsigned long interval;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006182 int continue_balancing = 1;
Jason Low9bd721c2013-09-13 11:26:52 -07006183 u64 t0, domain_cost;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006184
6185 if (!(sd->flags & SD_LOAD_BALANCE))
6186 continue;
6187
Jason Low9bd721c2013-09-13 11:26:52 -07006188 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6189 break;
6190
Peter Zijlstraf492e122009-12-23 15:29:42 +01006191 if (sd->flags & SD_BALANCE_NEWIDLE) {
Jason Low9bd721c2013-09-13 11:26:52 -07006192 t0 = sched_clock_cpu(this_cpu);
6193
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006194 /* If we've pulled tasks over stop searching: */
Peter Zijlstraf492e122009-12-23 15:29:42 +01006195 pulled_task = load_balance(this_cpu, this_rq,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006196 sd, CPU_NEWLY_IDLE,
6197 &continue_balancing);
Jason Low9bd721c2013-09-13 11:26:52 -07006198
6199 domain_cost = sched_clock_cpu(this_cpu) - t0;
6200 if (domain_cost > sd->max_newidle_lb_cost)
6201 sd->max_newidle_lb_cost = domain_cost;
6202
6203 curr_cost += domain_cost;
Peter Zijlstraf492e122009-12-23 15:29:42 +01006204 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006205
6206 interval = msecs_to_jiffies(sd->balance_interval);
6207 if (time_after(next_balance, sd->last_balance + interval))
6208 next_balance = sd->last_balance + interval;
Nikhil Raod5ad1402010-11-17 11:42:04 -08006209 if (pulled_task) {
6210 this_rq->idle_stamp = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006211 break;
Nikhil Raod5ad1402010-11-17 11:42:04 -08006212 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006213 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006214 rcu_read_unlock();
Peter Zijlstraf492e122009-12-23 15:29:42 +01006215
6216 raw_spin_lock(&this_rq->lock);
6217
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006218 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6219 /*
6220 * We are going idle. next_balance may be set based on
6221 * a busy processor. So reset next_balance.
6222 */
6223 this_rq->next_balance = next_balance;
6224 }
Jason Low9bd721c2013-09-13 11:26:52 -07006225
6226 if (curr_cost > this_rq->max_idle_balance_cost)
6227 this_rq->max_idle_balance_cost = curr_cost;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006228}
6229
6230/*
Tejun Heo969c7922010-05-06 18:49:21 +02006231 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6232 * running tasks off the busiest CPU onto idle CPUs. It requires at
6233 * least 1 task to be running on each physical CPU where possible, and
6234 * avoids physical / logical imbalances.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006235 */
Tejun Heo969c7922010-05-06 18:49:21 +02006236static int active_load_balance_cpu_stop(void *data)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006237{
Tejun Heo969c7922010-05-06 18:49:21 +02006238 struct rq *busiest_rq = data;
6239 int busiest_cpu = cpu_of(busiest_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006240 int target_cpu = busiest_rq->push_cpu;
Tejun Heo969c7922010-05-06 18:49:21 +02006241 struct rq *target_rq = cpu_rq(target_cpu);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006242 struct sched_domain *sd;
Tejun Heo969c7922010-05-06 18:49:21 +02006243
6244 raw_spin_lock_irq(&busiest_rq->lock);
6245
6246 /* make sure the requested cpu hasn't gone down in the meantime */
6247 if (unlikely(busiest_cpu != smp_processor_id() ||
6248 !busiest_rq->active_balance))
6249 goto out_unlock;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006250
6251 /* Is there any task to move? */
6252 if (busiest_rq->nr_running <= 1)
Tejun Heo969c7922010-05-06 18:49:21 +02006253 goto out_unlock;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006254
6255 /*
6256 * This condition is "impossible", if it occurs
6257 * we need to fix it. Originally reported by
6258 * Bjorn Helgaas on a 128-cpu setup.
6259 */
6260 BUG_ON(busiest_rq == target_rq);
6261
6262 /* move a task from busiest_rq to target_rq */
6263 double_lock_balance(busiest_rq, target_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006264
6265 /* Search for an sd spanning us and the target CPU. */
Peter Zijlstradce840a2011-04-07 14:09:50 +02006266 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006267 for_each_domain(target_cpu, sd) {
6268 if ((sd->flags & SD_LOAD_BALANCE) &&
6269 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6270 break;
6271 }
6272
6273 if (likely(sd)) {
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006274 struct lb_env env = {
6275 .sd = sd,
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01006276 .dst_cpu = target_cpu,
6277 .dst_rq = target_rq,
6278 .src_cpu = busiest_rq->cpu,
6279 .src_rq = busiest_rq,
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006280 .idle = CPU_IDLE,
6281 };
6282
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006283 schedstat_inc(sd, alb_count);
6284
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006285 if (move_one_task(&env))
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006286 schedstat_inc(sd, alb_pushed);
6287 else
6288 schedstat_inc(sd, alb_failed);
6289 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006290 rcu_read_unlock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006291 double_unlock_balance(busiest_rq, target_rq);
Tejun Heo969c7922010-05-06 18:49:21 +02006292out_unlock:
6293 busiest_rq->active_balance = 0;
6294 raw_spin_unlock_irq(&busiest_rq->lock);
6295 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006296}
6297
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006298#ifdef CONFIG_NO_HZ_COMMON
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006299/*
6300 * idle load balancing details
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006301 * - When one of the busy CPUs notice that there may be an idle rebalancing
6302 * needed, they will kick the idle load balancer, which then does idle
6303 * load balancing for all the idle CPUs.
6304 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006305static struct {
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006306 cpumask_var_t idle_cpus_mask;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006307 atomic_t nr_cpus;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006308 unsigned long next_balance; /* in jiffy units */
6309} nohz ____cacheline_aligned;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006310
Peter Zijlstra8e7fbcb2012-01-09 11:28:35 +01006311static inline int find_new_ilb(int call_cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006312{
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006313 int ilb = cpumask_first(nohz.idle_cpus_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006314
Suresh Siddha786d6dc2011-12-01 17:07:35 -08006315 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6316 return ilb;
6317
6318 return nr_cpu_ids;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006319}
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006320
6321/*
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006322 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6323 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6324 * CPU (if there is one).
6325 */
6326static void nohz_balancer_kick(int cpu)
6327{
6328 int ilb_cpu;
6329
6330 nohz.next_balance++;
6331
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006332 ilb_cpu = find_new_ilb(cpu);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006333
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006334 if (ilb_cpu >= nr_cpu_ids)
6335 return;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006336
Suresh Siddhacd490c52011-12-06 11:26:34 -08006337 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
Suresh Siddha1c792db2011-12-01 17:07:32 -08006338 return;
6339 /*
6340 * Use smp_send_reschedule() instead of resched_cpu().
6341 * This way we generate a sched IPI on the target cpu which
6342 * is idle. And the softirq performing nohz idle load balance
6343 * will be run before returning from the IPI.
6344 */
6345 smp_send_reschedule(ilb_cpu);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006346 return;
6347}
6348
Alex Shic1cc0172012-09-10 15:10:58 +08006349static inline void nohz_balance_exit_idle(int cpu)
Suresh Siddha71325962012-01-19 18:28:57 -08006350{
6351 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6352 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6353 atomic_dec(&nohz.nr_cpus);
6354 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6355 }
6356}
6357
Suresh Siddha69e1e812011-12-01 17:07:33 -08006358static inline void set_cpu_sd_state_busy(void)
6359{
6360 struct sched_domain *sd;
Suresh Siddha69e1e812011-12-01 17:07:33 -08006361
Suresh Siddha69e1e812011-12-01 17:07:33 -08006362 rcu_read_lock();
Nathan Zimmer424c93f2013-05-09 11:24:03 -05006363 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006364
6365 if (!sd || !sd->nohz_idle)
6366 goto unlock;
6367 sd->nohz_idle = 0;
6368
6369 for (; sd; sd = sd->parent)
Suresh Siddha69e1e812011-12-01 17:07:33 -08006370 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006371unlock:
Suresh Siddha69e1e812011-12-01 17:07:33 -08006372 rcu_read_unlock();
6373}
6374
6375void set_cpu_sd_state_idle(void)
6376{
6377 struct sched_domain *sd;
Suresh Siddha69e1e812011-12-01 17:07:33 -08006378
Suresh Siddha69e1e812011-12-01 17:07:33 -08006379 rcu_read_lock();
Nathan Zimmer424c93f2013-05-09 11:24:03 -05006380 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006381
6382 if (!sd || sd->nohz_idle)
6383 goto unlock;
6384 sd->nohz_idle = 1;
6385
6386 for (; sd; sd = sd->parent)
Suresh Siddha69e1e812011-12-01 17:07:33 -08006387 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006388unlock:
Suresh Siddha69e1e812011-12-01 17:07:33 -08006389 rcu_read_unlock();
6390}
6391
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006392/*
Alex Shic1cc0172012-09-10 15:10:58 +08006393 * This routine will record that the cpu is going idle with tick stopped.
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006394 * This info will be used in performing idle load balancing in the future.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006395 */
Alex Shic1cc0172012-09-10 15:10:58 +08006396void nohz_balance_enter_idle(int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006397{
Suresh Siddha71325962012-01-19 18:28:57 -08006398 /*
6399 * If this cpu is going down, then nothing needs to be done.
6400 */
6401 if (!cpu_active(cpu))
6402 return;
6403
Alex Shic1cc0172012-09-10 15:10:58 +08006404 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6405 return;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006406
Alex Shic1cc0172012-09-10 15:10:58 +08006407 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6408 atomic_inc(&nohz.nr_cpus);
6409 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006410}
Suresh Siddha71325962012-01-19 18:28:57 -08006411
Paul Gortmaker0db06282013-06-19 14:53:51 -04006412static int sched_ilb_notifier(struct notifier_block *nfb,
Suresh Siddha71325962012-01-19 18:28:57 -08006413 unsigned long action, void *hcpu)
6414{
6415 switch (action & ~CPU_TASKS_FROZEN) {
6416 case CPU_DYING:
Alex Shic1cc0172012-09-10 15:10:58 +08006417 nohz_balance_exit_idle(smp_processor_id());
Suresh Siddha71325962012-01-19 18:28:57 -08006418 return NOTIFY_OK;
6419 default:
6420 return NOTIFY_DONE;
6421 }
6422}
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006423#endif
6424
6425static DEFINE_SPINLOCK(balancing);
6426
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006427/*
6428 * Scale the max load_balance interval with the number of CPUs in the system.
6429 * This trades load-balance latency on larger machines for less cross talk.
6430 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006431void update_max_interval(void)
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006432{
6433 max_load_balance_interval = HZ*num_online_cpus()/10;
6434}
6435
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006436/*
6437 * It checks each scheduling domain to see if it is due to be balanced,
6438 * and initiates a balancing operation if so.
6439 *
Libinb9b08532013-04-01 19:14:01 +08006440 * Balancing parameters are set up in init_sched_domains.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006441 */
6442static void rebalance_domains(int cpu, enum cpu_idle_type idle)
6443{
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006444 int continue_balancing = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006445 struct rq *rq = cpu_rq(cpu);
6446 unsigned long interval;
Peter Zijlstra04f733b2012-05-11 00:12:02 +02006447 struct sched_domain *sd;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006448 /* Earliest time when we have to do rebalance again */
6449 unsigned long next_balance = jiffies + 60*HZ;
6450 int update_next_balance = 0;
Jason Lowf48627e2013-09-13 11:26:53 -07006451 int need_serialize, need_decay = 0;
6452 u64 max_cost = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006453
Paul Turner48a16752012-10-04 13:18:31 +02006454 update_blocked_averages(cpu);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08006455
Peter Zijlstradce840a2011-04-07 14:09:50 +02006456 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006457 for_each_domain(cpu, sd) {
Jason Lowf48627e2013-09-13 11:26:53 -07006458 /*
6459 * Decay the newidle max times here because this is a regular
6460 * visit to all the domains. Decay ~1% per second.
6461 */
6462 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6463 sd->max_newidle_lb_cost =
6464 (sd->max_newidle_lb_cost * 253) / 256;
6465 sd->next_decay_max_lb_cost = jiffies + HZ;
6466 need_decay = 1;
6467 }
6468 max_cost += sd->max_newidle_lb_cost;
6469
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006470 if (!(sd->flags & SD_LOAD_BALANCE))
6471 continue;
6472
Jason Lowf48627e2013-09-13 11:26:53 -07006473 /*
6474 * Stop the load balance at this level. There is another
6475 * CPU in our sched group which is doing load balancing more
6476 * actively.
6477 */
6478 if (!continue_balancing) {
6479 if (need_decay)
6480 continue;
6481 break;
6482 }
6483
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006484 interval = sd->balance_interval;
6485 if (idle != CPU_IDLE)
6486 interval *= sd->busy_factor;
6487
6488 /* scale ms to jiffies */
6489 interval = msecs_to_jiffies(interval);
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006490 interval = clamp(interval, 1UL, max_load_balance_interval);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006491
6492 need_serialize = sd->flags & SD_SERIALIZE;
6493
6494 if (need_serialize) {
6495 if (!spin_trylock(&balancing))
6496 goto out;
6497 }
6498
6499 if (time_after_eq(jiffies, sd->last_balance + interval)) {
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006500 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006501 /*
Peter Zijlstra62633222013-08-19 12:41:09 +02006502 * The LBF_DST_PINNED logic could have changed
Joonsoo Kimde5eb2d2013-04-23 17:27:38 +09006503 * env->dst_cpu, so we can't know our idle
6504 * state even if we migrated tasks. Update it.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006505 */
Joonsoo Kimde5eb2d2013-04-23 17:27:38 +09006506 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006507 }
6508 sd->last_balance = jiffies;
6509 }
6510 if (need_serialize)
6511 spin_unlock(&balancing);
6512out:
6513 if (time_after(next_balance, sd->last_balance + interval)) {
6514 next_balance = sd->last_balance + interval;
6515 update_next_balance = 1;
6516 }
Jason Lowf48627e2013-09-13 11:26:53 -07006517 }
6518 if (need_decay) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006519 /*
Jason Lowf48627e2013-09-13 11:26:53 -07006520 * Ensure the rq-wide value also decays but keep it at a
6521 * reasonable floor to avoid funnies with rq->avg_idle.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006522 */
Jason Lowf48627e2013-09-13 11:26:53 -07006523 rq->max_idle_balance_cost =
6524 max((u64)sysctl_sched_migration_cost, max_cost);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006525 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006526 rcu_read_unlock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006527
6528 /*
6529 * next_balance will be updated only when there is a need.
6530 * When the cpu is attached to null domain for ex, it will not be
6531 * updated.
6532 */
6533 if (likely(update_next_balance))
6534 rq->next_balance = next_balance;
6535}
6536
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006537#ifdef CONFIG_NO_HZ_COMMON
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006538/*
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006539 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006540 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6541 */
6542static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
6543{
6544 struct rq *this_rq = cpu_rq(this_cpu);
6545 struct rq *rq;
6546 int balance_cpu;
6547
Suresh Siddha1c792db2011-12-01 17:07:32 -08006548 if (idle != CPU_IDLE ||
6549 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6550 goto end;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006551
6552 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
Suresh Siddha8a6d42d2011-12-06 11:19:37 -08006553 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006554 continue;
6555
6556 /*
6557 * If this cpu gets work to do, stop the load balancing
6558 * work being done for other cpus. Next load
6559 * balancing owner will pick it up.
6560 */
Suresh Siddha1c792db2011-12-01 17:07:32 -08006561 if (need_resched())
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006562 break;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006563
Vincent Guittot5ed4f1d2012-09-13 06:11:26 +02006564 rq = cpu_rq(balance_cpu);
6565
6566 raw_spin_lock_irq(&rq->lock);
6567 update_rq_clock(rq);
6568 update_idle_cpu_load(rq);
6569 raw_spin_unlock_irq(&rq->lock);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006570
6571 rebalance_domains(balance_cpu, CPU_IDLE);
6572
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006573 if (time_after(this_rq->next_balance, rq->next_balance))
6574 this_rq->next_balance = rq->next_balance;
6575 }
6576 nohz.next_balance = this_rq->next_balance;
Suresh Siddha1c792db2011-12-01 17:07:32 -08006577end:
6578 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006579}
6580
6581/*
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006582 * Current heuristic for kicking the idle load balancer in the presence
6583 * of an idle cpu is the system.
6584 * - This rq has more than one task.
6585 * - At any scheduler domain level, this cpu's scheduler group has multiple
6586 * busy cpu's exceeding the group's power.
6587 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6588 * domain span are idle.
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006589 */
6590static inline int nohz_kick_needed(struct rq *rq, int cpu)
6591{
6592 unsigned long now = jiffies;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006593 struct sched_domain *sd;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006594
Suresh Siddha1c792db2011-12-01 17:07:32 -08006595 if (unlikely(idle_cpu(cpu)))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006596 return 0;
6597
Suresh Siddha1c792db2011-12-01 17:07:32 -08006598 /*
6599 * We may be recently in ticked or tickless idle mode. At the first
6600 * busy tick after returning from idle, we will update the busy stats.
6601 */
Suresh Siddha69e1e812011-12-01 17:07:33 -08006602 set_cpu_sd_state_busy();
Alex Shic1cc0172012-09-10 15:10:58 +08006603 nohz_balance_exit_idle(cpu);
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006604
6605 /*
6606 * None are in tickless mode and hence no need for NOHZ idle load
6607 * balancing.
6608 */
6609 if (likely(!atomic_read(&nohz.nr_cpus)))
6610 return 0;
Suresh Siddha1c792db2011-12-01 17:07:32 -08006611
6612 if (time_before(now, nohz.next_balance))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006613 return 0;
6614
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006615 if (rq->nr_running >= 2)
6616 goto need_kick;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006617
Peter Zijlstra067491b2011-12-07 14:32:08 +01006618 rcu_read_lock();
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006619 for_each_domain(cpu, sd) {
6620 struct sched_group *sg = sd->groups;
6621 struct sched_group_power *sgp = sg->sgp;
6622 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006623
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006624 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
Peter Zijlstra067491b2011-12-07 14:32:08 +01006625 goto need_kick_unlock;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006626
6627 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
6628 && (cpumask_first_and(nohz.idle_cpus_mask,
6629 sched_domain_span(sd)) < cpu))
Peter Zijlstra067491b2011-12-07 14:32:08 +01006630 goto need_kick_unlock;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006631
6632 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
6633 break;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006634 }
Peter Zijlstra067491b2011-12-07 14:32:08 +01006635 rcu_read_unlock();
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006636 return 0;
Peter Zijlstra067491b2011-12-07 14:32:08 +01006637
6638need_kick_unlock:
6639 rcu_read_unlock();
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006640need_kick:
6641 return 1;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006642}
6643#else
6644static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
6645#endif
6646
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006647/*
6648 * run_rebalance_domains is triggered when needed from the scheduler tick.
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006649 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006650 */
6651static void run_rebalance_domains(struct softirq_action *h)
6652{
6653 int this_cpu = smp_processor_id();
6654 struct rq *this_rq = cpu_rq(this_cpu);
Suresh Siddha6eb57e02011-10-03 15:09:01 -07006655 enum cpu_idle_type idle = this_rq->idle_balance ?
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006656 CPU_IDLE : CPU_NOT_IDLE;
6657
6658 rebalance_domains(this_cpu, idle);
6659
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006660 /*
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006661 * If this cpu has a pending nohz_balance_kick, then do the
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006662 * balancing on behalf of the other idle cpus whose ticks are
6663 * stopped.
6664 */
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006665 nohz_idle_balance(this_cpu, idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006666}
6667
6668static inline int on_null_domain(int cpu)
6669{
Paul E. McKenney90a65012010-02-28 08:32:18 -08006670 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006671}
6672
6673/*
6674 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006675 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006676void trigger_load_balance(struct rq *rq, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006677{
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006678 /* Don't need to rebalance while attached to NULL domain */
6679 if (time_after_eq(jiffies, rq->next_balance) &&
6680 likely(!on_null_domain(cpu)))
6681 raise_softirq(SCHED_SOFTIRQ);
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006682#ifdef CONFIG_NO_HZ_COMMON
Suresh Siddha1c792db2011-12-01 17:07:32 -08006683 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006684 nohz_balancer_kick(cpu);
6685#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006686}
6687
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01006688static void rq_online_fair(struct rq *rq)
6689{
6690 update_sysctl();
6691}
6692
6693static void rq_offline_fair(struct rq *rq)
6694{
6695 update_sysctl();
Peter Boonstoppela4c96ae2012-08-09 15:34:47 -07006696
6697 /* Ensure any throttled groups are reachable by pick_next_task */
6698 unthrottle_offline_cfs_rqs(rq);
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01006699}
6700
Dhaval Giani55e12e52008-06-24 23:39:43 +05306701#endif /* CONFIG_SMP */
Peter Williamse1d14842007-10-24 18:23:51 +02006702
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006703/*
6704 * scheduler tick hitting a task of our scheduling class:
6705 */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01006706static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006707{
6708 struct cfs_rq *cfs_rq;
6709 struct sched_entity *se = &curr->se;
6710
6711 for_each_sched_entity(se) {
6712 cfs_rq = cfs_rq_of(se);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01006713 entity_tick(cfs_rq, se, queued);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006714 }
Ben Segall18bf2802012-10-04 12:51:20 +02006715
Dave Kleikamp10e84b92013-07-31 13:53:35 -07006716 if (numabalancing_enabled)
Peter Zijlstracbee9f82012-10-25 14:16:43 +02006717 task_tick_numa(rq, curr);
Linus Torvalds3d59eeb2012-12-16 14:33:25 -08006718
Ben Segall18bf2802012-10-04 12:51:20 +02006719 update_rq_runnable_avg(rq, 1);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006720}
6721
6722/*
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006723 * called on fork with the child task as argument from the parent's context
6724 * - child not yet on the tasklist
6725 * - preemption disabled
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006726 */
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006727static void task_fork_fair(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006728{
Daisuke Nishimura4fc420c2011-12-15 14:36:55 +09006729 struct cfs_rq *cfs_rq;
6730 struct sched_entity *se = &p->se, *curr;
Ingo Molnar00bf7bf2007-10-15 17:00:14 +02006731 int this_cpu = smp_processor_id();
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006732 struct rq *rq = this_rq();
6733 unsigned long flags;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006734
Thomas Gleixner05fa7852009-11-17 14:28:38 +01006735 raw_spin_lock_irqsave(&rq->lock, flags);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006736
Peter Zijlstra861d0342010-08-19 13:31:43 +02006737 update_rq_clock(rq);
6738
Daisuke Nishimura4fc420c2011-12-15 14:36:55 +09006739 cfs_rq = task_cfs_rq(current);
6740 curr = cfs_rq->curr;
6741
Daisuke Nishimura6c9a27f2013-09-10 18:16:36 +09006742 /*
6743 * Not only the cpu but also the task_group of the parent might have
6744 * been changed after parent->se.parent,cfs_rq were copied to
6745 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6746 * of child point to valid ones.
6747 */
6748 rcu_read_lock();
6749 __set_task_cpu(p, this_cpu);
6750 rcu_read_unlock();
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006751
Ting Yang7109c442007-08-28 12:53:24 +02006752 update_curr(cfs_rq);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006753
Mike Galbraithb5d9d732009-09-08 11:12:28 +02006754 if (curr)
6755 se->vruntime = curr->vruntime;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02006756 place_entity(cfs_rq, se, 1);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02006757
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006758 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
Dmitry Adamushko87fefa32007-10-15 17:00:08 +02006759 /*
Ingo Molnaredcb60a2007-10-15 17:00:08 +02006760 * Upon rescheduling, sched_class::put_prev_task() will place
6761 * 'current' within the tree based on its new key value.
6762 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02006763 swap(curr->vruntime, se->vruntime);
Bharata B Raoaec0a512008-08-28 14:42:49 +05306764 resched_task(rq->curr);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02006765 }
6766
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01006767 se->vruntime -= cfs_rq->min_vruntime;
6768
Thomas Gleixner05fa7852009-11-17 14:28:38 +01006769 raw_spin_unlock_irqrestore(&rq->lock, flags);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006770}
6771
Steven Rostedtcb469842008-01-25 21:08:22 +01006772/*
6773 * Priority of the task has changed. Check to see if we preempt
6774 * the current task.
6775 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006776static void
6777prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
Steven Rostedtcb469842008-01-25 21:08:22 +01006778{
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006779 if (!p->se.on_rq)
6780 return;
6781
Steven Rostedtcb469842008-01-25 21:08:22 +01006782 /*
6783 * Reschedule if we are currently running on this runqueue and
6784 * our priority decreased, or if we are not currently running on
6785 * this runqueue and our priority is higher than the current's
6786 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006787 if (rq->curr == p) {
Steven Rostedtcb469842008-01-25 21:08:22 +01006788 if (p->prio > oldprio)
6789 resched_task(rq->curr);
6790 } else
Peter Zijlstra15afe092008-09-20 23:38:02 +02006791 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01006792}
6793
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006794static void switched_from_fair(struct rq *rq, struct task_struct *p)
6795{
6796 struct sched_entity *se = &p->se;
6797 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6798
6799 /*
6800 * Ensure the task's vruntime is normalized, so that when its
6801 * switched back to the fair class the enqueue_entity(.flags=0) will
6802 * do the right thing.
6803 *
6804 * If it was on_rq, then the dequeue_entity(.flags=0) will already
6805 * have normalized the vruntime, if it was !on_rq, then only when
6806 * the task is sleeping will it still have non-normalized vruntime.
6807 */
6808 if (!se->on_rq && p->state != TASK_RUNNING) {
6809 /*
6810 * Fix up our vruntime so that the current sleep doesn't
6811 * cause 'unlimited' sleep bonus.
6812 */
6813 place_entity(cfs_rq, se, 0);
6814 se->vruntime -= cfs_rq->min_vruntime;
6815 }
Paul Turner9ee474f2012-10-04 13:18:30 +02006816
Alex Shi141965c2013-06-26 13:05:39 +08006817#ifdef CONFIG_SMP
Paul Turner9ee474f2012-10-04 13:18:30 +02006818 /*
6819 * Remove our load from contribution when we leave sched_fair
6820 * and ensure we don't carry in an old decay_count if we
6821 * switch back.
6822 */
Kirill Tkhai87e3c8a2013-07-21 04:32:07 +04006823 if (se->avg.decay_count) {
6824 __synchronize_entity_decay(se);
6825 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
Paul Turner9ee474f2012-10-04 13:18:30 +02006826 }
6827#endif
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006828}
6829
Steven Rostedtcb469842008-01-25 21:08:22 +01006830/*
6831 * We switched to the sched_fair class.
6832 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006833static void switched_to_fair(struct rq *rq, struct task_struct *p)
Steven Rostedtcb469842008-01-25 21:08:22 +01006834{
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006835 if (!p->se.on_rq)
6836 return;
6837
Steven Rostedtcb469842008-01-25 21:08:22 +01006838 /*
6839 * We were most likely switched from sched_rt, so
6840 * kick off the schedule if running, otherwise just see
6841 * if we can still preempt the current task.
6842 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006843 if (rq->curr == p)
Steven Rostedtcb469842008-01-25 21:08:22 +01006844 resched_task(rq->curr);
6845 else
Peter Zijlstra15afe092008-09-20 23:38:02 +02006846 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01006847}
6848
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02006849/* Account for a task changing its policy or group.
6850 *
6851 * This routine is mostly called to set cfs_rq->curr field when a task
6852 * migrates between groups/classes.
6853 */
6854static void set_curr_task_fair(struct rq *rq)
6855{
6856 struct sched_entity *se = &rq->curr->se;
6857
Paul Turnerec12cb72011-07-21 09:43:30 -07006858 for_each_sched_entity(se) {
6859 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6860
6861 set_next_entity(cfs_rq, se);
6862 /* ensure bandwidth has been allocated on our new cfs_rq */
6863 account_cfs_rq_runtime(cfs_rq, 0);
6864 }
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02006865}
6866
Peter Zijlstra029632f2011-10-25 10:00:11 +02006867void init_cfs_rq(struct cfs_rq *cfs_rq)
6868{
6869 cfs_rq->tasks_timeline = RB_ROOT;
Peter Zijlstra029632f2011-10-25 10:00:11 +02006870 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6871#ifndef CONFIG_64BIT
6872 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
6873#endif
Alex Shi141965c2013-06-26 13:05:39 +08006874#ifdef CONFIG_SMP
Paul Turner9ee474f2012-10-04 13:18:30 +02006875 atomic64_set(&cfs_rq->decay_counter, 1);
Alex Shi25099402013-06-20 10:18:55 +08006876 atomic_long_set(&cfs_rq->removed_load, 0);
Paul Turner9ee474f2012-10-04 13:18:30 +02006877#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02006878}
6879
Peter Zijlstra810b3812008-02-29 15:21:01 -05006880#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02006881static void task_move_group_fair(struct task_struct *p, int on_rq)
Peter Zijlstra810b3812008-02-29 15:21:01 -05006882{
Paul Turneraff3e492012-10-04 13:18:30 +02006883 struct cfs_rq *cfs_rq;
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02006884 /*
6885 * If the task was not on the rq at the time of this cgroup movement
6886 * it must have been asleep, sleeping tasks keep their ->vruntime
6887 * absolute on their old rq until wakeup (needed for the fair sleeper
6888 * bonus in place_entity()).
6889 *
6890 * If it was on the rq, we've just 'preempted' it, which does convert
6891 * ->vruntime to a relative base.
6892 *
6893 * Make sure both cases convert their relative position when migrating
6894 * to another cgroup's rq. This does somewhat interfere with the
6895 * fair sleeper stuff for the first placement, but who cares.
6896 */
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09006897 /*
6898 * When !on_rq, vruntime of the task has usually NOT been normalized.
6899 * But there are some cases where it has already been normalized:
6900 *
6901 * - Moving a forked child which is waiting for being woken up by
6902 * wake_up_new_task().
Daisuke Nishimura62af3782011-12-15 14:37:41 +09006903 * - Moving a task which has been woken up by try_to_wake_up() and
6904 * waiting for actually being woken up by sched_ttwu_pending().
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09006905 *
6906 * To prevent boost or penalty in the new cfs_rq caused by delta
6907 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
6908 */
Daisuke Nishimura62af3782011-12-15 14:37:41 +09006909 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09006910 on_rq = 1;
6911
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01006912 if (!on_rq)
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02006913 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
6914 set_task_rq(p, task_cpu(p));
Paul Turneraff3e492012-10-04 13:18:30 +02006915 if (!on_rq) {
6916 cfs_rq = cfs_rq_of(&p->se);
6917 p->se.vruntime += cfs_rq->min_vruntime;
6918#ifdef CONFIG_SMP
6919 /*
6920 * migrate_task_rq_fair() will have removed our previous
6921 * contribution, but we must synchronize for ongoing future
6922 * decay.
6923 */
6924 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
6925 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
6926#endif
6927 }
Peter Zijlstra810b3812008-02-29 15:21:01 -05006928}
Peter Zijlstra029632f2011-10-25 10:00:11 +02006929
6930void free_fair_sched_group(struct task_group *tg)
6931{
6932 int i;
6933
6934 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
6935
6936 for_each_possible_cpu(i) {
6937 if (tg->cfs_rq)
6938 kfree(tg->cfs_rq[i]);
6939 if (tg->se)
6940 kfree(tg->se[i]);
6941 }
6942
6943 kfree(tg->cfs_rq);
6944 kfree(tg->se);
6945}
6946
6947int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6948{
6949 struct cfs_rq *cfs_rq;
6950 struct sched_entity *se;
6951 int i;
6952
6953 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
6954 if (!tg->cfs_rq)
6955 goto err;
6956 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
6957 if (!tg->se)
6958 goto err;
6959
6960 tg->shares = NICE_0_LOAD;
6961
6962 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
6963
6964 for_each_possible_cpu(i) {
6965 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
6966 GFP_KERNEL, cpu_to_node(i));
6967 if (!cfs_rq)
6968 goto err;
6969
6970 se = kzalloc_node(sizeof(struct sched_entity),
6971 GFP_KERNEL, cpu_to_node(i));
6972 if (!se)
6973 goto err_free_rq;
6974
6975 init_cfs_rq(cfs_rq);
6976 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
6977 }
6978
6979 return 1;
6980
6981err_free_rq:
6982 kfree(cfs_rq);
6983err:
6984 return 0;
6985}
6986
6987void unregister_fair_sched_group(struct task_group *tg, int cpu)
6988{
6989 struct rq *rq = cpu_rq(cpu);
6990 unsigned long flags;
6991
6992 /*
6993 * Only empty task groups can be destroyed; so we can speculatively
6994 * check on_list without danger of it being re-added.
6995 */
6996 if (!tg->cfs_rq[cpu]->on_list)
6997 return;
6998
6999 raw_spin_lock_irqsave(&rq->lock, flags);
7000 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7001 raw_spin_unlock_irqrestore(&rq->lock, flags);
7002}
7003
7004void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7005 struct sched_entity *se, int cpu,
7006 struct sched_entity *parent)
7007{
7008 struct rq *rq = cpu_rq(cpu);
7009
7010 cfs_rq->tg = tg;
7011 cfs_rq->rq = rq;
Peter Zijlstra029632f2011-10-25 10:00:11 +02007012 init_cfs_rq_runtime(cfs_rq);
7013
7014 tg->cfs_rq[cpu] = cfs_rq;
7015 tg->se[cpu] = se;
7016
7017 /* se could be NULL for root_task_group */
7018 if (!se)
7019 return;
7020
7021 if (!parent)
7022 se->cfs_rq = &rq->cfs;
7023 else
7024 se->cfs_rq = parent->my_q;
7025
7026 se->my_q = cfs_rq;
7027 update_load_set(&se->load, 0);
7028 se->parent = parent;
7029}
7030
7031static DEFINE_MUTEX(shares_mutex);
7032
7033int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7034{
7035 int i;
7036 unsigned long flags;
7037
7038 /*
7039 * We can't change the weight of the root cgroup.
7040 */
7041 if (!tg->se[0])
7042 return -EINVAL;
7043
7044 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7045
7046 mutex_lock(&shares_mutex);
7047 if (tg->shares == shares)
7048 goto done;
7049
7050 tg->shares = shares;
7051 for_each_possible_cpu(i) {
7052 struct rq *rq = cpu_rq(i);
7053 struct sched_entity *se;
7054
7055 se = tg->se[i];
7056 /* Propagate contribution to hierarchy */
7057 raw_spin_lock_irqsave(&rq->lock, flags);
Frederic Weisbecker71b1da42013-04-12 01:50:59 +02007058
7059 /* Possible calls to update_curr() need rq clock */
7060 update_rq_clock(rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08007061 for_each_sched_entity(se)
Peter Zijlstra029632f2011-10-25 10:00:11 +02007062 update_cfs_shares(group_cfs_rq(se));
7063 raw_spin_unlock_irqrestore(&rq->lock, flags);
7064 }
7065
7066done:
7067 mutex_unlock(&shares_mutex);
7068 return 0;
7069}
7070#else /* CONFIG_FAIR_GROUP_SCHED */
7071
7072void free_fair_sched_group(struct task_group *tg) { }
7073
7074int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7075{
7076 return 1;
7077}
7078
7079void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7080
7081#endif /* CONFIG_FAIR_GROUP_SCHED */
7082
Peter Zijlstra810b3812008-02-29 15:21:01 -05007083
H Hartley Sweeten6d686f42010-01-13 20:21:52 -07007084static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
Peter Williams0d721ce2009-09-21 01:31:53 +00007085{
7086 struct sched_entity *se = &task->se;
Peter Williams0d721ce2009-09-21 01:31:53 +00007087 unsigned int rr_interval = 0;
7088
7089 /*
7090 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7091 * idle runqueue:
7092 */
Peter Williams0d721ce2009-09-21 01:31:53 +00007093 if (rq->cfs.load.weight)
Zhu Yanhaia59f4e02013-01-08 12:56:52 +08007094 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
Peter Williams0d721ce2009-09-21 01:31:53 +00007095
7096 return rr_interval;
7097}
7098
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007099/*
7100 * All the scheduling class methods:
7101 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02007102const struct sched_class fair_sched_class = {
Ingo Molnar5522d5d2007-10-15 17:00:12 +02007103 .next = &idle_sched_class,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007104 .enqueue_task = enqueue_task_fair,
7105 .dequeue_task = dequeue_task_fair,
7106 .yield_task = yield_task_fair,
Mike Galbraithd95f4122011-02-01 09:50:51 -05007107 .yield_to_task = yield_to_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007108
Ingo Molnar2e09bf52007-10-15 17:00:05 +02007109 .check_preempt_curr = check_preempt_wakeup,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007110
7111 .pick_next_task = pick_next_task_fair,
7112 .put_prev_task = put_prev_task_fair,
7113
Peter Williams681f3e62007-10-24 18:23:51 +02007114#ifdef CONFIG_SMP
Li Zefan4ce72a22008-10-22 15:25:26 +08007115 .select_task_rq = select_task_rq_fair,
Paul Turner0a74bef2012-10-04 13:18:30 +02007116 .migrate_task_rq = migrate_task_rq_fair,
Alex Shi141965c2013-06-26 13:05:39 +08007117
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01007118 .rq_online = rq_online_fair,
7119 .rq_offline = rq_offline_fair,
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01007120
7121 .task_waking = task_waking_fair,
Peter Williams681f3e62007-10-24 18:23:51 +02007122#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007123
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02007124 .set_curr_task = set_curr_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007125 .task_tick = task_tick_fair,
Peter Zijlstracd29fe62009-11-27 17:32:46 +01007126 .task_fork = task_fork_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01007127
7128 .prio_changed = prio_changed_fair,
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007129 .switched_from = switched_from_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01007130 .switched_to = switched_to_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05007131
Peter Williams0d721ce2009-09-21 01:31:53 +00007132 .get_rr_interval = get_rr_interval_fair,
7133
Peter Zijlstra810b3812008-02-29 15:21:01 -05007134#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007135 .task_move_group = task_move_group_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05007136#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007137};
7138
7139#ifdef CONFIG_SCHED_DEBUG
Peter Zijlstra029632f2011-10-25 10:00:11 +02007140void print_cfs_stats(struct seq_file *m, int cpu)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007141{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007142 struct cfs_rq *cfs_rq;
7143
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01007144 rcu_read_lock();
Ingo Molnarc3b64f12007-08-09 11:16:51 +02007145 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
Ingo Molnar5cef9ec2007-08-09 11:16:47 +02007146 print_cfs_rq(m, cpu, cfs_rq);
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01007147 rcu_read_unlock();
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007148}
7149#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02007150
7151__init void init_sched_fair_class(void)
7152{
7153#ifdef CONFIG_SMP
7154 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7155
Frederic Weisbecker3451d022011-08-10 23:21:01 +02007156#ifdef CONFIG_NO_HZ_COMMON
Diwakar Tundlam554ceca2012-03-07 14:44:26 -08007157 nohz.next_balance = jiffies;
Peter Zijlstra029632f2011-10-25 10:00:11 +02007158 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
Suresh Siddha71325962012-01-19 18:28:57 -08007159 cpu_notifier(sched_ilb_notifier, 0);
Peter Zijlstra029632f2011-10-25 10:00:11 +02007160#endif
7161#endif /* SMP */
7162
7163}