blob: bd9002e72cb6ae9b40c49387e901178eea3a3d5d [file] [log] [blame]
Auke Kokbc7f75f2007-09-17 12:30:59 -07001/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
Bruce Allanad680762008-03-28 09:15:03 -07004 Copyright(c) 1999 - 2008 Intel Corporation.
Auke Kokbc7f75f2007-09-17 12:30:59 -07005
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/*
Bruce Allan16059272008-11-21 16:51:06 -080030 * 82562G 10/100 Network Connection
Auke Kokbc7f75f2007-09-17 12:30:59 -070031 * 82562G-2 10/100 Network Connection
32 * 82562GT 10/100 Network Connection
33 * 82562GT-2 10/100 Network Connection
34 * 82562V 10/100 Network Connection
35 * 82562V-2 10/100 Network Connection
36 * 82566DC-2 Gigabit Network Connection
37 * 82566DC Gigabit Network Connection
38 * 82566DM-2 Gigabit Network Connection
39 * 82566DM Gigabit Network Connection
40 * 82566MC Gigabit Network Connection
41 * 82566MM Gigabit Network Connection
Bruce Allan97ac8ca2008-04-29 09:16:05 -070042 * 82567LM Gigabit Network Connection
43 * 82567LF Gigabit Network Connection
Bruce Allan16059272008-11-21 16:51:06 -080044 * 82567V Gigabit Network Connection
Bruce Allan97ac8ca2008-04-29 09:16:05 -070045 * 82567LM-2 Gigabit Network Connection
46 * 82567LF-2 Gigabit Network Connection
47 * 82567V-2 Gigabit Network Connection
Bruce Allanf4187b52008-08-26 18:36:50 -070048 * 82567LF-3 Gigabit Network Connection
49 * 82567LM-3 Gigabit Network Connection
Bruce Allan2f15f9d2008-08-26 18:36:36 -070050 * 82567LM-4 Gigabit Network Connection
Bruce Allana4f58f52009-06-02 11:29:18 +000051 * 82577LM Gigabit Network Connection
52 * 82577LC Gigabit Network Connection
53 * 82578DM Gigabit Network Connection
54 * 82578DC Gigabit Network Connection
Auke Kokbc7f75f2007-09-17 12:30:59 -070055 */
56
57#include <linux/netdevice.h>
58#include <linux/ethtool.h>
59#include <linux/delay.h>
60#include <linux/pci.h>
61
62#include "e1000.h"
63
64#define ICH_FLASH_GFPREG 0x0000
65#define ICH_FLASH_HSFSTS 0x0004
66#define ICH_FLASH_HSFCTL 0x0006
67#define ICH_FLASH_FADDR 0x0008
68#define ICH_FLASH_FDATA0 0x0010
Bruce Allan4a770352008-10-01 17:18:35 -070069#define ICH_FLASH_PR0 0x0074
Auke Kokbc7f75f2007-09-17 12:30:59 -070070
71#define ICH_FLASH_READ_COMMAND_TIMEOUT 500
72#define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
73#define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
74#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
75#define ICH_FLASH_CYCLE_REPEAT_COUNT 10
76
77#define ICH_CYCLE_READ 0
78#define ICH_CYCLE_WRITE 2
79#define ICH_CYCLE_ERASE 3
80
81#define FLASH_GFPREG_BASE_MASK 0x1FFF
82#define FLASH_SECTOR_ADDR_SHIFT 12
83
84#define ICH_FLASH_SEG_SIZE_256 256
85#define ICH_FLASH_SEG_SIZE_4K 4096
86#define ICH_FLASH_SEG_SIZE_8K 8192
87#define ICH_FLASH_SEG_SIZE_64K 65536
88
89
90#define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
91
92#define E1000_ICH_MNG_IAMT_MODE 0x2
93
94#define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
95 (ID_LED_DEF1_OFF2 << 8) | \
96 (ID_LED_DEF1_ON2 << 4) | \
97 (ID_LED_DEF1_DEF2))
98
99#define E1000_ICH_NVM_SIG_WORD 0x13
100#define E1000_ICH_NVM_SIG_MASK 0xC000
Bruce Allane2434552008-11-21 17:02:41 -0800101#define E1000_ICH_NVM_VALID_SIG_MASK 0xC0
102#define E1000_ICH_NVM_SIG_VALUE 0x80
Auke Kokbc7f75f2007-09-17 12:30:59 -0700103
104#define E1000_ICH8_LAN_INIT_TIMEOUT 1500
105
106#define E1000_FEXTNVM_SW_CONFIG 1
107#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
108
109#define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
110
111#define E1000_ICH_RAR_ENTRIES 7
112
113#define PHY_PAGE_SHIFT 5
114#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
115 ((reg) & MAX_PHY_REG_ADDRESS))
116#define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
117#define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
118
119#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
120#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
121#define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
122
Bruce Allana4f58f52009-06-02 11:29:18 +0000123#define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */
124
Bruce Allan53ac5a82009-10-26 11:23:06 +0000125#define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in milliseconds */
126
Bruce Allanf523d212009-10-29 13:45:45 +0000127/* SMBus Address Phy Register */
128#define HV_SMB_ADDR PHY_REG(768, 26)
129#define HV_SMB_ADDR_PEC_EN 0x0200
130#define HV_SMB_ADDR_VALID 0x0080
131
132/* Strapping Option Register - RO */
133#define E1000_STRAP 0x0000C
134#define E1000_STRAP_SMBUS_ADDRESS_MASK 0x00FE0000
135#define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
136
Bruce Allanfa2ce132009-10-26 11:23:25 +0000137/* OEM Bits Phy Register */
138#define HV_OEM_BITS PHY_REG(768, 25)
139#define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */
Bruce Allanf523d212009-10-29 13:45:45 +0000140#define HV_OEM_BITS_GBE_DIS 0x0040 /* Gigabit Disable */
Bruce Allanfa2ce132009-10-26 11:23:25 +0000141#define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
142
Bruce Allan1d5846b2009-10-29 13:46:05 +0000143#define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
144#define E1000_NVM_K1_ENABLE 0x1 /* NVM Enable K1 bit */
145
Auke Kokbc7f75f2007-09-17 12:30:59 -0700146/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
147/* Offset 04h HSFSTS */
148union ich8_hws_flash_status {
149 struct ich8_hsfsts {
150 u16 flcdone :1; /* bit 0 Flash Cycle Done */
151 u16 flcerr :1; /* bit 1 Flash Cycle Error */
152 u16 dael :1; /* bit 2 Direct Access error Log */
153 u16 berasesz :2; /* bit 4:3 Sector Erase Size */
154 u16 flcinprog :1; /* bit 5 flash cycle in Progress */
155 u16 reserved1 :2; /* bit 13:6 Reserved */
156 u16 reserved2 :6; /* bit 13:6 Reserved */
157 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
158 u16 flockdn :1; /* bit 15 Flash Config Lock-Down */
159 } hsf_status;
160 u16 regval;
161};
162
163/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
164/* Offset 06h FLCTL */
165union ich8_hws_flash_ctrl {
166 struct ich8_hsflctl {
167 u16 flcgo :1; /* 0 Flash Cycle Go */
168 u16 flcycle :2; /* 2:1 Flash Cycle */
169 u16 reserved :5; /* 7:3 Reserved */
170 u16 fldbcount :2; /* 9:8 Flash Data Byte Count */
171 u16 flockdn :6; /* 15:10 Reserved */
172 } hsf_ctrl;
173 u16 regval;
174};
175
176/* ICH Flash Region Access Permissions */
177union ich8_hws_flash_regacc {
178 struct ich8_flracc {
179 u32 grra :8; /* 0:7 GbE region Read Access */
180 u32 grwa :8; /* 8:15 GbE region Write Access */
181 u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */
182 u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */
183 } hsf_flregacc;
184 u16 regval;
185};
186
Bruce Allan4a770352008-10-01 17:18:35 -0700187/* ICH Flash Protected Region */
188union ich8_flash_protected_range {
189 struct ich8_pr {
190 u32 base:13; /* 0:12 Protected Range Base */
191 u32 reserved1:2; /* 13:14 Reserved */
192 u32 rpe:1; /* 15 Read Protection Enable */
193 u32 limit:13; /* 16:28 Protected Range Limit */
194 u32 reserved2:2; /* 29:30 Reserved */
195 u32 wpe:1; /* 31 Write Protection Enable */
196 } range;
197 u32 regval;
198};
199
Auke Kokbc7f75f2007-09-17 12:30:59 -0700200static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
201static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
202static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
203static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw);
204static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
205static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
206 u32 offset, u8 byte);
Bruce Allanf4187b52008-08-26 18:36:50 -0700207static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
208 u8 *data);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700209static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
210 u16 *data);
211static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
212 u8 size, u16 *data);
213static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
214static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
Bruce Allanf4187b52008-08-26 18:36:50 -0700215static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
Bruce Allana4f58f52009-06-02 11:29:18 +0000216static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
217static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
218static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
219static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
220static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
221static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
222static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
223static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
Bruce Allanfa2ce132009-10-26 11:23:25 +0000224static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
Bruce Allanf523d212009-10-29 13:45:45 +0000225static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
Bruce Allan1d5846b2009-10-29 13:46:05 +0000226static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700227
228static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
229{
230 return readw(hw->flash_address + reg);
231}
232
233static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
234{
235 return readl(hw->flash_address + reg);
236}
237
238static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
239{
240 writew(val, hw->flash_address + reg);
241}
242
243static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
244{
245 writel(val, hw->flash_address + reg);
246}
247
248#define er16flash(reg) __er16flash(hw, (reg))
249#define er32flash(reg) __er32flash(hw, (reg))
250#define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
251#define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
252
253/**
Bruce Allana4f58f52009-06-02 11:29:18 +0000254 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
255 * @hw: pointer to the HW structure
256 *
257 * Initialize family-specific PHY parameters and function pointers.
258 **/
259static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
260{
261 struct e1000_phy_info *phy = &hw->phy;
262 s32 ret_val = 0;
263
264 phy->addr = 1;
265 phy->reset_delay_us = 100;
266
267 phy->ops.check_polarity = e1000_check_polarity_ife_ich8lan;
268 phy->ops.read_phy_reg = e1000_read_phy_reg_hv;
Bruce Allan5ccdcec2009-10-26 11:24:02 +0000269 phy->ops.read_phy_reg_locked = e1000_read_phy_reg_hv_locked;
Bruce Allanfa2ce132009-10-26 11:23:25 +0000270 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
271 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
Bruce Allana4f58f52009-06-02 11:29:18 +0000272 phy->ops.write_phy_reg = e1000_write_phy_reg_hv;
Bruce Allan5ccdcec2009-10-26 11:24:02 +0000273 phy->ops.write_phy_reg_locked = e1000_write_phy_reg_hv_locked;
Bruce Allana4f58f52009-06-02 11:29:18 +0000274 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
275
276 phy->id = e1000_phy_unknown;
277 e1000e_get_phy_id(hw);
278 phy->type = e1000e_get_phy_type_from_id(phy->id);
279
280 if (phy->type == e1000_phy_82577) {
281 phy->ops.check_polarity = e1000_check_polarity_82577;
282 phy->ops.force_speed_duplex =
283 e1000_phy_force_speed_duplex_82577;
284 phy->ops.get_cable_length = e1000_get_cable_length_82577;
285 phy->ops.get_phy_info = e1000_get_phy_info_82577;
286 phy->ops.commit_phy = e1000e_phy_sw_reset;
287 }
288
289 return ret_val;
290}
291
292/**
Auke Kokbc7f75f2007-09-17 12:30:59 -0700293 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
294 * @hw: pointer to the HW structure
295 *
296 * Initialize family-specific PHY parameters and function pointers.
297 **/
298static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
299{
300 struct e1000_phy_info *phy = &hw->phy;
301 s32 ret_val;
302 u16 i = 0;
303
304 phy->addr = 1;
305 phy->reset_delay_us = 100;
306
Bruce Allan97ac8ca2008-04-29 09:16:05 -0700307 /*
308 * We may need to do this twice - once for IGP and if that fails,
309 * we'll set BM func pointers and try again
310 */
311 ret_val = e1000e_determine_phy_address(hw);
312 if (ret_val) {
313 hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
314 hw->phy.ops.read_phy_reg = e1000e_read_phy_reg_bm;
315 ret_val = e1000e_determine_phy_address(hw);
316 if (ret_val)
317 return ret_val;
318 }
319
Auke Kokbc7f75f2007-09-17 12:30:59 -0700320 phy->id = 0;
321 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
322 (i++ < 100)) {
323 msleep(1);
324 ret_val = e1000e_get_phy_id(hw);
325 if (ret_val)
326 return ret_val;
327 }
328
329 /* Verify phy id */
330 switch (phy->id) {
331 case IGP03E1000_E_PHY_ID:
332 phy->type = e1000_phy_igp_3;
333 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
Bruce Allan5ccdcec2009-10-26 11:24:02 +0000334 phy->ops.read_phy_reg_locked = e1000e_read_phy_reg_igp_locked;
335 phy->ops.write_phy_reg_locked = e1000e_write_phy_reg_igp_locked;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700336 break;
337 case IFE_E_PHY_ID:
338 case IFE_PLUS_E_PHY_ID:
339 case IFE_C_E_PHY_ID:
340 phy->type = e1000_phy_ife;
341 phy->autoneg_mask = E1000_ALL_NOT_GIG;
342 break;
Bruce Allan97ac8ca2008-04-29 09:16:05 -0700343 case BME1000_E_PHY_ID:
344 phy->type = e1000_phy_bm;
345 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
346 hw->phy.ops.read_phy_reg = e1000e_read_phy_reg_bm;
347 hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
348 hw->phy.ops.commit_phy = e1000e_phy_sw_reset;
349 break;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700350 default:
351 return -E1000_ERR_PHY;
352 break;
353 }
354
Bruce Allana4f58f52009-06-02 11:29:18 +0000355 phy->ops.check_polarity = e1000_check_polarity_ife_ich8lan;
356
Auke Kokbc7f75f2007-09-17 12:30:59 -0700357 return 0;
358}
359
360/**
361 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
362 * @hw: pointer to the HW structure
363 *
364 * Initialize family-specific NVM parameters and function
365 * pointers.
366 **/
367static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
368{
369 struct e1000_nvm_info *nvm = &hw->nvm;
370 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
Bruce Allan148675a2009-08-07 07:41:56 +0000371 u32 gfpreg, sector_base_addr, sector_end_addr;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700372 u16 i;
373
Bruce Allanad680762008-03-28 09:15:03 -0700374 /* Can't read flash registers if the register set isn't mapped. */
Auke Kokbc7f75f2007-09-17 12:30:59 -0700375 if (!hw->flash_address) {
376 hw_dbg(hw, "ERROR: Flash registers not mapped\n");
377 return -E1000_ERR_CONFIG;
378 }
379
380 nvm->type = e1000_nvm_flash_sw;
381
382 gfpreg = er32flash(ICH_FLASH_GFPREG);
383
Bruce Allanad680762008-03-28 09:15:03 -0700384 /*
385 * sector_X_addr is a "sector"-aligned address (4096 bytes)
Auke Kokbc7f75f2007-09-17 12:30:59 -0700386 * Add 1 to sector_end_addr since this sector is included in
Bruce Allanad680762008-03-28 09:15:03 -0700387 * the overall size.
388 */
Auke Kokbc7f75f2007-09-17 12:30:59 -0700389 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
390 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
391
392 /* flash_base_addr is byte-aligned */
393 nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
394
Bruce Allanad680762008-03-28 09:15:03 -0700395 /*
396 * find total size of the NVM, then cut in half since the total
397 * size represents two separate NVM banks.
398 */
Auke Kokbc7f75f2007-09-17 12:30:59 -0700399 nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
400 << FLASH_SECTOR_ADDR_SHIFT;
401 nvm->flash_bank_size /= 2;
402 /* Adjust to word count */
403 nvm->flash_bank_size /= sizeof(u16);
404
405 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
406
407 /* Clear shadow ram */
408 for (i = 0; i < nvm->word_size; i++) {
409 dev_spec->shadow_ram[i].modified = 0;
410 dev_spec->shadow_ram[i].value = 0xFFFF;
411 }
412
413 return 0;
414}
415
416/**
417 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
418 * @hw: pointer to the HW structure
419 *
420 * Initialize family-specific MAC parameters and function
421 * pointers.
422 **/
423static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
424{
425 struct e1000_hw *hw = &adapter->hw;
426 struct e1000_mac_info *mac = &hw->mac;
427
428 /* Set media type function pointer */
Jeff Kirsher318a94d2008-03-28 09:15:16 -0700429 hw->phy.media_type = e1000_media_type_copper;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700430
431 /* Set mta register count */
432 mac->mta_reg_count = 32;
433 /* Set rar entry count */
434 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
435 if (mac->type == e1000_ich8lan)
436 mac->rar_entry_count--;
437 /* Set if manageability features are enabled. */
438 mac->arc_subsystem_valid = 1;
439
Bruce Allana4f58f52009-06-02 11:29:18 +0000440 /* LED operations */
441 switch (mac->type) {
442 case e1000_ich8lan:
443 case e1000_ich9lan:
444 case e1000_ich10lan:
445 /* ID LED init */
446 mac->ops.id_led_init = e1000e_id_led_init;
447 /* setup LED */
448 mac->ops.setup_led = e1000e_setup_led_generic;
449 /* cleanup LED */
450 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
451 /* turn on/off LED */
452 mac->ops.led_on = e1000_led_on_ich8lan;
453 mac->ops.led_off = e1000_led_off_ich8lan;
454 break;
455 case e1000_pchlan:
456 /* ID LED init */
457 mac->ops.id_led_init = e1000_id_led_init_pchlan;
458 /* setup LED */
459 mac->ops.setup_led = e1000_setup_led_pchlan;
460 /* cleanup LED */
461 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
462 /* turn on/off LED */
463 mac->ops.led_on = e1000_led_on_pchlan;
464 mac->ops.led_off = e1000_led_off_pchlan;
465 break;
466 default:
467 break;
468 }
469
Auke Kokbc7f75f2007-09-17 12:30:59 -0700470 /* Enable PCS Lock-loss workaround for ICH8 */
471 if (mac->type == e1000_ich8lan)
472 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, 1);
473
474 return 0;
475}
476
Bruce Allan7d3cabb2009-07-01 13:29:08 +0000477/**
478 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
479 * @hw: pointer to the HW structure
480 *
481 * Checks to see of the link status of the hardware has changed. If a
482 * change in link status has been detected, then we read the PHY registers
483 * to get the current speed/duplex if link exists.
484 **/
485static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
486{
487 struct e1000_mac_info *mac = &hw->mac;
488 s32 ret_val;
489 bool link;
490
491 /*
492 * We only want to go out to the PHY registers to see if Auto-Neg
493 * has completed and/or if our link status has changed. The
494 * get_link_status flag is set upon receiving a Link Status
495 * Change or Rx Sequence Error interrupt.
496 */
497 if (!mac->get_link_status) {
498 ret_val = 0;
499 goto out;
500 }
501
Bruce Allan7d3cabb2009-07-01 13:29:08 +0000502 /*
503 * First we want to see if the MII Status Register reports
504 * link. If so, then we want to get the current speed/duplex
505 * of the PHY.
506 */
507 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
508 if (ret_val)
509 goto out;
510
Bruce Allan1d5846b2009-10-29 13:46:05 +0000511 if (hw->mac.type == e1000_pchlan) {
512 ret_val = e1000_k1_gig_workaround_hv(hw, link);
513 if (ret_val)
514 goto out;
515 }
516
Bruce Allan7d3cabb2009-07-01 13:29:08 +0000517 if (!link)
518 goto out; /* No link detected */
519
520 mac->get_link_status = false;
521
522 if (hw->phy.type == e1000_phy_82578) {
523 ret_val = e1000_link_stall_workaround_hv(hw);
524 if (ret_val)
525 goto out;
526 }
527
528 /*
529 * Check if there was DownShift, must be checked
530 * immediately after link-up
531 */
532 e1000e_check_downshift(hw);
533
534 /*
535 * If we are forcing speed/duplex, then we simply return since
536 * we have already determined whether we have link or not.
537 */
538 if (!mac->autoneg) {
539 ret_val = -E1000_ERR_CONFIG;
540 goto out;
541 }
542
543 /*
544 * Auto-Neg is enabled. Auto Speed Detection takes care
545 * of MAC speed/duplex configuration. So we only need to
546 * configure Collision Distance in the MAC.
547 */
548 e1000e_config_collision_dist(hw);
549
550 /*
551 * Configure Flow Control now that Auto-Neg has completed.
552 * First, we need to restore the desired flow control
553 * settings because we may have had to re-autoneg with a
554 * different link partner.
555 */
556 ret_val = e1000e_config_fc_after_link_up(hw);
557 if (ret_val)
558 hw_dbg(hw, "Error configuring flow control\n");
559
560out:
561 return ret_val;
562}
563
Jeff Kirsher69e3fd82008-04-02 13:48:18 -0700564static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
Auke Kokbc7f75f2007-09-17 12:30:59 -0700565{
566 struct e1000_hw *hw = &adapter->hw;
567 s32 rc;
568
569 rc = e1000_init_mac_params_ich8lan(adapter);
570 if (rc)
571 return rc;
572
573 rc = e1000_init_nvm_params_ich8lan(hw);
574 if (rc)
575 return rc;
576
Bruce Allana4f58f52009-06-02 11:29:18 +0000577 if (hw->mac.type == e1000_pchlan)
578 rc = e1000_init_phy_params_pchlan(hw);
579 else
580 rc = e1000_init_phy_params_ich8lan(hw);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700581 if (rc)
582 return rc;
583
Bruce Allan2adc55c2009-06-02 11:28:58 +0000584 if (adapter->hw.phy.type == e1000_phy_ife) {
585 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
586 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
587 }
588
Auke Kokbc7f75f2007-09-17 12:30:59 -0700589 if ((adapter->hw.mac.type == e1000_ich8lan) &&
590 (adapter->hw.phy.type == e1000_phy_igp_3))
591 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
592
593 return 0;
594}
595
Thomas Gleixner717d4382008-10-02 16:33:40 -0700596static DEFINE_MUTEX(nvm_mutex);
Thomas Gleixner717d4382008-10-02 16:33:40 -0700597
Auke Kokbc7f75f2007-09-17 12:30:59 -0700598/**
Bruce Allanca15df52009-10-26 11:23:43 +0000599 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
600 * @hw: pointer to the HW structure
601 *
602 * Acquires the mutex for performing NVM operations.
603 **/
604static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
605{
606 mutex_lock(&nvm_mutex);
607
608 return 0;
609}
610
611/**
612 * e1000_release_nvm_ich8lan - Release NVM mutex
613 * @hw: pointer to the HW structure
614 *
615 * Releases the mutex used while performing NVM operations.
616 **/
617static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
618{
619 mutex_unlock(&nvm_mutex);
620
621 return;
622}
623
624static DEFINE_MUTEX(swflag_mutex);
625
626/**
Auke Kokbc7f75f2007-09-17 12:30:59 -0700627 * e1000_acquire_swflag_ich8lan - Acquire software control flag
628 * @hw: pointer to the HW structure
629 *
Bruce Allanca15df52009-10-26 11:23:43 +0000630 * Acquires the software control flag for performing PHY and select
631 * MAC CSR accesses.
Auke Kokbc7f75f2007-09-17 12:30:59 -0700632 **/
633static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
634{
Bruce Allan373a88d2009-08-07 07:41:37 +0000635 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
636 s32 ret_val = 0;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700637
Linus Torvalds95b866d2008-10-03 09:18:17 -0700638 might_sleep();
Thomas Gleixner717d4382008-10-02 16:33:40 -0700639
Bruce Allanca15df52009-10-26 11:23:43 +0000640 mutex_lock(&swflag_mutex);
Thomas Gleixner717d4382008-10-02 16:33:40 -0700641
Auke Kokbc7f75f2007-09-17 12:30:59 -0700642 while (timeout) {
643 extcnf_ctrl = er32(EXTCNF_CTRL);
Bruce Allan373a88d2009-08-07 07:41:37 +0000644 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
645 break;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700646
Auke Kokbc7f75f2007-09-17 12:30:59 -0700647 mdelay(1);
648 timeout--;
649 }
650
651 if (!timeout) {
Bruce Allan373a88d2009-08-07 07:41:37 +0000652 hw_dbg(hw, "SW/FW/HW has locked the resource for too long.\n");
653 ret_val = -E1000_ERR_CONFIG;
654 goto out;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700655 }
656
Bruce Allan53ac5a82009-10-26 11:23:06 +0000657 timeout = SW_FLAG_TIMEOUT;
Bruce Allan373a88d2009-08-07 07:41:37 +0000658
659 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
660 ew32(EXTCNF_CTRL, extcnf_ctrl);
661
662 while (timeout) {
663 extcnf_ctrl = er32(EXTCNF_CTRL);
664 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
665 break;
666
667 mdelay(1);
668 timeout--;
669 }
670
671 if (!timeout) {
672 hw_dbg(hw, "Failed to acquire the semaphore.\n");
673 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
674 ew32(EXTCNF_CTRL, extcnf_ctrl);
675 ret_val = -E1000_ERR_CONFIG;
676 goto out;
677 }
678
679out:
680 if (ret_val)
Bruce Allanca15df52009-10-26 11:23:43 +0000681 mutex_unlock(&swflag_mutex);
Bruce Allan373a88d2009-08-07 07:41:37 +0000682
683 return ret_val;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700684}
685
686/**
687 * e1000_release_swflag_ich8lan - Release software control flag
688 * @hw: pointer to the HW structure
689 *
Bruce Allanca15df52009-10-26 11:23:43 +0000690 * Releases the software control flag for performing PHY and select
691 * MAC CSR accesses.
Auke Kokbc7f75f2007-09-17 12:30:59 -0700692 **/
693static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
694{
695 u32 extcnf_ctrl;
696
697 extcnf_ctrl = er32(EXTCNF_CTRL);
698 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
699 ew32(EXTCNF_CTRL, extcnf_ctrl);
Thomas Gleixner717d4382008-10-02 16:33:40 -0700700
Bruce Allanca15df52009-10-26 11:23:43 +0000701 mutex_unlock(&swflag_mutex);
702
703 return;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700704}
705
706/**
Bruce Allan4662e822008-08-26 18:37:06 -0700707 * e1000_check_mng_mode_ich8lan - Checks management mode
708 * @hw: pointer to the HW structure
709 *
710 * This checks if the adapter has manageability enabled.
711 * This is a function pointer entry point only called by read/write
712 * routines for the PHY and NVM parts.
713 **/
714static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
715{
716 u32 fwsm = er32(FWSM);
717
718 return (fwsm & E1000_FWSM_MODE_MASK) ==
719 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
720}
721
722/**
Auke Kokbc7f75f2007-09-17 12:30:59 -0700723 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
724 * @hw: pointer to the HW structure
725 *
726 * Checks if firmware is blocking the reset of the PHY.
727 * This is a function pointer entry point only called by
728 * reset routines.
729 **/
730static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
731{
732 u32 fwsm;
733
734 fwsm = er32(FWSM);
735
736 return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
737}
738
739/**
740 * e1000_phy_force_speed_duplex_ich8lan - Force PHY speed & duplex
741 * @hw: pointer to the HW structure
742 *
743 * Forces the speed and duplex settings of the PHY.
744 * This is a function pointer entry point only called by
745 * PHY setup routines.
746 **/
747static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw)
748{
749 struct e1000_phy_info *phy = &hw->phy;
750 s32 ret_val;
751 u16 data;
752 bool link;
753
754 if (phy->type != e1000_phy_ife) {
755 ret_val = e1000e_phy_force_speed_duplex_igp(hw);
756 return ret_val;
757 }
758
759 ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
760 if (ret_val)
761 return ret_val;
762
763 e1000e_phy_force_speed_duplex_setup(hw, &data);
764
765 ret_val = e1e_wphy(hw, PHY_CONTROL, data);
766 if (ret_val)
767 return ret_val;
768
769 /* Disable MDI-X support for 10/100 */
770 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
771 if (ret_val)
772 return ret_val;
773
774 data &= ~IFE_PMC_AUTO_MDIX;
775 data &= ~IFE_PMC_FORCE_MDIX;
776
777 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
778 if (ret_val)
779 return ret_val;
780
781 hw_dbg(hw, "IFE PMC: %X\n", data);
782
783 udelay(1);
784
Jeff Kirsher318a94d2008-03-28 09:15:16 -0700785 if (phy->autoneg_wait_to_complete) {
Auke Kokbc7f75f2007-09-17 12:30:59 -0700786 hw_dbg(hw, "Waiting for forced speed/duplex link on IFE phy.\n");
787
788 ret_val = e1000e_phy_has_link_generic(hw,
789 PHY_FORCE_LIMIT,
790 100000,
791 &link);
792 if (ret_val)
793 return ret_val;
794
795 if (!link)
796 hw_dbg(hw, "Link taking longer than expected.\n");
797
798 /* Try once more */
799 ret_val = e1000e_phy_has_link_generic(hw,
800 PHY_FORCE_LIMIT,
801 100000,
802 &link);
803 if (ret_val)
804 return ret_val;
805 }
806
807 return 0;
808}
809
810/**
Bruce Allanf523d212009-10-29 13:45:45 +0000811 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
812 * @hw: pointer to the HW structure
813 *
814 * SW should configure the LCD from the NVM extended configuration region
815 * as a workaround for certain parts.
816 **/
817static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
818{
819 struct e1000_phy_info *phy = &hw->phy;
820 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
821 s32 ret_val;
822 u16 word_addr, reg_data, reg_addr, phy_page = 0;
823
824 ret_val = hw->phy.ops.acquire_phy(hw);
825 if (ret_val)
826 return ret_val;
827
828 /*
829 * Initialize the PHY from the NVM on ICH platforms. This
830 * is needed due to an issue where the NVM configuration is
831 * not properly autoloaded after power transitions.
832 * Therefore, after each PHY reset, we will load the
833 * configuration data out of the NVM manually.
834 */
835 if ((hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) ||
836 (hw->mac.type == e1000_pchlan)) {
837 struct e1000_adapter *adapter = hw->adapter;
838
839 /* Check if SW needs to configure the PHY */
840 if ((adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
841 (adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M) ||
842 (hw->mac.type == e1000_pchlan))
843 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
844 else
845 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
846
847 data = er32(FEXTNVM);
848 if (!(data & sw_cfg_mask))
849 goto out;
850
851 /* Wait for basic configuration completes before proceeding */
852 e1000_lan_init_done_ich8lan(hw);
853
854 /*
855 * Make sure HW does not configure LCD from PHY
856 * extended configuration before SW configuration
857 */
858 data = er32(EXTCNF_CTRL);
859 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
860 goto out;
861
862 cnf_size = er32(EXTCNF_SIZE);
863 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
864 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
865 if (!cnf_size)
866 goto out;
867
868 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
869 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
870
871 if (!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
872 (hw->mac.type == e1000_pchlan)) {
873 /*
874 * HW configures the SMBus address and LEDs when the
875 * OEM and LCD Write Enable bits are set in the NVM.
876 * When both NVM bits are cleared, SW will configure
877 * them instead.
878 */
879 data = er32(STRAP);
880 data &= E1000_STRAP_SMBUS_ADDRESS_MASK;
881 reg_data = data >> E1000_STRAP_SMBUS_ADDRESS_SHIFT;
882 reg_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
883 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR,
884 reg_data);
885 if (ret_val)
886 goto out;
887
888 data = er32(LEDCTL);
889 ret_val = e1000_write_phy_reg_hv_locked(hw,
890 HV_LED_CONFIG,
891 (u16)data);
892 if (ret_val)
893 goto out;
894 }
895 /* Configure LCD from extended configuration region. */
896
897 /* cnf_base_addr is in DWORD */
898 word_addr = (u16)(cnf_base_addr << 1);
899
900 for (i = 0; i < cnf_size; i++) {
901 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
902 &reg_data);
903 if (ret_val)
904 goto out;
905
906 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
907 1, &reg_addr);
908 if (ret_val)
909 goto out;
910
911 /* Save off the PHY page for future writes. */
912 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
913 phy_page = reg_data;
914 continue;
915 }
916
917 reg_addr &= PHY_REG_MASK;
918 reg_addr |= phy_page;
919
920 ret_val = phy->ops.write_phy_reg_locked(hw,
921 (u32)reg_addr,
922 reg_data);
923 if (ret_val)
924 goto out;
925 }
926 }
927
928out:
929 hw->phy.ops.release_phy(hw);
930 return ret_val;
931}
932
933/**
Bruce Allan1d5846b2009-10-29 13:46:05 +0000934 * e1000_k1_gig_workaround_hv - K1 Si workaround
935 * @hw: pointer to the HW structure
936 * @link: link up bool flag
937 *
938 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
939 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
940 * If link is down, the function will restore the default K1 setting located
941 * in the NVM.
942 **/
943static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
944{
945 s32 ret_val = 0;
946 u16 status_reg = 0;
947 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
948
949 if (hw->mac.type != e1000_pchlan)
950 goto out;
951
952 /* Wrap the whole flow with the sw flag */
953 ret_val = hw->phy.ops.acquire_phy(hw);
954 if (ret_val)
955 goto out;
956
957 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
958 if (link) {
959 if (hw->phy.type == e1000_phy_82578) {
960 ret_val = hw->phy.ops.read_phy_reg_locked(hw,
961 BM_CS_STATUS,
962 &status_reg);
963 if (ret_val)
964 goto release;
965
966 status_reg &= BM_CS_STATUS_LINK_UP |
967 BM_CS_STATUS_RESOLVED |
968 BM_CS_STATUS_SPEED_MASK;
969
970 if (status_reg == (BM_CS_STATUS_LINK_UP |
971 BM_CS_STATUS_RESOLVED |
972 BM_CS_STATUS_SPEED_1000))
973 k1_enable = false;
974 }
975
976 if (hw->phy.type == e1000_phy_82577) {
977 ret_val = hw->phy.ops.read_phy_reg_locked(hw,
978 HV_M_STATUS,
979 &status_reg);
980 if (ret_val)
981 goto release;
982
983 status_reg &= HV_M_STATUS_LINK_UP |
984 HV_M_STATUS_AUTONEG_COMPLETE |
985 HV_M_STATUS_SPEED_MASK;
986
987 if (status_reg == (HV_M_STATUS_LINK_UP |
988 HV_M_STATUS_AUTONEG_COMPLETE |
989 HV_M_STATUS_SPEED_1000))
990 k1_enable = false;
991 }
992
993 /* Link stall fix for link up */
994 ret_val = hw->phy.ops.write_phy_reg_locked(hw, PHY_REG(770, 19),
995 0x0100);
996 if (ret_val)
997 goto release;
998
999 } else {
1000 /* Link stall fix for link down */
1001 ret_val = hw->phy.ops.write_phy_reg_locked(hw, PHY_REG(770, 19),
1002 0x4100);
1003 if (ret_val)
1004 goto release;
1005 }
1006
1007 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1008
1009release:
1010 hw->phy.ops.release_phy(hw);
1011out:
1012 return ret_val;
1013}
1014
1015/**
1016 * e1000_configure_k1_ich8lan - Configure K1 power state
1017 * @hw: pointer to the HW structure
1018 * @enable: K1 state to configure
1019 *
1020 * Configure the K1 power state based on the provided parameter.
1021 * Assumes semaphore already acquired.
1022 *
1023 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1024 **/
Bruce Allanbb436b22009-11-20 23:24:11 +00001025s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
Bruce Allan1d5846b2009-10-29 13:46:05 +00001026{
1027 s32 ret_val = 0;
1028 u32 ctrl_reg = 0;
1029 u32 ctrl_ext = 0;
1030 u32 reg = 0;
1031 u16 kmrn_reg = 0;
1032
1033 ret_val = e1000e_read_kmrn_reg_locked(hw,
1034 E1000_KMRNCTRLSTA_K1_CONFIG,
1035 &kmrn_reg);
1036 if (ret_val)
1037 goto out;
1038
1039 if (k1_enable)
1040 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1041 else
1042 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1043
1044 ret_val = e1000e_write_kmrn_reg_locked(hw,
1045 E1000_KMRNCTRLSTA_K1_CONFIG,
1046 kmrn_reg);
1047 if (ret_val)
1048 goto out;
1049
1050 udelay(20);
1051 ctrl_ext = er32(CTRL_EXT);
1052 ctrl_reg = er32(CTRL);
1053
1054 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1055 reg |= E1000_CTRL_FRCSPD;
1056 ew32(CTRL, reg);
1057
1058 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1059 udelay(20);
1060 ew32(CTRL, ctrl_reg);
1061 ew32(CTRL_EXT, ctrl_ext);
1062 udelay(20);
1063
1064out:
1065 return ret_val;
1066}
1067
1068/**
Bruce Allanf523d212009-10-29 13:45:45 +00001069 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1070 * @hw: pointer to the HW structure
1071 * @d0_state: boolean if entering d0 or d3 device state
1072 *
1073 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1074 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
1075 * in NVM determines whether HW should configure LPLU and Gbe Disable.
1076 **/
1077static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1078{
1079 s32 ret_val = 0;
1080 u32 mac_reg;
1081 u16 oem_reg;
1082
1083 if (hw->mac.type != e1000_pchlan)
1084 return ret_val;
1085
1086 ret_val = hw->phy.ops.acquire_phy(hw);
1087 if (ret_val)
1088 return ret_val;
1089
1090 mac_reg = er32(EXTCNF_CTRL);
1091 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1092 goto out;
1093
1094 mac_reg = er32(FEXTNVM);
1095 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1096 goto out;
1097
1098 mac_reg = er32(PHY_CTRL);
1099
1100 ret_val = hw->phy.ops.read_phy_reg_locked(hw, HV_OEM_BITS, &oem_reg);
1101 if (ret_val)
1102 goto out;
1103
1104 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1105
1106 if (d0_state) {
1107 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1108 oem_reg |= HV_OEM_BITS_GBE_DIS;
1109
1110 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1111 oem_reg |= HV_OEM_BITS_LPLU;
1112 } else {
1113 if (mac_reg & E1000_PHY_CTRL_NOND0A_GBE_DISABLE)
1114 oem_reg |= HV_OEM_BITS_GBE_DIS;
1115
1116 if (mac_reg & E1000_PHY_CTRL_NOND0A_LPLU)
1117 oem_reg |= HV_OEM_BITS_LPLU;
1118 }
1119 /* Restart auto-neg to activate the bits */
1120 oem_reg |= HV_OEM_BITS_RESTART_AN;
1121 ret_val = hw->phy.ops.write_phy_reg_locked(hw, HV_OEM_BITS, oem_reg);
1122
1123out:
1124 hw->phy.ops.release_phy(hw);
1125
1126 return ret_val;
1127}
1128
1129
1130/**
Bruce Allana4f58f52009-06-02 11:29:18 +00001131 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1132 * done after every PHY reset.
1133 **/
1134static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1135{
1136 s32 ret_val = 0;
1137
1138 if (hw->mac.type != e1000_pchlan)
1139 return ret_val;
1140
1141 if (((hw->phy.type == e1000_phy_82577) &&
1142 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1143 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1144 /* Disable generation of early preamble */
1145 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1146 if (ret_val)
1147 return ret_val;
1148
1149 /* Preamble tuning for SSC */
1150 ret_val = e1e_wphy(hw, PHY_REG(770, 16), 0xA204);
1151 if (ret_val)
1152 return ret_val;
1153 }
1154
1155 if (hw->phy.type == e1000_phy_82578) {
1156 /*
1157 * Return registers to default by doing a soft reset then
1158 * writing 0x3140 to the control register.
1159 */
1160 if (hw->phy.revision < 2) {
1161 e1000e_phy_sw_reset(hw);
1162 ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
1163 }
1164 }
1165
1166 /* Select page 0 */
1167 ret_val = hw->phy.ops.acquire_phy(hw);
1168 if (ret_val)
1169 return ret_val;
Bruce Allan1d5846b2009-10-29 13:46:05 +00001170
Bruce Allana4f58f52009-06-02 11:29:18 +00001171 hw->phy.addr = 1;
Bruce Allan1d5846b2009-10-29 13:46:05 +00001172 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1173 if (ret_val)
1174 goto out;
Bruce Allana4f58f52009-06-02 11:29:18 +00001175 hw->phy.ops.release_phy(hw);
1176
Bruce Allan1d5846b2009-10-29 13:46:05 +00001177 /*
1178 * Configure the K1 Si workaround during phy reset assuming there is
1179 * link so that it disables K1 if link is in 1Gbps.
1180 */
1181 ret_val = e1000_k1_gig_workaround_hv(hw, true);
1182
1183out:
Bruce Allana4f58f52009-06-02 11:29:18 +00001184 return ret_val;
1185}
1186
1187/**
Bruce Allanfc0c7762009-07-01 13:27:55 +00001188 * e1000_lan_init_done_ich8lan - Check for PHY config completion
1189 * @hw: pointer to the HW structure
1190 *
1191 * Check the appropriate indication the MAC has finished configuring the
1192 * PHY after a software reset.
1193 **/
1194static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
1195{
1196 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
1197
1198 /* Wait for basic configuration completes before proceeding */
1199 do {
1200 data = er32(STATUS);
1201 data &= E1000_STATUS_LAN_INIT_DONE;
1202 udelay(100);
1203 } while ((!data) && --loop);
1204
1205 /*
1206 * If basic configuration is incomplete before the above loop
1207 * count reaches 0, loading the configuration from NVM will
1208 * leave the PHY in a bad state possibly resulting in no link.
1209 */
1210 if (loop == 0)
1211 hw_dbg(hw, "LAN_INIT_DONE not set, increase timeout\n");
1212
1213 /* Clear the Init Done bit for the next init event */
1214 data = er32(STATUS);
1215 data &= ~E1000_STATUS_LAN_INIT_DONE;
1216 ew32(STATUS, data);
1217}
1218
1219/**
Auke Kokbc7f75f2007-09-17 12:30:59 -07001220 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
1221 * @hw: pointer to the HW structure
1222 *
1223 * Resets the PHY
1224 * This is a function pointer entry point called by drivers
1225 * or other shared routines.
1226 **/
1227static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
1228{
Bruce Allanf523d212009-10-29 13:45:45 +00001229 s32 ret_val = 0;
1230 u16 reg;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001231
1232 ret_val = e1000e_phy_hw_reset_generic(hw);
1233 if (ret_val)
1234 return ret_val;
1235
Bruce Allanfc0c7762009-07-01 13:27:55 +00001236 /* Allow time for h/w to get to a quiescent state after reset */
1237 mdelay(10);
1238
Bruce Allana4f58f52009-06-02 11:29:18 +00001239 if (hw->mac.type == e1000_pchlan) {
1240 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
1241 if (ret_val)
1242 return ret_val;
1243 }
1244
Bruce Allandb2932e2009-10-26 11:22:47 +00001245 /* Dummy read to clear the phy wakeup bit after lcd reset */
1246 if (hw->mac.type == e1000_pchlan)
1247 e1e_rphy(hw, BM_WUC, &reg);
1248
Bruce Allanf523d212009-10-29 13:45:45 +00001249 /* Configure the LCD with the extended configuration region in NVM */
1250 ret_val = e1000_sw_lcd_config_ich8lan(hw);
1251 if (ret_val)
1252 goto out;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001253
Bruce Allanf523d212009-10-29 13:45:45 +00001254 /* Configure the LCD with the OEM bits in NVM */
1255 if (hw->mac.type == e1000_pchlan)
1256 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001257
Bruce Allanf523d212009-10-29 13:45:45 +00001258out:
Auke Kokbc7f75f2007-09-17 12:30:59 -07001259 return 0;
1260}
1261
1262/**
1263 * e1000_get_phy_info_ife_ich8lan - Retrieves various IFE PHY states
1264 * @hw: pointer to the HW structure
1265 *
1266 * Populates "phy" structure with various feature states.
1267 * This function is only called by other family-specific
1268 * routines.
1269 **/
1270static s32 e1000_get_phy_info_ife_ich8lan(struct e1000_hw *hw)
1271{
1272 struct e1000_phy_info *phy = &hw->phy;
1273 s32 ret_val;
1274 u16 data;
1275 bool link;
1276
1277 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1278 if (ret_val)
1279 return ret_val;
1280
1281 if (!link) {
1282 hw_dbg(hw, "Phy info is only valid if link is up\n");
1283 return -E1000_ERR_CONFIG;
1284 }
1285
1286 ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
1287 if (ret_val)
1288 return ret_val;
1289 phy->polarity_correction = (!(data & IFE_PSC_AUTO_POLARITY_DISABLE));
1290
1291 if (phy->polarity_correction) {
Bruce Allana4f58f52009-06-02 11:29:18 +00001292 ret_val = phy->ops.check_polarity(hw);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001293 if (ret_val)
1294 return ret_val;
1295 } else {
1296 /* Polarity is forced */
1297 phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
1298 ? e1000_rev_polarity_reversed
1299 : e1000_rev_polarity_normal;
1300 }
1301
1302 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1303 if (ret_val)
1304 return ret_val;
1305
1306 phy->is_mdix = (data & IFE_PMC_MDIX_STATUS);
1307
1308 /* The following parameters are undefined for 10/100 operation. */
1309 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1310 phy->local_rx = e1000_1000t_rx_status_undefined;
1311 phy->remote_rx = e1000_1000t_rx_status_undefined;
1312
1313 return 0;
1314}
1315
1316/**
1317 * e1000_get_phy_info_ich8lan - Calls appropriate PHY type get_phy_info
1318 * @hw: pointer to the HW structure
1319 *
1320 * Wrapper for calling the get_phy_info routines for the appropriate phy type.
1321 * This is a function pointer entry point called by drivers
1322 * or other shared routines.
1323 **/
1324static s32 e1000_get_phy_info_ich8lan(struct e1000_hw *hw)
1325{
1326 switch (hw->phy.type) {
1327 case e1000_phy_ife:
1328 return e1000_get_phy_info_ife_ich8lan(hw);
1329 break;
1330 case e1000_phy_igp_3:
Bruce Allan97ac8ca2008-04-29 09:16:05 -07001331 case e1000_phy_bm:
Bruce Allana4f58f52009-06-02 11:29:18 +00001332 case e1000_phy_82578:
1333 case e1000_phy_82577:
Auke Kokbc7f75f2007-09-17 12:30:59 -07001334 return e1000e_get_phy_info_igp(hw);
1335 break;
1336 default:
1337 break;
1338 }
1339
1340 return -E1000_ERR_PHY_TYPE;
1341}
1342
1343/**
1344 * e1000_check_polarity_ife_ich8lan - Check cable polarity for IFE PHY
1345 * @hw: pointer to the HW structure
1346 *
Auke Kok489815c2008-02-21 15:11:07 -08001347 * Polarity is determined on the polarity reversal feature being enabled.
Auke Kokbc7f75f2007-09-17 12:30:59 -07001348 * This function is only called by other family-specific
1349 * routines.
1350 **/
1351static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw)
1352{
1353 struct e1000_phy_info *phy = &hw->phy;
1354 s32 ret_val;
1355 u16 phy_data, offset, mask;
1356
Bruce Allanad680762008-03-28 09:15:03 -07001357 /*
1358 * Polarity is determined based on the reversal feature being enabled.
Auke Kokbc7f75f2007-09-17 12:30:59 -07001359 */
1360 if (phy->polarity_correction) {
1361 offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1362 mask = IFE_PESC_POLARITY_REVERSED;
1363 } else {
1364 offset = IFE_PHY_SPECIAL_CONTROL;
1365 mask = IFE_PSC_FORCE_POLARITY;
1366 }
1367
1368 ret_val = e1e_rphy(hw, offset, &phy_data);
1369
1370 if (!ret_val)
1371 phy->cable_polarity = (phy_data & mask)
1372 ? e1000_rev_polarity_reversed
1373 : e1000_rev_polarity_normal;
1374
1375 return ret_val;
1376}
1377
1378/**
Bruce Allanfa2ce132009-10-26 11:23:25 +00001379 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
1380 * @hw: pointer to the HW structure
1381 * @active: true to enable LPLU, false to disable
1382 *
1383 * Sets the LPLU state according to the active flag. For PCH, if OEM write
1384 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
1385 * the phy speed. This function will manually set the LPLU bit and restart
1386 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
1387 * since it configures the same bit.
1388 **/
1389static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
1390{
1391 s32 ret_val = 0;
1392 u16 oem_reg;
1393
1394 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
1395 if (ret_val)
1396 goto out;
1397
1398 if (active)
1399 oem_reg |= HV_OEM_BITS_LPLU;
1400 else
1401 oem_reg &= ~HV_OEM_BITS_LPLU;
1402
1403 oem_reg |= HV_OEM_BITS_RESTART_AN;
1404 ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg);
1405
1406out:
1407 return ret_val;
1408}
1409
1410/**
Auke Kokbc7f75f2007-09-17 12:30:59 -07001411 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1412 * @hw: pointer to the HW structure
1413 * @active: TRUE to enable LPLU, FALSE to disable
1414 *
1415 * Sets the LPLU D0 state according to the active flag. When
1416 * activating LPLU this function also disables smart speed
1417 * and vice versa. LPLU will not be activated unless the
1418 * device autonegotiation advertisement meets standards of
1419 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1420 * This is a function pointer entry point only called by
1421 * PHY setup routines.
1422 **/
1423static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1424{
1425 struct e1000_phy_info *phy = &hw->phy;
1426 u32 phy_ctrl;
1427 s32 ret_val = 0;
1428 u16 data;
1429
Bruce Allan97ac8ca2008-04-29 09:16:05 -07001430 if (phy->type == e1000_phy_ife)
Auke Kokbc7f75f2007-09-17 12:30:59 -07001431 return ret_val;
1432
1433 phy_ctrl = er32(PHY_CTRL);
1434
1435 if (active) {
1436 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
1437 ew32(PHY_CTRL, phy_ctrl);
1438
Bruce Allan60f12922009-07-01 13:28:14 +00001439 if (phy->type != e1000_phy_igp_3)
1440 return 0;
1441
Bruce Allanad680762008-03-28 09:15:03 -07001442 /*
1443 * Call gig speed drop workaround on LPLU before accessing
1444 * any PHY registers
1445 */
Bruce Allan60f12922009-07-01 13:28:14 +00001446 if (hw->mac.type == e1000_ich8lan)
Auke Kokbc7f75f2007-09-17 12:30:59 -07001447 e1000e_gig_downshift_workaround_ich8lan(hw);
1448
1449 /* When LPLU is enabled, we should disable SmartSpeed */
1450 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1451 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1452 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1453 if (ret_val)
1454 return ret_val;
1455 } else {
1456 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
1457 ew32(PHY_CTRL, phy_ctrl);
1458
Bruce Allan60f12922009-07-01 13:28:14 +00001459 if (phy->type != e1000_phy_igp_3)
1460 return 0;
1461
Bruce Allanad680762008-03-28 09:15:03 -07001462 /*
1463 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
Auke Kokbc7f75f2007-09-17 12:30:59 -07001464 * during Dx states where the power conservation is most
1465 * important. During driver activity we should enable
Bruce Allanad680762008-03-28 09:15:03 -07001466 * SmartSpeed, so performance is maintained.
1467 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001468 if (phy->smart_speed == e1000_smart_speed_on) {
1469 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
Bruce Allanad680762008-03-28 09:15:03 -07001470 &data);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001471 if (ret_val)
1472 return ret_val;
1473
1474 data |= IGP01E1000_PSCFR_SMART_SPEED;
1475 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
Bruce Allanad680762008-03-28 09:15:03 -07001476 data);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001477 if (ret_val)
1478 return ret_val;
1479 } else if (phy->smart_speed == e1000_smart_speed_off) {
1480 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
Bruce Allanad680762008-03-28 09:15:03 -07001481 &data);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001482 if (ret_val)
1483 return ret_val;
1484
1485 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1486 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
Bruce Allanad680762008-03-28 09:15:03 -07001487 data);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001488 if (ret_val)
1489 return ret_val;
1490 }
1491 }
1492
1493 return 0;
1494}
1495
1496/**
1497 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1498 * @hw: pointer to the HW structure
1499 * @active: TRUE to enable LPLU, FALSE to disable
1500 *
1501 * Sets the LPLU D3 state according to the active flag. When
1502 * activating LPLU this function also disables smart speed
1503 * and vice versa. LPLU will not be activated unless the
1504 * device autonegotiation advertisement meets standards of
1505 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1506 * This is a function pointer entry point only called by
1507 * PHY setup routines.
1508 **/
1509static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1510{
1511 struct e1000_phy_info *phy = &hw->phy;
1512 u32 phy_ctrl;
1513 s32 ret_val;
1514 u16 data;
1515
1516 phy_ctrl = er32(PHY_CTRL);
1517
1518 if (!active) {
1519 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
1520 ew32(PHY_CTRL, phy_ctrl);
Bruce Allan60f12922009-07-01 13:28:14 +00001521
1522 if (phy->type != e1000_phy_igp_3)
1523 return 0;
1524
Bruce Allanad680762008-03-28 09:15:03 -07001525 /*
1526 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
Auke Kokbc7f75f2007-09-17 12:30:59 -07001527 * during Dx states where the power conservation is most
1528 * important. During driver activity we should enable
Bruce Allanad680762008-03-28 09:15:03 -07001529 * SmartSpeed, so performance is maintained.
1530 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001531 if (phy->smart_speed == e1000_smart_speed_on) {
Bruce Allanad680762008-03-28 09:15:03 -07001532 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1533 &data);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001534 if (ret_val)
1535 return ret_val;
1536
1537 data |= IGP01E1000_PSCFR_SMART_SPEED;
Bruce Allanad680762008-03-28 09:15:03 -07001538 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1539 data);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001540 if (ret_val)
1541 return ret_val;
1542 } else if (phy->smart_speed == e1000_smart_speed_off) {
Bruce Allanad680762008-03-28 09:15:03 -07001543 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1544 &data);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001545 if (ret_val)
1546 return ret_val;
1547
1548 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
Bruce Allanad680762008-03-28 09:15:03 -07001549 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1550 data);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001551 if (ret_val)
1552 return ret_val;
1553 }
1554 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1555 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1556 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1557 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
1558 ew32(PHY_CTRL, phy_ctrl);
1559
Bruce Allan60f12922009-07-01 13:28:14 +00001560 if (phy->type != e1000_phy_igp_3)
1561 return 0;
1562
Bruce Allanad680762008-03-28 09:15:03 -07001563 /*
1564 * Call gig speed drop workaround on LPLU before accessing
1565 * any PHY registers
1566 */
Bruce Allan60f12922009-07-01 13:28:14 +00001567 if (hw->mac.type == e1000_ich8lan)
Auke Kokbc7f75f2007-09-17 12:30:59 -07001568 e1000e_gig_downshift_workaround_ich8lan(hw);
1569
1570 /* When LPLU is enabled, we should disable SmartSpeed */
Bruce Allanad680762008-03-28 09:15:03 -07001571 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001572 if (ret_val)
1573 return ret_val;
1574
1575 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
Bruce Allanad680762008-03-28 09:15:03 -07001576 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001577 }
1578
1579 return 0;
1580}
1581
1582/**
Bruce Allanf4187b52008-08-26 18:36:50 -07001583 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
1584 * @hw: pointer to the HW structure
1585 * @bank: pointer to the variable that returns the active bank
1586 *
1587 * Reads signature byte from the NVM using the flash access registers.
Bruce Allane2434552008-11-21 17:02:41 -08001588 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
Bruce Allanf4187b52008-08-26 18:36:50 -07001589 **/
1590static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
1591{
Bruce Allane2434552008-11-21 17:02:41 -08001592 u32 eecd;
Bruce Allanf4187b52008-08-26 18:36:50 -07001593 struct e1000_nvm_info *nvm = &hw->nvm;
Bruce Allanf4187b52008-08-26 18:36:50 -07001594 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
1595 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
Bruce Allane2434552008-11-21 17:02:41 -08001596 u8 sig_byte = 0;
1597 s32 ret_val = 0;
Bruce Allanf4187b52008-08-26 18:36:50 -07001598
Bruce Allane2434552008-11-21 17:02:41 -08001599 switch (hw->mac.type) {
1600 case e1000_ich8lan:
1601 case e1000_ich9lan:
1602 eecd = er32(EECD);
1603 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
1604 E1000_EECD_SEC1VAL_VALID_MASK) {
1605 if (eecd & E1000_EECD_SEC1VAL)
Bruce Allanf4187b52008-08-26 18:36:50 -07001606 *bank = 1;
Bruce Allane2434552008-11-21 17:02:41 -08001607 else
1608 *bank = 0;
1609
1610 return 0;
Bruce Allanf4187b52008-08-26 18:36:50 -07001611 }
Bruce Allane2434552008-11-21 17:02:41 -08001612 hw_dbg(hw, "Unable to determine valid NVM bank via EEC - "
1613 "reading flash signature\n");
1614 /* fall-thru */
1615 default:
1616 /* set bank to 0 in case flash read fails */
1617 *bank = 0;
1618
1619 /* Check bank 0 */
1620 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
1621 &sig_byte);
1622 if (ret_val)
1623 return ret_val;
1624 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1625 E1000_ICH_NVM_SIG_VALUE) {
1626 *bank = 0;
1627 return 0;
1628 }
1629
1630 /* Check bank 1 */
1631 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
1632 bank1_offset,
1633 &sig_byte);
1634 if (ret_val)
1635 return ret_val;
1636 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1637 E1000_ICH_NVM_SIG_VALUE) {
1638 *bank = 1;
1639 return 0;
1640 }
1641
1642 hw_dbg(hw, "ERROR: No valid NVM bank present\n");
1643 return -E1000_ERR_NVM;
Bruce Allanf4187b52008-08-26 18:36:50 -07001644 }
1645
1646 return 0;
1647}
1648
1649/**
Auke Kokbc7f75f2007-09-17 12:30:59 -07001650 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
1651 * @hw: pointer to the HW structure
1652 * @offset: The offset (in bytes) of the word(s) to read.
1653 * @words: Size of data to read in words
1654 * @data: Pointer to the word(s) to read at offset.
1655 *
1656 * Reads a word(s) from the NVM using the flash access registers.
1657 **/
1658static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1659 u16 *data)
1660{
1661 struct e1000_nvm_info *nvm = &hw->nvm;
1662 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1663 u32 act_offset;
Bruce Allan148675a2009-08-07 07:41:56 +00001664 s32 ret_val = 0;
Bruce Allanf4187b52008-08-26 18:36:50 -07001665 u32 bank = 0;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001666 u16 i, word;
1667
1668 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1669 (words == 0)) {
1670 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
Bruce Allanca15df52009-10-26 11:23:43 +00001671 ret_val = -E1000_ERR_NVM;
1672 goto out;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001673 }
1674
Bruce Allanca15df52009-10-26 11:23:43 +00001675 nvm->ops.acquire_nvm(hw);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001676
Bruce Allanf4187b52008-08-26 18:36:50 -07001677 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
Bruce Allan148675a2009-08-07 07:41:56 +00001678 if (ret_val) {
1679 hw_dbg(hw, "Could not detect valid bank, assuming bank 0\n");
1680 bank = 0;
1681 }
Bruce Allanf4187b52008-08-26 18:36:50 -07001682
1683 act_offset = (bank) ? nvm->flash_bank_size : 0;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001684 act_offset += offset;
1685
Bruce Allan148675a2009-08-07 07:41:56 +00001686 ret_val = 0;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001687 for (i = 0; i < words; i++) {
1688 if ((dev_spec->shadow_ram) &&
1689 (dev_spec->shadow_ram[offset+i].modified)) {
1690 data[i] = dev_spec->shadow_ram[offset+i].value;
1691 } else {
1692 ret_val = e1000_read_flash_word_ich8lan(hw,
1693 act_offset + i,
1694 &word);
1695 if (ret_val)
1696 break;
1697 data[i] = word;
1698 }
1699 }
1700
Bruce Allanca15df52009-10-26 11:23:43 +00001701 nvm->ops.release_nvm(hw);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001702
Bruce Allane2434552008-11-21 17:02:41 -08001703out:
1704 if (ret_val)
1705 hw_dbg(hw, "NVM read error: %d\n", ret_val);
1706
Auke Kokbc7f75f2007-09-17 12:30:59 -07001707 return ret_val;
1708}
1709
1710/**
1711 * e1000_flash_cycle_init_ich8lan - Initialize flash
1712 * @hw: pointer to the HW structure
1713 *
1714 * This function does initial flash setup so that a new read/write/erase cycle
1715 * can be started.
1716 **/
1717static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
1718{
1719 union ich8_hws_flash_status hsfsts;
1720 s32 ret_val = -E1000_ERR_NVM;
1721 s32 i = 0;
1722
1723 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1724
1725 /* Check if the flash descriptor is valid */
1726 if (hsfsts.hsf_status.fldesvalid == 0) {
1727 hw_dbg(hw, "Flash descriptor invalid. "
1728 "SW Sequencing must be used.");
1729 return -E1000_ERR_NVM;
1730 }
1731
1732 /* Clear FCERR and DAEL in hw status by writing 1 */
1733 hsfsts.hsf_status.flcerr = 1;
1734 hsfsts.hsf_status.dael = 1;
1735
1736 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1737
Bruce Allanad680762008-03-28 09:15:03 -07001738 /*
1739 * Either we should have a hardware SPI cycle in progress
Auke Kokbc7f75f2007-09-17 12:30:59 -07001740 * bit to check against, in order to start a new cycle or
1741 * FDONE bit should be changed in the hardware so that it
Auke Kok489815c2008-02-21 15:11:07 -08001742 * is 1 after hardware reset, which can then be used as an
Auke Kokbc7f75f2007-09-17 12:30:59 -07001743 * indication whether a cycle is in progress or has been
1744 * completed.
1745 */
1746
1747 if (hsfsts.hsf_status.flcinprog == 0) {
Bruce Allanad680762008-03-28 09:15:03 -07001748 /*
1749 * There is no cycle running at present,
1750 * so we can start a cycle
1751 * Begin by setting Flash Cycle Done.
1752 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001753 hsfsts.hsf_status.flcdone = 1;
1754 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1755 ret_val = 0;
1756 } else {
Bruce Allanad680762008-03-28 09:15:03 -07001757 /*
1758 * otherwise poll for sometime so the current
1759 * cycle has a chance to end before giving up.
1760 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001761 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
1762 hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
1763 if (hsfsts.hsf_status.flcinprog == 0) {
1764 ret_val = 0;
1765 break;
1766 }
1767 udelay(1);
1768 }
1769 if (ret_val == 0) {
Bruce Allanad680762008-03-28 09:15:03 -07001770 /*
1771 * Successful in waiting for previous cycle to timeout,
1772 * now set the Flash Cycle Done.
1773 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001774 hsfsts.hsf_status.flcdone = 1;
1775 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1776 } else {
1777 hw_dbg(hw, "Flash controller busy, cannot get access");
1778 }
1779 }
1780
1781 return ret_val;
1782}
1783
1784/**
1785 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
1786 * @hw: pointer to the HW structure
1787 * @timeout: maximum time to wait for completion
1788 *
1789 * This function starts a flash cycle and waits for its completion.
1790 **/
1791static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
1792{
1793 union ich8_hws_flash_ctrl hsflctl;
1794 union ich8_hws_flash_status hsfsts;
1795 s32 ret_val = -E1000_ERR_NVM;
1796 u32 i = 0;
1797
1798 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
1799 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1800 hsflctl.hsf_ctrl.flcgo = 1;
1801 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1802
1803 /* wait till FDONE bit is set to 1 */
1804 do {
1805 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1806 if (hsfsts.hsf_status.flcdone == 1)
1807 break;
1808 udelay(1);
1809 } while (i++ < timeout);
1810
1811 if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
1812 return 0;
1813
1814 return ret_val;
1815}
1816
1817/**
1818 * e1000_read_flash_word_ich8lan - Read word from flash
1819 * @hw: pointer to the HW structure
1820 * @offset: offset to data location
1821 * @data: pointer to the location for storing the data
1822 *
1823 * Reads the flash word at offset into data. Offset is converted
1824 * to bytes before read.
1825 **/
1826static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
1827 u16 *data)
1828{
1829 /* Must convert offset into bytes. */
1830 offset <<= 1;
1831
1832 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
1833}
1834
1835/**
Bruce Allanf4187b52008-08-26 18:36:50 -07001836 * e1000_read_flash_byte_ich8lan - Read byte from flash
1837 * @hw: pointer to the HW structure
1838 * @offset: The offset of the byte to read.
1839 * @data: Pointer to a byte to store the value read.
1840 *
1841 * Reads a single byte from the NVM using the flash access registers.
1842 **/
1843static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1844 u8 *data)
1845{
1846 s32 ret_val;
1847 u16 word = 0;
1848
1849 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
1850 if (ret_val)
1851 return ret_val;
1852
1853 *data = (u8)word;
1854
1855 return 0;
1856}
1857
1858/**
Auke Kokbc7f75f2007-09-17 12:30:59 -07001859 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
1860 * @hw: pointer to the HW structure
1861 * @offset: The offset (in bytes) of the byte or word to read.
1862 * @size: Size of data to read, 1=byte 2=word
1863 * @data: Pointer to the word to store the value read.
1864 *
1865 * Reads a byte or word from the NVM using the flash access registers.
1866 **/
1867static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1868 u8 size, u16 *data)
1869{
1870 union ich8_hws_flash_status hsfsts;
1871 union ich8_hws_flash_ctrl hsflctl;
1872 u32 flash_linear_addr;
1873 u32 flash_data = 0;
1874 s32 ret_val = -E1000_ERR_NVM;
1875 u8 count = 0;
1876
1877 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
1878 return -E1000_ERR_NVM;
1879
1880 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1881 hw->nvm.flash_base_addr;
1882
1883 do {
1884 udelay(1);
1885 /* Steps */
1886 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1887 if (ret_val != 0)
1888 break;
1889
1890 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1891 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1892 hsflctl.hsf_ctrl.fldbcount = size - 1;
1893 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
1894 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1895
1896 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1897
1898 ret_val = e1000_flash_cycle_ich8lan(hw,
1899 ICH_FLASH_READ_COMMAND_TIMEOUT);
1900
Bruce Allanad680762008-03-28 09:15:03 -07001901 /*
1902 * Check if FCERR is set to 1, if set to 1, clear it
Auke Kokbc7f75f2007-09-17 12:30:59 -07001903 * and try the whole sequence a few more times, else
1904 * read in (shift in) the Flash Data0, the order is
Bruce Allanad680762008-03-28 09:15:03 -07001905 * least significant byte first msb to lsb
1906 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001907 if (ret_val == 0) {
1908 flash_data = er32flash(ICH_FLASH_FDATA0);
1909 if (size == 1) {
1910 *data = (u8)(flash_data & 0x000000FF);
1911 } else if (size == 2) {
1912 *data = (u16)(flash_data & 0x0000FFFF);
1913 }
1914 break;
1915 } else {
Bruce Allanad680762008-03-28 09:15:03 -07001916 /*
1917 * If we've gotten here, then things are probably
Auke Kokbc7f75f2007-09-17 12:30:59 -07001918 * completely hosed, but if the error condition is
1919 * detected, it won't hurt to give it another try...
1920 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
1921 */
1922 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1923 if (hsfsts.hsf_status.flcerr == 1) {
1924 /* Repeat for some time before giving up. */
1925 continue;
1926 } else if (hsfsts.hsf_status.flcdone == 0) {
1927 hw_dbg(hw, "Timeout error - flash cycle "
1928 "did not complete.");
1929 break;
1930 }
1931 }
1932 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1933
1934 return ret_val;
1935}
1936
1937/**
1938 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
1939 * @hw: pointer to the HW structure
1940 * @offset: The offset (in bytes) of the word(s) to write.
1941 * @words: Size of data to write in words
1942 * @data: Pointer to the word(s) to write at offset.
1943 *
1944 * Writes a byte or word to the NVM using the flash access registers.
1945 **/
1946static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1947 u16 *data)
1948{
1949 struct e1000_nvm_info *nvm = &hw->nvm;
1950 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001951 u16 i;
1952
1953 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1954 (words == 0)) {
1955 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1956 return -E1000_ERR_NVM;
1957 }
1958
Bruce Allanca15df52009-10-26 11:23:43 +00001959 nvm->ops.acquire_nvm(hw);
1960
Auke Kokbc7f75f2007-09-17 12:30:59 -07001961 for (i = 0; i < words; i++) {
1962 dev_spec->shadow_ram[offset+i].modified = 1;
1963 dev_spec->shadow_ram[offset+i].value = data[i];
1964 }
1965
Bruce Allanca15df52009-10-26 11:23:43 +00001966 nvm->ops.release_nvm(hw);
1967
Auke Kokbc7f75f2007-09-17 12:30:59 -07001968 return 0;
1969}
1970
1971/**
1972 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
1973 * @hw: pointer to the HW structure
1974 *
1975 * The NVM checksum is updated by calling the generic update_nvm_checksum,
1976 * which writes the checksum to the shadow ram. The changes in the shadow
1977 * ram are then committed to the EEPROM by processing each bank at a time
1978 * checking for the modified bit and writing only the pending changes.
Auke Kok489815c2008-02-21 15:11:07 -08001979 * After a successful commit, the shadow ram is cleared and is ready for
Auke Kokbc7f75f2007-09-17 12:30:59 -07001980 * future writes.
1981 **/
1982static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
1983{
1984 struct e1000_nvm_info *nvm = &hw->nvm;
1985 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
Bruce Allanf4187b52008-08-26 18:36:50 -07001986 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001987 s32 ret_val;
1988 u16 data;
1989
1990 ret_val = e1000e_update_nvm_checksum_generic(hw);
1991 if (ret_val)
Bruce Allane2434552008-11-21 17:02:41 -08001992 goto out;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001993
1994 if (nvm->type != e1000_nvm_flash_sw)
Bruce Allane2434552008-11-21 17:02:41 -08001995 goto out;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001996
Bruce Allanca15df52009-10-26 11:23:43 +00001997 nvm->ops.acquire_nvm(hw);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001998
Bruce Allanad680762008-03-28 09:15:03 -07001999 /*
2000 * We're writing to the opposite bank so if we're on bank 1,
Auke Kokbc7f75f2007-09-17 12:30:59 -07002001 * write to bank 0 etc. We also need to erase the segment that
Bruce Allanad680762008-03-28 09:15:03 -07002002 * is going to be written
2003 */
Bruce Allanf4187b52008-08-26 18:36:50 -07002004 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
Bruce Allane2434552008-11-21 17:02:41 -08002005 if (ret_val) {
Bruce Allan148675a2009-08-07 07:41:56 +00002006 hw_dbg(hw, "Could not detect valid bank, assuming bank 0\n");
2007 bank = 0;
Bruce Allane2434552008-11-21 17:02:41 -08002008 }
Bruce Allanf4187b52008-08-26 18:36:50 -07002009
2010 if (bank == 0) {
Auke Kokbc7f75f2007-09-17 12:30:59 -07002011 new_bank_offset = nvm->flash_bank_size;
2012 old_bank_offset = 0;
Bruce Allane2434552008-11-21 17:02:41 -08002013 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
2014 if (ret_val) {
Bruce Allanca15df52009-10-26 11:23:43 +00002015 nvm->ops.release_nvm(hw);
Bruce Allane2434552008-11-21 17:02:41 -08002016 goto out;
2017 }
Auke Kokbc7f75f2007-09-17 12:30:59 -07002018 } else {
2019 old_bank_offset = nvm->flash_bank_size;
2020 new_bank_offset = 0;
Bruce Allane2434552008-11-21 17:02:41 -08002021 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
2022 if (ret_val) {
Bruce Allanca15df52009-10-26 11:23:43 +00002023 nvm->ops.release_nvm(hw);
Bruce Allane2434552008-11-21 17:02:41 -08002024 goto out;
2025 }
Auke Kokbc7f75f2007-09-17 12:30:59 -07002026 }
2027
2028 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
Bruce Allanad680762008-03-28 09:15:03 -07002029 /*
2030 * Determine whether to write the value stored
Auke Kokbc7f75f2007-09-17 12:30:59 -07002031 * in the other NVM bank or a modified value stored
Bruce Allanad680762008-03-28 09:15:03 -07002032 * in the shadow RAM
2033 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002034 if (dev_spec->shadow_ram[i].modified) {
2035 data = dev_spec->shadow_ram[i].value;
2036 } else {
Bruce Allane2434552008-11-21 17:02:41 -08002037 ret_val = e1000_read_flash_word_ich8lan(hw, i +
2038 old_bank_offset,
2039 &data);
2040 if (ret_val)
2041 break;
Auke Kokbc7f75f2007-09-17 12:30:59 -07002042 }
2043
Bruce Allanad680762008-03-28 09:15:03 -07002044 /*
2045 * If the word is 0x13, then make sure the signature bits
Auke Kokbc7f75f2007-09-17 12:30:59 -07002046 * (15:14) are 11b until the commit has completed.
2047 * This will allow us to write 10b which indicates the
2048 * signature is valid. We want to do this after the write
2049 * has completed so that we don't mark the segment valid
Bruce Allanad680762008-03-28 09:15:03 -07002050 * while the write is still in progress
2051 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002052 if (i == E1000_ICH_NVM_SIG_WORD)
2053 data |= E1000_ICH_NVM_SIG_MASK;
2054
2055 /* Convert offset to bytes. */
2056 act_offset = (i + new_bank_offset) << 1;
2057
2058 udelay(100);
2059 /* Write the bytes to the new bank. */
2060 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2061 act_offset,
2062 (u8)data);
2063 if (ret_val)
2064 break;
2065
2066 udelay(100);
2067 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2068 act_offset + 1,
2069 (u8)(data >> 8));
2070 if (ret_val)
2071 break;
2072 }
2073
Bruce Allanad680762008-03-28 09:15:03 -07002074 /*
2075 * Don't bother writing the segment valid bits if sector
2076 * programming failed.
2077 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002078 if (ret_val) {
Bruce Allan4a770352008-10-01 17:18:35 -07002079 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002080 hw_dbg(hw, "Flash commit failed.\n");
Bruce Allanca15df52009-10-26 11:23:43 +00002081 nvm->ops.release_nvm(hw);
Bruce Allane2434552008-11-21 17:02:41 -08002082 goto out;
Auke Kokbc7f75f2007-09-17 12:30:59 -07002083 }
2084
Bruce Allanad680762008-03-28 09:15:03 -07002085 /*
2086 * Finally validate the new segment by setting bit 15:14
Auke Kokbc7f75f2007-09-17 12:30:59 -07002087 * to 10b in word 0x13 , this can be done without an
2088 * erase as well since these bits are 11 to start with
Bruce Allanad680762008-03-28 09:15:03 -07002089 * and we need to change bit 14 to 0b
2090 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002091 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
Bruce Allane2434552008-11-21 17:02:41 -08002092 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
2093 if (ret_val) {
Bruce Allanca15df52009-10-26 11:23:43 +00002094 nvm->ops.release_nvm(hw);
Bruce Allane2434552008-11-21 17:02:41 -08002095 goto out;
2096 }
Auke Kokbc7f75f2007-09-17 12:30:59 -07002097 data &= 0xBFFF;
2098 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2099 act_offset * 2 + 1,
2100 (u8)(data >> 8));
2101 if (ret_val) {
Bruce Allanca15df52009-10-26 11:23:43 +00002102 nvm->ops.release_nvm(hw);
Bruce Allane2434552008-11-21 17:02:41 -08002103 goto out;
Auke Kokbc7f75f2007-09-17 12:30:59 -07002104 }
2105
Bruce Allanad680762008-03-28 09:15:03 -07002106 /*
2107 * And invalidate the previously valid segment by setting
Auke Kokbc7f75f2007-09-17 12:30:59 -07002108 * its signature word (0x13) high_byte to 0b. This can be
2109 * done without an erase because flash erase sets all bits
Bruce Allanad680762008-03-28 09:15:03 -07002110 * to 1's. We can write 1's to 0's without an erase
2111 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002112 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2113 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
2114 if (ret_val) {
Bruce Allanca15df52009-10-26 11:23:43 +00002115 nvm->ops.release_nvm(hw);
Bruce Allane2434552008-11-21 17:02:41 -08002116 goto out;
Auke Kokbc7f75f2007-09-17 12:30:59 -07002117 }
2118
2119 /* Great! Everything worked, we can now clear the cached entries. */
2120 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2121 dev_spec->shadow_ram[i].modified = 0;
2122 dev_spec->shadow_ram[i].value = 0xFFFF;
2123 }
2124
Bruce Allanca15df52009-10-26 11:23:43 +00002125 nvm->ops.release_nvm(hw);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002126
Bruce Allanad680762008-03-28 09:15:03 -07002127 /*
2128 * Reload the EEPROM, or else modifications will not appear
Auke Kokbc7f75f2007-09-17 12:30:59 -07002129 * until after the next adapter reset.
2130 */
2131 e1000e_reload_nvm(hw);
2132 msleep(10);
2133
Bruce Allane2434552008-11-21 17:02:41 -08002134out:
2135 if (ret_val)
2136 hw_dbg(hw, "NVM update error: %d\n", ret_val);
2137
Auke Kokbc7f75f2007-09-17 12:30:59 -07002138 return ret_val;
2139}
2140
2141/**
2142 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2143 * @hw: pointer to the HW structure
2144 *
2145 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2146 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
2147 * calculated, in which case we need to calculate the checksum and set bit 6.
2148 **/
2149static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2150{
2151 s32 ret_val;
2152 u16 data;
2153
Bruce Allanad680762008-03-28 09:15:03 -07002154 /*
2155 * Read 0x19 and check bit 6. If this bit is 0, the checksum
Auke Kokbc7f75f2007-09-17 12:30:59 -07002156 * needs to be fixed. This bit is an indication that the NVM
2157 * was prepared by OEM software and did not calculate the
2158 * checksum...a likely scenario.
2159 */
2160 ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
2161 if (ret_val)
2162 return ret_val;
2163
2164 if ((data & 0x40) == 0) {
2165 data |= 0x40;
2166 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
2167 if (ret_val)
2168 return ret_val;
2169 ret_val = e1000e_update_nvm_checksum(hw);
2170 if (ret_val)
2171 return ret_val;
2172 }
2173
2174 return e1000e_validate_nvm_checksum_generic(hw);
2175}
2176
2177/**
Bruce Allan4a770352008-10-01 17:18:35 -07002178 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2179 * @hw: pointer to the HW structure
2180 *
2181 * To prevent malicious write/erase of the NVM, set it to be read-only
2182 * so that the hardware ignores all write/erase cycles of the NVM via
2183 * the flash control registers. The shadow-ram copy of the NVM will
2184 * still be updated, however any updates to this copy will not stick
2185 * across driver reloads.
2186 **/
2187void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
2188{
Bruce Allanca15df52009-10-26 11:23:43 +00002189 struct e1000_nvm_info *nvm = &hw->nvm;
Bruce Allan4a770352008-10-01 17:18:35 -07002190 union ich8_flash_protected_range pr0;
2191 union ich8_hws_flash_status hsfsts;
2192 u32 gfpreg;
Bruce Allan4a770352008-10-01 17:18:35 -07002193
Bruce Allanca15df52009-10-26 11:23:43 +00002194 nvm->ops.acquire_nvm(hw);
Bruce Allan4a770352008-10-01 17:18:35 -07002195
2196 gfpreg = er32flash(ICH_FLASH_GFPREG);
2197
2198 /* Write-protect GbE Sector of NVM */
2199 pr0.regval = er32flash(ICH_FLASH_PR0);
2200 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
2201 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
2202 pr0.range.wpe = true;
2203 ew32flash(ICH_FLASH_PR0, pr0.regval);
2204
2205 /*
2206 * Lock down a subset of GbE Flash Control Registers, e.g.
2207 * PR0 to prevent the write-protection from being lifted.
2208 * Once FLOCKDN is set, the registers protected by it cannot
2209 * be written until FLOCKDN is cleared by a hardware reset.
2210 */
2211 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2212 hsfsts.hsf_status.flockdn = true;
2213 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2214
Bruce Allanca15df52009-10-26 11:23:43 +00002215 nvm->ops.release_nvm(hw);
Bruce Allan4a770352008-10-01 17:18:35 -07002216}
2217
2218/**
Auke Kokbc7f75f2007-09-17 12:30:59 -07002219 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
2220 * @hw: pointer to the HW structure
2221 * @offset: The offset (in bytes) of the byte/word to read.
2222 * @size: Size of data to read, 1=byte 2=word
2223 * @data: The byte(s) to write to the NVM.
2224 *
2225 * Writes one/two bytes to the NVM using the flash access registers.
2226 **/
2227static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2228 u8 size, u16 data)
2229{
2230 union ich8_hws_flash_status hsfsts;
2231 union ich8_hws_flash_ctrl hsflctl;
2232 u32 flash_linear_addr;
2233 u32 flash_data = 0;
2234 s32 ret_val;
2235 u8 count = 0;
2236
2237 if (size < 1 || size > 2 || data > size * 0xff ||
2238 offset > ICH_FLASH_LINEAR_ADDR_MASK)
2239 return -E1000_ERR_NVM;
2240
2241 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2242 hw->nvm.flash_base_addr;
2243
2244 do {
2245 udelay(1);
2246 /* Steps */
2247 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2248 if (ret_val)
2249 break;
2250
2251 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2252 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2253 hsflctl.hsf_ctrl.fldbcount = size -1;
2254 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
2255 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2256
2257 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2258
2259 if (size == 1)
2260 flash_data = (u32)data & 0x00FF;
2261 else
2262 flash_data = (u32)data;
2263
2264 ew32flash(ICH_FLASH_FDATA0, flash_data);
2265
Bruce Allanad680762008-03-28 09:15:03 -07002266 /*
2267 * check if FCERR is set to 1 , if set to 1, clear it
2268 * and try the whole sequence a few more times else done
2269 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002270 ret_val = e1000_flash_cycle_ich8lan(hw,
2271 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
2272 if (!ret_val)
2273 break;
2274
Bruce Allanad680762008-03-28 09:15:03 -07002275 /*
2276 * If we're here, then things are most likely
Auke Kokbc7f75f2007-09-17 12:30:59 -07002277 * completely hosed, but if the error condition
2278 * is detected, it won't hurt to give it another
2279 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
2280 */
2281 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2282 if (hsfsts.hsf_status.flcerr == 1)
2283 /* Repeat for some time before giving up. */
2284 continue;
2285 if (hsfsts.hsf_status.flcdone == 0) {
2286 hw_dbg(hw, "Timeout error - flash cycle "
2287 "did not complete.");
2288 break;
2289 }
2290 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2291
2292 return ret_val;
2293}
2294
2295/**
2296 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
2297 * @hw: pointer to the HW structure
2298 * @offset: The index of the byte to read.
2299 * @data: The byte to write to the NVM.
2300 *
2301 * Writes a single byte to the NVM using the flash access registers.
2302 **/
2303static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2304 u8 data)
2305{
2306 u16 word = (u16)data;
2307
2308 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
2309}
2310
2311/**
2312 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
2313 * @hw: pointer to the HW structure
2314 * @offset: The offset of the byte to write.
2315 * @byte: The byte to write to the NVM.
2316 *
2317 * Writes a single byte to the NVM using the flash access registers.
2318 * Goes through a retry algorithm before giving up.
2319 **/
2320static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
2321 u32 offset, u8 byte)
2322{
2323 s32 ret_val;
2324 u16 program_retries;
2325
2326 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2327 if (!ret_val)
2328 return ret_val;
2329
2330 for (program_retries = 0; program_retries < 100; program_retries++) {
2331 hw_dbg(hw, "Retrying Byte %2.2X at offset %u\n", byte, offset);
2332 udelay(100);
2333 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2334 if (!ret_val)
2335 break;
2336 }
2337 if (program_retries == 100)
2338 return -E1000_ERR_NVM;
2339
2340 return 0;
2341}
2342
2343/**
2344 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
2345 * @hw: pointer to the HW structure
2346 * @bank: 0 for first bank, 1 for second bank, etc.
2347 *
2348 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2349 * bank N is 4096 * N + flash_reg_addr.
2350 **/
2351static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
2352{
2353 struct e1000_nvm_info *nvm = &hw->nvm;
2354 union ich8_hws_flash_status hsfsts;
2355 union ich8_hws_flash_ctrl hsflctl;
2356 u32 flash_linear_addr;
2357 /* bank size is in 16bit words - adjust to bytes */
2358 u32 flash_bank_size = nvm->flash_bank_size * 2;
2359 s32 ret_val;
2360 s32 count = 0;
2361 s32 iteration;
2362 s32 sector_size;
2363 s32 j;
2364
2365 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2366
Bruce Allanad680762008-03-28 09:15:03 -07002367 /*
2368 * Determine HW Sector size: Read BERASE bits of hw flash status
2369 * register
2370 * 00: The Hw sector is 256 bytes, hence we need to erase 16
Auke Kokbc7f75f2007-09-17 12:30:59 -07002371 * consecutive sectors. The start index for the nth Hw sector
2372 * can be calculated as = bank * 4096 + n * 256
2373 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2374 * The start index for the nth Hw sector can be calculated
2375 * as = bank * 4096
2376 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2377 * (ich9 only, otherwise error condition)
2378 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2379 */
2380 switch (hsfsts.hsf_status.berasesz) {
2381 case 0:
2382 /* Hw sector size 256 */
2383 sector_size = ICH_FLASH_SEG_SIZE_256;
2384 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
2385 break;
2386 case 1:
2387 sector_size = ICH_FLASH_SEG_SIZE_4K;
Bruce Allan28c91952009-07-01 13:28:32 +00002388 iteration = 1;
Auke Kokbc7f75f2007-09-17 12:30:59 -07002389 break;
2390 case 2:
Bruce Allan148675a2009-08-07 07:41:56 +00002391 sector_size = ICH_FLASH_SEG_SIZE_8K;
2392 iteration = 1;
Auke Kokbc7f75f2007-09-17 12:30:59 -07002393 break;
2394 case 3:
2395 sector_size = ICH_FLASH_SEG_SIZE_64K;
Bruce Allan28c91952009-07-01 13:28:32 +00002396 iteration = 1;
Auke Kokbc7f75f2007-09-17 12:30:59 -07002397 break;
2398 default:
2399 return -E1000_ERR_NVM;
2400 }
2401
2402 /* Start with the base address, then add the sector offset. */
2403 flash_linear_addr = hw->nvm.flash_base_addr;
Bruce Allan148675a2009-08-07 07:41:56 +00002404 flash_linear_addr += (bank) ? flash_bank_size : 0;
Auke Kokbc7f75f2007-09-17 12:30:59 -07002405
2406 for (j = 0; j < iteration ; j++) {
2407 do {
2408 /* Steps */
2409 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2410 if (ret_val)
2411 return ret_val;
2412
Bruce Allanad680762008-03-28 09:15:03 -07002413 /*
2414 * Write a value 11 (block Erase) in Flash
2415 * Cycle field in hw flash control
2416 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002417 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2418 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
2419 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2420
Bruce Allanad680762008-03-28 09:15:03 -07002421 /*
2422 * Write the last 24 bits of an index within the
Auke Kokbc7f75f2007-09-17 12:30:59 -07002423 * block into Flash Linear address field in Flash
2424 * Address.
2425 */
2426 flash_linear_addr += (j * sector_size);
2427 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2428
2429 ret_val = e1000_flash_cycle_ich8lan(hw,
2430 ICH_FLASH_ERASE_COMMAND_TIMEOUT);
2431 if (ret_val == 0)
2432 break;
2433
Bruce Allanad680762008-03-28 09:15:03 -07002434 /*
2435 * Check if FCERR is set to 1. If 1,
Auke Kokbc7f75f2007-09-17 12:30:59 -07002436 * clear it and try the whole sequence
Bruce Allanad680762008-03-28 09:15:03 -07002437 * a few more times else Done
2438 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002439 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2440 if (hsfsts.hsf_status.flcerr == 1)
Bruce Allanad680762008-03-28 09:15:03 -07002441 /* repeat for some time before giving up */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002442 continue;
2443 else if (hsfsts.hsf_status.flcdone == 0)
2444 return ret_val;
2445 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
2446 }
2447
2448 return 0;
2449}
2450
2451/**
2452 * e1000_valid_led_default_ich8lan - Set the default LED settings
2453 * @hw: pointer to the HW structure
2454 * @data: Pointer to the LED settings
2455 *
2456 * Reads the LED default settings from the NVM to data. If the NVM LED
2457 * settings is all 0's or F's, set the LED default to a valid LED default
2458 * setting.
2459 **/
2460static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
2461{
2462 s32 ret_val;
2463
2464 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
2465 if (ret_val) {
2466 hw_dbg(hw, "NVM Read Error\n");
2467 return ret_val;
2468 }
2469
2470 if (*data == ID_LED_RESERVED_0000 ||
2471 *data == ID_LED_RESERVED_FFFF)
2472 *data = ID_LED_DEFAULT_ICH8LAN;
2473
2474 return 0;
2475}
2476
2477/**
Bruce Allana4f58f52009-06-02 11:29:18 +00002478 * e1000_id_led_init_pchlan - store LED configurations
2479 * @hw: pointer to the HW structure
2480 *
2481 * PCH does not control LEDs via the LEDCTL register, rather it uses
2482 * the PHY LED configuration register.
2483 *
2484 * PCH also does not have an "always on" or "always off" mode which
2485 * complicates the ID feature. Instead of using the "on" mode to indicate
2486 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
2487 * use "link_up" mode. The LEDs will still ID on request if there is no
2488 * link based on logic in e1000_led_[on|off]_pchlan().
2489 **/
2490static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
2491{
2492 struct e1000_mac_info *mac = &hw->mac;
2493 s32 ret_val;
2494 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
2495 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
2496 u16 data, i, temp, shift;
2497
2498 /* Get default ID LED modes */
2499 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
2500 if (ret_val)
2501 goto out;
2502
2503 mac->ledctl_default = er32(LEDCTL);
2504 mac->ledctl_mode1 = mac->ledctl_default;
2505 mac->ledctl_mode2 = mac->ledctl_default;
2506
2507 for (i = 0; i < 4; i++) {
2508 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
2509 shift = (i * 5);
2510 switch (temp) {
2511 case ID_LED_ON1_DEF2:
2512 case ID_LED_ON1_ON2:
2513 case ID_LED_ON1_OFF2:
2514 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2515 mac->ledctl_mode1 |= (ledctl_on << shift);
2516 break;
2517 case ID_LED_OFF1_DEF2:
2518 case ID_LED_OFF1_ON2:
2519 case ID_LED_OFF1_OFF2:
2520 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2521 mac->ledctl_mode1 |= (ledctl_off << shift);
2522 break;
2523 default:
2524 /* Do nothing */
2525 break;
2526 }
2527 switch (temp) {
2528 case ID_LED_DEF1_ON2:
2529 case ID_LED_ON1_ON2:
2530 case ID_LED_OFF1_ON2:
2531 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2532 mac->ledctl_mode2 |= (ledctl_on << shift);
2533 break;
2534 case ID_LED_DEF1_OFF2:
2535 case ID_LED_ON1_OFF2:
2536 case ID_LED_OFF1_OFF2:
2537 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2538 mac->ledctl_mode2 |= (ledctl_off << shift);
2539 break;
2540 default:
2541 /* Do nothing */
2542 break;
2543 }
2544 }
2545
2546out:
2547 return ret_val;
2548}
2549
2550/**
Auke Kokbc7f75f2007-09-17 12:30:59 -07002551 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
2552 * @hw: pointer to the HW structure
2553 *
2554 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
2555 * register, so the the bus width is hard coded.
2556 **/
2557static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
2558{
2559 struct e1000_bus_info *bus = &hw->bus;
2560 s32 ret_val;
2561
2562 ret_val = e1000e_get_bus_info_pcie(hw);
2563
Bruce Allanad680762008-03-28 09:15:03 -07002564 /*
2565 * ICH devices are "PCI Express"-ish. They have
Auke Kokbc7f75f2007-09-17 12:30:59 -07002566 * a configuration space, but do not contain
2567 * PCI Express Capability registers, so bus width
2568 * must be hardcoded.
2569 */
2570 if (bus->width == e1000_bus_width_unknown)
2571 bus->width = e1000_bus_width_pcie_x1;
2572
2573 return ret_val;
2574}
2575
2576/**
2577 * e1000_reset_hw_ich8lan - Reset the hardware
2578 * @hw: pointer to the HW structure
2579 *
2580 * Does a full reset of the hardware which includes a reset of the PHY and
2581 * MAC.
2582 **/
2583static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
2584{
Bruce Allan1d5846b2009-10-29 13:46:05 +00002585 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
Bruce Allandb2932e2009-10-26 11:22:47 +00002586 u16 reg;
Auke Kokbc7f75f2007-09-17 12:30:59 -07002587 u32 ctrl, icr, kab;
2588 s32 ret_val;
2589
Bruce Allanad680762008-03-28 09:15:03 -07002590 /*
2591 * Prevent the PCI-E bus from sticking if there is no TLP connection
Auke Kokbc7f75f2007-09-17 12:30:59 -07002592 * on the last TLP read/write transaction when MAC is reset.
2593 */
2594 ret_val = e1000e_disable_pcie_master(hw);
2595 if (ret_val) {
2596 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
2597 }
2598
2599 hw_dbg(hw, "Masking off all interrupts\n");
2600 ew32(IMC, 0xffffffff);
2601
Bruce Allanad680762008-03-28 09:15:03 -07002602 /*
2603 * Disable the Transmit and Receive units. Then delay to allow
Auke Kokbc7f75f2007-09-17 12:30:59 -07002604 * any pending transactions to complete before we hit the MAC
2605 * with the global reset.
2606 */
2607 ew32(RCTL, 0);
2608 ew32(TCTL, E1000_TCTL_PSP);
2609 e1e_flush();
2610
2611 msleep(10);
2612
2613 /* Workaround for ICH8 bit corruption issue in FIFO memory */
2614 if (hw->mac.type == e1000_ich8lan) {
2615 /* Set Tx and Rx buffer allocation to 8k apiece. */
2616 ew32(PBA, E1000_PBA_8K);
2617 /* Set Packet Buffer Size to 16k. */
2618 ew32(PBS, E1000_PBS_16K);
2619 }
2620
Bruce Allan1d5846b2009-10-29 13:46:05 +00002621 if (hw->mac.type == e1000_pchlan) {
2622 /* Save the NVM K1 bit setting*/
2623 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &reg);
2624 if (ret_val)
2625 return ret_val;
2626
2627 if (reg & E1000_NVM_K1_ENABLE)
2628 dev_spec->nvm_k1_enabled = true;
2629 else
2630 dev_spec->nvm_k1_enabled = false;
2631 }
2632
Auke Kokbc7f75f2007-09-17 12:30:59 -07002633 ctrl = er32(CTRL);
2634
2635 if (!e1000_check_reset_block(hw)) {
Bruce Allanfc0c7762009-07-01 13:27:55 +00002636 /* Clear PHY Reset Asserted bit */
2637 if (hw->mac.type >= e1000_pchlan) {
2638 u32 status = er32(STATUS);
2639 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
2640 }
2641
Bruce Allanad680762008-03-28 09:15:03 -07002642 /*
2643 * PHY HW reset requires MAC CORE reset at the same
Auke Kokbc7f75f2007-09-17 12:30:59 -07002644 * time to make sure the interface between MAC and the
2645 * external PHY is reset.
2646 */
2647 ctrl |= E1000_CTRL_PHY_RST;
2648 }
2649 ret_val = e1000_acquire_swflag_ich8lan(hw);
Jeff Kirsher30bb0e02008-12-11 21:28:11 -08002650 /* Whether or not the swflag was acquired, we need to reset the part */
Bruce Allan0285c8d2008-11-21 16:59:54 -08002651 hw_dbg(hw, "Issuing a global reset to ich8lan\n");
Auke Kokbc7f75f2007-09-17 12:30:59 -07002652 ew32(CTRL, (ctrl | E1000_CTRL_RST));
2653 msleep(20);
2654
Bruce Allanfc0c7762009-07-01 13:27:55 +00002655 if (!ret_val)
Jeff Kirsher30bb0e02008-12-11 21:28:11 -08002656 e1000_release_swflag_ich8lan(hw);
Jesse Brandeburg37f40232008-10-02 16:33:20 -07002657
Bruce Allanfc0c7762009-07-01 13:27:55 +00002658 if (ctrl & E1000_CTRL_PHY_RST)
2659 ret_val = hw->phy.ops.get_cfg_done(hw);
2660
2661 if (hw->mac.type >= e1000_ich10lan) {
2662 e1000_lan_init_done_ich8lan(hw);
2663 } else {
2664 ret_val = e1000e_get_auto_rd_done(hw);
2665 if (ret_val) {
2666 /*
2667 * When auto config read does not complete, do not
2668 * return with an error. This can happen in situations
2669 * where there is no eeprom and prevents getting link.
2670 */
2671 hw_dbg(hw, "Auto Read Done did not complete\n");
2672 }
Auke Kokbc7f75f2007-09-17 12:30:59 -07002673 }
Bruce Allandb2932e2009-10-26 11:22:47 +00002674 /* Dummy read to clear the phy wakeup bit after lcd reset */
2675 if (hw->mac.type == e1000_pchlan)
2676 e1e_rphy(hw, BM_WUC, &reg);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002677
Bruce Allanf523d212009-10-29 13:45:45 +00002678 ret_val = e1000_sw_lcd_config_ich8lan(hw);
2679 if (ret_val)
2680 goto out;
2681
2682 if (hw->mac.type == e1000_pchlan) {
2683 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2684 if (ret_val)
2685 goto out;
2686 }
Bruce Allan7d3cabb2009-07-01 13:29:08 +00002687 /*
2688 * For PCH, this write will make sure that any noise
2689 * will be detected as a CRC error and be dropped rather than show up
2690 * as a bad packet to the DMA engine.
2691 */
2692 if (hw->mac.type == e1000_pchlan)
2693 ew32(CRC_OFFSET, 0x65656565);
2694
Auke Kokbc7f75f2007-09-17 12:30:59 -07002695 ew32(IMC, 0xffffffff);
2696 icr = er32(ICR);
2697
2698 kab = er32(KABGTXD);
2699 kab |= E1000_KABGTXD_BGSQLBIAS;
2700 ew32(KABGTXD, kab);
2701
Bruce Allana4f58f52009-06-02 11:29:18 +00002702 if (hw->mac.type == e1000_pchlan)
2703 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2704
Bruce Allanf523d212009-10-29 13:45:45 +00002705out:
Auke Kokbc7f75f2007-09-17 12:30:59 -07002706 return ret_val;
2707}
2708
2709/**
2710 * e1000_init_hw_ich8lan - Initialize the hardware
2711 * @hw: pointer to the HW structure
2712 *
2713 * Prepares the hardware for transmit and receive by doing the following:
2714 * - initialize hardware bits
2715 * - initialize LED identification
2716 * - setup receive address registers
2717 * - setup flow control
Auke Kok489815c2008-02-21 15:11:07 -08002718 * - setup transmit descriptors
Auke Kokbc7f75f2007-09-17 12:30:59 -07002719 * - clear statistics
2720 **/
2721static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
2722{
2723 struct e1000_mac_info *mac = &hw->mac;
2724 u32 ctrl_ext, txdctl, snoop;
2725 s32 ret_val;
2726 u16 i;
2727
2728 e1000_initialize_hw_bits_ich8lan(hw);
2729
2730 /* Initialize identification LED */
Bruce Allana4f58f52009-06-02 11:29:18 +00002731 ret_val = mac->ops.id_led_init(hw);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002732 if (ret_val) {
2733 hw_dbg(hw, "Error initializing identification LED\n");
2734 return ret_val;
2735 }
2736
2737 /* Setup the receive address. */
2738 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
2739
2740 /* Zero out the Multicast HASH table */
2741 hw_dbg(hw, "Zeroing the MTA\n");
2742 for (i = 0; i < mac->mta_reg_count; i++)
2743 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
2744
Bruce Allanfc0c7762009-07-01 13:27:55 +00002745 /*
2746 * The 82578 Rx buffer will stall if wakeup is enabled in host and
2747 * the ME. Reading the BM_WUC register will clear the host wakeup bit.
2748 * Reset the phy after disabling host wakeup to reset the Rx buffer.
2749 */
2750 if (hw->phy.type == e1000_phy_82578) {
2751 hw->phy.ops.read_phy_reg(hw, BM_WUC, &i);
2752 ret_val = e1000_phy_hw_reset_ich8lan(hw);
2753 if (ret_val)
2754 return ret_val;
2755 }
2756
Auke Kokbc7f75f2007-09-17 12:30:59 -07002757 /* Setup link and flow control */
2758 ret_val = e1000_setup_link_ich8lan(hw);
2759
2760 /* Set the transmit descriptor write-back policy for both queues */
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002761 txdctl = er32(TXDCTL(0));
Auke Kokbc7f75f2007-09-17 12:30:59 -07002762 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2763 E1000_TXDCTL_FULL_TX_DESC_WB;
2764 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2765 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002766 ew32(TXDCTL(0), txdctl);
2767 txdctl = er32(TXDCTL(1));
Auke Kokbc7f75f2007-09-17 12:30:59 -07002768 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2769 E1000_TXDCTL_FULL_TX_DESC_WB;
2770 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2771 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002772 ew32(TXDCTL(1), txdctl);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002773
Bruce Allanad680762008-03-28 09:15:03 -07002774 /*
2775 * ICH8 has opposite polarity of no_snoop bits.
2776 * By default, we should use snoop behavior.
2777 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002778 if (mac->type == e1000_ich8lan)
2779 snoop = PCIE_ICH8_SNOOP_ALL;
2780 else
2781 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
2782 e1000e_set_pcie_no_snoop(hw, snoop);
2783
2784 ctrl_ext = er32(CTRL_EXT);
2785 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
2786 ew32(CTRL_EXT, ctrl_ext);
2787
Bruce Allanad680762008-03-28 09:15:03 -07002788 /*
2789 * Clear all of the statistics registers (clear on read). It is
Auke Kokbc7f75f2007-09-17 12:30:59 -07002790 * important that we do this after we have tried to establish link
2791 * because the symbol error count will increment wildly if there
2792 * is no link.
2793 */
2794 e1000_clear_hw_cntrs_ich8lan(hw);
2795
2796 return 0;
2797}
2798/**
2799 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
2800 * @hw: pointer to the HW structure
2801 *
2802 * Sets/Clears required hardware bits necessary for correctly setting up the
2803 * hardware for transmit and receive.
2804 **/
2805static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
2806{
2807 u32 reg;
2808
2809 /* Extended Device Control */
2810 reg = er32(CTRL_EXT);
2811 reg |= (1 << 22);
Bruce Allana4f58f52009-06-02 11:29:18 +00002812 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
2813 if (hw->mac.type >= e1000_pchlan)
2814 reg |= E1000_CTRL_EXT_PHYPDEN;
Auke Kokbc7f75f2007-09-17 12:30:59 -07002815 ew32(CTRL_EXT, reg);
2816
2817 /* Transmit Descriptor Control 0 */
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002818 reg = er32(TXDCTL(0));
Auke Kokbc7f75f2007-09-17 12:30:59 -07002819 reg |= (1 << 22);
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002820 ew32(TXDCTL(0), reg);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002821
2822 /* Transmit Descriptor Control 1 */
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002823 reg = er32(TXDCTL(1));
Auke Kokbc7f75f2007-09-17 12:30:59 -07002824 reg |= (1 << 22);
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002825 ew32(TXDCTL(1), reg);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002826
2827 /* Transmit Arbitration Control 0 */
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002828 reg = er32(TARC(0));
Auke Kokbc7f75f2007-09-17 12:30:59 -07002829 if (hw->mac.type == e1000_ich8lan)
2830 reg |= (1 << 28) | (1 << 29);
2831 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002832 ew32(TARC(0), reg);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002833
2834 /* Transmit Arbitration Control 1 */
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002835 reg = er32(TARC(1));
Auke Kokbc7f75f2007-09-17 12:30:59 -07002836 if (er32(TCTL) & E1000_TCTL_MULR)
2837 reg &= ~(1 << 28);
2838 else
2839 reg |= (1 << 28);
2840 reg |= (1 << 24) | (1 << 26) | (1 << 30);
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002841 ew32(TARC(1), reg);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002842
2843 /* Device Status */
2844 if (hw->mac.type == e1000_ich8lan) {
2845 reg = er32(STATUS);
2846 reg &= ~(1 << 31);
2847 ew32(STATUS, reg);
2848 }
2849}
2850
2851/**
2852 * e1000_setup_link_ich8lan - Setup flow control and link settings
2853 * @hw: pointer to the HW structure
2854 *
2855 * Determines which flow control settings to use, then configures flow
2856 * control. Calls the appropriate media-specific link configuration
2857 * function. Assuming the adapter has a valid link partner, a valid link
2858 * should be established. Assumes the hardware has previously been reset
2859 * and the transmitter and receiver are not enabled.
2860 **/
2861static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
2862{
Auke Kokbc7f75f2007-09-17 12:30:59 -07002863 s32 ret_val;
2864
2865 if (e1000_check_reset_block(hw))
2866 return 0;
2867
Bruce Allanad680762008-03-28 09:15:03 -07002868 /*
2869 * ICH parts do not have a word in the NVM to determine
Auke Kokbc7f75f2007-09-17 12:30:59 -07002870 * the default flow control setting, so we explicitly
2871 * set it to full.
2872 */
Bruce Allan37289d92009-06-02 11:29:37 +00002873 if (hw->fc.requested_mode == e1000_fc_default) {
2874 /* Workaround h/w hang when Tx flow control enabled */
2875 if (hw->mac.type == e1000_pchlan)
2876 hw->fc.requested_mode = e1000_fc_rx_pause;
2877 else
2878 hw->fc.requested_mode = e1000_fc_full;
2879 }
Auke Kokbc7f75f2007-09-17 12:30:59 -07002880
Bruce Allan5c48ef3e22008-11-21 16:57:36 -08002881 /*
2882 * Save off the requested flow control mode for use later. Depending
2883 * on the link partner's capabilities, we may or may not use this mode.
2884 */
2885 hw->fc.current_mode = hw->fc.requested_mode;
Auke Kokbc7f75f2007-09-17 12:30:59 -07002886
Bruce Allan5c48ef3e22008-11-21 16:57:36 -08002887 hw_dbg(hw, "After fix-ups FlowControl is now = %x\n",
2888 hw->fc.current_mode);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002889
2890 /* Continue to configure the copper link. */
2891 ret_val = e1000_setup_copper_link_ich8lan(hw);
2892 if (ret_val)
2893 return ret_val;
2894
Jeff Kirsher318a94d2008-03-28 09:15:16 -07002895 ew32(FCTTV, hw->fc.pause_time);
Bruce Allana4f58f52009-06-02 11:29:18 +00002896 if ((hw->phy.type == e1000_phy_82578) ||
2897 (hw->phy.type == e1000_phy_82577)) {
2898 ret_val = hw->phy.ops.write_phy_reg(hw,
2899 PHY_REG(BM_PORT_CTRL_PAGE, 27),
2900 hw->fc.pause_time);
2901 if (ret_val)
2902 return ret_val;
2903 }
Auke Kokbc7f75f2007-09-17 12:30:59 -07002904
2905 return e1000e_set_fc_watermarks(hw);
2906}
2907
2908/**
2909 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
2910 * @hw: pointer to the HW structure
2911 *
2912 * Configures the kumeran interface to the PHY to wait the appropriate time
2913 * when polling the PHY, then call the generic setup_copper_link to finish
2914 * configuring the copper link.
2915 **/
2916static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
2917{
2918 u32 ctrl;
2919 s32 ret_val;
2920 u16 reg_data;
2921
2922 ctrl = er32(CTRL);
2923 ctrl |= E1000_CTRL_SLU;
2924 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2925 ew32(CTRL, ctrl);
2926
Bruce Allanad680762008-03-28 09:15:03 -07002927 /*
2928 * Set the mac to wait the maximum time between each iteration
Auke Kokbc7f75f2007-09-17 12:30:59 -07002929 * and increase the max iterations when polling the phy;
Bruce Allanad680762008-03-28 09:15:03 -07002930 * this fixes erroneous timeouts at 10Mbps.
2931 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002932 ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
2933 if (ret_val)
2934 return ret_val;
2935 ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
2936 if (ret_val)
2937 return ret_val;
2938 reg_data |= 0x3F;
2939 ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
2940 if (ret_val)
2941 return ret_val;
2942
Bruce Allana4f58f52009-06-02 11:29:18 +00002943 switch (hw->phy.type) {
2944 case e1000_phy_igp_3:
Auke Kokbc7f75f2007-09-17 12:30:59 -07002945 ret_val = e1000e_copper_link_setup_igp(hw);
2946 if (ret_val)
2947 return ret_val;
Bruce Allana4f58f52009-06-02 11:29:18 +00002948 break;
2949 case e1000_phy_bm:
2950 case e1000_phy_82578:
Bruce Allan97ac8ca2008-04-29 09:16:05 -07002951 ret_val = e1000e_copper_link_setup_m88(hw);
2952 if (ret_val)
2953 return ret_val;
Bruce Allana4f58f52009-06-02 11:29:18 +00002954 break;
2955 case e1000_phy_82577:
2956 ret_val = e1000_copper_link_setup_82577(hw);
2957 if (ret_val)
2958 return ret_val;
2959 break;
2960 case e1000_phy_ife:
2961 ret_val = hw->phy.ops.read_phy_reg(hw, IFE_PHY_MDIX_CONTROL,
2962 &reg_data);
Bruce Allan97ac8ca2008-04-29 09:16:05 -07002963 if (ret_val)
2964 return ret_val;
2965
2966 reg_data &= ~IFE_PMC_AUTO_MDIX;
2967
2968 switch (hw->phy.mdix) {
2969 case 1:
2970 reg_data &= ~IFE_PMC_FORCE_MDIX;
2971 break;
2972 case 2:
2973 reg_data |= IFE_PMC_FORCE_MDIX;
2974 break;
2975 case 0:
2976 default:
2977 reg_data |= IFE_PMC_AUTO_MDIX;
2978 break;
2979 }
Bruce Allana4f58f52009-06-02 11:29:18 +00002980 ret_val = hw->phy.ops.write_phy_reg(hw, IFE_PHY_MDIX_CONTROL,
2981 reg_data);
Bruce Allan97ac8ca2008-04-29 09:16:05 -07002982 if (ret_val)
2983 return ret_val;
Bruce Allana4f58f52009-06-02 11:29:18 +00002984 break;
2985 default:
2986 break;
Bruce Allan97ac8ca2008-04-29 09:16:05 -07002987 }
Auke Kokbc7f75f2007-09-17 12:30:59 -07002988 return e1000e_setup_copper_link(hw);
2989}
2990
2991/**
2992 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
2993 * @hw: pointer to the HW structure
2994 * @speed: pointer to store current link speed
2995 * @duplex: pointer to store the current link duplex
2996 *
Bruce Allanad680762008-03-28 09:15:03 -07002997 * Calls the generic get_speed_and_duplex to retrieve the current link
Auke Kokbc7f75f2007-09-17 12:30:59 -07002998 * information and then calls the Kumeran lock loss workaround for links at
2999 * gigabit speeds.
3000 **/
3001static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
3002 u16 *duplex)
3003{
3004 s32 ret_val;
3005
3006 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
3007 if (ret_val)
3008 return ret_val;
3009
3010 if ((hw->mac.type == e1000_ich8lan) &&
3011 (hw->phy.type == e1000_phy_igp_3) &&
3012 (*speed == SPEED_1000)) {
3013 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
3014 }
3015
3016 return ret_val;
3017}
3018
3019/**
3020 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3021 * @hw: pointer to the HW structure
3022 *
3023 * Work-around for 82566 Kumeran PCS lock loss:
3024 * On link status change (i.e. PCI reset, speed change) and link is up and
3025 * speed is gigabit-
3026 * 0) if workaround is optionally disabled do nothing
3027 * 1) wait 1ms for Kumeran link to come up
3028 * 2) check Kumeran Diagnostic register PCS lock loss bit
3029 * 3) if not set the link is locked (all is good), otherwise...
3030 * 4) reset the PHY
3031 * 5) repeat up to 10 times
3032 * Note: this is only called for IGP3 copper when speed is 1gb.
3033 **/
3034static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
3035{
3036 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3037 u32 phy_ctrl;
3038 s32 ret_val;
3039 u16 i, data;
3040 bool link;
3041
3042 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
3043 return 0;
3044
Bruce Allanad680762008-03-28 09:15:03 -07003045 /*
3046 * Make sure link is up before proceeding. If not just return.
Auke Kokbc7f75f2007-09-17 12:30:59 -07003047 * Attempting this while link is negotiating fouled up link
Bruce Allanad680762008-03-28 09:15:03 -07003048 * stability
3049 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07003050 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3051 if (!link)
3052 return 0;
3053
3054 for (i = 0; i < 10; i++) {
3055 /* read once to clear */
3056 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3057 if (ret_val)
3058 return ret_val;
3059 /* and again to get new status */
3060 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3061 if (ret_val)
3062 return ret_val;
3063
3064 /* check for PCS lock */
3065 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3066 return 0;
3067
3068 /* Issue PHY reset */
3069 e1000_phy_hw_reset(hw);
3070 mdelay(5);
3071 }
3072 /* Disable GigE link negotiation */
3073 phy_ctrl = er32(PHY_CTRL);
3074 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
3075 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3076 ew32(PHY_CTRL, phy_ctrl);
3077
Bruce Allanad680762008-03-28 09:15:03 -07003078 /*
3079 * Call gig speed drop workaround on Gig disable before accessing
3080 * any PHY registers
3081 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07003082 e1000e_gig_downshift_workaround_ich8lan(hw);
3083
3084 /* unable to acquire PCS lock */
3085 return -E1000_ERR_PHY;
3086}
3087
3088/**
Bruce Allanad680762008-03-28 09:15:03 -07003089 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
Auke Kokbc7f75f2007-09-17 12:30:59 -07003090 * @hw: pointer to the HW structure
Auke Kok489815c2008-02-21 15:11:07 -08003091 * @state: boolean value used to set the current Kumeran workaround state
Auke Kokbc7f75f2007-09-17 12:30:59 -07003092 *
3093 * If ICH8, set the current Kumeran workaround state (enabled - TRUE
3094 * /disabled - FALSE).
3095 **/
3096void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
3097 bool state)
3098{
3099 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3100
3101 if (hw->mac.type != e1000_ich8lan) {
3102 hw_dbg(hw, "Workaround applies to ICH8 only.\n");
3103 return;
3104 }
3105
3106 dev_spec->kmrn_lock_loss_workaround_enabled = state;
3107}
3108
3109/**
3110 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3111 * @hw: pointer to the HW structure
3112 *
3113 * Workaround for 82566 power-down on D3 entry:
3114 * 1) disable gigabit link
3115 * 2) write VR power-down enable
3116 * 3) read it back
3117 * Continue if successful, else issue LCD reset and repeat
3118 **/
3119void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3120{
3121 u32 reg;
3122 u16 data;
3123 u8 retry = 0;
3124
3125 if (hw->phy.type != e1000_phy_igp_3)
3126 return;
3127
3128 /* Try the workaround twice (if needed) */
3129 do {
3130 /* Disable link */
3131 reg = er32(PHY_CTRL);
3132 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3133 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3134 ew32(PHY_CTRL, reg);
3135
Bruce Allanad680762008-03-28 09:15:03 -07003136 /*
3137 * Call gig speed drop workaround on Gig disable before
3138 * accessing any PHY registers
3139 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07003140 if (hw->mac.type == e1000_ich8lan)
3141 e1000e_gig_downshift_workaround_ich8lan(hw);
3142
3143 /* Write VR power-down enable */
3144 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3145 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3146 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3147
3148 /* Read it back and test */
3149 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3150 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3151 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
3152 break;
3153
3154 /* Issue PHY reset and repeat at most one more time */
3155 reg = er32(CTRL);
3156 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
3157 retry++;
3158 } while (retry);
3159}
3160
3161/**
3162 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3163 * @hw: pointer to the HW structure
3164 *
3165 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
Auke Kok489815c2008-02-21 15:11:07 -08003166 * LPLU, Gig disable, MDIC PHY reset):
Auke Kokbc7f75f2007-09-17 12:30:59 -07003167 * 1) Set Kumeran Near-end loopback
3168 * 2) Clear Kumeran Near-end loopback
3169 * Should only be called for ICH8[m] devices with IGP_3 Phy.
3170 **/
3171void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
3172{
3173 s32 ret_val;
3174 u16 reg_data;
3175
3176 if ((hw->mac.type != e1000_ich8lan) ||
3177 (hw->phy.type != e1000_phy_igp_3))
3178 return;
3179
3180 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3181 &reg_data);
3182 if (ret_val)
3183 return;
3184 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
3185 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3186 reg_data);
3187 if (ret_val)
3188 return;
3189 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
3190 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3191 reg_data);
3192}
3193
3194/**
Bruce Allan97ac8ca2008-04-29 09:16:05 -07003195 * e1000e_disable_gig_wol_ich8lan - disable gig during WoL
3196 * @hw: pointer to the HW structure
3197 *
3198 * During S0 to Sx transition, it is possible the link remains at gig
3199 * instead of negotiating to a lower speed. Before going to Sx, set
3200 * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
3201 * to a lower speed.
3202 *
Bruce Allana4f58f52009-06-02 11:29:18 +00003203 * Should only be called for applicable parts.
Bruce Allan97ac8ca2008-04-29 09:16:05 -07003204 **/
3205void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
3206{
3207 u32 phy_ctrl;
3208
Bruce Allana4f58f52009-06-02 11:29:18 +00003209 switch (hw->mac.type) {
3210 case e1000_ich9lan:
3211 case e1000_ich10lan:
3212 case e1000_pchlan:
Bruce Allan97ac8ca2008-04-29 09:16:05 -07003213 phy_ctrl = er32(PHY_CTRL);
3214 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU |
3215 E1000_PHY_CTRL_GBE_DISABLE;
3216 ew32(PHY_CTRL, phy_ctrl);
Bruce Allana4f58f52009-06-02 11:29:18 +00003217
Bruce Allana4f58f52009-06-02 11:29:18 +00003218 if (hw->mac.type == e1000_pchlan)
Bruce Allan74eee2e2009-10-22 21:22:18 -07003219 e1000_phy_hw_reset_ich8lan(hw);
Bruce Allana4f58f52009-06-02 11:29:18 +00003220 default:
3221 break;
Bruce Allan97ac8ca2008-04-29 09:16:05 -07003222 }
3223
3224 return;
3225}
3226
3227/**
Auke Kokbc7f75f2007-09-17 12:30:59 -07003228 * e1000_cleanup_led_ich8lan - Restore the default LED operation
3229 * @hw: pointer to the HW structure
3230 *
3231 * Return the LED back to the default configuration.
3232 **/
3233static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
3234{
3235 if (hw->phy.type == e1000_phy_ife)
3236 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
3237
3238 ew32(LEDCTL, hw->mac.ledctl_default);
3239 return 0;
3240}
3241
3242/**
Auke Kok489815c2008-02-21 15:11:07 -08003243 * e1000_led_on_ich8lan - Turn LEDs on
Auke Kokbc7f75f2007-09-17 12:30:59 -07003244 * @hw: pointer to the HW structure
3245 *
Auke Kok489815c2008-02-21 15:11:07 -08003246 * Turn on the LEDs.
Auke Kokbc7f75f2007-09-17 12:30:59 -07003247 **/
3248static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
3249{
3250 if (hw->phy.type == e1000_phy_ife)
3251 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3252 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
3253
3254 ew32(LEDCTL, hw->mac.ledctl_mode2);
3255 return 0;
3256}
3257
3258/**
Auke Kok489815c2008-02-21 15:11:07 -08003259 * e1000_led_off_ich8lan - Turn LEDs off
Auke Kokbc7f75f2007-09-17 12:30:59 -07003260 * @hw: pointer to the HW structure
3261 *
Auke Kok489815c2008-02-21 15:11:07 -08003262 * Turn off the LEDs.
Auke Kokbc7f75f2007-09-17 12:30:59 -07003263 **/
3264static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
3265{
3266 if (hw->phy.type == e1000_phy_ife)
3267 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3268 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
3269
3270 ew32(LEDCTL, hw->mac.ledctl_mode1);
3271 return 0;
3272}
3273
3274/**
Bruce Allana4f58f52009-06-02 11:29:18 +00003275 * e1000_setup_led_pchlan - Configures SW controllable LED
3276 * @hw: pointer to the HW structure
3277 *
3278 * This prepares the SW controllable LED for use.
3279 **/
3280static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
3281{
3282 return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG,
3283 (u16)hw->mac.ledctl_mode1);
3284}
3285
3286/**
3287 * e1000_cleanup_led_pchlan - Restore the default LED operation
3288 * @hw: pointer to the HW structure
3289 *
3290 * Return the LED back to the default configuration.
3291 **/
3292static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
3293{
3294 return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG,
3295 (u16)hw->mac.ledctl_default);
3296}
3297
3298/**
3299 * e1000_led_on_pchlan - Turn LEDs on
3300 * @hw: pointer to the HW structure
3301 *
3302 * Turn on the LEDs.
3303 **/
3304static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
3305{
3306 u16 data = (u16)hw->mac.ledctl_mode2;
3307 u32 i, led;
3308
3309 /*
3310 * If no link, then turn LED on by setting the invert bit
3311 * for each LED that's mode is "link_up" in ledctl_mode2.
3312 */
3313 if (!(er32(STATUS) & E1000_STATUS_LU)) {
3314 for (i = 0; i < 3; i++) {
3315 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3316 if ((led & E1000_PHY_LED0_MODE_MASK) !=
3317 E1000_LEDCTL_MODE_LINK_UP)
3318 continue;
3319 if (led & E1000_PHY_LED0_IVRT)
3320 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3321 else
3322 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3323 }
3324 }
3325
3326 return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG, data);
3327}
3328
3329/**
3330 * e1000_led_off_pchlan - Turn LEDs off
3331 * @hw: pointer to the HW structure
3332 *
3333 * Turn off the LEDs.
3334 **/
3335static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
3336{
3337 u16 data = (u16)hw->mac.ledctl_mode1;
3338 u32 i, led;
3339
3340 /*
3341 * If no link, then turn LED off by clearing the invert bit
3342 * for each LED that's mode is "link_up" in ledctl_mode1.
3343 */
3344 if (!(er32(STATUS) & E1000_STATUS_LU)) {
3345 for (i = 0; i < 3; i++) {
3346 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3347 if ((led & E1000_PHY_LED0_MODE_MASK) !=
3348 E1000_LEDCTL_MODE_LINK_UP)
3349 continue;
3350 if (led & E1000_PHY_LED0_IVRT)
3351 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3352 else
3353 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3354 }
3355 }
3356
3357 return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG, data);
3358}
3359
3360/**
Bruce Allanf4187b52008-08-26 18:36:50 -07003361 * e1000_get_cfg_done_ich8lan - Read config done bit
3362 * @hw: pointer to the HW structure
3363 *
3364 * Read the management control register for the config done bit for
3365 * completion status. NOTE: silicon which is EEPROM-less will fail trying
3366 * to read the config done bit, so an error is *ONLY* logged and returns
Bruce Allana4f58f52009-06-02 11:29:18 +00003367 * 0. If we were to return with error, EEPROM-less silicon
Bruce Allanf4187b52008-08-26 18:36:50 -07003368 * would not be able to be reset or change link.
3369 **/
3370static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
3371{
3372 u32 bank = 0;
3373
Bruce Allanfc0c7762009-07-01 13:27:55 +00003374 if (hw->mac.type >= e1000_pchlan) {
3375 u32 status = er32(STATUS);
3376
3377 if (status & E1000_STATUS_PHYRA)
3378 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
3379 else
3380 hw_dbg(hw,
3381 "PHY Reset Asserted not set - needs delay\n");
3382 }
3383
Bruce Allanf4187b52008-08-26 18:36:50 -07003384 e1000e_get_cfg_done(hw);
3385
3386 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
Bruce Allana4f58f52009-06-02 11:29:18 +00003387 if ((hw->mac.type != e1000_ich10lan) &&
3388 (hw->mac.type != e1000_pchlan)) {
Bruce Allanf4187b52008-08-26 18:36:50 -07003389 if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
3390 (hw->phy.type == e1000_phy_igp_3)) {
3391 e1000e_phy_init_script_igp3(hw);
3392 }
3393 } else {
3394 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
3395 /* Maybe we should do a basic PHY config */
3396 hw_dbg(hw, "EEPROM not present\n");
3397 return -E1000_ERR_CONFIG;
3398 }
3399 }
3400
3401 return 0;
3402}
3403
3404/**
Auke Kokbc7f75f2007-09-17 12:30:59 -07003405 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
3406 * @hw: pointer to the HW structure
3407 *
3408 * Clears hardware counters specific to the silicon family and calls
3409 * clear_hw_cntrs_generic to clear all general purpose counters.
3410 **/
3411static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
3412{
3413 u32 temp;
Bruce Allana4f58f52009-06-02 11:29:18 +00003414 u16 phy_data;
Auke Kokbc7f75f2007-09-17 12:30:59 -07003415
3416 e1000e_clear_hw_cntrs_base(hw);
3417
3418 temp = er32(ALGNERRC);
3419 temp = er32(RXERRC);
3420 temp = er32(TNCRS);
3421 temp = er32(CEXTERR);
3422 temp = er32(TSCTC);
3423 temp = er32(TSCTFC);
3424
3425 temp = er32(MGTPRC);
3426 temp = er32(MGTPDC);
3427 temp = er32(MGTPTC);
3428
3429 temp = er32(IAC);
3430 temp = er32(ICRXOC);
3431
Bruce Allana4f58f52009-06-02 11:29:18 +00003432 /* Clear PHY statistics registers */
3433 if ((hw->phy.type == e1000_phy_82578) ||
3434 (hw->phy.type == e1000_phy_82577)) {
3435 hw->phy.ops.read_phy_reg(hw, HV_SCC_UPPER, &phy_data);
3436 hw->phy.ops.read_phy_reg(hw, HV_SCC_LOWER, &phy_data);
3437 hw->phy.ops.read_phy_reg(hw, HV_ECOL_UPPER, &phy_data);
3438 hw->phy.ops.read_phy_reg(hw, HV_ECOL_LOWER, &phy_data);
3439 hw->phy.ops.read_phy_reg(hw, HV_MCC_UPPER, &phy_data);
3440 hw->phy.ops.read_phy_reg(hw, HV_MCC_LOWER, &phy_data);
3441 hw->phy.ops.read_phy_reg(hw, HV_LATECOL_UPPER, &phy_data);
3442 hw->phy.ops.read_phy_reg(hw, HV_LATECOL_LOWER, &phy_data);
3443 hw->phy.ops.read_phy_reg(hw, HV_COLC_UPPER, &phy_data);
3444 hw->phy.ops.read_phy_reg(hw, HV_COLC_LOWER, &phy_data);
3445 hw->phy.ops.read_phy_reg(hw, HV_DC_UPPER, &phy_data);
3446 hw->phy.ops.read_phy_reg(hw, HV_DC_LOWER, &phy_data);
3447 hw->phy.ops.read_phy_reg(hw, HV_TNCRS_UPPER, &phy_data);
3448 hw->phy.ops.read_phy_reg(hw, HV_TNCRS_LOWER, &phy_data);
3449 }
Auke Kokbc7f75f2007-09-17 12:30:59 -07003450}
3451
3452static struct e1000_mac_operations ich8_mac_ops = {
Bruce Allana4f58f52009-06-02 11:29:18 +00003453 .id_led_init = e1000e_id_led_init,
Bruce Allan4662e822008-08-26 18:37:06 -07003454 .check_mng_mode = e1000_check_mng_mode_ich8lan,
Bruce Allan7d3cabb2009-07-01 13:29:08 +00003455 .check_for_link = e1000_check_for_copper_link_ich8lan,
Bruce Allana4f58f52009-06-02 11:29:18 +00003456 /* cleanup_led dependent on mac type */
Auke Kokbc7f75f2007-09-17 12:30:59 -07003457 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
3458 .get_bus_info = e1000_get_bus_info_ich8lan,
3459 .get_link_up_info = e1000_get_link_up_info_ich8lan,
Bruce Allana4f58f52009-06-02 11:29:18 +00003460 /* led_on dependent on mac type */
3461 /* led_off dependent on mac type */
Jeff Kirshere2de3eb2008-03-28 09:15:11 -07003462 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
Auke Kokbc7f75f2007-09-17 12:30:59 -07003463 .reset_hw = e1000_reset_hw_ich8lan,
3464 .init_hw = e1000_init_hw_ich8lan,
3465 .setup_link = e1000_setup_link_ich8lan,
3466 .setup_physical_interface= e1000_setup_copper_link_ich8lan,
Bruce Allana4f58f52009-06-02 11:29:18 +00003467 /* id_led_init dependent on mac type */
Auke Kokbc7f75f2007-09-17 12:30:59 -07003468};
3469
3470static struct e1000_phy_operations ich8_phy_ops = {
3471 .acquire_phy = e1000_acquire_swflag_ich8lan,
3472 .check_reset_block = e1000_check_reset_block_ich8lan,
3473 .commit_phy = NULL,
3474 .force_speed_duplex = e1000_phy_force_speed_duplex_ich8lan,
Bruce Allanf4187b52008-08-26 18:36:50 -07003475 .get_cfg_done = e1000_get_cfg_done_ich8lan,
Auke Kokbc7f75f2007-09-17 12:30:59 -07003476 .get_cable_length = e1000e_get_cable_length_igp_2,
3477 .get_phy_info = e1000_get_phy_info_ich8lan,
3478 .read_phy_reg = e1000e_read_phy_reg_igp,
3479 .release_phy = e1000_release_swflag_ich8lan,
3480 .reset_phy = e1000_phy_hw_reset_ich8lan,
3481 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
3482 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
3483 .write_phy_reg = e1000e_write_phy_reg_igp,
3484};
3485
3486static struct e1000_nvm_operations ich8_nvm_ops = {
Bruce Allanca15df52009-10-26 11:23:43 +00003487 .acquire_nvm = e1000_acquire_nvm_ich8lan,
Auke Kokbc7f75f2007-09-17 12:30:59 -07003488 .read_nvm = e1000_read_nvm_ich8lan,
Bruce Allanca15df52009-10-26 11:23:43 +00003489 .release_nvm = e1000_release_nvm_ich8lan,
Auke Kokbc7f75f2007-09-17 12:30:59 -07003490 .update_nvm = e1000_update_nvm_checksum_ich8lan,
3491 .valid_led_default = e1000_valid_led_default_ich8lan,
3492 .validate_nvm = e1000_validate_nvm_checksum_ich8lan,
3493 .write_nvm = e1000_write_nvm_ich8lan,
3494};
3495
3496struct e1000_info e1000_ich8_info = {
3497 .mac = e1000_ich8lan,
3498 .flags = FLAG_HAS_WOL
Bruce Allan97ac8ca2008-04-29 09:16:05 -07003499 | FLAG_IS_ICH
Auke Kokbc7f75f2007-09-17 12:30:59 -07003500 | FLAG_RX_CSUM_ENABLED
3501 | FLAG_HAS_CTRLEXT_ON_LOAD
3502 | FLAG_HAS_AMT
3503 | FLAG_HAS_FLASH
3504 | FLAG_APME_IN_WUC,
3505 .pba = 8,
Bruce Allan2adc55c2009-06-02 11:28:58 +00003506 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
Jeff Kirsher69e3fd82008-04-02 13:48:18 -07003507 .get_variants = e1000_get_variants_ich8lan,
Auke Kokbc7f75f2007-09-17 12:30:59 -07003508 .mac_ops = &ich8_mac_ops,
3509 .phy_ops = &ich8_phy_ops,
3510 .nvm_ops = &ich8_nvm_ops,
3511};
3512
3513struct e1000_info e1000_ich9_info = {
3514 .mac = e1000_ich9lan,
3515 .flags = FLAG_HAS_JUMBO_FRAMES
Bruce Allan97ac8ca2008-04-29 09:16:05 -07003516 | FLAG_IS_ICH
Auke Kokbc7f75f2007-09-17 12:30:59 -07003517 | FLAG_HAS_WOL
3518 | FLAG_RX_CSUM_ENABLED
3519 | FLAG_HAS_CTRLEXT_ON_LOAD
3520 | FLAG_HAS_AMT
3521 | FLAG_HAS_ERT
3522 | FLAG_HAS_FLASH
3523 | FLAG_APME_IN_WUC,
3524 .pba = 10,
Bruce Allan2adc55c2009-06-02 11:28:58 +00003525 .max_hw_frame_size = DEFAULT_JUMBO,
Jeff Kirsher69e3fd82008-04-02 13:48:18 -07003526 .get_variants = e1000_get_variants_ich8lan,
Auke Kokbc7f75f2007-09-17 12:30:59 -07003527 .mac_ops = &ich8_mac_ops,
3528 .phy_ops = &ich8_phy_ops,
3529 .nvm_ops = &ich8_nvm_ops,
3530};
3531
Bruce Allanf4187b52008-08-26 18:36:50 -07003532struct e1000_info e1000_ich10_info = {
3533 .mac = e1000_ich10lan,
3534 .flags = FLAG_HAS_JUMBO_FRAMES
3535 | FLAG_IS_ICH
3536 | FLAG_HAS_WOL
3537 | FLAG_RX_CSUM_ENABLED
3538 | FLAG_HAS_CTRLEXT_ON_LOAD
3539 | FLAG_HAS_AMT
3540 | FLAG_HAS_ERT
3541 | FLAG_HAS_FLASH
3542 | FLAG_APME_IN_WUC,
3543 .pba = 10,
Bruce Allan2adc55c2009-06-02 11:28:58 +00003544 .max_hw_frame_size = DEFAULT_JUMBO,
Bruce Allanf4187b52008-08-26 18:36:50 -07003545 .get_variants = e1000_get_variants_ich8lan,
3546 .mac_ops = &ich8_mac_ops,
3547 .phy_ops = &ich8_phy_ops,
3548 .nvm_ops = &ich8_nvm_ops,
3549};
Bruce Allana4f58f52009-06-02 11:29:18 +00003550
3551struct e1000_info e1000_pch_info = {
3552 .mac = e1000_pchlan,
3553 .flags = FLAG_IS_ICH
3554 | FLAG_HAS_WOL
3555 | FLAG_RX_CSUM_ENABLED
3556 | FLAG_HAS_CTRLEXT_ON_LOAD
3557 | FLAG_HAS_AMT
3558 | FLAG_HAS_FLASH
3559 | FLAG_HAS_JUMBO_FRAMES
3560 | FLAG_APME_IN_WUC,
3561 .pba = 26,
3562 .max_hw_frame_size = 4096,
3563 .get_variants = e1000_get_variants_ich8lan,
3564 .mac_ops = &ich8_mac_ops,
3565 .phy_ops = &ich8_phy_ops,
3566 .nvm_ops = &ich8_nvm_ops,
3567};