| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * fp_util.S | 
|  | 3 | * | 
|  | 4 | * Copyright Roman Zippel, 1997.  All rights reserved. | 
|  | 5 | * | 
|  | 6 | * Redistribution and use in source and binary forms, with or without | 
|  | 7 | * modification, are permitted provided that the following conditions | 
|  | 8 | * are met: | 
|  | 9 | * 1. Redistributions of source code must retain the above copyright | 
|  | 10 | *    notice, and the entire permission notice in its entirety, | 
|  | 11 | *    including the disclaimer of warranties. | 
|  | 12 | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | 13 | *    notice, this list of conditions and the following disclaimer in the | 
|  | 14 | *    documentation and/or other materials provided with the distribution. | 
|  | 15 | * 3. The name of the author may not be used to endorse or promote | 
|  | 16 | *    products derived from this software without specific prior | 
|  | 17 | *    written permission. | 
|  | 18 | * | 
|  | 19 | * ALTERNATIVELY, this product may be distributed under the terms of | 
|  | 20 | * the GNU General Public License, in which case the provisions of the GPL are | 
|  | 21 | * required INSTEAD OF the above restrictions.  (This clause is | 
|  | 22 | * necessary due to a potential bad interaction between the GPL and | 
|  | 23 | * the restrictions contained in a BSD-style copyright.) | 
|  | 24 | * | 
|  | 25 | * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED | 
|  | 26 | * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES | 
|  | 27 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | 
|  | 28 | * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, | 
|  | 29 | * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | 
|  | 30 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR | 
|  | 31 | * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
|  | 32 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | 
|  | 33 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | 34 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | 
|  | 35 | * OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | 36 | */ | 
|  | 37 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 38 | #include "fp_emu.h" | 
|  | 39 |  | 
|  | 40 | /* | 
|  | 41 | * Here are lots of conversion and normalization functions mainly | 
|  | 42 | * used by fp_scan.S | 
|  | 43 | * Note that these functions are optimized for "normal" numbers, | 
|  | 44 | * these are handled first and exit as fast as possible, this is | 
|  | 45 | * especially important for fp_normalize_ext/fp_conv_ext2ext, as | 
|  | 46 | * it's called very often. | 
|  | 47 | * The register usage is optimized for fp_scan.S and which register | 
|  | 48 | * is currently at that time unused, be careful if you want change | 
|  | 49 | * something here. %d0 and %d1 is always usable, sometimes %d2 (or | 
|  | 50 | * only the lower half) most function have to return the %a0 | 
|  | 51 | * unmodified, so that the caller can immediately reuse it. | 
|  | 52 | */ | 
|  | 53 |  | 
|  | 54 | .globl	fp_ill, fp_end | 
|  | 55 |  | 
|  | 56 | | exits from fp_scan: | 
|  | 57 | | illegal instruction | 
|  | 58 | fp_ill: | 
|  | 59 | printf	,"fp_illegal\n" | 
|  | 60 | rts | 
|  | 61 | | completed instruction | 
|  | 62 | fp_end: | 
|  | 63 | tst.l	(TASK_MM-8,%a2) | 
|  | 64 | jmi	1f | 
|  | 65 | tst.l	(TASK_MM-4,%a2) | 
|  | 66 | jmi	1f | 
|  | 67 | tst.l	(TASK_MM,%a2) | 
|  | 68 | jpl	2f | 
|  | 69 | 1:	printf	,"oops:%p,%p,%p\n",3,%a2@(TASK_MM-8),%a2@(TASK_MM-4),%a2@(TASK_MM) | 
|  | 70 | 2:	clr.l	%d0 | 
|  | 71 | rts | 
|  | 72 |  | 
|  | 73 | .globl	fp_conv_long2ext, fp_conv_single2ext | 
|  | 74 | .globl	fp_conv_double2ext, fp_conv_ext2ext | 
|  | 75 | .globl	fp_normalize_ext, fp_normalize_double | 
|  | 76 | .globl	fp_normalize_single, fp_normalize_single_fast | 
|  | 77 | .globl	fp_conv_ext2double, fp_conv_ext2single | 
|  | 78 | .globl	fp_conv_ext2long, fp_conv_ext2short | 
|  | 79 | .globl	fp_conv_ext2byte | 
|  | 80 | .globl	fp_finalrounding_single, fp_finalrounding_single_fast | 
|  | 81 | .globl	fp_finalrounding_double | 
|  | 82 | .globl	fp_finalrounding, fp_finaltest, fp_final | 
|  | 83 |  | 
|  | 84 | /* | 
|  | 85 | * First several conversion functions from a source operand | 
|  | 86 | * into the extended format. Note, that only fp_conv_ext2ext | 
|  | 87 | * normalizes the number and is always called after the other | 
|  | 88 | * conversion functions, which only move the information into | 
|  | 89 | * fp_ext structure. | 
|  | 90 | */ | 
|  | 91 |  | 
|  | 92 | | fp_conv_long2ext: | 
|  | 93 | | | 
|  | 94 | | args:	%d0 = source (32-bit long) | 
|  | 95 | |	%a0 = destination (ptr to struct fp_ext) | 
|  | 96 |  | 
|  | 97 | fp_conv_long2ext: | 
|  | 98 | printf	PCONV,"l2e: %p -> %p(",2,%d0,%a0 | 
|  | 99 | clr.l	%d1			| sign defaults to zero | 
|  | 100 | tst.l	%d0 | 
|  | 101 | jeq	fp_l2e_zero		| is source zero? | 
|  | 102 | jpl	1f			| positive? | 
|  | 103 | moveq	#1,%d1 | 
|  | 104 | neg.l	%d0 | 
|  | 105 | 1:	swap	%d1 | 
|  | 106 | move.w	#0x3fff+31,%d1 | 
|  | 107 | move.l	%d1,(%a0)+		| set sign / exp | 
|  | 108 | move.l	%d0,(%a0)+		| set mantissa | 
|  | 109 | clr.l	(%a0) | 
|  | 110 | subq.l	#8,%a0			| restore %a0 | 
|  | 111 | printx	PCONV,%a0@ | 
|  | 112 | printf	PCONV,")\n" | 
|  | 113 | rts | 
|  | 114 | | source is zero | 
|  | 115 | fp_l2e_zero: | 
|  | 116 | clr.l	(%a0)+ | 
|  | 117 | clr.l	(%a0)+ | 
|  | 118 | clr.l	(%a0) | 
|  | 119 | subq.l	#8,%a0 | 
|  | 120 | printx	PCONV,%a0@ | 
|  | 121 | printf	PCONV,")\n" | 
|  | 122 | rts | 
|  | 123 |  | 
|  | 124 | | fp_conv_single2ext | 
|  | 125 | | args:	%d0 = source (single-precision fp value) | 
|  | 126 | |	%a0 = dest (struct fp_ext *) | 
|  | 127 |  | 
|  | 128 | fp_conv_single2ext: | 
|  | 129 | printf	PCONV,"s2e: %p -> %p(",2,%d0,%a0 | 
|  | 130 | move.l	%d0,%d1 | 
|  | 131 | lsl.l	#8,%d0			| shift mantissa | 
|  | 132 | lsr.l	#8,%d1			| exponent / sign | 
|  | 133 | lsr.l	#7,%d1 | 
|  | 134 | lsr.w	#8,%d1 | 
|  | 135 | jeq	fp_s2e_small		| zero / denormal? | 
|  | 136 | cmp.w	#0xff,%d1		| NaN / Inf? | 
|  | 137 | jeq	fp_s2e_large | 
|  | 138 | bset	#31,%d0			| set explizit bit | 
|  | 139 | add.w	#0x3fff-0x7f,%d1	| re-bias the exponent. | 
|  | 140 | 9:	move.l	%d1,(%a0)+		| fp_ext.sign, fp_ext.exp | 
|  | 141 | move.l	%d0,(%a0)+		| high lword of fp_ext.mant | 
|  | 142 | clr.l	(%a0)			| low lword = 0 | 
|  | 143 | subq.l	#8,%a0 | 
|  | 144 | printx	PCONV,%a0@ | 
|  | 145 | printf	PCONV,")\n" | 
|  | 146 | rts | 
|  | 147 | | zeros and denormalized | 
|  | 148 | fp_s2e_small: | 
|  | 149 | | exponent is zero, so explizit bit is already zero too | 
|  | 150 | tst.l	%d0 | 
|  | 151 | jeq	9b | 
|  | 152 | move.w	#0x4000-0x7f,%d1 | 
|  | 153 | jra	9b | 
|  | 154 | | infinities and NAN | 
|  | 155 | fp_s2e_large: | 
|  | 156 | bclr	#31,%d0			| clear explizit bit | 
|  | 157 | move.w	#0x7fff,%d1 | 
|  | 158 | jra	9b | 
|  | 159 |  | 
|  | 160 | fp_conv_double2ext: | 
|  | 161 | #ifdef FPU_EMU_DEBUG | 
|  | 162 | getuser.l %a1@(0),%d0,fp_err_ua2,%a1 | 
|  | 163 | getuser.l %a1@(4),%d1,fp_err_ua2,%a1 | 
|  | 164 | printf	PCONV,"d2e: %p%p -> %p(",3,%d0,%d1,%a0 | 
|  | 165 | #endif | 
|  | 166 | getuser.l (%a1)+,%d0,fp_err_ua2,%a1 | 
|  | 167 | move.l	%d0,%d1 | 
|  | 168 | lsl.l	#8,%d0			| shift high mantissa | 
|  | 169 | lsl.l	#3,%d0 | 
|  | 170 | lsr.l	#8,%d1			| exponent / sign | 
|  | 171 | lsr.l	#7,%d1 | 
|  | 172 | lsr.w	#5,%d1 | 
|  | 173 | jeq	fp_d2e_small		| zero / denormal? | 
|  | 174 | cmp.w	#0x7ff,%d1		| NaN / Inf? | 
|  | 175 | jeq	fp_d2e_large | 
|  | 176 | bset	#31,%d0			| set explizit bit | 
|  | 177 | add.w	#0x3fff-0x3ff,%d1	| re-bias the exponent. | 
|  | 178 | 9:	move.l	%d1,(%a0)+		| fp_ext.sign, fp_ext.exp | 
|  | 179 | move.l	%d0,(%a0)+ | 
|  | 180 | getuser.l (%a1)+,%d0,fp_err_ua2,%a1 | 
|  | 181 | move.l	%d0,%d1 | 
|  | 182 | lsl.l	#8,%d0 | 
|  | 183 | lsl.l	#3,%d0 | 
|  | 184 | move.l	%d0,(%a0) | 
|  | 185 | moveq	#21,%d0 | 
|  | 186 | lsr.l	%d0,%d1 | 
|  | 187 | or.l	%d1,-(%a0) | 
|  | 188 | subq.l	#4,%a0 | 
|  | 189 | printx	PCONV,%a0@ | 
|  | 190 | printf	PCONV,")\n" | 
|  | 191 | rts | 
|  | 192 | | zeros and denormalized | 
|  | 193 | fp_d2e_small: | 
|  | 194 | | exponent is zero, so explizit bit is already zero too | 
|  | 195 | tst.l	%d0 | 
|  | 196 | jeq	9b | 
|  | 197 | move.w	#0x4000-0x3ff,%d1 | 
|  | 198 | jra	9b | 
|  | 199 | | infinities and NAN | 
|  | 200 | fp_d2e_large: | 
|  | 201 | bclr	#31,%d0			| clear explizit bit | 
|  | 202 | move.w	#0x7fff,%d1 | 
|  | 203 | jra	9b | 
|  | 204 |  | 
|  | 205 | | fp_conv_ext2ext: | 
|  | 206 | | originally used to get longdouble from userspace, now it's | 
|  | 207 | | called before arithmetic operations to make sure the number | 
|  | 208 | | is normalized [maybe rename it?]. | 
|  | 209 | | args:	%a0 = dest (struct fp_ext *) | 
|  | 210 | | returns 0 in %d0 for a NaN, otherwise 1 | 
|  | 211 |  | 
|  | 212 | fp_conv_ext2ext: | 
|  | 213 | printf	PCONV,"e2e: %p(",1,%a0 | 
|  | 214 | printx	PCONV,%a0@ | 
|  | 215 | printf	PCONV,"), " | 
|  | 216 | move.l	(%a0)+,%d0 | 
|  | 217 | cmp.w	#0x7fff,%d0		| Inf / NaN? | 
|  | 218 | jeq	fp_e2e_large | 
|  | 219 | move.l	(%a0),%d0 | 
|  | 220 | jpl	fp_e2e_small		| zero / denorm? | 
|  | 221 | | The high bit is set, so normalization is irrelevant. | 
|  | 222 | fp_e2e_checkround: | 
|  | 223 | subq.l	#4,%a0 | 
|  | 224 | #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC | 
|  | 225 | move.b	(%a0),%d0 | 
|  | 226 | jne	fp_e2e_round | 
|  | 227 | #endif | 
|  | 228 | printf	PCONV,"%p(",1,%a0 | 
|  | 229 | printx	PCONV,%a0@ | 
|  | 230 | printf	PCONV,")\n" | 
|  | 231 | moveq	#1,%d0 | 
|  | 232 | rts | 
|  | 233 | #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC | 
|  | 234 | fp_e2e_round: | 
|  | 235 | fp_set_sr FPSR_EXC_INEX2 | 
|  | 236 | clr.b	(%a0) | 
|  | 237 | move.w	(FPD_RND,FPDATA),%d2 | 
|  | 238 | jne	fp_e2e_roundother	| %d2 == 0, round to nearest | 
|  | 239 | tst.b	%d0			| test guard bit | 
|  | 240 | jpl	9f			| zero is closer | 
|  | 241 | btst	#0,(11,%a0)		| test lsb bit | 
|  | 242 | jne	fp_e2e_doroundup	| round to infinity | 
|  | 243 | lsl.b	#1,%d0			| check low bits | 
|  | 244 | jeq	9f			| round to zero | 
|  | 245 | fp_e2e_doroundup: | 
|  | 246 | addq.l	#1,(8,%a0) | 
|  | 247 | jcc	9f | 
|  | 248 | addq.l	#1,(4,%a0) | 
|  | 249 | jcc	9f | 
|  | 250 | move.w	#0x8000,(4,%a0) | 
|  | 251 | addq.w	#1,(2,%a0) | 
|  | 252 | 9:	printf	PNORM,"%p(",1,%a0 | 
|  | 253 | printx	PNORM,%a0@ | 
|  | 254 | printf	PNORM,")\n" | 
|  | 255 | rts | 
|  | 256 | fp_e2e_roundother: | 
|  | 257 | subq.w	#2,%d2 | 
|  | 258 | jcs	9b			| %d2 < 2, round to zero | 
|  | 259 | jhi	1f			| %d2 > 2, round to +infinity | 
|  | 260 | tst.b	(1,%a0)			| to -inf | 
|  | 261 | jne	fp_e2e_doroundup	| negative, round to infinity | 
|  | 262 | jra	9b			| positive, round to zero | 
|  | 263 | 1:	tst.b	(1,%a0)			| to +inf | 
|  | 264 | jeq	fp_e2e_doroundup	| positive, round to infinity | 
|  | 265 | jra	9b			| negative, round to zero | 
|  | 266 | #endif | 
|  | 267 | | zeros and subnormals: | 
|  | 268 | | try to normalize these anyway. | 
|  | 269 | fp_e2e_small: | 
|  | 270 | jne	fp_e2e_small1		| high lword zero? | 
|  | 271 | move.l	(4,%a0),%d0 | 
|  | 272 | jne	fp_e2e_small2 | 
|  | 273 | #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC | 
|  | 274 | clr.l	%d0 | 
|  | 275 | move.b	(-4,%a0),%d0 | 
|  | 276 | jne	fp_e2e_small3 | 
|  | 277 | #endif | 
|  | 278 | | Genuine zero. | 
|  | 279 | clr.w	-(%a0) | 
|  | 280 | subq.l	#2,%a0 | 
|  | 281 | printf	PNORM,"%p(",1,%a0 | 
|  | 282 | printx	PNORM,%a0@ | 
|  | 283 | printf	PNORM,")\n" | 
|  | 284 | moveq	#1,%d0 | 
|  | 285 | rts | 
|  | 286 | | definitely subnormal, need to shift all 64 bits | 
|  | 287 | fp_e2e_small1: | 
|  | 288 | bfffo	%d0{#0,#32},%d1 | 
|  | 289 | move.w	-(%a0),%d2 | 
|  | 290 | sub.w	%d1,%d2 | 
|  | 291 | jcc	1f | 
|  | 292 | | Pathologically small, denormalize. | 
|  | 293 | add.w	%d2,%d1 | 
|  | 294 | clr.w	%d2 | 
|  | 295 | 1:	move.w	%d2,(%a0)+ | 
|  | 296 | move.w	%d1,%d2 | 
|  | 297 | jeq	fp_e2e_checkround | 
|  | 298 | | fancy 64-bit double-shift begins here | 
|  | 299 | lsl.l	%d2,%d0 | 
|  | 300 | move.l	%d0,(%a0)+ | 
|  | 301 | move.l	(%a0),%d0 | 
|  | 302 | move.l	%d0,%d1 | 
|  | 303 | lsl.l	%d2,%d0 | 
|  | 304 | move.l	%d0,(%a0) | 
|  | 305 | neg.w	%d2 | 
|  | 306 | and.w	#0x1f,%d2 | 
|  | 307 | lsr.l	%d2,%d1 | 
|  | 308 | or.l	%d1,-(%a0) | 
|  | 309 | #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC | 
|  | 310 | fp_e2e_extra1: | 
|  | 311 | clr.l	%d0 | 
|  | 312 | move.b	(-4,%a0),%d0 | 
|  | 313 | neg.w	%d2 | 
|  | 314 | add.w	#24,%d2 | 
|  | 315 | jcc	1f | 
|  | 316 | clr.b	(-4,%a0) | 
|  | 317 | lsl.l	%d2,%d0 | 
|  | 318 | or.l	%d0,(4,%a0) | 
|  | 319 | jra	fp_e2e_checkround | 
|  | 320 | 1:	addq.w	#8,%d2 | 
|  | 321 | lsl.l	%d2,%d0 | 
|  | 322 | move.b	%d0,(-4,%a0) | 
|  | 323 | lsr.l	#8,%d0 | 
|  | 324 | or.l	%d0,(4,%a0) | 
|  | 325 | #endif | 
|  | 326 | jra	fp_e2e_checkround | 
|  | 327 | | pathologically small subnormal | 
|  | 328 | fp_e2e_small2: | 
|  | 329 | bfffo	%d0{#0,#32},%d1 | 
|  | 330 | add.w	#32,%d1 | 
|  | 331 | move.w	-(%a0),%d2 | 
|  | 332 | sub.w	%d1,%d2 | 
|  | 333 | jcc	1f | 
|  | 334 | | Beyond pathologically small, denormalize. | 
|  | 335 | add.w	%d2,%d1 | 
|  | 336 | clr.w	%d2 | 
|  | 337 | 1:	move.w	%d2,(%a0)+ | 
|  | 338 | ext.l	%d1 | 
|  | 339 | jeq	fp_e2e_checkround | 
|  | 340 | clr.l	(4,%a0) | 
|  | 341 | sub.w	#32,%d2 | 
|  | 342 | jcs	1f | 
|  | 343 | lsl.l	%d1,%d0			| lower lword needs only to be shifted | 
|  | 344 | move.l	%d0,(%a0)		| into the higher lword | 
|  | 345 | #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC | 
|  | 346 | clr.l	%d0 | 
|  | 347 | move.b	(-4,%a0),%d0 | 
|  | 348 | clr.b	(-4,%a0) | 
|  | 349 | neg.w	%d1 | 
|  | 350 | add.w	#32,%d1 | 
|  | 351 | bfins	%d0,(%a0){%d1,#8} | 
|  | 352 | #endif | 
|  | 353 | jra	fp_e2e_checkround | 
|  | 354 | 1:	neg.w	%d1			| lower lword is splitted between | 
|  | 355 | bfins	%d0,(%a0){%d1,#32}	| higher and lower lword | 
|  | 356 | #ifndef CONFIG_M68KFPU_EMU_EXTRAPREC | 
|  | 357 | jra	fp_e2e_checkround | 
|  | 358 | #else | 
|  | 359 | move.w	%d1,%d2 | 
|  | 360 | jra	fp_e2e_extra1 | 
|  | 361 | | These are extremely small numbers, that will mostly end up as zero | 
|  | 362 | | anyway, so this is only important for correct rounding. | 
|  | 363 | fp_e2e_small3: | 
|  | 364 | bfffo	%d0{#24,#8},%d1 | 
|  | 365 | add.w	#40,%d1 | 
|  | 366 | move.w	-(%a0),%d2 | 
|  | 367 | sub.w	%d1,%d2 | 
|  | 368 | jcc	1f | 
|  | 369 | | Pathologically small, denormalize. | 
|  | 370 | add.w	%d2,%d1 | 
|  | 371 | clr.w	%d2 | 
|  | 372 | 1:	move.w	%d2,(%a0)+ | 
|  | 373 | ext.l	%d1 | 
|  | 374 | jeq	fp_e2e_checkround | 
|  | 375 | cmp.w	#8,%d1 | 
|  | 376 | jcs	2f | 
|  | 377 | 1:	clr.b	(-4,%a0) | 
|  | 378 | sub.w	#64,%d1 | 
|  | 379 | jcs	1f | 
|  | 380 | add.w	#24,%d1 | 
|  | 381 | lsl.l	%d1,%d0 | 
|  | 382 | move.l	%d0,(%a0) | 
|  | 383 | jra	fp_e2e_checkround | 
|  | 384 | 1:	neg.w	%d1 | 
|  | 385 | bfins	%d0,(%a0){%d1,#8} | 
|  | 386 | jra	fp_e2e_checkround | 
|  | 387 | 2:	lsl.l	%d1,%d0 | 
|  | 388 | move.b	%d0,(-4,%a0) | 
|  | 389 | lsr.l	#8,%d0 | 
|  | 390 | move.b	%d0,(7,%a0) | 
|  | 391 | jra	fp_e2e_checkround | 
|  | 392 | #endif | 
|  | 393 | 1:	move.l	%d0,%d1			| lower lword is splitted between | 
|  | 394 | lsl.l	%d2,%d0			| higher and lower lword | 
|  | 395 | move.l	%d0,(%a0) | 
|  | 396 | move.l	%d1,%d0 | 
|  | 397 | neg.w	%d2 | 
|  | 398 | add.w	#32,%d2 | 
|  | 399 | lsr.l	%d2,%d0 | 
|  | 400 | move.l	%d0,-(%a0) | 
|  | 401 | jra	fp_e2e_checkround | 
|  | 402 | | Infinities and NaNs | 
|  | 403 | fp_e2e_large: | 
|  | 404 | move.l	(%a0)+,%d0 | 
|  | 405 | jne	3f | 
|  | 406 | 1:	tst.l	(%a0) | 
|  | 407 | jne	4f | 
|  | 408 | moveq	#1,%d0 | 
|  | 409 | 2:	subq.l	#8,%a0 | 
|  | 410 | printf	PCONV,"%p(",1,%a0 | 
|  | 411 | printx	PCONV,%a0@ | 
|  | 412 | printf	PCONV,")\n" | 
|  | 413 | rts | 
|  | 414 | | we have maybe a NaN, shift off the highest bit | 
|  | 415 | 3:	lsl.l	#1,%d0 | 
|  | 416 | jeq	1b | 
|  | 417 | | we have a NaN, clear the return value | 
|  | 418 | 4:	clrl	%d0 | 
|  | 419 | jra	2b | 
|  | 420 |  | 
|  | 421 |  | 
|  | 422 | /* | 
|  | 423 | * Normalization functions.  Call these on the output of general | 
|  | 424 | * FP operators, and before any conversion into the destination | 
|  | 425 | * formats. fp_normalize_ext has always to be called first, the | 
|  | 426 | * following conversion functions expect an already normalized | 
|  | 427 | * number. | 
|  | 428 | */ | 
|  | 429 |  | 
|  | 430 | | fp_normalize_ext: | 
|  | 431 | | normalize an extended in extended (unpacked) format, basically | 
|  | 432 | | it does the same as fp_conv_ext2ext, additionally it also does | 
|  | 433 | | the necessary postprocessing checks. | 
|  | 434 | | args:	%a0 (struct fp_ext *) | 
|  | 435 | | NOTE: it does _not_ modify %a0/%a1 and the upper word of %d2 | 
|  | 436 |  | 
|  | 437 | fp_normalize_ext: | 
|  | 438 | printf	PNORM,"ne: %p(",1,%a0 | 
|  | 439 | printx	PNORM,%a0@ | 
|  | 440 | printf	PNORM,"), " | 
|  | 441 | move.l	(%a0)+,%d0 | 
|  | 442 | cmp.w	#0x7fff,%d0		| Inf / NaN? | 
|  | 443 | jeq	fp_ne_large | 
|  | 444 | move.l	(%a0),%d0 | 
|  | 445 | jpl	fp_ne_small		| zero / denorm? | 
|  | 446 | | The high bit is set, so normalization is irrelevant. | 
|  | 447 | fp_ne_checkround: | 
|  | 448 | subq.l	#4,%a0 | 
|  | 449 | #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC | 
|  | 450 | move.b	(%a0),%d0 | 
|  | 451 | jne	fp_ne_round | 
|  | 452 | #endif | 
|  | 453 | printf	PNORM,"%p(",1,%a0 | 
|  | 454 | printx	PNORM,%a0@ | 
|  | 455 | printf	PNORM,")\n" | 
|  | 456 | rts | 
|  | 457 | #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC | 
|  | 458 | fp_ne_round: | 
|  | 459 | fp_set_sr FPSR_EXC_INEX2 | 
|  | 460 | clr.b	(%a0) | 
|  | 461 | move.w	(FPD_RND,FPDATA),%d2 | 
|  | 462 | jne	fp_ne_roundother	| %d2 == 0, round to nearest | 
|  | 463 | tst.b	%d0			| test guard bit | 
|  | 464 | jpl	9f			| zero is closer | 
|  | 465 | btst	#0,(11,%a0)		| test lsb bit | 
|  | 466 | jne	fp_ne_doroundup		| round to infinity | 
|  | 467 | lsl.b	#1,%d0			| check low bits | 
|  | 468 | jeq	9f			| round to zero | 
|  | 469 | fp_ne_doroundup: | 
|  | 470 | addq.l	#1,(8,%a0) | 
|  | 471 | jcc	9f | 
|  | 472 | addq.l	#1,(4,%a0) | 
|  | 473 | jcc	9f | 
|  | 474 | addq.w	#1,(2,%a0) | 
|  | 475 | move.w	#0x8000,(4,%a0) | 
|  | 476 | 9:	printf	PNORM,"%p(",1,%a0 | 
|  | 477 | printx	PNORM,%a0@ | 
|  | 478 | printf	PNORM,")\n" | 
|  | 479 | rts | 
|  | 480 | fp_ne_roundother: | 
|  | 481 | subq.w	#2,%d2 | 
|  | 482 | jcs	9b			| %d2 < 2, round to zero | 
|  | 483 | jhi	1f			| %d2 > 2, round to +infinity | 
|  | 484 | tst.b	(1,%a0)			| to -inf | 
|  | 485 | jne	fp_ne_doroundup		| negative, round to infinity | 
|  | 486 | jra	9b			| positive, round to zero | 
|  | 487 | 1:	tst.b	(1,%a0)			| to +inf | 
|  | 488 | jeq	fp_ne_doroundup		| positive, round to infinity | 
|  | 489 | jra	9b			| negative, round to zero | 
|  | 490 | #endif | 
|  | 491 | | Zeros and subnormal numbers | 
|  | 492 | | These are probably merely subnormal, rather than "denormalized" | 
|  | 493 | |  numbers, so we will try to make them normal again. | 
|  | 494 | fp_ne_small: | 
|  | 495 | jne	fp_ne_small1		| high lword zero? | 
|  | 496 | move.l	(4,%a0),%d0 | 
|  | 497 | jne	fp_ne_small2 | 
|  | 498 | #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC | 
|  | 499 | clr.l	%d0 | 
|  | 500 | move.b	(-4,%a0),%d0 | 
|  | 501 | jne	fp_ne_small3 | 
|  | 502 | #endif | 
|  | 503 | | Genuine zero. | 
|  | 504 | clr.w	-(%a0) | 
|  | 505 | subq.l	#2,%a0 | 
|  | 506 | printf	PNORM,"%p(",1,%a0 | 
|  | 507 | printx	PNORM,%a0@ | 
|  | 508 | printf	PNORM,")\n" | 
|  | 509 | rts | 
|  | 510 | | Subnormal. | 
|  | 511 | fp_ne_small1: | 
|  | 512 | bfffo	%d0{#0,#32},%d1 | 
|  | 513 | move.w	-(%a0),%d2 | 
|  | 514 | sub.w	%d1,%d2 | 
|  | 515 | jcc	1f | 
|  | 516 | | Pathologically small, denormalize. | 
|  | 517 | add.w	%d2,%d1 | 
|  | 518 | clr.w	%d2 | 
|  | 519 | fp_set_sr FPSR_EXC_UNFL | 
|  | 520 | 1:	move.w	%d2,(%a0)+ | 
|  | 521 | move.w	%d1,%d2 | 
|  | 522 | jeq	fp_ne_checkround | 
|  | 523 | | This is exactly the same 64-bit double shift as seen above. | 
|  | 524 | lsl.l	%d2,%d0 | 
|  | 525 | move.l	%d0,(%a0)+ | 
|  | 526 | move.l	(%a0),%d0 | 
|  | 527 | move.l	%d0,%d1 | 
|  | 528 | lsl.l	%d2,%d0 | 
|  | 529 | move.l	%d0,(%a0) | 
|  | 530 | neg.w	%d2 | 
|  | 531 | and.w	#0x1f,%d2 | 
|  | 532 | lsr.l	%d2,%d1 | 
|  | 533 | or.l	%d1,-(%a0) | 
|  | 534 | #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC | 
|  | 535 | fp_ne_extra1: | 
|  | 536 | clr.l	%d0 | 
|  | 537 | move.b	(-4,%a0),%d0 | 
|  | 538 | neg.w	%d2 | 
|  | 539 | add.w	#24,%d2 | 
|  | 540 | jcc	1f | 
|  | 541 | clr.b	(-4,%a0) | 
|  | 542 | lsl.l	%d2,%d0 | 
|  | 543 | or.l	%d0,(4,%a0) | 
|  | 544 | jra	fp_ne_checkround | 
|  | 545 | 1:	addq.w	#8,%d2 | 
|  | 546 | lsl.l	%d2,%d0 | 
|  | 547 | move.b	%d0,(-4,%a0) | 
|  | 548 | lsr.l	#8,%d0 | 
|  | 549 | or.l	%d0,(4,%a0) | 
|  | 550 | #endif | 
|  | 551 | jra	fp_ne_checkround | 
|  | 552 | | May or may not be subnormal, if so, only 32 bits to shift. | 
|  | 553 | fp_ne_small2: | 
|  | 554 | bfffo	%d0{#0,#32},%d1 | 
|  | 555 | add.w	#32,%d1 | 
|  | 556 | move.w	-(%a0),%d2 | 
|  | 557 | sub.w	%d1,%d2 | 
|  | 558 | jcc	1f | 
|  | 559 | | Beyond pathologically small, denormalize. | 
|  | 560 | add.w	%d2,%d1 | 
|  | 561 | clr.w	%d2 | 
|  | 562 | fp_set_sr FPSR_EXC_UNFL | 
|  | 563 | 1:	move.w	%d2,(%a0)+ | 
|  | 564 | ext.l	%d1 | 
|  | 565 | jeq	fp_ne_checkround | 
|  | 566 | clr.l	(4,%a0) | 
|  | 567 | sub.w	#32,%d1 | 
|  | 568 | jcs	1f | 
|  | 569 | lsl.l	%d1,%d0			| lower lword needs only to be shifted | 
|  | 570 | move.l	%d0,(%a0)		| into the higher lword | 
|  | 571 | #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC | 
|  | 572 | clr.l	%d0 | 
|  | 573 | move.b	(-4,%a0),%d0 | 
|  | 574 | clr.b	(-4,%a0) | 
|  | 575 | neg.w	%d1 | 
|  | 576 | add.w	#32,%d1 | 
|  | 577 | bfins	%d0,(%a0){%d1,#8} | 
|  | 578 | #endif | 
|  | 579 | jra	fp_ne_checkround | 
|  | 580 | 1:	neg.w	%d1			| lower lword is splitted between | 
|  | 581 | bfins	%d0,(%a0){%d1,#32}	| higher and lower lword | 
|  | 582 | #ifndef CONFIG_M68KFPU_EMU_EXTRAPREC | 
|  | 583 | jra	fp_ne_checkround | 
|  | 584 | #else | 
|  | 585 | move.w	%d1,%d2 | 
|  | 586 | jra	fp_ne_extra1 | 
|  | 587 | | These are extremely small numbers, that will mostly end up as zero | 
|  | 588 | | anyway, so this is only important for correct rounding. | 
|  | 589 | fp_ne_small3: | 
|  | 590 | bfffo	%d0{#24,#8},%d1 | 
|  | 591 | add.w	#40,%d1 | 
|  | 592 | move.w	-(%a0),%d2 | 
|  | 593 | sub.w	%d1,%d2 | 
|  | 594 | jcc	1f | 
|  | 595 | | Pathologically small, denormalize. | 
|  | 596 | add.w	%d2,%d1 | 
|  | 597 | clr.w	%d2 | 
|  | 598 | 1:	move.w	%d2,(%a0)+ | 
|  | 599 | ext.l	%d1 | 
|  | 600 | jeq	fp_ne_checkround | 
|  | 601 | cmp.w	#8,%d1 | 
|  | 602 | jcs	2f | 
|  | 603 | 1:	clr.b	(-4,%a0) | 
|  | 604 | sub.w	#64,%d1 | 
|  | 605 | jcs	1f | 
|  | 606 | add.w	#24,%d1 | 
|  | 607 | lsl.l	%d1,%d0 | 
|  | 608 | move.l	%d0,(%a0) | 
|  | 609 | jra	fp_ne_checkround | 
|  | 610 | 1:	neg.w	%d1 | 
|  | 611 | bfins	%d0,(%a0){%d1,#8} | 
|  | 612 | jra	fp_ne_checkround | 
|  | 613 | 2:	lsl.l	%d1,%d0 | 
|  | 614 | move.b	%d0,(-4,%a0) | 
|  | 615 | lsr.l	#8,%d0 | 
|  | 616 | move.b	%d0,(7,%a0) | 
|  | 617 | jra	fp_ne_checkround | 
|  | 618 | #endif | 
|  | 619 | | Infinities and NaNs, again, same as above. | 
|  | 620 | fp_ne_large: | 
|  | 621 | move.l	(%a0)+,%d0 | 
|  | 622 | jne	3f | 
|  | 623 | 1:	tst.l	(%a0) | 
|  | 624 | jne	4f | 
|  | 625 | 2:	subq.l	#8,%a0 | 
|  | 626 | printf	PNORM,"%p(",1,%a0 | 
|  | 627 | printx	PNORM,%a0@ | 
|  | 628 | printf	PNORM,")\n" | 
|  | 629 | rts | 
|  | 630 | | we have maybe a NaN, shift off the highest bit | 
|  | 631 | 3:	move.l	%d0,%d1 | 
|  | 632 | lsl.l	#1,%d1 | 
|  | 633 | jne	4f | 
|  | 634 | clr.l	(-4,%a0) | 
|  | 635 | jra	1b | 
|  | 636 | | we have a NaN, test if it is signaling | 
|  | 637 | 4:	bset	#30,%d0 | 
|  | 638 | jne	2b | 
|  | 639 | fp_set_sr FPSR_EXC_SNAN | 
|  | 640 | move.l	%d0,(-4,%a0) | 
|  | 641 | jra	2b | 
|  | 642 |  | 
|  | 643 | | these next two do rounding as per the IEEE standard. | 
|  | 644 | | values for the rounding modes appear to be: | 
|  | 645 | | 0:	Round to nearest | 
|  | 646 | | 1:	Round to zero | 
|  | 647 | | 2:	Round to -Infinity | 
|  | 648 | | 3:	Round to +Infinity | 
|  | 649 | | both functions expect that fp_normalize was already | 
|  | 650 | | called (and extended argument is already normalized | 
|  | 651 | | as far as possible), these are used if there is different | 
|  | 652 | | rounding precision is selected and before converting | 
|  | 653 | | into single/double | 
|  | 654 |  | 
|  | 655 | | fp_normalize_double: | 
|  | 656 | | normalize an extended with double (52-bit) precision | 
|  | 657 | | args:	 %a0 (struct fp_ext *) | 
|  | 658 |  | 
|  | 659 | fp_normalize_double: | 
|  | 660 | printf	PNORM,"nd: %p(",1,%a0 | 
|  | 661 | printx	PNORM,%a0@ | 
|  | 662 | printf	PNORM,"), " | 
|  | 663 | move.l	(%a0)+,%d2 | 
|  | 664 | tst.w	%d2 | 
|  | 665 | jeq	fp_nd_zero		| zero / denormalized | 
|  | 666 | cmp.w	#0x7fff,%d2 | 
|  | 667 | jeq	fp_nd_huge		| NaN / infinitive. | 
|  | 668 | sub.w	#0x4000-0x3ff,%d2	| will the exponent fit? | 
|  | 669 | jcs	fp_nd_small		| too small. | 
|  | 670 | cmp.w	#0x7fe,%d2 | 
|  | 671 | jcc	fp_nd_large		| too big. | 
|  | 672 | addq.l	#4,%a0 | 
|  | 673 | move.l	(%a0),%d0		| low lword of mantissa | 
|  | 674 | | now, round off the low 11 bits. | 
|  | 675 | fp_nd_round: | 
|  | 676 | moveq	#21,%d1 | 
|  | 677 | lsl.l	%d1,%d0			| keep 11 low bits. | 
|  | 678 | jne	fp_nd_checkround	| Are they non-zero? | 
|  | 679 | | nothing to do here | 
|  | 680 | 9:	subq.l	#8,%a0 | 
|  | 681 | printf	PNORM,"%p(",1,%a0 | 
|  | 682 | printx	PNORM,%a0@ | 
|  | 683 | printf	PNORM,")\n" | 
|  | 684 | rts | 
|  | 685 | | Be careful with the X bit! It contains the lsb | 
|  | 686 | | from the shift above, it is needed for round to nearest. | 
|  | 687 | fp_nd_checkround: | 
|  | 688 | fp_set_sr FPSR_EXC_INEX2	| INEX2 bit | 
|  | 689 | and.w	#0xf800,(2,%a0)		| clear bits 0-10 | 
|  | 690 | move.w	(FPD_RND,FPDATA),%d2	| rounding mode | 
|  | 691 | jne	2f			| %d2 == 0, round to nearest | 
|  | 692 | tst.l	%d0			| test guard bit | 
|  | 693 | jpl	9b			| zero is closer | 
|  | 694 | | here we test the X bit by adding it to %d2 | 
|  | 695 | clr.w	%d2			| first set z bit, addx only clears it | 
|  | 696 | addx.w	%d2,%d2			| test lsb bit | 
|  | 697 | | IEEE754-specified "round to even" behaviour.  If the guard | 
|  | 698 | | bit is set, then the number is odd, so rounding works like | 
|  | 699 | | in grade-school arithmetic (i.e. 1.5 rounds to 2.0) | 
|  | 700 | | Otherwise, an equal distance rounds towards zero, so as not | 
|  | 701 | | to produce an odd number.  This is strange, but it is what | 
|  | 702 | | the standard says. | 
|  | 703 | jne	fp_nd_doroundup		| round to infinity | 
|  | 704 | lsl.l	#1,%d0			| check low bits | 
|  | 705 | jeq	9b			| round to zero | 
|  | 706 | fp_nd_doroundup: | 
|  | 707 | | round (the mantissa, that is) towards infinity | 
|  | 708 | add.l	#0x800,(%a0) | 
|  | 709 | jcc	9b			| no overflow, good. | 
|  | 710 | addq.l	#1,-(%a0)		| extend to high lword | 
|  | 711 | jcc	1f			| no overflow, good. | 
|  | 712 | | Yow! we have managed to overflow the mantissa.  Since this | 
|  | 713 | | only happens when %d1 was 0xfffff800, it is now zero, so | 
|  | 714 | | reset the high bit, and increment the exponent. | 
|  | 715 | move.w	#0x8000,(%a0) | 
|  | 716 | addq.w	#1,-(%a0) | 
|  | 717 | cmp.w	#0x43ff,(%a0)+		| exponent now overflown? | 
|  | 718 | jeq	fp_nd_large		| yes, so make it infinity. | 
|  | 719 | 1:	subq.l	#4,%a0 | 
|  | 720 | printf	PNORM,"%p(",1,%a0 | 
|  | 721 | printx	PNORM,%a0@ | 
|  | 722 | printf	PNORM,")\n" | 
|  | 723 | rts | 
|  | 724 | 2:	subq.w	#2,%d2 | 
|  | 725 | jcs	9b			| %d2 < 2, round to zero | 
|  | 726 | jhi	3f			| %d2 > 2, round to +infinity | 
|  | 727 | | Round to +Inf or -Inf.  High word of %d2 contains the | 
|  | 728 | | sign of the number, by the way. | 
|  | 729 | swap	%d2			| to -inf | 
|  | 730 | tst.b	%d2 | 
|  | 731 | jne	fp_nd_doroundup		| negative, round to infinity | 
|  | 732 | jra	9b			| positive, round to zero | 
|  | 733 | 3:	swap	%d2			| to +inf | 
|  | 734 | tst.b	%d2 | 
|  | 735 | jeq	fp_nd_doroundup		| positive, round to infinity | 
|  | 736 | jra	9b			| negative, round to zero | 
|  | 737 | | Exponent underflow.  Try to make a denormal, and set it to | 
|  | 738 | | the smallest possible fraction if this fails. | 
|  | 739 | fp_nd_small: | 
|  | 740 | fp_set_sr FPSR_EXC_UNFL		| set UNFL bit | 
|  | 741 | move.w	#0x3c01,(-2,%a0)	| 2**-1022 | 
|  | 742 | neg.w	%d2			| degree of underflow | 
|  | 743 | cmp.w	#32,%d2			| single or double shift? | 
|  | 744 | jcc	1f | 
|  | 745 | | Again, another 64-bit double shift. | 
|  | 746 | move.l	(%a0),%d0 | 
|  | 747 | move.l	%d0,%d1 | 
|  | 748 | lsr.l	%d2,%d0 | 
|  | 749 | move.l	%d0,(%a0)+ | 
|  | 750 | move.l	(%a0),%d0 | 
|  | 751 | lsr.l	%d2,%d0 | 
|  | 752 | neg.w	%d2 | 
|  | 753 | add.w	#32,%d2 | 
|  | 754 | lsl.l	%d2,%d1 | 
|  | 755 | or.l	%d1,%d0 | 
|  | 756 | move.l	(%a0),%d1 | 
|  | 757 | move.l	%d0,(%a0) | 
|  | 758 | | Check to see if we shifted off any significant bits | 
|  | 759 | lsl.l	%d2,%d1 | 
|  | 760 | jeq	fp_nd_round		| Nope, round. | 
|  | 761 | bset	#0,%d0			| Yes, so set the "sticky bit". | 
|  | 762 | jra	fp_nd_round		| Now, round. | 
|  | 763 | | Another 64-bit single shift and store | 
|  | 764 | 1:	sub.w	#32,%d2 | 
|  | 765 | cmp.w	#32,%d2			| Do we really need to shift? | 
|  | 766 | jcc	2f			| No, the number is too small. | 
|  | 767 | move.l	(%a0),%d0 | 
|  | 768 | clr.l	(%a0)+ | 
|  | 769 | move.l	%d0,%d1 | 
|  | 770 | lsr.l	%d2,%d0 | 
|  | 771 | neg.w	%d2 | 
|  | 772 | add.w	#32,%d2 | 
|  | 773 | | Again, check to see if we shifted off any significant bits. | 
|  | 774 | tst.l	(%a0) | 
|  | 775 | jeq	1f | 
|  | 776 | bset	#0,%d0			| Sticky bit. | 
|  | 777 | 1:	move.l	%d0,(%a0) | 
|  | 778 | lsl.l	%d2,%d1 | 
|  | 779 | jeq	fp_nd_round | 
|  | 780 | bset	#0,%d0 | 
|  | 781 | jra	fp_nd_round | 
|  | 782 | | Sorry, the number is just too small. | 
|  | 783 | 2:	clr.l	(%a0)+ | 
|  | 784 | clr.l	(%a0) | 
|  | 785 | moveq	#1,%d0			| Smallest possible fraction, | 
|  | 786 | jra	fp_nd_round		| round as desired. | 
|  | 787 | | zero and denormalized | 
|  | 788 | fp_nd_zero: | 
|  | 789 | tst.l	(%a0)+ | 
|  | 790 | jne	1f | 
|  | 791 | tst.l	(%a0) | 
|  | 792 | jne	1f | 
|  | 793 | subq.l	#8,%a0 | 
|  | 794 | printf	PNORM,"%p(",1,%a0 | 
|  | 795 | printx	PNORM,%a0@ | 
|  | 796 | printf	PNORM,")\n" | 
|  | 797 | rts				| zero.  nothing to do. | 
|  | 798 | | These are not merely subnormal numbers, but true denormals, | 
|  | 799 | | i.e. pathologically small (exponent is 2**-16383) numbers. | 
|  | 800 | | It is clearly impossible for even a normal extended number | 
|  | 801 | | with that exponent to fit into double precision, so just | 
|  | 802 | | write these ones off as "too darn small". | 
|  | 803 | 1:	fp_set_sr FPSR_EXC_UNFL		| Set UNFL bit | 
|  | 804 | clr.l	(%a0) | 
|  | 805 | clr.l	-(%a0) | 
|  | 806 | move.w	#0x3c01,-(%a0)		| i.e. 2**-1022 | 
|  | 807 | addq.l	#6,%a0 | 
|  | 808 | moveq	#1,%d0 | 
|  | 809 | jra	fp_nd_round		| round. | 
|  | 810 | | Exponent overflow.  Just call it infinity. | 
|  | 811 | fp_nd_large: | 
|  | 812 | move.w	#0x7ff,%d0 | 
|  | 813 | and.w	(6,%a0),%d0 | 
|  | 814 | jeq	1f | 
|  | 815 | fp_set_sr FPSR_EXC_INEX2 | 
|  | 816 | 1:	fp_set_sr FPSR_EXC_OVFL | 
|  | 817 | move.w	(FPD_RND,FPDATA),%d2 | 
|  | 818 | jne	3f			| %d2 = 0 round to nearest | 
|  | 819 | 1:	move.w	#0x7fff,(-2,%a0) | 
|  | 820 | clr.l	(%a0)+ | 
|  | 821 | clr.l	(%a0) | 
|  | 822 | 2:	subq.l	#8,%a0 | 
|  | 823 | printf	PNORM,"%p(",1,%a0 | 
|  | 824 | printx	PNORM,%a0@ | 
|  | 825 | printf	PNORM,")\n" | 
|  | 826 | rts | 
|  | 827 | 3:	subq.w	#2,%d2 | 
|  | 828 | jcs	5f			| %d2 < 2, round to zero | 
|  | 829 | jhi	4f			| %d2 > 2, round to +infinity | 
|  | 830 | tst.b	(-3,%a0)		| to -inf | 
|  | 831 | jne	1b | 
|  | 832 | jra	5f | 
|  | 833 | 4:	tst.b	(-3,%a0)		| to +inf | 
|  | 834 | jeq	1b | 
|  | 835 | 5:	move.w	#0x43fe,(-2,%a0) | 
|  | 836 | moveq	#-1,%d0 | 
|  | 837 | move.l	%d0,(%a0)+ | 
|  | 838 | move.w	#0xf800,%d0 | 
|  | 839 | move.l	%d0,(%a0) | 
|  | 840 | jra	2b | 
|  | 841 | | Infinities or NaNs | 
|  | 842 | fp_nd_huge: | 
|  | 843 | subq.l	#4,%a0 | 
|  | 844 | printf	PNORM,"%p(",1,%a0 | 
|  | 845 | printx	PNORM,%a0@ | 
|  | 846 | printf	PNORM,")\n" | 
|  | 847 | rts | 
|  | 848 |  | 
|  | 849 | | fp_normalize_single: | 
|  | 850 | | normalize an extended with single (23-bit) precision | 
|  | 851 | | args:	 %a0 (struct fp_ext *) | 
|  | 852 |  | 
|  | 853 | fp_normalize_single: | 
|  | 854 | printf	PNORM,"ns: %p(",1,%a0 | 
|  | 855 | printx	PNORM,%a0@ | 
|  | 856 | printf	PNORM,") " | 
|  | 857 | addq.l	#2,%a0 | 
|  | 858 | move.w	(%a0)+,%d2 | 
|  | 859 | jeq	fp_ns_zero		| zero / denormalized | 
|  | 860 | cmp.w	#0x7fff,%d2 | 
|  | 861 | jeq	fp_ns_huge		| NaN / infinitive. | 
|  | 862 | sub.w	#0x4000-0x7f,%d2	| will the exponent fit? | 
|  | 863 | jcs	fp_ns_small		| too small. | 
|  | 864 | cmp.w	#0xfe,%d2 | 
|  | 865 | jcc	fp_ns_large		| too big. | 
|  | 866 | move.l	(%a0)+,%d0		| get high lword of mantissa | 
|  | 867 | fp_ns_round: | 
|  | 868 | tst.l	(%a0)			| check the low lword | 
|  | 869 | jeq	1f | 
|  | 870 | | Set a sticky bit if it is non-zero.  This should only | 
|  | 871 | | affect the rounding in what would otherwise be equal- | 
|  | 872 | | distance situations, which is what we want it to do. | 
|  | 873 | bset	#0,%d0 | 
|  | 874 | 1:	clr.l	(%a0)			| zap it from memory. | 
|  | 875 | | now, round off the low 8 bits of the hi lword. | 
|  | 876 | tst.b	%d0			| 8 low bits. | 
|  | 877 | jne	fp_ns_checkround	| Are they non-zero? | 
|  | 878 | | nothing to do here | 
|  | 879 | subq.l	#8,%a0 | 
|  | 880 | printf	PNORM,"%p(",1,%a0 | 
|  | 881 | printx	PNORM,%a0@ | 
|  | 882 | printf	PNORM,")\n" | 
|  | 883 | rts | 
|  | 884 | fp_ns_checkround: | 
|  | 885 | fp_set_sr FPSR_EXC_INEX2	| INEX2 bit | 
|  | 886 | clr.b	-(%a0)			| clear low byte of high lword | 
|  | 887 | subq.l	#3,%a0 | 
|  | 888 | move.w	(FPD_RND,FPDATA),%d2	| rounding mode | 
|  | 889 | jne	2f			| %d2 == 0, round to nearest | 
|  | 890 | tst.b	%d0			| test guard bit | 
|  | 891 | jpl	9f			| zero is closer | 
|  | 892 | btst	#8,%d0			| test lsb bit | 
|  | 893 | | round to even behaviour, see above. | 
|  | 894 | jne	fp_ns_doroundup		| round to infinity | 
|  | 895 | lsl.b	#1,%d0			| check low bits | 
|  | 896 | jeq	9f			| round to zero | 
|  | 897 | fp_ns_doroundup: | 
|  | 898 | | round (the mantissa, that is) towards infinity | 
|  | 899 | add.l	#0x100,(%a0) | 
|  | 900 | jcc	9f			| no overflow, good. | 
|  | 901 | | Overflow.  This means that the %d1 was 0xffffff00, so it | 
|  | 902 | | is now zero.  We will set the mantissa to reflect this, and | 
|  | 903 | | increment the exponent (checking for overflow there too) | 
|  | 904 | move.w	#0x8000,(%a0) | 
|  | 905 | addq.w	#1,-(%a0) | 
|  | 906 | cmp.w	#0x407f,(%a0)+		| exponent now overflown? | 
|  | 907 | jeq	fp_ns_large		| yes, so make it infinity. | 
|  | 908 | 9:	subq.l	#4,%a0 | 
|  | 909 | printf	PNORM,"%p(",1,%a0 | 
|  | 910 | printx	PNORM,%a0@ | 
|  | 911 | printf	PNORM,")\n" | 
|  | 912 | rts | 
|  | 913 | | check nondefault rounding modes | 
|  | 914 | 2:	subq.w	#2,%d2 | 
|  | 915 | jcs	9b			| %d2 < 2, round to zero | 
|  | 916 | jhi	3f			| %d2 > 2, round to +infinity | 
|  | 917 | tst.b	(-3,%a0)		| to -inf | 
|  | 918 | jne	fp_ns_doroundup		| negative, round to infinity | 
|  | 919 | jra	9b			| positive, round to zero | 
|  | 920 | 3:	tst.b	(-3,%a0)		| to +inf | 
|  | 921 | jeq	fp_ns_doroundup		| positive, round to infinity | 
|  | 922 | jra	9b			| negative, round to zero | 
|  | 923 | | Exponent underflow.  Try to make a denormal, and set it to | 
|  | 924 | | the smallest possible fraction if this fails. | 
|  | 925 | fp_ns_small: | 
|  | 926 | fp_set_sr FPSR_EXC_UNFL		| set UNFL bit | 
|  | 927 | move.w	#0x3f81,(-2,%a0)	| 2**-126 | 
|  | 928 | neg.w	%d2			| degree of underflow | 
|  | 929 | cmp.w	#32,%d2			| single or double shift? | 
|  | 930 | jcc	2f | 
|  | 931 | | a 32-bit shift. | 
|  | 932 | move.l	(%a0),%d0 | 
|  | 933 | move.l	%d0,%d1 | 
|  | 934 | lsr.l	%d2,%d0 | 
|  | 935 | move.l	%d0,(%a0)+ | 
|  | 936 | | Check to see if we shifted off any significant bits. | 
|  | 937 | neg.w	%d2 | 
|  | 938 | add.w	#32,%d2 | 
|  | 939 | lsl.l	%d2,%d1 | 
|  | 940 | jeq	1f | 
|  | 941 | bset	#0,%d0			| Sticky bit. | 
|  | 942 | | Check the lower lword | 
|  | 943 | 1:	tst.l	(%a0) | 
|  | 944 | jeq	fp_ns_round | 
|  | 945 | clr	(%a0) | 
|  | 946 | bset	#0,%d0			| Sticky bit. | 
|  | 947 | jra	fp_ns_round | 
|  | 948 | | Sorry, the number is just too small. | 
|  | 949 | 2:	clr.l	(%a0)+ | 
|  | 950 | clr.l	(%a0) | 
|  | 951 | moveq	#1,%d0			| Smallest possible fraction, | 
|  | 952 | jra	fp_ns_round		| round as desired. | 
|  | 953 | | Exponent overflow.  Just call it infinity. | 
|  | 954 | fp_ns_large: | 
|  | 955 | tst.b	(3,%a0) | 
|  | 956 | jeq	1f | 
|  | 957 | fp_set_sr FPSR_EXC_INEX2 | 
|  | 958 | 1:	fp_set_sr FPSR_EXC_OVFL | 
|  | 959 | move.w	(FPD_RND,FPDATA),%d2 | 
|  | 960 | jne	3f			| %d2 = 0 round to nearest | 
|  | 961 | 1:	move.w	#0x7fff,(-2,%a0) | 
|  | 962 | clr.l	(%a0)+ | 
|  | 963 | clr.l	(%a0) | 
|  | 964 | 2:	subq.l	#8,%a0 | 
|  | 965 | printf	PNORM,"%p(",1,%a0 | 
|  | 966 | printx	PNORM,%a0@ | 
|  | 967 | printf	PNORM,")\n" | 
|  | 968 | rts | 
|  | 969 | 3:	subq.w	#2,%d2 | 
|  | 970 | jcs	5f			| %d2 < 2, round to zero | 
|  | 971 | jhi	4f			| %d2 > 2, round to +infinity | 
|  | 972 | tst.b	(-3,%a0)		| to -inf | 
|  | 973 | jne	1b | 
|  | 974 | jra	5f | 
|  | 975 | 4:	tst.b	(-3,%a0)		| to +inf | 
|  | 976 | jeq	1b | 
|  | 977 | 5:	move.w	#0x407e,(-2,%a0) | 
|  | 978 | move.l	#0xffffff00,(%a0)+ | 
|  | 979 | clr.l	(%a0) | 
|  | 980 | jra	2b | 
|  | 981 | | zero and denormalized | 
|  | 982 | fp_ns_zero: | 
|  | 983 | tst.l	(%a0)+ | 
|  | 984 | jne	1f | 
|  | 985 | tst.l	(%a0) | 
|  | 986 | jne	1f | 
|  | 987 | subq.l	#8,%a0 | 
|  | 988 | printf	PNORM,"%p(",1,%a0 | 
|  | 989 | printx	PNORM,%a0@ | 
|  | 990 | printf	PNORM,")\n" | 
|  | 991 | rts				| zero.  nothing to do. | 
|  | 992 | | These are not merely subnormal numbers, but true denormals, | 
|  | 993 | | i.e. pathologically small (exponent is 2**-16383) numbers. | 
|  | 994 | | It is clearly impossible for even a normal extended number | 
|  | 995 | | with that exponent to fit into single precision, so just | 
|  | 996 | | write these ones off as "too darn small". | 
|  | 997 | 1:	fp_set_sr FPSR_EXC_UNFL		| Set UNFL bit | 
|  | 998 | clr.l	(%a0) | 
|  | 999 | clr.l	-(%a0) | 
|  | 1000 | move.w	#0x3f81,-(%a0)		| i.e. 2**-126 | 
|  | 1001 | addq.l	#6,%a0 | 
|  | 1002 | moveq	#1,%d0 | 
|  | 1003 | jra	fp_ns_round		| round. | 
|  | 1004 | | Infinities or NaNs | 
|  | 1005 | fp_ns_huge: | 
|  | 1006 | subq.l	#4,%a0 | 
|  | 1007 | printf	PNORM,"%p(",1,%a0 | 
|  | 1008 | printx	PNORM,%a0@ | 
|  | 1009 | printf	PNORM,")\n" | 
|  | 1010 | rts | 
|  | 1011 |  | 
|  | 1012 | | fp_normalize_single_fast: | 
|  | 1013 | | normalize an extended with single (23-bit) precision | 
|  | 1014 | | this is only used by fsgldiv/fsgdlmul, where the | 
|  | 1015 | | operand is not completly normalized. | 
|  | 1016 | | args:	 %a0 (struct fp_ext *) | 
|  | 1017 |  | 
|  | 1018 | fp_normalize_single_fast: | 
|  | 1019 | printf	PNORM,"nsf: %p(",1,%a0 | 
|  | 1020 | printx	PNORM,%a0@ | 
|  | 1021 | printf	PNORM,") " | 
|  | 1022 | addq.l	#2,%a0 | 
|  | 1023 | move.w	(%a0)+,%d2 | 
|  | 1024 | cmp.w	#0x7fff,%d2 | 
|  | 1025 | jeq	fp_nsf_huge		| NaN / infinitive. | 
|  | 1026 | move.l	(%a0)+,%d0		| get high lword of mantissa | 
|  | 1027 | fp_nsf_round: | 
|  | 1028 | tst.l	(%a0)			| check the low lword | 
|  | 1029 | jeq	1f | 
|  | 1030 | | Set a sticky bit if it is non-zero.  This should only | 
|  | 1031 | | affect the rounding in what would otherwise be equal- | 
|  | 1032 | | distance situations, which is what we want it to do. | 
|  | 1033 | bset	#0,%d0 | 
|  | 1034 | 1:	clr.l	(%a0)			| zap it from memory. | 
|  | 1035 | | now, round off the low 8 bits of the hi lword. | 
|  | 1036 | tst.b	%d0			| 8 low bits. | 
|  | 1037 | jne	fp_nsf_checkround	| Are they non-zero? | 
|  | 1038 | | nothing to do here | 
|  | 1039 | subq.l	#8,%a0 | 
|  | 1040 | printf	PNORM,"%p(",1,%a0 | 
|  | 1041 | printx	PNORM,%a0@ | 
|  | 1042 | printf	PNORM,")\n" | 
|  | 1043 | rts | 
|  | 1044 | fp_nsf_checkround: | 
|  | 1045 | fp_set_sr FPSR_EXC_INEX2	| INEX2 bit | 
|  | 1046 | clr.b	-(%a0)			| clear low byte of high lword | 
|  | 1047 | subq.l	#3,%a0 | 
|  | 1048 | move.w	(FPD_RND,FPDATA),%d2	| rounding mode | 
|  | 1049 | jne	2f			| %d2 == 0, round to nearest | 
|  | 1050 | tst.b	%d0			| test guard bit | 
|  | 1051 | jpl	9f			| zero is closer | 
|  | 1052 | btst	#8,%d0			| test lsb bit | 
|  | 1053 | | round to even behaviour, see above. | 
|  | 1054 | jne	fp_nsf_doroundup		| round to infinity | 
|  | 1055 | lsl.b	#1,%d0			| check low bits | 
|  | 1056 | jeq	9f			| round to zero | 
|  | 1057 | fp_nsf_doroundup: | 
|  | 1058 | | round (the mantissa, that is) towards infinity | 
|  | 1059 | add.l	#0x100,(%a0) | 
|  | 1060 | jcc	9f			| no overflow, good. | 
|  | 1061 | | Overflow.  This means that the %d1 was 0xffffff00, so it | 
|  | 1062 | | is now zero.  We will set the mantissa to reflect this, and | 
|  | 1063 | | increment the exponent (checking for overflow there too) | 
|  | 1064 | move.w	#0x8000,(%a0) | 
|  | 1065 | addq.w	#1,-(%a0) | 
|  | 1066 | cmp.w	#0x407f,(%a0)+		| exponent now overflown? | 
|  | 1067 | jeq	fp_nsf_large		| yes, so make it infinity. | 
|  | 1068 | 9:	subq.l	#4,%a0 | 
|  | 1069 | printf	PNORM,"%p(",1,%a0 | 
|  | 1070 | printx	PNORM,%a0@ | 
|  | 1071 | printf	PNORM,")\n" | 
|  | 1072 | rts | 
|  | 1073 | | check nondefault rounding modes | 
|  | 1074 | 2:	subq.w	#2,%d2 | 
|  | 1075 | jcs	9b			| %d2 < 2, round to zero | 
|  | 1076 | jhi	3f			| %d2 > 2, round to +infinity | 
|  | 1077 | tst.b	(-3,%a0)		| to -inf | 
|  | 1078 | jne	fp_nsf_doroundup	| negative, round to infinity | 
|  | 1079 | jra	9b			| positive, round to zero | 
|  | 1080 | 3:	tst.b	(-3,%a0)		| to +inf | 
|  | 1081 | jeq	fp_nsf_doroundup		| positive, round to infinity | 
|  | 1082 | jra	9b			| negative, round to zero | 
|  | 1083 | | Exponent overflow.  Just call it infinity. | 
|  | 1084 | fp_nsf_large: | 
|  | 1085 | tst.b	(3,%a0) | 
|  | 1086 | jeq	1f | 
|  | 1087 | fp_set_sr FPSR_EXC_INEX2 | 
|  | 1088 | 1:	fp_set_sr FPSR_EXC_OVFL | 
|  | 1089 | move.w	(FPD_RND,FPDATA),%d2 | 
|  | 1090 | jne	3f			| %d2 = 0 round to nearest | 
|  | 1091 | 1:	move.w	#0x7fff,(-2,%a0) | 
|  | 1092 | clr.l	(%a0)+ | 
|  | 1093 | clr.l	(%a0) | 
|  | 1094 | 2:	subq.l	#8,%a0 | 
|  | 1095 | printf	PNORM,"%p(",1,%a0 | 
|  | 1096 | printx	PNORM,%a0@ | 
|  | 1097 | printf	PNORM,")\n" | 
|  | 1098 | rts | 
|  | 1099 | 3:	subq.w	#2,%d2 | 
|  | 1100 | jcs	5f			| %d2 < 2, round to zero | 
|  | 1101 | jhi	4f			| %d2 > 2, round to +infinity | 
|  | 1102 | tst.b	(-3,%a0)		| to -inf | 
|  | 1103 | jne	1b | 
|  | 1104 | jra	5f | 
|  | 1105 | 4:	tst.b	(-3,%a0)		| to +inf | 
|  | 1106 | jeq	1b | 
|  | 1107 | 5:	move.w	#0x407e,(-2,%a0) | 
|  | 1108 | move.l	#0xffffff00,(%a0)+ | 
|  | 1109 | clr.l	(%a0) | 
|  | 1110 | jra	2b | 
|  | 1111 | | Infinities or NaNs | 
|  | 1112 | fp_nsf_huge: | 
|  | 1113 | subq.l	#4,%a0 | 
|  | 1114 | printf	PNORM,"%p(",1,%a0 | 
|  | 1115 | printx	PNORM,%a0@ | 
|  | 1116 | printf	PNORM,")\n" | 
|  | 1117 | rts | 
|  | 1118 |  | 
|  | 1119 | | conv_ext2int (macro): | 
|  | 1120 | | Generates a subroutine that converts an extended value to an | 
|  | 1121 | | integer of a given size, again, with the appropriate type of | 
|  | 1122 | | rounding. | 
|  | 1123 |  | 
|  | 1124 | | Macro arguments: | 
|  | 1125 | | s:	size, as given in an assembly instruction. | 
|  | 1126 | | b:	number of bits in that size. | 
|  | 1127 |  | 
|  | 1128 | | Subroutine arguments: | 
|  | 1129 | | %a0:	source (struct fp_ext *) | 
|  | 1130 |  | 
|  | 1131 | | Returns the integer in %d0 (like it should) | 
|  | 1132 |  | 
|  | 1133 | .macro conv_ext2int s,b | 
|  | 1134 | .set	inf,(1<<(\b-1))-1	| i.e. MAXINT | 
|  | 1135 | printf	PCONV,"e2i%d: %p(",2,#\b,%a0 | 
|  | 1136 | printx	PCONV,%a0@ | 
|  | 1137 | printf	PCONV,") " | 
|  | 1138 | addq.l	#2,%a0 | 
|  | 1139 | move.w	(%a0)+,%d2		| exponent | 
|  | 1140 | jeq	fp_e2i_zero\b		| zero / denorm (== 0, here) | 
|  | 1141 | cmp.w	#0x7fff,%d2 | 
|  | 1142 | jeq	fp_e2i_huge\b		| Inf / NaN | 
|  | 1143 | sub.w	#0x3ffe,%d2 | 
|  | 1144 | jcs	fp_e2i_small\b | 
|  | 1145 | cmp.w	#\b,%d2 | 
|  | 1146 | jhi	fp_e2i_large\b | 
|  | 1147 | move.l	(%a0),%d0 | 
|  | 1148 | move.l	%d0,%d1 | 
|  | 1149 | lsl.l	%d2,%d1 | 
|  | 1150 | jne	fp_e2i_round\b | 
|  | 1151 | tst.l	(4,%a0) | 
|  | 1152 | jne	fp_e2i_round\b | 
|  | 1153 | neg.w	%d2 | 
|  | 1154 | add.w	#32,%d2 | 
|  | 1155 | lsr.l	%d2,%d0 | 
|  | 1156 | 9:	tst.w	(-4,%a0) | 
|  | 1157 | jne	1f | 
|  | 1158 | tst.\s	%d0 | 
|  | 1159 | jmi	fp_e2i_large\b | 
|  | 1160 | printf	PCONV,"-> %p\n",1,%d0 | 
|  | 1161 | rts | 
|  | 1162 | 1:	neg.\s	%d0 | 
|  | 1163 | jeq	1f | 
|  | 1164 | jpl	fp_e2i_large\b | 
|  | 1165 | 1:	printf	PCONV,"-> %p\n",1,%d0 | 
|  | 1166 | rts | 
|  | 1167 | fp_e2i_round\b: | 
|  | 1168 | fp_set_sr FPSR_EXC_INEX2	| INEX2 bit | 
|  | 1169 | neg.w	%d2 | 
|  | 1170 | add.w	#32,%d2 | 
|  | 1171 | .if	\b>16 | 
|  | 1172 | jeq	5f | 
|  | 1173 | .endif | 
|  | 1174 | lsr.l	%d2,%d0 | 
|  | 1175 | move.w	(FPD_RND,FPDATA),%d2	| rounding mode | 
|  | 1176 | jne	2f			| %d2 == 0, round to nearest | 
|  | 1177 | tst.l	%d1			| test guard bit | 
|  | 1178 | jpl	9b			| zero is closer | 
|  | 1179 | btst	%d2,%d0			| test lsb bit (%d2 still 0) | 
|  | 1180 | jne	fp_e2i_doroundup\b | 
|  | 1181 | lsl.l	#1,%d1			| check low bits | 
|  | 1182 | jne	fp_e2i_doroundup\b | 
|  | 1183 | tst.l	(4,%a0) | 
|  | 1184 | jeq	9b | 
|  | 1185 | fp_e2i_doroundup\b: | 
|  | 1186 | addq.l	#1,%d0 | 
|  | 1187 | jra	9b | 
|  | 1188 | | check nondefault rounding modes | 
|  | 1189 | 2:	subq.w	#2,%d2 | 
|  | 1190 | jcs	9b			| %d2 < 2, round to zero | 
|  | 1191 | jhi	3f			| %d2 > 2, round to +infinity | 
|  | 1192 | tst.w	(-4,%a0)		| to -inf | 
|  | 1193 | jne	fp_e2i_doroundup\b	| negative, round to infinity | 
|  | 1194 | jra	9b			| positive, round to zero | 
|  | 1195 | 3:	tst.w	(-4,%a0)		| to +inf | 
|  | 1196 | jeq	fp_e2i_doroundup\b	| positive, round to infinity | 
|  | 1197 | jra	9b	| negative, round to zero | 
|  | 1198 | | we are only want -2**127 get correctly rounded here, | 
|  | 1199 | | since the guard bit is in the lower lword. | 
|  | 1200 | | everything else ends up anyway as overflow. | 
|  | 1201 | .if	\b>16 | 
|  | 1202 | 5:	move.w	(FPD_RND,FPDATA),%d2	| rounding mode | 
|  | 1203 | jne	2b			| %d2 == 0, round to nearest | 
|  | 1204 | move.l	(4,%a0),%d1		| test guard bit | 
|  | 1205 | jpl	9b			| zero is closer | 
|  | 1206 | lsl.l	#1,%d1			| check low bits | 
|  | 1207 | jne	fp_e2i_doroundup\b | 
|  | 1208 | jra	9b | 
|  | 1209 | .endif | 
|  | 1210 | fp_e2i_zero\b: | 
|  | 1211 | clr.l	%d0 | 
|  | 1212 | tst.l	(%a0)+ | 
|  | 1213 | jne	1f | 
|  | 1214 | tst.l	(%a0) | 
|  | 1215 | jeq	3f | 
|  | 1216 | 1:	subq.l	#4,%a0 | 
|  | 1217 | fp_clr_sr FPSR_EXC_UNFL		| fp_normalize_ext has set this bit | 
|  | 1218 | fp_e2i_small\b: | 
|  | 1219 | fp_set_sr FPSR_EXC_INEX2 | 
|  | 1220 | clr.l	%d0 | 
|  | 1221 | move.w	(FPD_RND,FPDATA),%d2	| rounding mode | 
|  | 1222 | subq.w	#2,%d2 | 
|  | 1223 | jcs	3f			| %d2 < 2, round to nearest/zero | 
|  | 1224 | jhi	2f			| %d2 > 2, round to +infinity | 
|  | 1225 | tst.w	(-4,%a0)		| to -inf | 
|  | 1226 | jeq	3f | 
|  | 1227 | subq.\s	#1,%d0 | 
|  | 1228 | jra	3f | 
|  | 1229 | 2:	tst.w	(-4,%a0)		| to +inf | 
|  | 1230 | jne	3f | 
|  | 1231 | addq.\s	#1,%d0 | 
|  | 1232 | 3:	printf	PCONV,"-> %p\n",1,%d0 | 
|  | 1233 | rts | 
|  | 1234 | fp_e2i_large\b: | 
|  | 1235 | fp_set_sr FPSR_EXC_OPERR | 
|  | 1236 | move.\s	#inf,%d0 | 
|  | 1237 | tst.w	(-4,%a0) | 
|  | 1238 | jeq	1f | 
|  | 1239 | addq.\s	#1,%d0 | 
|  | 1240 | 1:	printf	PCONV,"-> %p\n",1,%d0 | 
|  | 1241 | rts | 
|  | 1242 | fp_e2i_huge\b: | 
|  | 1243 | move.\s	(%a0),%d0 | 
|  | 1244 | tst.l	(%a0) | 
|  | 1245 | jne	1f | 
|  | 1246 | tst.l	(%a0) | 
|  | 1247 | jeq	fp_e2i_large\b | 
|  | 1248 | | fp_normalize_ext has set this bit already | 
|  | 1249 | | and made the number nonsignaling | 
|  | 1250 | 1:	fp_tst_sr FPSR_EXC_SNAN | 
|  | 1251 | jne	1f | 
|  | 1252 | fp_set_sr FPSR_EXC_OPERR | 
|  | 1253 | 1:	printf	PCONV,"-> %p\n",1,%d0 | 
|  | 1254 | rts | 
|  | 1255 | .endm | 
|  | 1256 |  | 
|  | 1257 | fp_conv_ext2long: | 
|  | 1258 | conv_ext2int l,32 | 
|  | 1259 |  | 
|  | 1260 | fp_conv_ext2short: | 
|  | 1261 | conv_ext2int w,16 | 
|  | 1262 |  | 
|  | 1263 | fp_conv_ext2byte: | 
|  | 1264 | conv_ext2int b,8 | 
|  | 1265 |  | 
|  | 1266 | fp_conv_ext2double: | 
|  | 1267 | jsr	fp_normalize_double | 
|  | 1268 | printf	PCONV,"e2d: %p(",1,%a0 | 
|  | 1269 | printx	PCONV,%a0@ | 
|  | 1270 | printf	PCONV,"), " | 
|  | 1271 | move.l	(%a0)+,%d2 | 
|  | 1272 | cmp.w	#0x7fff,%d2 | 
|  | 1273 | jne	1f | 
|  | 1274 | move.w	#0x7ff,%d2 | 
|  | 1275 | move.l	(%a0)+,%d0 | 
|  | 1276 | jra	2f | 
|  | 1277 | 1:	sub.w	#0x3fff-0x3ff,%d2 | 
|  | 1278 | move.l	(%a0)+,%d0 | 
|  | 1279 | jmi	2f | 
|  | 1280 | clr.w	%d2 | 
|  | 1281 | 2:	lsl.w	#5,%d2 | 
|  | 1282 | lsl.l	#7,%d2 | 
|  | 1283 | lsl.l	#8,%d2 | 
|  | 1284 | move.l	%d0,%d1 | 
|  | 1285 | lsl.l	#1,%d0 | 
|  | 1286 | lsr.l	#4,%d0 | 
|  | 1287 | lsr.l	#8,%d0 | 
|  | 1288 | or.l	%d2,%d0 | 
|  | 1289 | putuser.l %d0,(%a1)+,fp_err_ua2,%a1 | 
|  | 1290 | moveq	#21,%d0 | 
|  | 1291 | lsl.l	%d0,%d1 | 
|  | 1292 | move.l	(%a0),%d0 | 
|  | 1293 | lsr.l	#4,%d0 | 
|  | 1294 | lsr.l	#7,%d0 | 
|  | 1295 | or.l	%d1,%d0 | 
|  | 1296 | putuser.l %d0,(%a1),fp_err_ua2,%a1 | 
|  | 1297 | #ifdef FPU_EMU_DEBUG | 
|  | 1298 | getuser.l %a1@(-4),%d0,fp_err_ua2,%a1 | 
|  | 1299 | getuser.l %a1@(0),%d1,fp_err_ua2,%a1 | 
|  | 1300 | printf	PCONV,"%p(%08x%08x)\n",3,%a1,%d0,%d1 | 
|  | 1301 | #endif | 
|  | 1302 | rts | 
|  | 1303 |  | 
|  | 1304 | fp_conv_ext2single: | 
|  | 1305 | jsr	fp_normalize_single | 
|  | 1306 | printf	PCONV,"e2s: %p(",1,%a0 | 
|  | 1307 | printx	PCONV,%a0@ | 
|  | 1308 | printf	PCONV,"), " | 
|  | 1309 | move.l	(%a0)+,%d1 | 
|  | 1310 | cmp.w	#0x7fff,%d1 | 
|  | 1311 | jne	1f | 
|  | 1312 | move.w	#0xff,%d1 | 
|  | 1313 | move.l	(%a0)+,%d0 | 
|  | 1314 | jra	2f | 
|  | 1315 | 1:	sub.w	#0x3fff-0x7f,%d1 | 
|  | 1316 | move.l	(%a0)+,%d0 | 
|  | 1317 | jmi	2f | 
|  | 1318 | clr.w	%d1 | 
|  | 1319 | 2:	lsl.w	#8,%d1 | 
|  | 1320 | lsl.l	#7,%d1 | 
|  | 1321 | lsl.l	#8,%d1 | 
|  | 1322 | bclr	#31,%d0 | 
|  | 1323 | lsr.l	#8,%d0 | 
|  | 1324 | or.l	%d1,%d0 | 
|  | 1325 | printf	PCONV,"%08x\n",1,%d0 | 
|  | 1326 | rts | 
|  | 1327 |  | 
|  | 1328 | | special return addresses for instr that | 
|  | 1329 | | encode the rounding precision in the opcode | 
|  | 1330 | | (e.g. fsmove,fdmove) | 
|  | 1331 |  | 
|  | 1332 | fp_finalrounding_single: | 
|  | 1333 | addq.l	#8,%sp | 
|  | 1334 | jsr	fp_normalize_ext | 
|  | 1335 | jsr	fp_normalize_single | 
|  | 1336 | jra	fp_finaltest | 
|  | 1337 |  | 
|  | 1338 | fp_finalrounding_single_fast: | 
|  | 1339 | addq.l	#8,%sp | 
|  | 1340 | jsr	fp_normalize_ext | 
|  | 1341 | jsr	fp_normalize_single_fast | 
|  | 1342 | jra	fp_finaltest | 
|  | 1343 |  | 
|  | 1344 | fp_finalrounding_double: | 
|  | 1345 | addq.l	#8,%sp | 
|  | 1346 | jsr	fp_normalize_ext | 
|  | 1347 | jsr	fp_normalize_double | 
|  | 1348 | jra	fp_finaltest | 
|  | 1349 |  | 
|  | 1350 | | fp_finaltest: | 
|  | 1351 | | set the emulated status register based on the outcome of an | 
|  | 1352 | | emulated instruction. | 
|  | 1353 |  | 
|  | 1354 | fp_finalrounding: | 
|  | 1355 | addq.l	#8,%sp | 
|  | 1356 | |	printf	,"f: %p\n",1,%a0 | 
|  | 1357 | jsr	fp_normalize_ext | 
|  | 1358 | move.w	(FPD_PREC,FPDATA),%d0 | 
|  | 1359 | subq.w	#1,%d0 | 
|  | 1360 | jcs	fp_finaltest | 
|  | 1361 | jne	1f | 
|  | 1362 | jsr	fp_normalize_single | 
|  | 1363 | jra	2f | 
|  | 1364 | 1:	jsr	fp_normalize_double | 
|  | 1365 | 2:|	printf	,"f: %p\n",1,%a0 | 
|  | 1366 | fp_finaltest: | 
|  | 1367 | | First, we do some of the obvious tests for the exception | 
|  | 1368 | | status byte and condition code bytes of fp_sr here, so that | 
|  | 1369 | | they do not have to be handled individually by every | 
|  | 1370 | | emulated instruction. | 
|  | 1371 | clr.l	%d0 | 
|  | 1372 | addq.l	#1,%a0 | 
|  | 1373 | tst.b	(%a0)+			| sign | 
|  | 1374 | jeq	1f | 
|  | 1375 | bset	#FPSR_CC_NEG-24,%d0	| N bit | 
|  | 1376 | 1:	cmp.w	#0x7fff,(%a0)+		| exponent | 
|  | 1377 | jeq	2f | 
|  | 1378 | | test for zero | 
|  | 1379 | moveq	#FPSR_CC_Z-24,%d1 | 
|  | 1380 | tst.l	(%a0)+ | 
|  | 1381 | jne	9f | 
|  | 1382 | tst.l	(%a0) | 
|  | 1383 | jne	9f | 
|  | 1384 | jra	8f | 
|  | 1385 | | infinitiv and NAN | 
|  | 1386 | 2:	moveq	#FPSR_CC_NAN-24,%d1 | 
|  | 1387 | move.l	(%a0)+,%d2 | 
|  | 1388 | lsl.l	#1,%d2			| ignore high bit | 
|  | 1389 | jne	8f | 
|  | 1390 | tst.l	(%a0) | 
|  | 1391 | jne	8f | 
|  | 1392 | moveq	#FPSR_CC_INF-24,%d1 | 
|  | 1393 | 8:	bset	%d1,%d0 | 
|  | 1394 | 9:	move.b	%d0,(FPD_FPSR+0,FPDATA)	| set condition test result | 
|  | 1395 | | move instructions enter here | 
|  | 1396 | | Here, we test things in the exception status byte, and set | 
|  | 1397 | | other things in the accrued exception byte accordingly. | 
|  | 1398 | | Emulated instructions can set various things in the former, | 
|  | 1399 | | as defined in fp_emu.h. | 
|  | 1400 | fp_final: | 
|  | 1401 | move.l	(FPD_FPSR,FPDATA),%d0 | 
|  | 1402 | #if 0 | 
|  | 1403 | btst	#FPSR_EXC_SNAN,%d0	| EXC_SNAN | 
|  | 1404 | jne	1f | 
|  | 1405 | btst	#FPSR_EXC_OPERR,%d0	| EXC_OPERR | 
|  | 1406 | jeq	2f | 
|  | 1407 | 1:	bset	#FPSR_AEXC_IOP,%d0	| set IOP bit | 
|  | 1408 | 2:	btst	#FPSR_EXC_OVFL,%d0	| EXC_OVFL | 
|  | 1409 | jeq	1f | 
|  | 1410 | bset	#FPSR_AEXC_OVFL,%d0	| set OVFL bit | 
|  | 1411 | 1:	btst	#FPSR_EXC_UNFL,%d0	| EXC_UNFL | 
|  | 1412 | jeq	1f | 
|  | 1413 | btst	#FPSR_EXC_INEX2,%d0	| EXC_INEX2 | 
|  | 1414 | jeq	1f | 
|  | 1415 | bset	#FPSR_AEXC_UNFL,%d0	| set UNFL bit | 
|  | 1416 | 1:	btst	#FPSR_EXC_DZ,%d0	| EXC_INEX1 | 
|  | 1417 | jeq	1f | 
|  | 1418 | bset	#FPSR_AEXC_DZ,%d0	| set DZ bit | 
|  | 1419 | 1:	btst	#FPSR_EXC_OVFL,%d0	| EXC_OVFL | 
|  | 1420 | jne	1f | 
|  | 1421 | btst	#FPSR_EXC_INEX2,%d0	| EXC_INEX2 | 
|  | 1422 | jne	1f | 
|  | 1423 | btst	#FPSR_EXC_INEX1,%d0	| EXC_INEX1 | 
|  | 1424 | jeq	2f | 
|  | 1425 | 1:	bset	#FPSR_AEXC_INEX,%d0	| set INEX bit | 
|  | 1426 | 2:	move.l	%d0,(FPD_FPSR,FPDATA) | 
|  | 1427 | #else | 
|  | 1428 | | same as above, greatly optimized, but untested (yet) | 
|  | 1429 | move.l	%d0,%d2 | 
|  | 1430 | lsr.l	#5,%d0 | 
|  | 1431 | move.l	%d0,%d1 | 
|  | 1432 | lsr.l	#4,%d1 | 
|  | 1433 | or.l	%d0,%d1 | 
|  | 1434 | and.b	#0x08,%d1 | 
|  | 1435 | move.l	%d2,%d0 | 
|  | 1436 | lsr.l	#6,%d0 | 
|  | 1437 | or.l	%d1,%d0 | 
|  | 1438 | move.l	%d2,%d1 | 
|  | 1439 | lsr.l	#4,%d1 | 
|  | 1440 | or.b	#0xdf,%d1 | 
|  | 1441 | and.b	%d1,%d0 | 
|  | 1442 | move.l	%d2,%d1 | 
|  | 1443 | lsr.l	#7,%d1 | 
|  | 1444 | and.b	#0x80,%d1 | 
|  | 1445 | or.b	%d1,%d0 | 
|  | 1446 | and.b	#0xf8,%d0 | 
|  | 1447 | or.b	%d0,%d2 | 
|  | 1448 | move.l	%d2,(FPD_FPSR,FPDATA) | 
|  | 1449 | #endif | 
|  | 1450 | move.b	(FPD_FPSR+2,FPDATA),%d0 | 
|  | 1451 | and.b	(FPD_FPCR+2,FPDATA),%d0 | 
|  | 1452 | jeq	1f | 
|  | 1453 | printf	,"send signal!!!\n" | 
|  | 1454 | 1:	jra	fp_end |