| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | *  linux/drivers/video/kyro/STG4000InitDevice.c | 
|  | 3 | * | 
|  | 4 | *  Copyright (C) 2000 Imagination Technologies Ltd | 
|  | 5 | *  Copyright (C) 2002 STMicroelectronics | 
|  | 6 | * | 
|  | 7 | * This file is subject to the terms and conditions of the GNU General Public | 
|  | 8 | * License.  See the file COPYING in the main directory of this archive | 
|  | 9 | * for more details. | 
|  | 10 | */ | 
|  | 11 |  | 
|  | 12 | #include <linux/kernel.h> | 
|  | 13 | #include <linux/errno.h> | 
|  | 14 | #include <linux/types.h> | 
|  | 15 | #include <linux/pci.h> | 
|  | 16 |  | 
|  | 17 | #include "STG4000Reg.h" | 
| Adrian Bunk | a0aa7d0 | 2006-01-09 20:54:04 -0800 | [diff] [blame] | 18 | #include "STG4000Interface.h" | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 19 |  | 
|  | 20 | /* SDRAM fixed settings */ | 
|  | 21 | #define SDRAM_CFG_0   0x49A1 | 
|  | 22 | #define SDRAM_CFG_1   0xA732 | 
|  | 23 | #define SDRAM_CFG_2   0x31 | 
|  | 24 | #define SDRAM_ARB_CFG 0xA0 | 
|  | 25 | #define SDRAM_REFRESH 0x20 | 
|  | 26 |  | 
|  | 27 | /* Reset values */ | 
|  | 28 | #define PMX2_SOFTRESET_DAC_RST		0x0001 | 
|  | 29 | #define PMX2_SOFTRESET_C1_RST		0x0004 | 
|  | 30 | #define PMX2_SOFTRESET_C2_RST		0x0008 | 
|  | 31 | #define PMX2_SOFTRESET_3D_RST		0x0010 | 
|  | 32 | #define PMX2_SOFTRESET_VIDIN_RST	0x0020 | 
|  | 33 | #define PMX2_SOFTRESET_TLB_RST		0x0040 | 
|  | 34 | #define PMX2_SOFTRESET_SD_RST		0x0080 | 
|  | 35 | #define PMX2_SOFTRESET_VGA_RST		0x0100 | 
|  | 36 | #define PMX2_SOFTRESET_ROM_RST		0x0200	/* reserved bit, do not reset */ | 
|  | 37 | #define PMX2_SOFTRESET_TA_RST		0x0400 | 
|  | 38 | #define PMX2_SOFTRESET_REG_RST		0x4000 | 
|  | 39 | #define PMX2_SOFTRESET_ALL		0x7fff | 
|  | 40 |  | 
|  | 41 | /* Core clock freq */ | 
|  | 42 | #define CORE_PLL_FREQ 1000000 | 
|  | 43 |  | 
|  | 44 | /* Reference Clock freq */ | 
|  | 45 | #define REF_FREQ 14318 | 
|  | 46 |  | 
|  | 47 | /* PCI Registers */ | 
|  | 48 | static u16 CorePllControl = 0x70; | 
|  | 49 |  | 
|  | 50 | #define	PCI_CONFIG_SUBSYS_ID	0x2e | 
|  | 51 |  | 
|  | 52 | /* Misc */ | 
|  | 53 | #define CORE_PLL_MODE_REG_0_7      3 | 
|  | 54 | #define CORE_PLL_MODE_REG_8_15     2 | 
|  | 55 | #define CORE_PLL_MODE_CONFIG_REG   1 | 
|  | 56 | #define DAC_PLL_CONFIG_REG         0 | 
|  | 57 |  | 
|  | 58 | #define STG_MAX_VCO 500000 | 
|  | 59 | #define STG_MIN_VCO 100000 | 
|  | 60 |  | 
|  | 61 | /* PLL Clock */ | 
|  | 62 | #define    STG4K3_PLL_SCALER      8	/* scale numbers by 2^8 for fixed point calc */ | 
|  | 63 | #define    STG4K3_PLL_MIN_R       2	/* Minimum multiplier */ | 
|  | 64 | #define    STG4K3_PLL_MAX_R       33	/* Max */ | 
|  | 65 | #define    STG4K3_PLL_MIN_F       2	/* Minimum divisor */ | 
|  | 66 | #define    STG4K3_PLL_MAX_F       513	/* Max */ | 
|  | 67 | #define    STG4K3_PLL_MIN_OD      0	/* Min output divider (shift) */ | 
|  | 68 | #define    STG4K3_PLL_MAX_OD      2	/* Max */ | 
|  | 69 | #define    STG4K3_PLL_MIN_VCO_SC  (100000000 >> STG4K3_PLL_SCALER)	/* Min VCO rate */ | 
|  | 70 | #define    STG4K3_PLL_MAX_VCO_SC  (500000000 >> STG4K3_PLL_SCALER)	/* Max VCO rate */ | 
|  | 71 | #define    STG4K3_PLL_MINR_VCO_SC (100000000 >> STG4K3_PLL_SCALER)	/* Min VCO rate (restricted) */ | 
|  | 72 | #define    STG4K3_PLL_MAXR_VCO_SC (500000000 >> STG4K3_PLL_SCALER)	/* Max VCO rate (restricted) */ | 
|  | 73 | #define    STG4K3_PLL_MINR_VCO    100000000	/* Min VCO rate (restricted) */ | 
|  | 74 | #define    STG4K3_PLL_MAX_VCO     500000000	/* Max VCO rate */ | 
|  | 75 | #define    STG4K3_PLL_MAXR_VCO    500000000	/* Max VCO rate (restricted) */ | 
|  | 76 |  | 
|  | 77 | #define OS_DELAY(X) \ | 
|  | 78 | { \ | 
|  | 79 | volatile u32 i,count=0; \ | 
|  | 80 | for(i=0;i<X;i++) count++; \ | 
|  | 81 | } | 
|  | 82 |  | 
|  | 83 | static u32 InitSDRAMRegisters(volatile STG4000REG __iomem *pSTGReg, | 
|  | 84 | u32 dwSubSysID, u32 dwRevID) | 
|  | 85 | { | 
|  | 86 | u32 adwSDRAMArgCfg0[] = { 0xa0, 0x80, 0xa0, 0xa0, 0xa0 }; | 
|  | 87 | u32 adwSDRAMCfg1[] = { 0x8732, 0x8732, 0xa732, 0xa732, 0x8732 }; | 
|  | 88 | u32 adwSDRAMCfg2[] = { 0x87d2, 0x87d2, 0xa7d2, 0x87d2, 0xa7d2 }; | 
|  | 89 | u32 adwSDRAMRsh[] = { 36, 39, 40 }; | 
|  | 90 | u32 adwChipSpeed[] = { 110, 120, 125 }; | 
|  | 91 | u32 dwMemTypeIdx; | 
|  | 92 | u32 dwChipSpeedIdx; | 
|  | 93 |  | 
|  | 94 | /* Get memory tpye and chip speed indexs from the SubSysDevID */ | 
|  | 95 | dwMemTypeIdx = (dwSubSysID & 0x70) >> 4; | 
|  | 96 | dwChipSpeedIdx = (dwSubSysID & 0x180) >> 7; | 
|  | 97 |  | 
|  | 98 | if (dwMemTypeIdx > 4 || dwChipSpeedIdx > 2) | 
|  | 99 | return 0; | 
|  | 100 |  | 
|  | 101 | /* Program SD-RAM interface */ | 
|  | 102 | STG_WRITE_REG(SDRAMArbiterConf, adwSDRAMArgCfg0[dwMemTypeIdx]); | 
|  | 103 | if (dwRevID < 5) { | 
|  | 104 | STG_WRITE_REG(SDRAMConf0, 0x49A1); | 
|  | 105 | STG_WRITE_REG(SDRAMConf1, adwSDRAMCfg1[dwMemTypeIdx]); | 
|  | 106 | } else { | 
|  | 107 | STG_WRITE_REG(SDRAMConf0, 0x4DF1); | 
|  | 108 | STG_WRITE_REG(SDRAMConf1, adwSDRAMCfg2[dwMemTypeIdx]); | 
|  | 109 | } | 
|  | 110 |  | 
|  | 111 | STG_WRITE_REG(SDRAMConf2, 0x31); | 
|  | 112 | STG_WRITE_REG(SDRAMRefresh, adwSDRAMRsh[dwChipSpeedIdx]); | 
|  | 113 |  | 
|  | 114 | return adwChipSpeed[dwChipSpeedIdx] * 10000; | 
|  | 115 | } | 
|  | 116 |  | 
|  | 117 | u32 ProgramClock(u32 refClock, | 
|  | 118 | u32 coreClock, | 
|  | 119 | u32 * FOut, u32 * ROut, u32 * POut) | 
|  | 120 | { | 
|  | 121 | u32 R = 0, F = 0, OD = 0, ODIndex = 0; | 
|  | 122 | u32 ulBestR = 0, ulBestF = 0, ulBestOD = 0; | 
|  | 123 | u32 ulBestVCO = 0, ulBestClk = 0, ulBestScore = 0; | 
|  | 124 | u32 ulScore, ulPhaseScore, ulVcoScore; | 
|  | 125 | u32 ulTmp = 0, ulVCO; | 
|  | 126 | u32 ulScaleClockReq, ulMinClock, ulMaxClock; | 
|  | 127 | u32 ODValues[] = { 1, 2, 0 }; | 
|  | 128 |  | 
|  | 129 | /* Translate clock in Hz */ | 
|  | 130 | coreClock *= 100;	/* in Hz */ | 
|  | 131 | refClock *= 1000;	/* in Hz */ | 
|  | 132 |  | 
|  | 133 | /* Work out acceptable clock | 
|  | 134 | * The method calculates ~ +- 0.4% (1/256) | 
|  | 135 | */ | 
|  | 136 | ulMinClock = coreClock - (coreClock >> 8); | 
|  | 137 | ulMaxClock = coreClock + (coreClock >> 8); | 
|  | 138 |  | 
|  | 139 | /* Scale clock required for use in calculations */ | 
|  | 140 | ulScaleClockReq = coreClock >> STG4K3_PLL_SCALER; | 
|  | 141 |  | 
|  | 142 | /* Iterate through post divider values */ | 
|  | 143 | for (ODIndex = 0; ODIndex < 3; ODIndex++) { | 
|  | 144 | OD = ODValues[ODIndex]; | 
|  | 145 | R = STG4K3_PLL_MIN_R; | 
|  | 146 |  | 
|  | 147 | /* loop for pre-divider from min to max  */ | 
|  | 148 | while (R <= STG4K3_PLL_MAX_R) { | 
|  | 149 | /* estimate required feedback multiplier */ | 
|  | 150 | ulTmp = R * (ulScaleClockReq << OD); | 
|  | 151 |  | 
|  | 152 | /* F = ClkRequired * R * (2^OD) / Fref */ | 
|  | 153 | F = (u32)(ulTmp / (refClock >> STG4K3_PLL_SCALER)); | 
|  | 154 |  | 
|  | 155 | /* compensate for accuracy */ | 
|  | 156 | if (F > STG4K3_PLL_MIN_F) | 
|  | 157 | F--; | 
|  | 158 |  | 
|  | 159 |  | 
|  | 160 | /* | 
|  | 161 | * We should be close to our target frequency (if it's | 
|  | 162 | * achievable with current OD & R) let's iterate | 
|  | 163 | * through F for best fit | 
|  | 164 | */ | 
|  | 165 | while ((F >= STG4K3_PLL_MIN_F) && | 
|  | 166 | (F <= STG4K3_PLL_MAX_F)) { | 
|  | 167 | /* Calc VCO at full accuracy */ | 
|  | 168 | ulVCO = refClock / R; | 
|  | 169 | ulVCO = F * ulVCO; | 
|  | 170 |  | 
|  | 171 | /* | 
|  | 172 | * Check it's within restricted VCO range | 
|  | 173 | * unless of course the desired frequency is | 
|  | 174 | * above the restricted range, then test | 
|  | 175 | * against VCO limit | 
|  | 176 | */ | 
|  | 177 | if ((ulVCO >= STG4K3_PLL_MINR_VCO) && | 
|  | 178 | ((ulVCO <= STG4K3_PLL_MAXR_VCO) || | 
|  | 179 | ((coreClock > STG4K3_PLL_MAXR_VCO) | 
|  | 180 | && (ulVCO <= STG4K3_PLL_MAX_VCO)))) { | 
|  | 181 | ulTmp = (ulVCO >> OD);	/* Clock = VCO / (2^OD) */ | 
|  | 182 |  | 
|  | 183 | /* Is this clock good enough? */ | 
|  | 184 | if ((ulTmp >= ulMinClock) | 
|  | 185 | && (ulTmp <= ulMaxClock)) { | 
|  | 186 | ulPhaseScore = (((refClock / R) - (refClock / STG4K3_PLL_MAX_R))) / ((refClock - (refClock / STG4K3_PLL_MAX_R)) >> 10); | 
|  | 187 |  | 
|  | 188 | ulVcoScore = ((ulVCO - STG4K3_PLL_MINR_VCO)) / ((STG4K3_PLL_MAXR_VCO - STG4K3_PLL_MINR_VCO) >> 10); | 
|  | 189 | ulScore = ulPhaseScore + ulVcoScore; | 
|  | 190 |  | 
|  | 191 | if (!ulBestScore) { | 
|  | 192 | ulBestVCO = ulVCO; | 
|  | 193 | ulBestOD = OD; | 
|  | 194 | ulBestF = F; | 
|  | 195 | ulBestR = R; | 
|  | 196 | ulBestClk = ulTmp; | 
|  | 197 | ulBestScore = | 
|  | 198 | ulScore; | 
|  | 199 | } | 
|  | 200 | /* is this better, ( aim for highest Score) */ | 
|  | 201 | /*-------------------------------------------------------------------------- | 
|  | 202 | Here we want to use a scoring system which will take account of both the | 
|  | 203 | value at the phase comparater and the VCO output | 
|  | 204 | to do this we will use a cumulative score between the two | 
|  | 205 | The way this ends up is that we choose the first value in the loop anyway | 
|  | 206 | but we shall keep this code in case new restrictions come into play | 
|  | 207 | --------------------------------------------------------------------------*/ | 
|  | 208 | if ((ulScore >= ulBestScore) && (OD > 0)) { | 
|  | 209 | ulBestVCO = ulVCO; | 
|  | 210 | ulBestOD = OD; | 
|  | 211 | ulBestF = F; | 
|  | 212 | ulBestR = R; | 
|  | 213 | ulBestClk = ulTmp; | 
|  | 214 | ulBestScore = | 
|  | 215 | ulScore; | 
|  | 216 | } | 
|  | 217 | } | 
|  | 218 | } | 
|  | 219 | F++; | 
|  | 220 | } | 
|  | 221 | R++; | 
|  | 222 | } | 
|  | 223 | } | 
|  | 224 |  | 
|  | 225 | /* | 
|  | 226 | did we find anything? | 
|  | 227 | Then return RFOD | 
|  | 228 | */ | 
|  | 229 | if (ulBestScore) { | 
|  | 230 | *ROut = ulBestR; | 
|  | 231 | *FOut = ulBestF; | 
|  | 232 |  | 
|  | 233 | if ((ulBestOD == 2) || (ulBestOD == 3)) { | 
|  | 234 | *POut = 3; | 
|  | 235 | } else | 
|  | 236 | *POut = ulBestOD; | 
|  | 237 |  | 
|  | 238 | } | 
|  | 239 |  | 
|  | 240 | return (ulBestClk); | 
|  | 241 | } | 
|  | 242 |  | 
|  | 243 | int SetCoreClockPLL(volatile STG4000REG __iomem *pSTGReg, struct pci_dev *pDev) | 
|  | 244 | { | 
|  | 245 | u32 F, R, P; | 
|  | 246 | u16 core_pll = 0, sub; | 
|  | 247 | u32 ulCoreClock; | 
|  | 248 | u32 tmp; | 
|  | 249 | u32 ulChipSpeed; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 250 |  | 
|  | 251 | STG_WRITE_REG(IntMask, 0xFFFF); | 
|  | 252 |  | 
|  | 253 | /* Disable Primary Core Thread0 */ | 
|  | 254 | tmp = STG_READ_REG(Thread0Enable); | 
|  | 255 | CLEAR_BIT(0); | 
|  | 256 | STG_WRITE_REG(Thread0Enable, tmp); | 
|  | 257 |  | 
|  | 258 | /* Disable Primary Core Thread1 */ | 
|  | 259 | tmp = STG_READ_REG(Thread1Enable); | 
|  | 260 | CLEAR_BIT(0); | 
|  | 261 | STG_WRITE_REG(Thread1Enable, tmp); | 
|  | 262 |  | 
|  | 263 | STG_WRITE_REG(SoftwareReset, | 
|  | 264 | PMX2_SOFTRESET_REG_RST | PMX2_SOFTRESET_ROM_RST); | 
|  | 265 | STG_WRITE_REG(SoftwareReset, | 
|  | 266 | PMX2_SOFTRESET_REG_RST | PMX2_SOFTRESET_TA_RST | | 
|  | 267 | PMX2_SOFTRESET_ROM_RST); | 
|  | 268 |  | 
|  | 269 | /* Need to play around to reset TA */ | 
|  | 270 | STG_WRITE_REG(TAConfiguration, 0); | 
|  | 271 | STG_WRITE_REG(SoftwareReset, | 
|  | 272 | PMX2_SOFTRESET_REG_RST | PMX2_SOFTRESET_ROM_RST); | 
|  | 273 | STG_WRITE_REG(SoftwareReset, | 
|  | 274 | PMX2_SOFTRESET_REG_RST | PMX2_SOFTRESET_TA_RST | | 
|  | 275 | PMX2_SOFTRESET_ROM_RST); | 
|  | 276 |  | 
|  | 277 | pci_read_config_word(pDev, PCI_CONFIG_SUBSYS_ID, &sub); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 278 |  | 
| Auke Kok | 44c1013 | 2007-06-08 15:46:36 -0700 | [diff] [blame] | 279 | ulChipSpeed = InitSDRAMRegisters(pSTGReg, (u32)sub, | 
|  | 280 | (u32)pDev->revision); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 281 |  | 
|  | 282 | if (ulChipSpeed == 0) | 
|  | 283 | return -EINVAL; | 
|  | 284 |  | 
|  | 285 | ulCoreClock = ProgramClock(REF_FREQ, CORE_PLL_FREQ, &F, &R, &P); | 
|  | 286 |  | 
|  | 287 | core_pll |= ((P) | ((F - 2) << 2) | ((R - 2) << 11)); | 
|  | 288 |  | 
|  | 289 | /* Set Core PLL Control to Core PLL Mode  */ | 
|  | 290 |  | 
|  | 291 | /* Send bits 0:7 of the Core PLL Mode register */ | 
|  | 292 | tmp = ((CORE_PLL_MODE_REG_0_7 << 8) | (core_pll & 0x00FF)); | 
|  | 293 | pci_write_config_word(pDev, CorePllControl, tmp); | 
|  | 294 | /* Without some delay between the PCI config writes the clock does | 
|  | 295 | not reliably set when the code is compiled -O3 | 
|  | 296 | */ | 
|  | 297 | OS_DELAY(1000000); | 
|  | 298 |  | 
|  | 299 | tmp |= SET_BIT(14); | 
|  | 300 | pci_write_config_word(pDev, CorePllControl, tmp); | 
|  | 301 | OS_DELAY(1000000); | 
|  | 302 |  | 
|  | 303 | /* Send bits 8:15 of the Core PLL Mode register */ | 
|  | 304 | tmp = | 
|  | 305 | ((CORE_PLL_MODE_REG_8_15 << 8) | ((core_pll & 0xFF00) >> 8)); | 
|  | 306 | pci_write_config_word(pDev, CorePllControl, tmp); | 
|  | 307 | OS_DELAY(1000000); | 
|  | 308 |  | 
|  | 309 | tmp |= SET_BIT(14); | 
|  | 310 | pci_write_config_word(pDev, CorePllControl, tmp); | 
|  | 311 | OS_DELAY(1000000); | 
|  | 312 |  | 
|  | 313 | STG_WRITE_REG(SoftwareReset, PMX2_SOFTRESET_ALL); | 
|  | 314 |  | 
|  | 315 | #if 0 | 
|  | 316 | /* Enable Primary Core Thread0 */ | 
|  | 317 | tmp = ((STG_READ_REG(Thread0Enable)) | SET_BIT(0)); | 
|  | 318 | STG_WRITE_REG(Thread0Enable, tmp); | 
|  | 319 |  | 
|  | 320 | /* Enable Primary Core Thread1 */ | 
|  | 321 | tmp = ((STG_READ_REG(Thread1Enable)) | SET_BIT(0)); | 
|  | 322 | STG_WRITE_REG(Thread1Enable, tmp); | 
|  | 323 | #endif | 
|  | 324 |  | 
|  | 325 | return 0; | 
|  | 326 | } |