| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | #ifndef _IDE_TIMING_H | 
 | 2 | #define _IDE_TIMING_H | 
 | 3 |  | 
 | 4 | /* | 
 | 5 |  * $Id: ide-timing.h,v 1.6 2001/12/23 22:47:56 vojtech Exp $ | 
 | 6 |  * | 
 | 7 |  *  Copyright (c) 1999-2001 Vojtech Pavlik | 
 | 8 |  */ | 
 | 9 |  | 
 | 10 | /* | 
 | 11 |  * This program is free software; you can redistribute it and/or modify | 
 | 12 |  * it under the terms of the GNU General Public License as published by | 
 | 13 |  * the Free Software Foundation; either version 2 of the License, or | 
 | 14 |  * (at your option) any later version. | 
 | 15 |  * | 
 | 16 |  * This program is distributed in the hope that it will be useful, | 
 | 17 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 | 18 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 | 19 |  * GNU General Public License for more details. | 
 | 20 |  * | 
 | 21 |  * You should have received a copy of the GNU General Public License | 
 | 22 |  * along with this program; if not, write to the Free Software | 
 | 23 |  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | 
 | 24 |  * | 
 | 25 |  * Should you need to contact me, the author, you can do so either by | 
 | 26 |  * e-mail - mail your message to <vojtech@ucw.cz>, or by paper mail: | 
 | 27 |  * Vojtech Pavlik, Simunkova 1594, Prague 8, 182 00 Czech Republic | 
 | 28 |  */ | 
 | 29 |  | 
 | 30 | #include <linux/hdreg.h> | 
 | 31 |  | 
 | 32 | #define XFER_PIO_5		0x0d | 
 | 33 | #define XFER_UDMA_SLOW		0x4f | 
 | 34 |  | 
 | 35 | struct ide_timing { | 
 | 36 | 	short mode; | 
 | 37 | 	short setup;	/* t1 */ | 
 | 38 | 	short act8b;	/* t2 for 8-bit io */ | 
 | 39 | 	short rec8b;	/* t2i for 8-bit io */ | 
 | 40 | 	short cyc8b;	/* t0 for 8-bit io */ | 
 | 41 | 	short active;	/* t2 or tD */ | 
 | 42 | 	short recover;	/* t2i or tK */ | 
 | 43 | 	short cycle;	/* t0 */ | 
 | 44 | 	short udma;	/* t2CYCTYP/2 */ | 
 | 45 | }; | 
 | 46 |  | 
 | 47 | /* | 
 | 48 |  * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). | 
 | 49 |  * These were taken from ATA/ATAPI-6 standard, rev 0a, except | 
 | 50 |  * for PIO 5, which is a nonstandard extension and UDMA6, which | 
 | 51 |  * is currently supported only by Maxtor drives.  | 
 | 52 |  */ | 
 | 53 |  | 
 | 54 | static struct ide_timing ide_timing[] = { | 
 | 55 |  | 
 | 56 | 	{ XFER_UDMA_6,     0,   0,   0,   0,   0,   0,   0,  15 }, | 
 | 57 | 	{ XFER_UDMA_5,     0,   0,   0,   0,   0,   0,   0,  20 }, | 
 | 58 | 	{ XFER_UDMA_4,     0,   0,   0,   0,   0,   0,   0,  30 }, | 
 | 59 | 	{ XFER_UDMA_3,     0,   0,   0,   0,   0,   0,   0,  45 }, | 
 | 60 |  | 
 | 61 | 	{ XFER_UDMA_2,     0,   0,   0,   0,   0,   0,   0,  60 }, | 
 | 62 | 	{ XFER_UDMA_1,     0,   0,   0,   0,   0,   0,   0,  80 }, | 
 | 63 | 	{ XFER_UDMA_0,     0,   0,   0,   0,   0,   0,   0, 120 }, | 
 | 64 |  | 
 | 65 | 	{ XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0,   0, 150 }, | 
 | 66 |                                            | 
 | 67 | 	{ XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 120,   0 }, | 
 | 68 | 	{ XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 150,   0 }, | 
 | 69 | 	{ XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 480,   0 }, | 
 | 70 |                                            | 
 | 71 | 	{ XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 240,   0 }, | 
 | 72 | 	{ XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 480,   0 }, | 
 | 73 | 	{ XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 960,   0 }, | 
 | 74 |  | 
 | 75 | 	{ XFER_PIO_5,     20,  50,  30, 100,  50,  30, 100,   0 }, | 
 | 76 | 	{ XFER_PIO_4,     25,  70,  25, 120,  70,  25, 120,   0 }, | 
 | 77 | 	{ XFER_PIO_3,     30,  80,  70, 180,  80,  70, 180,   0 }, | 
 | 78 |  | 
 | 79 | 	{ XFER_PIO_2,     30, 290,  40, 330, 100,  90, 240,   0 }, | 
 | 80 | 	{ XFER_PIO_1,     50, 290,  93, 383, 125, 100, 383,   0 }, | 
 | 81 | 	{ XFER_PIO_0,     70, 290, 240, 600, 165, 150, 600,   0 }, | 
 | 82 |  | 
 | 83 | 	{ XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960,   0 }, | 
 | 84 |  | 
 | 85 | 	{ -1 } | 
 | 86 | }; | 
 | 87 |  | 
 | 88 | #define IDE_TIMING_SETUP	0x01 | 
 | 89 | #define IDE_TIMING_ACT8B	0x02 | 
 | 90 | #define IDE_TIMING_REC8B	0x04 | 
 | 91 | #define IDE_TIMING_CYC8B	0x08 | 
 | 92 | #define IDE_TIMING_8BIT		0x0e | 
 | 93 | #define IDE_TIMING_ACTIVE	0x10 | 
 | 94 | #define IDE_TIMING_RECOVER	0x20 | 
 | 95 | #define IDE_TIMING_CYCLE	0x40 | 
 | 96 | #define IDE_TIMING_UDMA		0x80 | 
 | 97 | #define IDE_TIMING_ALL		0xff | 
 | 98 |  | 
 | 99 | #define MIN(a,b)	((a)<(b)?(a):(b)) | 
 | 100 | #define MAX(a,b)	((a)>(b)?(a):(b)) | 
 | 101 | #define FIT(v,min,max)	MAX(MIN(v,max),min) | 
 | 102 | #define ENOUGH(v,unit)	(((v)-1)/(unit)+1) | 
 | 103 | #define EZ(v,unit)	((v)?ENOUGH(v,unit):0) | 
 | 104 |  | 
 | 105 | #define XFER_MODE	0xf0 | 
 | 106 | #define XFER_UDMA_133	0x48 | 
 | 107 | #define XFER_UDMA_100	0x44 | 
 | 108 | #define XFER_UDMA_66	0x42 | 
 | 109 | #define XFER_UDMA	0x40 | 
 | 110 | #define XFER_MWDMA	0x20 | 
 | 111 | #define XFER_SWDMA	0x10 | 
 | 112 | #define XFER_EPIO	0x01 | 
 | 113 | #define XFER_PIO	0x00 | 
 | 114 |  | 
 | 115 | static short ide_find_best_mode(ide_drive_t *drive, int map) | 
 | 116 | { | 
 | 117 | 	struct hd_driveid *id = drive->id; | 
 | 118 | 	short best = 0; | 
 | 119 |  | 
 | 120 | 	if (!id) | 
 | 121 | 		return XFER_PIO_SLOW; | 
 | 122 |  | 
 | 123 | 	if ((map & XFER_UDMA) && (id->field_valid & 4)) {	/* Want UDMA and UDMA bitmap valid */ | 
 | 124 |  | 
 | 125 | 		if ((map & XFER_UDMA_133) == XFER_UDMA_133) | 
 | 126 | 			if ((best = (id->dma_ultra & 0x0040) ? XFER_UDMA_6 : 0)) return best; | 
 | 127 |  | 
 | 128 | 		if ((map & XFER_UDMA_100) == XFER_UDMA_100) | 
 | 129 | 			if ((best = (id->dma_ultra & 0x0020) ? XFER_UDMA_5 : 0)) return best; | 
 | 130 |  | 
 | 131 | 		if ((map & XFER_UDMA_66) == XFER_UDMA_66) | 
 | 132 | 			if ((best = (id->dma_ultra & 0x0010) ? XFER_UDMA_4 : | 
 | 133 |                 	    	    (id->dma_ultra & 0x0008) ? XFER_UDMA_3 : 0)) return best; | 
 | 134 |  | 
 | 135 |                 if ((best = (id->dma_ultra & 0x0004) ? XFER_UDMA_2 : | 
 | 136 |                 	    (id->dma_ultra & 0x0002) ? XFER_UDMA_1 : | 
 | 137 |                 	    (id->dma_ultra & 0x0001) ? XFER_UDMA_0 : 0)) return best; | 
 | 138 | 	} | 
 | 139 |  | 
 | 140 | 	if ((map & XFER_MWDMA) && (id->field_valid & 2)) {	/* Want MWDMA and drive has EIDE fields */ | 
 | 141 |  | 
 | 142 | 		if ((best = (id->dma_mword & 0x0004) ? XFER_MW_DMA_2 : | 
 | 143 |                 	    (id->dma_mword & 0x0002) ? XFER_MW_DMA_1 : | 
 | 144 |                 	    (id->dma_mword & 0x0001) ? XFER_MW_DMA_0 : 0)) return best; | 
 | 145 | 	} | 
 | 146 |  | 
 | 147 | 	if (map & XFER_SWDMA) {					/* Want SWDMA */ | 
 | 148 |  | 
 | 149 |  		if (id->field_valid & 2) {			/* EIDE SWDMA */ | 
 | 150 |  | 
 | 151 | 			if ((best = (id->dma_1word & 0x0004) ? XFER_SW_DMA_2 : | 
 | 152 |       				    (id->dma_1word & 0x0002) ? XFER_SW_DMA_1 : | 
 | 153 | 				    (id->dma_1word & 0x0001) ? XFER_SW_DMA_0 : 0)) return best; | 
 | 154 | 		} | 
 | 155 |  | 
 | 156 | 		if (id->capability & 1) {			/* Pre-EIDE style SWDMA */ | 
 | 157 |  | 
 | 158 | 			if ((best = (id->tDMA == 2) ? XFER_SW_DMA_2 : | 
 | 159 | 				    (id->tDMA == 1) ? XFER_SW_DMA_1 : | 
 | 160 | 				    (id->tDMA == 0) ? XFER_SW_DMA_0 : 0)) return best; | 
 | 161 | 		} | 
 | 162 | 	} | 
 | 163 |  | 
 | 164 |  | 
 | 165 | 	if ((map & XFER_EPIO) && (id->field_valid & 2)) {	/* EIDE PIO modes */ | 
 | 166 |  | 
 | 167 | 		if ((best = (drive->id->eide_pio_modes & 4) ? XFER_PIO_5 : | 
 | 168 | 			    (drive->id->eide_pio_modes & 2) ? XFER_PIO_4 : | 
 | 169 | 			    (drive->id->eide_pio_modes & 1) ? XFER_PIO_3 : 0)) return best; | 
 | 170 | 	} | 
 | 171 | 	 | 
 | 172 | 	return  (drive->id->tPIO == 2) ? XFER_PIO_2 : | 
 | 173 | 		(drive->id->tPIO == 1) ? XFER_PIO_1 : | 
 | 174 | 		(drive->id->tPIO == 0) ? XFER_PIO_0 : XFER_PIO_SLOW; | 
 | 175 | } | 
 | 176 |  | 
 | 177 | static void ide_timing_quantize(struct ide_timing *t, struct ide_timing *q, int T, int UT) | 
 | 178 | { | 
 | 179 | 	q->setup   = EZ(t->setup   * 1000,  T); | 
 | 180 | 	q->act8b   = EZ(t->act8b   * 1000,  T); | 
 | 181 | 	q->rec8b   = EZ(t->rec8b   * 1000,  T); | 
 | 182 | 	q->cyc8b   = EZ(t->cyc8b   * 1000,  T); | 
 | 183 | 	q->active  = EZ(t->active  * 1000,  T); | 
 | 184 | 	q->recover = EZ(t->recover * 1000,  T); | 
 | 185 | 	q->cycle   = EZ(t->cycle   * 1000,  T); | 
 | 186 | 	q->udma    = EZ(t->udma    * 1000, UT); | 
 | 187 | } | 
 | 188 |  | 
 | 189 | static void ide_timing_merge(struct ide_timing *a, struct ide_timing *b, struct ide_timing *m, unsigned int what) | 
 | 190 | { | 
 | 191 | 	if (what & IDE_TIMING_SETUP  ) m->setup   = MAX(a->setup,   b->setup); | 
 | 192 | 	if (what & IDE_TIMING_ACT8B  ) m->act8b   = MAX(a->act8b,   b->act8b); | 
 | 193 | 	if (what & IDE_TIMING_REC8B  ) m->rec8b   = MAX(a->rec8b,   b->rec8b); | 
 | 194 | 	if (what & IDE_TIMING_CYC8B  ) m->cyc8b   = MAX(a->cyc8b,   b->cyc8b); | 
 | 195 | 	if (what & IDE_TIMING_ACTIVE ) m->active  = MAX(a->active,  b->active); | 
 | 196 | 	if (what & IDE_TIMING_RECOVER) m->recover = MAX(a->recover, b->recover); | 
 | 197 | 	if (what & IDE_TIMING_CYCLE  ) m->cycle   = MAX(a->cycle,   b->cycle); | 
 | 198 | 	if (what & IDE_TIMING_UDMA   ) m->udma    = MAX(a->udma,    b->udma); | 
 | 199 | } | 
 | 200 |  | 
 | 201 | static struct ide_timing* ide_timing_find_mode(short speed) | 
 | 202 | { | 
 | 203 | 	struct ide_timing *t; | 
 | 204 |  | 
 | 205 | 	for (t = ide_timing; t->mode != speed; t++) | 
 | 206 | 		if (t->mode < 0) | 
 | 207 | 			return NULL; | 
 | 208 | 	return t;  | 
 | 209 | } | 
 | 210 |  | 
 | 211 | static int ide_timing_compute(ide_drive_t *drive, short speed, struct ide_timing *t, int T, int UT) | 
 | 212 | { | 
 | 213 | 	struct hd_driveid *id = drive->id; | 
 | 214 | 	struct ide_timing *s, p; | 
 | 215 |  | 
 | 216 | /* | 
 | 217 |  * Find the mode. | 
 | 218 |  */ | 
 | 219 |  | 
 | 220 | 	if (!(s = ide_timing_find_mode(speed))) | 
 | 221 | 		return -EINVAL; | 
 | 222 |  | 
 | 223 | /* | 
 | 224 |  * If the drive is an EIDE drive, it can tell us it needs extended | 
 | 225 |  * PIO/MWDMA cycle timing. | 
 | 226 |  */ | 
 | 227 |  | 
 | 228 | 	if (id && id->field_valid & 2) {	/* EIDE drive */ | 
 | 229 |  | 
 | 230 | 		memset(&p, 0, sizeof(p)); | 
 | 231 |  | 
 | 232 | 		switch (speed & XFER_MODE) { | 
 | 233 |  | 
 | 234 | 			case XFER_PIO: | 
 | 235 | 				if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = id->eide_pio; | 
 | 236 | 						    else p.cycle = p.cyc8b = id->eide_pio_iordy; | 
 | 237 | 				break; | 
 | 238 |  | 
 | 239 | 			case XFER_MWDMA: | 
 | 240 | 				p.cycle = id->eide_dma_min; | 
 | 241 | 				break; | 
 | 242 | 		} | 
 | 243 |  | 
 | 244 | 		ide_timing_merge(&p, t, t, IDE_TIMING_CYCLE | IDE_TIMING_CYC8B); | 
 | 245 | 	} | 
 | 246 |  | 
 | 247 | /* | 
 | 248 |  * Convert the timing to bus clock counts. | 
 | 249 |  */ | 
 | 250 |  | 
 | 251 | 	ide_timing_quantize(s, t, T, UT); | 
 | 252 |  | 
 | 253 | /* | 
 | 254 |  * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, S.M.A.R.T | 
 | 255 |  * and some other commands. We have to ensure that the DMA cycle timing is | 
 | 256 |  * slower/equal than the fastest PIO timing. | 
 | 257 |  */ | 
 | 258 |  | 
 | 259 | 	if ((speed & XFER_MODE) != XFER_PIO) { | 
 | 260 | 		ide_timing_compute(drive, ide_find_best_mode(drive, XFER_PIO | XFER_EPIO), &p, T, UT); | 
 | 261 | 		ide_timing_merge(&p, t, t, IDE_TIMING_ALL); | 
 | 262 | 	} | 
 | 263 |  | 
 | 264 | /* | 
 | 265 |  * Lenghten active & recovery time so that cycle time is correct. | 
 | 266 |  */ | 
 | 267 |  | 
 | 268 | 	if (t->act8b + t->rec8b < t->cyc8b) { | 
 | 269 | 		t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; | 
 | 270 | 		t->rec8b = t->cyc8b - t->act8b; | 
 | 271 | 	} | 
 | 272 |  | 
 | 273 | 	if (t->active + t->recover < t->cycle) { | 
 | 274 | 		t->active += (t->cycle - (t->active + t->recover)) / 2; | 
 | 275 | 		t->recover = t->cycle - t->active; | 
 | 276 | 	} | 
 | 277 |  | 
 | 278 | 	return 0; | 
 | 279 | } | 
 | 280 |  | 
 | 281 | #endif |