Chris Metcalf | f02cbbe | 2010-11-02 12:05:10 -0400 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2010 Tilera Corporation. All Rights Reserved. |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or |
| 5 | * modify it under the terms of the GNU General Public License |
| 6 | * as published by the Free Software Foundation, version 2. |
| 7 | * |
| 8 | * This program is distributed in the hope that it will be useful, but |
| 9 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
| 10 | * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or |
| 11 | * NON INFRINGEMENT. See the GNU General Public License for |
| 12 | * more details. |
| 13 | */ |
| 14 | |
| 15 | #include <linux/kernel.h> |
| 16 | #include <linux/pci.h> |
| 17 | #include <linux/delay.h> |
| 18 | #include <linux/string.h> |
| 19 | #include <linux/init.h> |
| 20 | #include <linux/capability.h> |
| 21 | #include <linux/sched.h> |
| 22 | #include <linux/errno.h> |
| 23 | #include <linux/bootmem.h> |
| 24 | #include <linux/irq.h> |
| 25 | #include <linux/io.h> |
| 26 | #include <linux/uaccess.h> |
| 27 | |
| 28 | #include <asm/processor.h> |
| 29 | #include <asm/sections.h> |
| 30 | #include <asm/byteorder.h> |
| 31 | #include <asm/hv_driver.h> |
| 32 | #include <hv/drv_pcie_rc_intf.h> |
| 33 | |
| 34 | |
| 35 | /* |
| 36 | * Initialization flow and process |
| 37 | * ------------------------------- |
| 38 | * |
| 39 | * This files containes the routines to search for PCI buses, |
| 40 | * enumerate the buses, and configure any attached devices. |
| 41 | * |
| 42 | * There are two entry points here: |
| 43 | * 1) tile_pci_init |
| 44 | * This sets up the pci_controller structs, and opens the |
| 45 | * FDs to the hypervisor. This is called from setup_arch() early |
| 46 | * in the boot process. |
| 47 | * 2) pcibios_init |
| 48 | * This probes the PCI bus(es) for any attached hardware. It's |
| 49 | * called by subsys_initcall. All of the real work is done by the |
| 50 | * generic Linux PCI layer. |
| 51 | * |
| 52 | */ |
| 53 | |
| 54 | /* |
| 55 | * This flag tells if the platform is TILEmpower that needs |
| 56 | * special configuration for the PLX switch chip. |
| 57 | */ |
| 58 | int __write_once tile_plx_gen1; |
| 59 | |
| 60 | static struct pci_controller controllers[TILE_NUM_PCIE]; |
| 61 | static int num_controllers; |
| 62 | |
| 63 | static struct pci_ops tile_cfg_ops; |
| 64 | |
| 65 | |
| 66 | /* |
| 67 | * We don't need to worry about the alignment of resources. |
| 68 | */ |
| 69 | resource_size_t pcibios_align_resource(void *data, const struct resource *res, |
| 70 | resource_size_t size, resource_size_t align) |
| 71 | { |
| 72 | return res->start; |
| 73 | } |
| 74 | EXPORT_SYMBOL(pcibios_align_resource); |
| 75 | |
| 76 | /* |
| 77 | * Open a FD to the hypervisor PCI device. |
| 78 | * |
| 79 | * controller_id is the controller number, config type is 0 or 1 for |
| 80 | * config0 or config1 operations. |
| 81 | */ |
| 82 | static int __init tile_pcie_open(int controller_id, int config_type) |
| 83 | { |
| 84 | char filename[32]; |
| 85 | int fd; |
| 86 | |
| 87 | sprintf(filename, "pcie/%d/config%d", controller_id, config_type); |
| 88 | |
| 89 | fd = hv_dev_open((HV_VirtAddr)filename, 0); |
| 90 | |
| 91 | return fd; |
| 92 | } |
| 93 | |
| 94 | |
| 95 | /* |
| 96 | * Get the IRQ numbers from the HV and set up the handlers for them. |
| 97 | */ |
| 98 | static int __init tile_init_irqs(int controller_id, |
| 99 | struct pci_controller *controller) |
| 100 | { |
| 101 | char filename[32]; |
| 102 | int fd; |
| 103 | int ret; |
| 104 | int x; |
| 105 | struct pcie_rc_config rc_config; |
| 106 | |
| 107 | sprintf(filename, "pcie/%d/ctl", controller_id); |
| 108 | fd = hv_dev_open((HV_VirtAddr)filename, 0); |
| 109 | if (fd < 0) { |
| 110 | pr_err("PCI: hv_dev_open(%s) failed\n", filename); |
| 111 | return -1; |
| 112 | } |
| 113 | ret = hv_dev_pread(fd, 0, (HV_VirtAddr)(&rc_config), |
| 114 | sizeof(rc_config), PCIE_RC_CONFIG_MASK_OFF); |
| 115 | hv_dev_close(fd); |
| 116 | if (ret != sizeof(rc_config)) { |
| 117 | pr_err("PCI: wanted %zd bytes, got %d\n", |
| 118 | sizeof(rc_config), ret); |
| 119 | return -1; |
| 120 | } |
| 121 | /* Record irq_base so that we can map INTx to IRQ # later. */ |
| 122 | controller->irq_base = rc_config.intr; |
| 123 | |
| 124 | for (x = 0; x < 4; x++) |
| 125 | tile_irq_activate(rc_config.intr + x, |
| 126 | TILE_IRQ_HW_CLEAR); |
| 127 | |
| 128 | if (rc_config.plx_gen1) |
| 129 | controller->plx_gen1 = 1; |
| 130 | |
| 131 | return 0; |
| 132 | } |
| 133 | |
| 134 | /* |
| 135 | * First initialization entry point, called from setup_arch(). |
| 136 | * |
| 137 | * Find valid controllers and fill in pci_controller structs for each |
| 138 | * of them. |
| 139 | * |
| 140 | * Returns the number of controllers discovered. |
| 141 | */ |
| 142 | int __init tile_pci_init(void) |
| 143 | { |
| 144 | int i; |
| 145 | |
| 146 | pr_info("PCI: Searching for controllers...\n"); |
| 147 | |
| 148 | /* Do any configuration we need before using the PCIe */ |
| 149 | |
| 150 | for (i = 0; i < TILE_NUM_PCIE; i++) { |
| 151 | int hv_cfg_fd0 = -1; |
| 152 | int hv_cfg_fd1 = -1; |
| 153 | int hv_mem_fd = -1; |
| 154 | char name[32]; |
| 155 | struct pci_controller *controller; |
| 156 | |
| 157 | /* |
| 158 | * Open the fd to the HV. If it fails then this |
| 159 | * device doesn't exist. |
| 160 | */ |
| 161 | hv_cfg_fd0 = tile_pcie_open(i, 0); |
| 162 | if (hv_cfg_fd0 < 0) |
| 163 | continue; |
| 164 | hv_cfg_fd1 = tile_pcie_open(i, 1); |
| 165 | if (hv_cfg_fd1 < 0) { |
| 166 | pr_err("PCI: Couldn't open config fd to HV " |
| 167 | "for controller %d\n", i); |
| 168 | goto err_cont; |
| 169 | } |
| 170 | |
| 171 | sprintf(name, "pcie/%d/mem", i); |
| 172 | hv_mem_fd = hv_dev_open((HV_VirtAddr)name, 0); |
| 173 | if (hv_mem_fd < 0) { |
| 174 | pr_err("PCI: Could not open mem fd to HV!\n"); |
| 175 | goto err_cont; |
| 176 | } |
| 177 | |
| 178 | pr_info("PCI: Found PCI controller #%d\n", i); |
| 179 | |
| 180 | controller = &controllers[num_controllers]; |
| 181 | |
| 182 | if (tile_init_irqs(i, controller)) { |
| 183 | pr_err("PCI: Could not initialize " |
| 184 | "IRQs, aborting.\n"); |
| 185 | goto err_cont; |
| 186 | } |
| 187 | |
| 188 | controller->index = num_controllers; |
| 189 | controller->hv_cfg_fd[0] = hv_cfg_fd0; |
| 190 | controller->hv_cfg_fd[1] = hv_cfg_fd1; |
| 191 | controller->hv_mem_fd = hv_mem_fd; |
| 192 | controller->first_busno = 0; |
| 193 | controller->last_busno = 0xff; |
| 194 | controller->ops = &tile_cfg_ops; |
| 195 | |
| 196 | num_controllers++; |
| 197 | continue; |
| 198 | |
| 199 | err_cont: |
| 200 | if (hv_cfg_fd0 >= 0) |
| 201 | hv_dev_close(hv_cfg_fd0); |
| 202 | if (hv_cfg_fd1 >= 0) |
| 203 | hv_dev_close(hv_cfg_fd1); |
| 204 | if (hv_mem_fd >= 0) |
| 205 | hv_dev_close(hv_mem_fd); |
| 206 | continue; |
| 207 | } |
| 208 | |
| 209 | /* |
| 210 | * Before using the PCIe, see if we need to do any platform-specific |
| 211 | * configuration, such as the PLX switch Gen 1 issue on TILEmpower. |
| 212 | */ |
| 213 | for (i = 0; i < num_controllers; i++) { |
| 214 | struct pci_controller *controller = &controllers[i]; |
| 215 | |
| 216 | if (controller->plx_gen1) |
| 217 | tile_plx_gen1 = 1; |
| 218 | } |
| 219 | |
| 220 | return num_controllers; |
| 221 | } |
| 222 | |
| 223 | /* |
| 224 | * (pin - 1) converts from the PCI standard's [1:4] convention to |
| 225 | * a normal [0:3] range. |
| 226 | */ |
| 227 | static int tile_map_irq(struct pci_dev *dev, u8 slot, u8 pin) |
| 228 | { |
| 229 | struct pci_controller *controller = |
| 230 | (struct pci_controller *)dev->sysdata; |
| 231 | return (pin - 1) + controller->irq_base; |
| 232 | } |
| 233 | |
| 234 | |
| 235 | static void __init fixup_read_and_payload_sizes(void) |
| 236 | { |
| 237 | struct pci_dev *dev = NULL; |
| 238 | int smallest_max_payload = 0x1; /* Tile maxes out at 256 bytes. */ |
| 239 | int max_read_size = 0x2; /* Limit to 512 byte reads. */ |
| 240 | u16 new_values; |
| 241 | |
| 242 | /* Scan for the smallest maximum payload size. */ |
| 243 | while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) { |
| 244 | int pcie_caps_offset; |
| 245 | u32 devcap; |
| 246 | int max_payload; |
| 247 | |
| 248 | pcie_caps_offset = pci_find_capability(dev, PCI_CAP_ID_EXP); |
| 249 | if (pcie_caps_offset == 0) |
| 250 | continue; |
| 251 | |
| 252 | pci_read_config_dword(dev, pcie_caps_offset + PCI_EXP_DEVCAP, |
| 253 | &devcap); |
| 254 | max_payload = devcap & PCI_EXP_DEVCAP_PAYLOAD; |
| 255 | if (max_payload < smallest_max_payload) |
| 256 | smallest_max_payload = max_payload; |
| 257 | } |
| 258 | |
| 259 | /* Now, set the max_payload_size for all devices to that value. */ |
| 260 | new_values = (max_read_size << 12) | (smallest_max_payload << 5); |
| 261 | while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) { |
| 262 | int pcie_caps_offset; |
| 263 | u16 devctl; |
| 264 | |
| 265 | pcie_caps_offset = pci_find_capability(dev, PCI_CAP_ID_EXP); |
| 266 | if (pcie_caps_offset == 0) |
| 267 | continue; |
| 268 | |
| 269 | pci_read_config_word(dev, pcie_caps_offset + PCI_EXP_DEVCTL, |
| 270 | &devctl); |
| 271 | devctl &= ~(PCI_EXP_DEVCTL_PAYLOAD | PCI_EXP_DEVCTL_READRQ); |
| 272 | devctl |= new_values; |
| 273 | pci_write_config_word(dev, pcie_caps_offset + PCI_EXP_DEVCTL, |
| 274 | devctl); |
| 275 | } |
| 276 | } |
| 277 | |
| 278 | |
| 279 | /* |
| 280 | * Second PCI initialization entry point, called by subsys_initcall. |
| 281 | * |
| 282 | * The controllers have been set up by the time we get here, by a call to |
| 283 | * tile_pci_init. |
| 284 | */ |
| 285 | static int __init pcibios_init(void) |
| 286 | { |
| 287 | int i; |
| 288 | |
| 289 | pr_info("PCI: Probing PCI hardware\n"); |
| 290 | |
| 291 | /* |
| 292 | * Delay a bit in case devices aren't ready. Some devices are |
| 293 | * known to require at least 20ms here, but we use a more |
| 294 | * conservative value. |
| 295 | */ |
| 296 | mdelay(250); |
| 297 | |
| 298 | /* Scan all of the recorded PCI controllers. */ |
| 299 | for (i = 0; i < num_controllers; i++) { |
| 300 | struct pci_controller *controller = &controllers[i]; |
| 301 | struct pci_bus *bus; |
| 302 | |
| 303 | pr_info("PCI: initializing controller #%d\n", i); |
| 304 | |
| 305 | /* |
| 306 | * This comes from the generic Linux PCI driver. |
| 307 | * |
| 308 | * It reads the PCI tree for this bus into the Linux |
| 309 | * data structures. |
| 310 | * |
| 311 | * This is inlined in linux/pci.h and calls into |
| 312 | * pci_scan_bus_parented() in probe.c. |
| 313 | */ |
| 314 | bus = pci_scan_bus(0, controller->ops, controller); |
| 315 | controller->root_bus = bus; |
| 316 | controller->last_busno = bus->subordinate; |
| 317 | |
| 318 | } |
| 319 | |
| 320 | /* Do machine dependent PCI interrupt routing */ |
| 321 | pci_fixup_irqs(pci_common_swizzle, tile_map_irq); |
| 322 | |
| 323 | /* |
| 324 | * This comes from the generic Linux PCI driver. |
| 325 | * |
| 326 | * It allocates all of the resources (I/O memory, etc) |
| 327 | * associated with the devices read in above. |
| 328 | */ |
| 329 | |
| 330 | pci_assign_unassigned_resources(); |
| 331 | |
| 332 | /* Configure the max_read_size and max_payload_size values. */ |
| 333 | fixup_read_and_payload_sizes(); |
| 334 | |
| 335 | /* Record the I/O resources in the PCI controller structure. */ |
| 336 | for (i = 0; i < num_controllers; i++) { |
| 337 | struct pci_bus *root_bus = controllers[i].root_bus; |
| 338 | struct pci_bus *next_bus; |
| 339 | struct pci_dev *dev; |
| 340 | |
| 341 | list_for_each_entry(dev, &root_bus->devices, bus_list) { |
| 342 | /* Find the PCI host controller, ie. the 1st bridge. */ |
| 343 | if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI && |
| 344 | (PCI_SLOT(dev->devfn) == 0)) { |
| 345 | next_bus = dev->subordinate; |
| 346 | controllers[i].mem_resources[0] = |
| 347 | *next_bus->resource[0]; |
| 348 | controllers[i].mem_resources[1] = |
| 349 | *next_bus->resource[1]; |
| 350 | controllers[i].mem_resources[2] = |
| 351 | *next_bus->resource[2]; |
| 352 | |
| 353 | break; |
| 354 | } |
| 355 | } |
| 356 | |
| 357 | } |
| 358 | |
| 359 | return 0; |
| 360 | } |
| 361 | subsys_initcall(pcibios_init); |
| 362 | |
| 363 | /* |
| 364 | * No bus fixups needed. |
| 365 | */ |
| 366 | void __devinit pcibios_fixup_bus(struct pci_bus *bus) |
| 367 | { |
| 368 | /* Nothing needs to be done. */ |
| 369 | } |
| 370 | |
| 371 | /* |
| 372 | * This can be called from the generic PCI layer, but doesn't need to |
| 373 | * do anything. |
| 374 | */ |
| 375 | char __devinit *pcibios_setup(char *str) |
| 376 | { |
| 377 | /* Nothing needs to be done. */ |
| 378 | return str; |
| 379 | } |
| 380 | |
| 381 | /* |
| 382 | * This is called from the generic Linux layer. |
| 383 | */ |
| 384 | void __init pcibios_update_irq(struct pci_dev *dev, int irq) |
| 385 | { |
| 386 | pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq); |
| 387 | } |
| 388 | |
| 389 | /* |
| 390 | * Enable memory and/or address decoding, as appropriate, for the |
| 391 | * device described by the 'dev' struct. |
| 392 | * |
| 393 | * This is called from the generic PCI layer, and can be called |
| 394 | * for bridges or endpoints. |
| 395 | */ |
| 396 | int pcibios_enable_device(struct pci_dev *dev, int mask) |
| 397 | { |
| 398 | u16 cmd, old_cmd; |
| 399 | u8 header_type; |
| 400 | int i; |
| 401 | struct resource *r; |
| 402 | |
| 403 | pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type); |
| 404 | |
| 405 | pci_read_config_word(dev, PCI_COMMAND, &cmd); |
| 406 | old_cmd = cmd; |
| 407 | if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { |
| 408 | /* |
| 409 | * For bridges, we enable both memory and I/O decoding |
| 410 | * in call cases. |
| 411 | */ |
| 412 | cmd |= PCI_COMMAND_IO; |
| 413 | cmd |= PCI_COMMAND_MEMORY; |
| 414 | } else { |
| 415 | /* |
| 416 | * For endpoints, we enable memory and/or I/O decoding |
| 417 | * only if they have a memory resource of that type. |
| 418 | */ |
| 419 | for (i = 0; i < 6; i++) { |
| 420 | r = &dev->resource[i]; |
| 421 | if (r->flags & IORESOURCE_UNSET) { |
| 422 | pr_err("PCI: Device %s not available " |
| 423 | "because of resource collisions\n", |
| 424 | pci_name(dev)); |
| 425 | return -EINVAL; |
| 426 | } |
| 427 | if (r->flags & IORESOURCE_IO) |
| 428 | cmd |= PCI_COMMAND_IO; |
| 429 | if (r->flags & IORESOURCE_MEM) |
| 430 | cmd |= PCI_COMMAND_MEMORY; |
| 431 | } |
| 432 | } |
| 433 | |
| 434 | /* |
| 435 | * We only write the command if it changed. |
| 436 | */ |
| 437 | if (cmd != old_cmd) |
| 438 | pci_write_config_word(dev, PCI_COMMAND, cmd); |
| 439 | return 0; |
| 440 | } |
| 441 | |
| 442 | void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long max) |
| 443 | { |
| 444 | unsigned long start = pci_resource_start(dev, bar); |
| 445 | unsigned long len = pci_resource_len(dev, bar); |
| 446 | unsigned long flags = pci_resource_flags(dev, bar); |
| 447 | |
| 448 | if (!len) |
| 449 | return NULL; |
| 450 | if (max && len > max) |
| 451 | len = max; |
| 452 | |
| 453 | if (!(flags & IORESOURCE_MEM)) { |
| 454 | pr_info("PCI: Trying to map invalid resource %#lx\n", flags); |
| 455 | start = 0; |
| 456 | } |
| 457 | |
| 458 | return (void __iomem *)start; |
| 459 | } |
| 460 | EXPORT_SYMBOL(pci_iomap); |
| 461 | |
| 462 | |
| 463 | /**************************************************************** |
| 464 | * |
| 465 | * Tile PCI config space read/write routines |
| 466 | * |
| 467 | ****************************************************************/ |
| 468 | |
| 469 | /* |
| 470 | * These are the normal read and write ops |
| 471 | * These are expanded with macros from pci_bus_read_config_byte() etc. |
| 472 | * |
| 473 | * devfn is the combined PCI slot & function. |
| 474 | * |
| 475 | * offset is in bytes, from the start of config space for the |
| 476 | * specified bus & slot. |
| 477 | */ |
| 478 | |
| 479 | static int __devinit tile_cfg_read(struct pci_bus *bus, |
| 480 | unsigned int devfn, |
| 481 | int offset, |
| 482 | int size, |
| 483 | u32 *val) |
| 484 | { |
| 485 | struct pci_controller *controller = bus->sysdata; |
| 486 | int busnum = bus->number & 0xff; |
| 487 | int slot = (devfn >> 3) & 0x1f; |
| 488 | int function = devfn & 0x7; |
| 489 | u32 addr; |
| 490 | int config_mode = 1; |
| 491 | |
| 492 | /* |
| 493 | * There is no bridge between the Tile and bus 0, so we |
| 494 | * use config0 to talk to bus 0. |
| 495 | * |
| 496 | * If we're talking to a bus other than zero then we |
| 497 | * must have found a bridge. |
| 498 | */ |
| 499 | if (busnum == 0) { |
| 500 | /* |
| 501 | * We fake an empty slot for (busnum == 0) && (slot > 0), |
| 502 | * since there is only one slot on bus 0. |
| 503 | */ |
| 504 | if (slot) { |
| 505 | *val = 0xFFFFFFFF; |
| 506 | return 0; |
| 507 | } |
| 508 | config_mode = 0; |
| 509 | } |
| 510 | |
| 511 | addr = busnum << 20; /* Bus in 27:20 */ |
| 512 | addr |= slot << 15; /* Slot (device) in 19:15 */ |
| 513 | addr |= function << 12; /* Function is in 14:12 */ |
| 514 | addr |= (offset & 0xFFF); /* byte address in 0:11 */ |
| 515 | |
| 516 | return hv_dev_pread(controller->hv_cfg_fd[config_mode], 0, |
| 517 | (HV_VirtAddr)(val), size, addr); |
| 518 | } |
| 519 | |
| 520 | |
| 521 | /* |
| 522 | * See tile_cfg_read() for relevent comments. |
| 523 | * Note that "val" is the value to write, not a pointer to that value. |
| 524 | */ |
| 525 | static int __devinit tile_cfg_write(struct pci_bus *bus, |
| 526 | unsigned int devfn, |
| 527 | int offset, |
| 528 | int size, |
| 529 | u32 val) |
| 530 | { |
| 531 | struct pci_controller *controller = bus->sysdata; |
| 532 | int busnum = bus->number & 0xff; |
| 533 | int slot = (devfn >> 3) & 0x1f; |
| 534 | int function = devfn & 0x7; |
| 535 | u32 addr; |
| 536 | int config_mode = 1; |
| 537 | HV_VirtAddr valp = (HV_VirtAddr)&val; |
| 538 | |
| 539 | /* |
| 540 | * For bus 0 slot 0 we use config 0 accesses. |
| 541 | */ |
| 542 | if (busnum == 0) { |
| 543 | /* |
| 544 | * We fake an empty slot for (busnum == 0) && (slot > 0), |
| 545 | * since there is only one slot on bus 0. |
| 546 | */ |
| 547 | if (slot) |
| 548 | return 0; |
| 549 | config_mode = 0; |
| 550 | } |
| 551 | |
| 552 | addr = busnum << 20; /* Bus in 27:20 */ |
| 553 | addr |= slot << 15; /* Slot (device) in 19:15 */ |
| 554 | addr |= function << 12; /* Function is in 14:12 */ |
| 555 | addr |= (offset & 0xFFF); /* byte address in 0:11 */ |
| 556 | |
| 557 | #ifdef __BIG_ENDIAN |
| 558 | /* Point to the correct part of the 32-bit "val". */ |
| 559 | valp += 4 - size; |
| 560 | #endif |
| 561 | |
| 562 | return hv_dev_pwrite(controller->hv_cfg_fd[config_mode], 0, |
| 563 | valp, size, addr); |
| 564 | } |
| 565 | |
| 566 | |
| 567 | static struct pci_ops tile_cfg_ops = { |
| 568 | .read = tile_cfg_read, |
| 569 | .write = tile_cfg_write, |
| 570 | }; |
| 571 | |
| 572 | |
| 573 | /* |
| 574 | * In the following, each PCI controller's mem_resources[1] |
| 575 | * represents its (non-prefetchable) PCI memory resource. |
| 576 | * mem_resources[0] and mem_resources[2] refer to its PCI I/O and |
| 577 | * prefetchable PCI memory resources, respectively. |
| 578 | * For more details, see pci_setup_bridge() in setup-bus.c. |
| 579 | * By comparing the target PCI memory address against the |
| 580 | * end address of controller 0, we can determine the controller |
| 581 | * that should accept the PCI memory access. |
| 582 | */ |
| 583 | #define TILE_READ(size, type) \ |
| 584 | type _tile_read##size(unsigned long addr) \ |
| 585 | { \ |
| 586 | type val; \ |
| 587 | int idx = 0; \ |
| 588 | if (addr > controllers[0].mem_resources[1].end && \ |
| 589 | addr > controllers[0].mem_resources[2].end) \ |
| 590 | idx = 1; \ |
| 591 | if (hv_dev_pread(controllers[idx].hv_mem_fd, 0, \ |
| 592 | (HV_VirtAddr)(&val), sizeof(type), addr)) \ |
| 593 | pr_err("PCI: read %zd bytes at 0x%lX failed\n", \ |
| 594 | sizeof(type), addr); \ |
| 595 | return val; \ |
| 596 | } \ |
| 597 | EXPORT_SYMBOL(_tile_read##size) |
| 598 | |
| 599 | TILE_READ(b, u8); |
| 600 | TILE_READ(w, u16); |
| 601 | TILE_READ(l, u32); |
| 602 | TILE_READ(q, u64); |
| 603 | |
| 604 | #define TILE_WRITE(size, type) \ |
| 605 | void _tile_write##size(type val, unsigned long addr) \ |
| 606 | { \ |
| 607 | int idx = 0; \ |
| 608 | if (addr > controllers[0].mem_resources[1].end && \ |
| 609 | addr > controllers[0].mem_resources[2].end) \ |
| 610 | idx = 1; \ |
| 611 | if (hv_dev_pwrite(controllers[idx].hv_mem_fd, 0, \ |
| 612 | (HV_VirtAddr)(&val), sizeof(type), addr)) \ |
| 613 | pr_err("PCI: write %zd bytes at 0x%lX failed\n", \ |
| 614 | sizeof(type), addr); \ |
| 615 | } \ |
| 616 | EXPORT_SYMBOL(_tile_write##size) |
| 617 | |
| 618 | TILE_WRITE(b, u8); |
| 619 | TILE_WRITE(w, u16); |
| 620 | TILE_WRITE(l, u32); |
| 621 | TILE_WRITE(q, u64); |