| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  * random.c -- A strong random number generator | 
 | 3 |  * | 
| Matt Mackall | 9e95ce2 | 2005-04-16 15:25:56 -0700 | [diff] [blame] | 4 |  * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005 | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5 |  * | 
 | 6 |  * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All | 
 | 7 |  * rights reserved. | 
 | 8 |  * | 
 | 9 |  * Redistribution and use in source and binary forms, with or without | 
 | 10 |  * modification, are permitted provided that the following conditions | 
 | 11 |  * are met: | 
 | 12 |  * 1. Redistributions of source code must retain the above copyright | 
 | 13 |  *    notice, and the entire permission notice in its entirety, | 
 | 14 |  *    including the disclaimer of warranties. | 
 | 15 |  * 2. Redistributions in binary form must reproduce the above copyright | 
 | 16 |  *    notice, this list of conditions and the following disclaimer in the | 
 | 17 |  *    documentation and/or other materials provided with the distribution. | 
 | 18 |  * 3. The name of the author may not be used to endorse or promote | 
 | 19 |  *    products derived from this software without specific prior | 
 | 20 |  *    written permission. | 
 | 21 |  * | 
 | 22 |  * ALTERNATIVELY, this product may be distributed under the terms of | 
 | 23 |  * the GNU General Public License, in which case the provisions of the GPL are | 
 | 24 |  * required INSTEAD OF the above restrictions.  (This clause is | 
 | 25 |  * necessary due to a potential bad interaction between the GPL and | 
 | 26 |  * the restrictions contained in a BSD-style copyright.) | 
 | 27 |  * | 
 | 28 |  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED | 
 | 29 |  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES | 
 | 30 |  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF | 
 | 31 |  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE | 
 | 32 |  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | 33 |  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT | 
 | 34 |  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR | 
 | 35 |  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF | 
 | 36 |  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
 | 37 |  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE | 
 | 38 |  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH | 
 | 39 |  * DAMAGE. | 
 | 40 |  */ | 
 | 41 |  | 
 | 42 | /* | 
 | 43 |  * (now, with legal B.S. out of the way.....) | 
 | 44 |  * | 
 | 45 |  * This routine gathers environmental noise from device drivers, etc., | 
 | 46 |  * and returns good random numbers, suitable for cryptographic use. | 
 | 47 |  * Besides the obvious cryptographic uses, these numbers are also good | 
 | 48 |  * for seeding TCP sequence numbers, and other places where it is | 
 | 49 |  * desirable to have numbers which are not only random, but hard to | 
 | 50 |  * predict by an attacker. | 
 | 51 |  * | 
 | 52 |  * Theory of operation | 
 | 53 |  * =================== | 
 | 54 |  * | 
 | 55 |  * Computers are very predictable devices.  Hence it is extremely hard | 
 | 56 |  * to produce truly random numbers on a computer --- as opposed to | 
 | 57 |  * pseudo-random numbers, which can easily generated by using a | 
 | 58 |  * algorithm.  Unfortunately, it is very easy for attackers to guess | 
 | 59 |  * the sequence of pseudo-random number generators, and for some | 
 | 60 |  * applications this is not acceptable.  So instead, we must try to | 
 | 61 |  * gather "environmental noise" from the computer's environment, which | 
 | 62 |  * must be hard for outside attackers to observe, and use that to | 
 | 63 |  * generate random numbers.  In a Unix environment, this is best done | 
 | 64 |  * from inside the kernel. | 
 | 65 |  * | 
 | 66 |  * Sources of randomness from the environment include inter-keyboard | 
 | 67 |  * timings, inter-interrupt timings from some interrupts, and other | 
 | 68 |  * events which are both (a) non-deterministic and (b) hard for an | 
 | 69 |  * outside observer to measure.  Randomness from these sources are | 
 | 70 |  * added to an "entropy pool", which is mixed using a CRC-like function. | 
 | 71 |  * This is not cryptographically strong, but it is adequate assuming | 
 | 72 |  * the randomness is not chosen maliciously, and it is fast enough that | 
 | 73 |  * the overhead of doing it on every interrupt is very reasonable. | 
 | 74 |  * As random bytes are mixed into the entropy pool, the routines keep | 
 | 75 |  * an *estimate* of how many bits of randomness have been stored into | 
 | 76 |  * the random number generator's internal state. | 
 | 77 |  * | 
 | 78 |  * When random bytes are desired, they are obtained by taking the SHA | 
 | 79 |  * hash of the contents of the "entropy pool".  The SHA hash avoids | 
 | 80 |  * exposing the internal state of the entropy pool.  It is believed to | 
 | 81 |  * be computationally infeasible to derive any useful information | 
 | 82 |  * about the input of SHA from its output.  Even if it is possible to | 
 | 83 |  * analyze SHA in some clever way, as long as the amount of data | 
 | 84 |  * returned from the generator is less than the inherent entropy in | 
 | 85 |  * the pool, the output data is totally unpredictable.  For this | 
 | 86 |  * reason, the routine decreases its internal estimate of how many | 
 | 87 |  * bits of "true randomness" are contained in the entropy pool as it | 
 | 88 |  * outputs random numbers. | 
 | 89 |  * | 
 | 90 |  * If this estimate goes to zero, the routine can still generate | 
 | 91 |  * random numbers; however, an attacker may (at least in theory) be | 
 | 92 |  * able to infer the future output of the generator from prior | 
 | 93 |  * outputs.  This requires successful cryptanalysis of SHA, which is | 
 | 94 |  * not believed to be feasible, but there is a remote possibility. | 
 | 95 |  * Nonetheless, these numbers should be useful for the vast majority | 
 | 96 |  * of purposes. | 
 | 97 |  * | 
 | 98 |  * Exported interfaces ---- output | 
 | 99 |  * =============================== | 
 | 100 |  * | 
 | 101 |  * There are three exported interfaces; the first is one designed to | 
 | 102 |  * be used from within the kernel: | 
 | 103 |  * | 
 | 104 |  * 	void get_random_bytes(void *buf, int nbytes); | 
 | 105 |  * | 
 | 106 |  * This interface will return the requested number of random bytes, | 
 | 107 |  * and place it in the requested buffer. | 
 | 108 |  * | 
 | 109 |  * The two other interfaces are two character devices /dev/random and | 
 | 110 |  * /dev/urandom.  /dev/random is suitable for use when very high | 
 | 111 |  * quality randomness is desired (for example, for key generation or | 
 | 112 |  * one-time pads), as it will only return a maximum of the number of | 
 | 113 |  * bits of randomness (as estimated by the random number generator) | 
 | 114 |  * contained in the entropy pool. | 
 | 115 |  * | 
 | 116 |  * The /dev/urandom device does not have this limit, and will return | 
 | 117 |  * as many bytes as are requested.  As more and more random bytes are | 
 | 118 |  * requested without giving time for the entropy pool to recharge, | 
 | 119 |  * this will result in random numbers that are merely cryptographically | 
 | 120 |  * strong.  For many applications, however, this is acceptable. | 
 | 121 |  * | 
 | 122 |  * Exported interfaces ---- input | 
 | 123 |  * ============================== | 
 | 124 |  * | 
 | 125 |  * The current exported interfaces for gathering environmental noise | 
 | 126 |  * from the devices are: | 
 | 127 |  * | 
 | 128 |  * 	void add_input_randomness(unsigned int type, unsigned int code, | 
 | 129 |  *                                unsigned int value); | 
 | 130 |  * 	void add_interrupt_randomness(int irq); | 
 | 131 |  * | 
 | 132 |  * add_input_randomness() uses the input layer interrupt timing, as well as | 
 | 133 |  * the event type information from the hardware. | 
 | 134 |  * | 
 | 135 |  * add_interrupt_randomness() uses the inter-interrupt timing as random | 
 | 136 |  * inputs to the entropy pool.  Note that not all interrupts are good | 
 | 137 |  * sources of randomness!  For example, the timer interrupts is not a | 
 | 138 |  * good choice, because the periodicity of the interrupts is too | 
 | 139 |  * regular, and hence predictable to an attacker.  Disk interrupts are | 
 | 140 |  * a better measure, since the timing of the disk interrupts are more | 
 | 141 |  * unpredictable. | 
 | 142 |  * | 
 | 143 |  * All of these routines try to estimate how many bits of randomness a | 
 | 144 |  * particular randomness source.  They do this by keeping track of the | 
 | 145 |  * first and second order deltas of the event timings. | 
 | 146 |  * | 
 | 147 |  * Ensuring unpredictability at system startup | 
 | 148 |  * ============================================ | 
 | 149 |  * | 
 | 150 |  * When any operating system starts up, it will go through a sequence | 
 | 151 |  * of actions that are fairly predictable by an adversary, especially | 
 | 152 |  * if the start-up does not involve interaction with a human operator. | 
 | 153 |  * This reduces the actual number of bits of unpredictability in the | 
 | 154 |  * entropy pool below the value in entropy_count.  In order to | 
 | 155 |  * counteract this effect, it helps to carry information in the | 
 | 156 |  * entropy pool across shut-downs and start-ups.  To do this, put the | 
 | 157 |  * following lines an appropriate script which is run during the boot | 
 | 158 |  * sequence: | 
 | 159 |  * | 
 | 160 |  *	echo "Initializing random number generator..." | 
 | 161 |  *	random_seed=/var/run/random-seed | 
 | 162 |  *	# Carry a random seed from start-up to start-up | 
 | 163 |  *	# Load and then save the whole entropy pool | 
 | 164 |  *	if [ -f $random_seed ]; then | 
 | 165 |  *		cat $random_seed >/dev/urandom | 
 | 166 |  *	else | 
 | 167 |  *		touch $random_seed | 
 | 168 |  *	fi | 
 | 169 |  *	chmod 600 $random_seed | 
 | 170 |  *	dd if=/dev/urandom of=$random_seed count=1 bs=512 | 
 | 171 |  * | 
 | 172 |  * and the following lines in an appropriate script which is run as | 
 | 173 |  * the system is shutdown: | 
 | 174 |  * | 
 | 175 |  *	# Carry a random seed from shut-down to start-up | 
 | 176 |  *	# Save the whole entropy pool | 
 | 177 |  *	echo "Saving random seed..." | 
 | 178 |  *	random_seed=/var/run/random-seed | 
 | 179 |  *	touch $random_seed | 
 | 180 |  *	chmod 600 $random_seed | 
 | 181 |  *	dd if=/dev/urandom of=$random_seed count=1 bs=512 | 
 | 182 |  * | 
 | 183 |  * For example, on most modern systems using the System V init | 
 | 184 |  * scripts, such code fragments would be found in | 
 | 185 |  * /etc/rc.d/init.d/random.  On older Linux systems, the correct script | 
 | 186 |  * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0. | 
 | 187 |  * | 
 | 188 |  * Effectively, these commands cause the contents of the entropy pool | 
 | 189 |  * to be saved at shut-down time and reloaded into the entropy pool at | 
 | 190 |  * start-up.  (The 'dd' in the addition to the bootup script is to | 
 | 191 |  * make sure that /etc/random-seed is different for every start-up, | 
 | 192 |  * even if the system crashes without executing rc.0.)  Even with | 
 | 193 |  * complete knowledge of the start-up activities, predicting the state | 
 | 194 |  * of the entropy pool requires knowledge of the previous history of | 
 | 195 |  * the system. | 
 | 196 |  * | 
 | 197 |  * Configuring the /dev/random driver under Linux | 
 | 198 |  * ============================================== | 
 | 199 |  * | 
 | 200 |  * The /dev/random driver under Linux uses minor numbers 8 and 9 of | 
 | 201 |  * the /dev/mem major number (#1).  So if your system does not have | 
 | 202 |  * /dev/random and /dev/urandom created already, they can be created | 
 | 203 |  * by using the commands: | 
 | 204 |  * | 
 | 205 |  * 	mknod /dev/random c 1 8 | 
 | 206 |  * 	mknod /dev/urandom c 1 9 | 
 | 207 |  * | 
 | 208 |  * Acknowledgements: | 
 | 209 |  * ================= | 
 | 210 |  * | 
 | 211 |  * Ideas for constructing this random number generator were derived | 
 | 212 |  * from Pretty Good Privacy's random number generator, and from private | 
 | 213 |  * discussions with Phil Karn.  Colin Plumb provided a faster random | 
 | 214 |  * number generator, which speed up the mixing function of the entropy | 
 | 215 |  * pool, taken from PGPfone.  Dale Worley has also contributed many | 
 | 216 |  * useful ideas and suggestions to improve this driver. | 
 | 217 |  * | 
 | 218 |  * Any flaws in the design are solely my responsibility, and should | 
 | 219 |  * not be attributed to the Phil, Colin, or any of authors of PGP. | 
 | 220 |  * | 
 | 221 |  * Further background information on this topic may be obtained from | 
 | 222 |  * RFC 1750, "Randomness Recommendations for Security", by Donald | 
 | 223 |  * Eastlake, Steve Crocker, and Jeff Schiller. | 
 | 224 |  */ | 
 | 225 |  | 
 | 226 | #include <linux/utsname.h> | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 227 | #include <linux/module.h> | 
 | 228 | #include <linux/kernel.h> | 
 | 229 | #include <linux/major.h> | 
 | 230 | #include <linux/string.h> | 
 | 231 | #include <linux/fcntl.h> | 
 | 232 | #include <linux/slab.h> | 
 | 233 | #include <linux/random.h> | 
 | 234 | #include <linux/poll.h> | 
 | 235 | #include <linux/init.h> | 
 | 236 | #include <linux/fs.h> | 
 | 237 | #include <linux/genhd.h> | 
 | 238 | #include <linux/interrupt.h> | 
 | 239 | #include <linux/spinlock.h> | 
 | 240 | #include <linux/percpu.h> | 
 | 241 | #include <linux/cryptohash.h> | 
 | 242 |  | 
 | 243 | #include <asm/processor.h> | 
 | 244 | #include <asm/uaccess.h> | 
 | 245 | #include <asm/irq.h> | 
 | 246 | #include <asm/io.h> | 
 | 247 |  | 
 | 248 | /* | 
 | 249 |  * Configuration information | 
 | 250 |  */ | 
 | 251 | #define INPUT_POOL_WORDS 128 | 
 | 252 | #define OUTPUT_POOL_WORDS 32 | 
 | 253 | #define SEC_XFER_SIZE 512 | 
 | 254 |  | 
 | 255 | /* | 
 | 256 |  * The minimum number of bits of entropy before we wake up a read on | 
 | 257 |  * /dev/random.  Should be enough to do a significant reseed. | 
 | 258 |  */ | 
 | 259 | static int random_read_wakeup_thresh = 64; | 
 | 260 |  | 
 | 261 | /* | 
 | 262 |  * If the entropy count falls under this number of bits, then we | 
 | 263 |  * should wake up processes which are selecting or polling on write | 
 | 264 |  * access to /dev/random. | 
 | 265 |  */ | 
 | 266 | static int random_write_wakeup_thresh = 128; | 
 | 267 |  | 
 | 268 | /* | 
 | 269 |  * When the input pool goes over trickle_thresh, start dropping most | 
 | 270 |  * samples to avoid wasting CPU time and reduce lock contention. | 
 | 271 |  */ | 
 | 272 |  | 
| Christoph Lameter | 6c03652 | 2005-07-07 17:56:59 -0700 | [diff] [blame] | 273 | static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 274 |  | 
 | 275 | static DEFINE_PER_CPU(int, trickle_count) = 0; | 
 | 276 |  | 
 | 277 | /* | 
 | 278 |  * A pool of size .poolwords is stirred with a primitive polynomial | 
 | 279 |  * of degree .poolwords over GF(2).  The taps for various sizes are | 
 | 280 |  * defined below.  They are chosen to be evenly spaced (minimum RMS | 
 | 281 |  * distance from evenly spaced; the numbers in the comments are a | 
 | 282 |  * scaled squared error sum) except for the last tap, which is 1 to | 
 | 283 |  * get the twisting happening as fast as possible. | 
 | 284 |  */ | 
 | 285 | static struct poolinfo { | 
 | 286 | 	int poolwords; | 
 | 287 | 	int tap1, tap2, tap3, tap4, tap5; | 
 | 288 | } poolinfo_table[] = { | 
 | 289 | 	/* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */ | 
 | 290 | 	{ 128,	103,	76,	51,	25,	1 }, | 
 | 291 | 	/* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */ | 
 | 292 | 	{ 32,	26,	20,	14,	7,	1 }, | 
 | 293 | #if 0 | 
 | 294 | 	/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */ | 
 | 295 | 	{ 2048,	1638,	1231,	819,	411,	1 }, | 
 | 296 |  | 
 | 297 | 	/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */ | 
 | 298 | 	{ 1024,	817,	615,	412,	204,	1 }, | 
 | 299 |  | 
 | 300 | 	/* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */ | 
 | 301 | 	{ 1024,	819,	616,	410,	207,	2 }, | 
 | 302 |  | 
 | 303 | 	/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */ | 
 | 304 | 	{ 512,	411,	308,	208,	104,	1 }, | 
 | 305 |  | 
 | 306 | 	/* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */ | 
 | 307 | 	{ 512,	409,	307,	206,	102,	2 }, | 
 | 308 | 	/* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */ | 
 | 309 | 	{ 512,	409,	309,	205,	103,	2 }, | 
 | 310 |  | 
 | 311 | 	/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */ | 
 | 312 | 	{ 256,	205,	155,	101,	52,	1 }, | 
 | 313 |  | 
 | 314 | 	/* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */ | 
 | 315 | 	{ 128,	103,	78,	51,	27,	2 }, | 
 | 316 |  | 
 | 317 | 	/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */ | 
 | 318 | 	{ 64,	52,	39,	26,	14,	1 }, | 
 | 319 | #endif | 
 | 320 | }; | 
 | 321 |  | 
 | 322 | #define POOLBITS	poolwords*32 | 
 | 323 | #define POOLBYTES	poolwords*4 | 
 | 324 |  | 
 | 325 | /* | 
 | 326 |  * For the purposes of better mixing, we use the CRC-32 polynomial as | 
 | 327 |  * well to make a twisted Generalized Feedback Shift Reigster | 
 | 328 |  * | 
 | 329 |  * (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR generators.  ACM | 
 | 330 |  * Transactions on Modeling and Computer Simulation 2(3):179-194. | 
 | 331 |  * Also see M. Matsumoto & Y. Kurita, 1994.  Twisted GFSR generators | 
 | 332 |  * II.  ACM Transactions on Mdeling and Computer Simulation 4:254-266) | 
 | 333 |  * | 
 | 334 |  * Thanks to Colin Plumb for suggesting this. | 
 | 335 |  * | 
 | 336 |  * We have not analyzed the resultant polynomial to prove it primitive; | 
 | 337 |  * in fact it almost certainly isn't.  Nonetheless, the irreducible factors | 
 | 338 |  * of a random large-degree polynomial over GF(2) are more than large enough | 
 | 339 |  * that periodicity is not a concern. | 
 | 340 |  * | 
 | 341 |  * The input hash is much less sensitive than the output hash.  All | 
 | 342 |  * that we want of it is that it be a good non-cryptographic hash; | 
 | 343 |  * i.e. it not produce collisions when fed "random" data of the sort | 
 | 344 |  * we expect to see.  As long as the pool state differs for different | 
 | 345 |  * inputs, we have preserved the input entropy and done a good job. | 
 | 346 |  * The fact that an intelligent attacker can construct inputs that | 
 | 347 |  * will produce controlled alterations to the pool's state is not | 
 | 348 |  * important because we don't consider such inputs to contribute any | 
 | 349 |  * randomness.  The only property we need with respect to them is that | 
 | 350 |  * the attacker can't increase his/her knowledge of the pool's state. | 
 | 351 |  * Since all additions are reversible (knowing the final state and the | 
 | 352 |  * input, you can reconstruct the initial state), if an attacker has | 
 | 353 |  * any uncertainty about the initial state, he/she can only shuffle | 
 | 354 |  * that uncertainty about, but never cause any collisions (which would | 
 | 355 |  * decrease the uncertainty). | 
 | 356 |  * | 
 | 357 |  * The chosen system lets the state of the pool be (essentially) the input | 
 | 358 |  * modulo the generator polymnomial.  Now, for random primitive polynomials, | 
 | 359 |  * this is a universal class of hash functions, meaning that the chance | 
 | 360 |  * of a collision is limited by the attacker's knowledge of the generator | 
 | 361 |  * polynomail, so if it is chosen at random, an attacker can never force | 
 | 362 |  * a collision.  Here, we use a fixed polynomial, but we *can* assume that | 
 | 363 |  * ###--> it is unknown to the processes generating the input entropy. <-### | 
 | 364 |  * Because of this important property, this is a good, collision-resistant | 
 | 365 |  * hash; hash collisions will occur no more often than chance. | 
 | 366 |  */ | 
 | 367 |  | 
 | 368 | /* | 
 | 369 |  * Static global variables | 
 | 370 |  */ | 
 | 371 | static DECLARE_WAIT_QUEUE_HEAD(random_read_wait); | 
 | 372 | static DECLARE_WAIT_QUEUE_HEAD(random_write_wait); | 
 | 373 |  | 
 | 374 | #if 0 | 
 | 375 | static int debug = 0; | 
 | 376 | module_param(debug, bool, 0644); | 
 | 377 | #define DEBUG_ENT(fmt, arg...) do { if (debug) \ | 
 | 378 | 	printk(KERN_DEBUG "random %04d %04d %04d: " \ | 
 | 379 | 	fmt,\ | 
 | 380 | 	input_pool.entropy_count,\ | 
 | 381 | 	blocking_pool.entropy_count,\ | 
 | 382 | 	nonblocking_pool.entropy_count,\ | 
 | 383 | 	## arg); } while (0) | 
 | 384 | #else | 
 | 385 | #define DEBUG_ENT(fmt, arg...) do {} while (0) | 
 | 386 | #endif | 
 | 387 |  | 
 | 388 | /********************************************************************** | 
 | 389 |  * | 
 | 390 |  * OS independent entropy store.   Here are the functions which handle | 
 | 391 |  * storing entropy in an entropy pool. | 
 | 392 |  * | 
 | 393 |  **********************************************************************/ | 
 | 394 |  | 
 | 395 | struct entropy_store; | 
 | 396 | struct entropy_store { | 
 | 397 | 	/* mostly-read data: */ | 
 | 398 | 	struct poolinfo *poolinfo; | 
 | 399 | 	__u32 *pool; | 
 | 400 | 	const char *name; | 
 | 401 | 	int limit; | 
 | 402 | 	struct entropy_store *pull; | 
 | 403 |  | 
 | 404 | 	/* read-write data: */ | 
 | 405 | 	spinlock_t lock ____cacheline_aligned_in_smp; | 
 | 406 | 	unsigned add_ptr; | 
 | 407 | 	int entropy_count; | 
 | 408 | 	int input_rotate; | 
 | 409 | }; | 
 | 410 |  | 
 | 411 | static __u32 input_pool_data[INPUT_POOL_WORDS]; | 
 | 412 | static __u32 blocking_pool_data[OUTPUT_POOL_WORDS]; | 
 | 413 | static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS]; | 
 | 414 |  | 
 | 415 | static struct entropy_store input_pool = { | 
 | 416 | 	.poolinfo = &poolinfo_table[0], | 
 | 417 | 	.name = "input", | 
 | 418 | 	.limit = 1, | 
| Ingo Molnar | e4d9191 | 2006-07-03 00:24:34 -0700 | [diff] [blame] | 419 | 	.lock = __SPIN_LOCK_UNLOCKED(&input_pool.lock), | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 420 | 	.pool = input_pool_data | 
 | 421 | }; | 
 | 422 |  | 
 | 423 | static struct entropy_store blocking_pool = { | 
 | 424 | 	.poolinfo = &poolinfo_table[1], | 
 | 425 | 	.name = "blocking", | 
 | 426 | 	.limit = 1, | 
 | 427 | 	.pull = &input_pool, | 
| Ingo Molnar | e4d9191 | 2006-07-03 00:24:34 -0700 | [diff] [blame] | 428 | 	.lock = __SPIN_LOCK_UNLOCKED(&blocking_pool.lock), | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 429 | 	.pool = blocking_pool_data | 
 | 430 | }; | 
 | 431 |  | 
 | 432 | static struct entropy_store nonblocking_pool = { | 
 | 433 | 	.poolinfo = &poolinfo_table[1], | 
 | 434 | 	.name = "nonblocking", | 
 | 435 | 	.pull = &input_pool, | 
| Ingo Molnar | e4d9191 | 2006-07-03 00:24:34 -0700 | [diff] [blame] | 436 | 	.lock = __SPIN_LOCK_UNLOCKED(&nonblocking_pool.lock), | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 437 | 	.pool = nonblocking_pool_data | 
 | 438 | }; | 
 | 439 |  | 
 | 440 | /* | 
 | 441 |  * This function adds a byte into the entropy "pool".  It does not | 
 | 442 |  * update the entropy estimate.  The caller should call | 
 | 443 |  * credit_entropy_store if this is appropriate. | 
 | 444 |  * | 
 | 445 |  * The pool is stirred with a primitive polynomial of the appropriate | 
 | 446 |  * degree, and then twisted.  We twist by three bits at a time because | 
 | 447 |  * it's cheap to do so and helps slightly in the expected case where | 
 | 448 |  * the entropy is concentrated in the low-order bits. | 
 | 449 |  */ | 
 | 450 | static void __add_entropy_words(struct entropy_store *r, const __u32 *in, | 
 | 451 | 				int nwords, __u32 out[16]) | 
 | 452 | { | 
 | 453 | 	static __u32 const twist_table[8] = { | 
 | 454 | 		0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158, | 
 | 455 | 		0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 }; | 
 | 456 | 	unsigned long i, add_ptr, tap1, tap2, tap3, tap4, tap5; | 
 | 457 | 	int new_rotate, input_rotate; | 
 | 458 | 	int wordmask = r->poolinfo->poolwords - 1; | 
 | 459 | 	__u32 w, next_w; | 
 | 460 | 	unsigned long flags; | 
 | 461 |  | 
 | 462 | 	/* Taps are constant, so we can load them without holding r->lock.  */ | 
 | 463 | 	tap1 = r->poolinfo->tap1; | 
 | 464 | 	tap2 = r->poolinfo->tap2; | 
 | 465 | 	tap3 = r->poolinfo->tap3; | 
 | 466 | 	tap4 = r->poolinfo->tap4; | 
 | 467 | 	tap5 = r->poolinfo->tap5; | 
 | 468 | 	next_w = *in++; | 
 | 469 |  | 
 | 470 | 	spin_lock_irqsave(&r->lock, flags); | 
 | 471 | 	prefetch_range(r->pool, wordmask); | 
 | 472 | 	input_rotate = r->input_rotate; | 
 | 473 | 	add_ptr = r->add_ptr; | 
 | 474 |  | 
 | 475 | 	while (nwords--) { | 
 | 476 | 		w = rol32(next_w, input_rotate); | 
 | 477 | 		if (nwords > 0) | 
 | 478 | 			next_w = *in++; | 
 | 479 | 		i = add_ptr = (add_ptr - 1) & wordmask; | 
 | 480 | 		/* | 
 | 481 | 		 * Normally, we add 7 bits of rotation to the pool. | 
 | 482 | 		 * At the beginning of the pool, add an extra 7 bits | 
 | 483 | 		 * rotation, so that successive passes spread the | 
 | 484 | 		 * input bits across the pool evenly. | 
 | 485 | 		 */ | 
 | 486 | 		new_rotate = input_rotate + 14; | 
 | 487 | 		if (i) | 
 | 488 | 			new_rotate = input_rotate + 7; | 
 | 489 | 		input_rotate = new_rotate & 31; | 
 | 490 |  | 
 | 491 | 		/* XOR in the various taps */ | 
 | 492 | 		w ^= r->pool[(i + tap1) & wordmask]; | 
 | 493 | 		w ^= r->pool[(i + tap2) & wordmask]; | 
 | 494 | 		w ^= r->pool[(i + tap3) & wordmask]; | 
 | 495 | 		w ^= r->pool[(i + tap4) & wordmask]; | 
 | 496 | 		w ^= r->pool[(i + tap5) & wordmask]; | 
 | 497 | 		w ^= r->pool[i]; | 
 | 498 | 		r->pool[i] = (w >> 3) ^ twist_table[w & 7]; | 
 | 499 | 	} | 
 | 500 |  | 
 | 501 | 	r->input_rotate = input_rotate; | 
 | 502 | 	r->add_ptr = add_ptr; | 
 | 503 |  | 
 | 504 | 	if (out) { | 
 | 505 | 		for (i = 0; i < 16; i++) { | 
 | 506 | 			out[i] = r->pool[add_ptr]; | 
 | 507 | 			add_ptr = (add_ptr - 1) & wordmask; | 
 | 508 | 		} | 
 | 509 | 	} | 
 | 510 |  | 
 | 511 | 	spin_unlock_irqrestore(&r->lock, flags); | 
 | 512 | } | 
 | 513 |  | 
 | 514 | static inline void add_entropy_words(struct entropy_store *r, const __u32 *in, | 
 | 515 | 				     int nwords) | 
 | 516 | { | 
 | 517 | 	__add_entropy_words(r, in, nwords, NULL); | 
 | 518 | } | 
 | 519 |  | 
 | 520 | /* | 
 | 521 |  * Credit (or debit) the entropy store with n bits of entropy | 
 | 522 |  */ | 
 | 523 | static void credit_entropy_store(struct entropy_store *r, int nbits) | 
 | 524 | { | 
 | 525 | 	unsigned long flags; | 
 | 526 |  | 
 | 527 | 	spin_lock_irqsave(&r->lock, flags); | 
 | 528 |  | 
 | 529 | 	if (r->entropy_count + nbits < 0) { | 
 | 530 | 		DEBUG_ENT("negative entropy/overflow (%d+%d)\n", | 
 | 531 | 			  r->entropy_count, nbits); | 
 | 532 | 		r->entropy_count = 0; | 
 | 533 | 	} else if (r->entropy_count + nbits > r->poolinfo->POOLBITS) { | 
 | 534 | 		r->entropy_count = r->poolinfo->POOLBITS; | 
 | 535 | 	} else { | 
 | 536 | 		r->entropy_count += nbits; | 
 | 537 | 		if (nbits) | 
 | 538 | 			DEBUG_ENT("added %d entropy credits to %s\n", | 
 | 539 | 				  nbits, r->name); | 
 | 540 | 	} | 
 | 541 |  | 
 | 542 | 	spin_unlock_irqrestore(&r->lock, flags); | 
 | 543 | } | 
 | 544 |  | 
 | 545 | /********************************************************************* | 
 | 546 |  * | 
 | 547 |  * Entropy input management | 
 | 548 |  * | 
 | 549 |  *********************************************************************/ | 
 | 550 |  | 
 | 551 | /* There is one of these per entropy source */ | 
 | 552 | struct timer_rand_state { | 
 | 553 | 	cycles_t last_time; | 
 | 554 | 	long last_delta,last_delta2; | 
 | 555 | 	unsigned dont_count_entropy:1; | 
 | 556 | }; | 
 | 557 |  | 
 | 558 | static struct timer_rand_state input_timer_state; | 
 | 559 | static struct timer_rand_state *irq_timer_state[NR_IRQS]; | 
 | 560 |  | 
 | 561 | /* | 
 | 562 |  * This function adds entropy to the entropy "pool" by using timing | 
 | 563 |  * delays.  It uses the timer_rand_state structure to make an estimate | 
 | 564 |  * of how many bits of entropy this call has added to the pool. | 
 | 565 |  * | 
 | 566 |  * The number "num" is also added to the pool - it should somehow describe | 
 | 567 |  * the type of event which just happened.  This is currently 0-255 for | 
 | 568 |  * keyboard scan codes, and 256 upwards for interrupts. | 
 | 569 |  * | 
 | 570 |  */ | 
 | 571 | static void add_timer_randomness(struct timer_rand_state *state, unsigned num) | 
 | 572 | { | 
 | 573 | 	struct { | 
 | 574 | 		cycles_t cycles; | 
 | 575 | 		long jiffies; | 
 | 576 | 		unsigned num; | 
 | 577 | 	} sample; | 
 | 578 | 	long delta, delta2, delta3; | 
 | 579 |  | 
 | 580 | 	preempt_disable(); | 
 | 581 | 	/* if over the trickle threshold, use only 1 in 4096 samples */ | 
 | 582 | 	if (input_pool.entropy_count > trickle_thresh && | 
 | 583 | 	    (__get_cpu_var(trickle_count)++ & 0xfff)) | 
 | 584 | 		goto out; | 
 | 585 |  | 
 | 586 | 	sample.jiffies = jiffies; | 
 | 587 | 	sample.cycles = get_cycles(); | 
 | 588 | 	sample.num = num; | 
 | 589 | 	add_entropy_words(&input_pool, (u32 *)&sample, sizeof(sample)/4); | 
 | 590 |  | 
 | 591 | 	/* | 
 | 592 | 	 * Calculate number of bits of randomness we probably added. | 
 | 593 | 	 * We take into account the first, second and third-order deltas | 
 | 594 | 	 * in order to make our estimate. | 
 | 595 | 	 */ | 
 | 596 |  | 
 | 597 | 	if (!state->dont_count_entropy) { | 
 | 598 | 		delta = sample.jiffies - state->last_time; | 
 | 599 | 		state->last_time = sample.jiffies; | 
 | 600 |  | 
 | 601 | 		delta2 = delta - state->last_delta; | 
 | 602 | 		state->last_delta = delta; | 
 | 603 |  | 
 | 604 | 		delta3 = delta2 - state->last_delta2; | 
 | 605 | 		state->last_delta2 = delta2; | 
 | 606 |  | 
 | 607 | 		if (delta < 0) | 
 | 608 | 			delta = -delta; | 
 | 609 | 		if (delta2 < 0) | 
 | 610 | 			delta2 = -delta2; | 
 | 611 | 		if (delta3 < 0) | 
 | 612 | 			delta3 = -delta3; | 
 | 613 | 		if (delta > delta2) | 
 | 614 | 			delta = delta2; | 
 | 615 | 		if (delta > delta3) | 
 | 616 | 			delta = delta3; | 
 | 617 |  | 
 | 618 | 		/* | 
 | 619 | 		 * delta is now minimum absolute delta. | 
 | 620 | 		 * Round down by 1 bit on general principles, | 
 | 621 | 		 * and limit entropy entimate to 12 bits. | 
 | 622 | 		 */ | 
 | 623 | 		credit_entropy_store(&input_pool, | 
 | 624 | 				     min_t(int, fls(delta>>1), 11)); | 
 | 625 | 	} | 
 | 626 |  | 
 | 627 | 	if(input_pool.entropy_count >= random_read_wakeup_thresh) | 
 | 628 | 		wake_up_interruptible(&random_read_wait); | 
 | 629 |  | 
 | 630 | out: | 
 | 631 | 	preempt_enable(); | 
 | 632 | } | 
 | 633 |  | 
| Stephen Hemminger | d251575 | 2006-01-11 12:17:38 -0800 | [diff] [blame] | 634 | void add_input_randomness(unsigned int type, unsigned int code, | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 635 | 				 unsigned int value) | 
 | 636 | { | 
 | 637 | 	static unsigned char last_value; | 
 | 638 |  | 
 | 639 | 	/* ignore autorepeat and the like */ | 
 | 640 | 	if (value == last_value) | 
 | 641 | 		return; | 
 | 642 |  | 
 | 643 | 	DEBUG_ENT("input event\n"); | 
 | 644 | 	last_value = value; | 
 | 645 | 	add_timer_randomness(&input_timer_state, | 
 | 646 | 			     (type << 4) ^ code ^ (code >> 4) ^ value); | 
 | 647 | } | 
 | 648 |  | 
 | 649 | void add_interrupt_randomness(int irq) | 
 | 650 | { | 
 | 651 | 	if (irq >= NR_IRQS || irq_timer_state[irq] == 0) | 
 | 652 | 		return; | 
 | 653 |  | 
 | 654 | 	DEBUG_ENT("irq event %d\n", irq); | 
 | 655 | 	add_timer_randomness(irq_timer_state[irq], 0x100 + irq); | 
 | 656 | } | 
 | 657 |  | 
 | 658 | void add_disk_randomness(struct gendisk *disk) | 
 | 659 | { | 
 | 660 | 	if (!disk || !disk->random) | 
 | 661 | 		return; | 
 | 662 | 	/* first major is 1, so we get >= 0x200 here */ | 
 | 663 | 	DEBUG_ENT("disk event %d:%d\n", disk->major, disk->first_minor); | 
 | 664 |  | 
 | 665 | 	add_timer_randomness(disk->random, | 
 | 666 | 			     0x100 + MKDEV(disk->major, disk->first_minor)); | 
 | 667 | } | 
 | 668 |  | 
 | 669 | EXPORT_SYMBOL(add_disk_randomness); | 
 | 670 |  | 
 | 671 | #define EXTRACT_SIZE 10 | 
 | 672 |  | 
 | 673 | /********************************************************************* | 
 | 674 |  * | 
 | 675 |  * Entropy extraction routines | 
 | 676 |  * | 
 | 677 |  *********************************************************************/ | 
 | 678 |  | 
 | 679 | static ssize_t extract_entropy(struct entropy_store *r, void * buf, | 
 | 680 | 			       size_t nbytes, int min, int rsvd); | 
 | 681 |  | 
 | 682 | /* | 
 | 683 |  * This utility inline function is responsible for transfering entropy | 
 | 684 |  * from the primary pool to the secondary extraction pool. We make | 
 | 685 |  * sure we pull enough for a 'catastrophic reseed'. | 
 | 686 |  */ | 
 | 687 | static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes) | 
 | 688 | { | 
 | 689 | 	__u32 tmp[OUTPUT_POOL_WORDS]; | 
 | 690 |  | 
 | 691 | 	if (r->pull && r->entropy_count < nbytes * 8 && | 
 | 692 | 	    r->entropy_count < r->poolinfo->POOLBITS) { | 
 | 693 | 		int bytes = max_t(int, random_read_wakeup_thresh / 8, | 
 | 694 | 				min_t(int, nbytes, sizeof(tmp))); | 
 | 695 | 		int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4; | 
 | 696 |  | 
 | 697 | 		DEBUG_ENT("going to reseed %s with %d bits " | 
 | 698 | 			  "(%d of %d requested)\n", | 
 | 699 | 			  r->name, bytes * 8, nbytes * 8, r->entropy_count); | 
 | 700 |  | 
 | 701 | 		bytes=extract_entropy(r->pull, tmp, bytes, | 
 | 702 | 				      random_read_wakeup_thresh / 8, rsvd); | 
 | 703 | 		add_entropy_words(r, tmp, (bytes + 3) / 4); | 
 | 704 | 		credit_entropy_store(r, bytes*8); | 
 | 705 | 	} | 
 | 706 | } | 
 | 707 |  | 
 | 708 | /* | 
 | 709 |  * These functions extracts randomness from the "entropy pool", and | 
 | 710 |  * returns it in a buffer. | 
 | 711 |  * | 
 | 712 |  * The min parameter specifies the minimum amount we can pull before | 
 | 713 |  * failing to avoid races that defeat catastrophic reseeding while the | 
 | 714 |  * reserved parameter indicates how much entropy we must leave in the | 
 | 715 |  * pool after each pull to avoid starving other readers. | 
 | 716 |  * | 
 | 717 |  * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words. | 
 | 718 |  */ | 
 | 719 |  | 
 | 720 | static size_t account(struct entropy_store *r, size_t nbytes, int min, | 
 | 721 | 		      int reserved) | 
 | 722 | { | 
 | 723 | 	unsigned long flags; | 
 | 724 |  | 
 | 725 | 	BUG_ON(r->entropy_count > r->poolinfo->POOLBITS); | 
 | 726 |  | 
 | 727 | 	/* Hold lock while accounting */ | 
 | 728 | 	spin_lock_irqsave(&r->lock, flags); | 
 | 729 |  | 
 | 730 | 	DEBUG_ENT("trying to extract %d bits from %s\n", | 
 | 731 | 		  nbytes * 8, r->name); | 
 | 732 |  | 
 | 733 | 	/* Can we pull enough? */ | 
 | 734 | 	if (r->entropy_count / 8 < min + reserved) { | 
 | 735 | 		nbytes = 0; | 
 | 736 | 	} else { | 
 | 737 | 		/* If limited, never pull more than available */ | 
 | 738 | 		if (r->limit && nbytes + reserved >= r->entropy_count / 8) | 
 | 739 | 			nbytes = r->entropy_count/8 - reserved; | 
 | 740 |  | 
 | 741 | 		if(r->entropy_count / 8 >= nbytes + reserved) | 
 | 742 | 			r->entropy_count -= nbytes*8; | 
 | 743 | 		else | 
 | 744 | 			r->entropy_count = reserved; | 
 | 745 |  | 
 | 746 | 		if (r->entropy_count < random_write_wakeup_thresh) | 
 | 747 | 			wake_up_interruptible(&random_write_wait); | 
 | 748 | 	} | 
 | 749 |  | 
 | 750 | 	DEBUG_ENT("debiting %d entropy credits from %s%s\n", | 
 | 751 | 		  nbytes * 8, r->name, r->limit ? "" : " (unlimited)"); | 
 | 752 |  | 
 | 753 | 	spin_unlock_irqrestore(&r->lock, flags); | 
 | 754 |  | 
 | 755 | 	return nbytes; | 
 | 756 | } | 
 | 757 |  | 
 | 758 | static void extract_buf(struct entropy_store *r, __u8 *out) | 
 | 759 | { | 
 | 760 | 	int i, x; | 
 | 761 | 	__u32 data[16], buf[5 + SHA_WORKSPACE_WORDS]; | 
 | 762 |  | 
 | 763 | 	sha_init(buf); | 
 | 764 | 	/* | 
 | 765 | 	 * As we hash the pool, we mix intermediate values of | 
 | 766 | 	 * the hash back into the pool.  This eliminates | 
 | 767 | 	 * backtracking attacks (where the attacker knows | 
 | 768 | 	 * the state of the pool plus the current outputs, and | 
 | 769 | 	 * attempts to find previous ouputs), unless the hash | 
 | 770 | 	 * function can be inverted. | 
 | 771 | 	 */ | 
 | 772 | 	for (i = 0, x = 0; i < r->poolinfo->poolwords; i += 16, x+=2) { | 
 | 773 | 		sha_transform(buf, (__u8 *)r->pool+i, buf + 5); | 
 | 774 | 		add_entropy_words(r, &buf[x % 5], 1); | 
 | 775 | 	} | 
 | 776 |  | 
 | 777 | 	/* | 
 | 778 | 	 * To avoid duplicates, we atomically extract a | 
 | 779 | 	 * portion of the pool while mixing, and hash one | 
 | 780 | 	 * final time. | 
 | 781 | 	 */ | 
 | 782 | 	__add_entropy_words(r, &buf[x % 5], 1, data); | 
 | 783 | 	sha_transform(buf, (__u8 *)data, buf + 5); | 
 | 784 |  | 
 | 785 | 	/* | 
 | 786 | 	 * In case the hash function has some recognizable | 
 | 787 | 	 * output pattern, we fold it in half. | 
 | 788 | 	 */ | 
 | 789 |  | 
 | 790 | 	buf[0] ^= buf[3]; | 
 | 791 | 	buf[1] ^= buf[4]; | 
 | 792 | 	buf[0] ^= rol32(buf[3], 16); | 
 | 793 | 	memcpy(out, buf, EXTRACT_SIZE); | 
 | 794 | 	memset(buf, 0, sizeof(buf)); | 
 | 795 | } | 
 | 796 |  | 
 | 797 | static ssize_t extract_entropy(struct entropy_store *r, void * buf, | 
 | 798 | 			       size_t nbytes, int min, int reserved) | 
 | 799 | { | 
 | 800 | 	ssize_t ret = 0, i; | 
 | 801 | 	__u8 tmp[EXTRACT_SIZE]; | 
 | 802 |  | 
 | 803 | 	xfer_secondary_pool(r, nbytes); | 
 | 804 | 	nbytes = account(r, nbytes, min, reserved); | 
 | 805 |  | 
 | 806 | 	while (nbytes) { | 
 | 807 | 		extract_buf(r, tmp); | 
 | 808 | 		i = min_t(int, nbytes, EXTRACT_SIZE); | 
 | 809 | 		memcpy(buf, tmp, i); | 
 | 810 | 		nbytes -= i; | 
 | 811 | 		buf += i; | 
 | 812 | 		ret += i; | 
 | 813 | 	} | 
 | 814 |  | 
 | 815 | 	/* Wipe data just returned from memory */ | 
 | 816 | 	memset(tmp, 0, sizeof(tmp)); | 
 | 817 |  | 
 | 818 | 	return ret; | 
 | 819 | } | 
 | 820 |  | 
 | 821 | static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf, | 
 | 822 | 				    size_t nbytes) | 
 | 823 | { | 
 | 824 | 	ssize_t ret = 0, i; | 
 | 825 | 	__u8 tmp[EXTRACT_SIZE]; | 
 | 826 |  | 
 | 827 | 	xfer_secondary_pool(r, nbytes); | 
 | 828 | 	nbytes = account(r, nbytes, 0, 0); | 
 | 829 |  | 
 | 830 | 	while (nbytes) { | 
 | 831 | 		if (need_resched()) { | 
 | 832 | 			if (signal_pending(current)) { | 
 | 833 | 				if (ret == 0) | 
 | 834 | 					ret = -ERESTARTSYS; | 
 | 835 | 				break; | 
 | 836 | 			} | 
 | 837 | 			schedule(); | 
 | 838 | 		} | 
 | 839 |  | 
 | 840 | 		extract_buf(r, tmp); | 
 | 841 | 		i = min_t(int, nbytes, EXTRACT_SIZE); | 
 | 842 | 		if (copy_to_user(buf, tmp, i)) { | 
 | 843 | 			ret = -EFAULT; | 
 | 844 | 			break; | 
 | 845 | 		} | 
 | 846 |  | 
 | 847 | 		nbytes -= i; | 
 | 848 | 		buf += i; | 
 | 849 | 		ret += i; | 
 | 850 | 	} | 
 | 851 |  | 
 | 852 | 	/* Wipe data just returned from memory */ | 
 | 853 | 	memset(tmp, 0, sizeof(tmp)); | 
 | 854 |  | 
 | 855 | 	return ret; | 
 | 856 | } | 
 | 857 |  | 
 | 858 | /* | 
 | 859 |  * This function is the exported kernel interface.  It returns some | 
 | 860 |  * number of good random numbers, suitable for seeding TCP sequence | 
 | 861 |  * numbers, etc. | 
 | 862 |  */ | 
 | 863 | void get_random_bytes(void *buf, int nbytes) | 
 | 864 | { | 
 | 865 | 	extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0); | 
 | 866 | } | 
 | 867 |  | 
 | 868 | EXPORT_SYMBOL(get_random_bytes); | 
 | 869 |  | 
 | 870 | /* | 
 | 871 |  * init_std_data - initialize pool with system data | 
 | 872 |  * | 
 | 873 |  * @r: pool to initialize | 
 | 874 |  * | 
 | 875 |  * This function clears the pool's entropy count and mixes some system | 
 | 876 |  * data into the pool to prepare it for use. The pool is not cleared | 
 | 877 |  * as that can only decrease the entropy in the pool. | 
 | 878 |  */ | 
 | 879 | static void init_std_data(struct entropy_store *r) | 
 | 880 | { | 
 | 881 | 	struct timeval tv; | 
 | 882 | 	unsigned long flags; | 
 | 883 |  | 
 | 884 | 	spin_lock_irqsave(&r->lock, flags); | 
 | 885 | 	r->entropy_count = 0; | 
 | 886 | 	spin_unlock_irqrestore(&r->lock, flags); | 
 | 887 |  | 
 | 888 | 	do_gettimeofday(&tv); | 
 | 889 | 	add_entropy_words(r, (__u32 *)&tv, sizeof(tv)/4); | 
 | 890 | 	add_entropy_words(r, (__u32 *)&system_utsname, | 
 | 891 | 			  sizeof(system_utsname)/4); | 
 | 892 | } | 
 | 893 |  | 
 | 894 | static int __init rand_initialize(void) | 
 | 895 | { | 
 | 896 | 	init_std_data(&input_pool); | 
 | 897 | 	init_std_data(&blocking_pool); | 
 | 898 | 	init_std_data(&nonblocking_pool); | 
 | 899 | 	return 0; | 
 | 900 | } | 
 | 901 | module_init(rand_initialize); | 
 | 902 |  | 
 | 903 | void rand_initialize_irq(int irq) | 
 | 904 | { | 
 | 905 | 	struct timer_rand_state *state; | 
 | 906 |  | 
 | 907 | 	if (irq >= NR_IRQS || irq_timer_state[irq]) | 
 | 908 | 		return; | 
 | 909 |  | 
 | 910 | 	/* | 
 | 911 | 	 * If kmalloc returns null, we just won't use that entropy | 
 | 912 | 	 * source. | 
 | 913 | 	 */ | 
 | 914 | 	state = kmalloc(sizeof(struct timer_rand_state), GFP_KERNEL); | 
 | 915 | 	if (state) { | 
 | 916 | 		memset(state, 0, sizeof(struct timer_rand_state)); | 
 | 917 | 		irq_timer_state[irq] = state; | 
 | 918 | 	} | 
 | 919 | } | 
 | 920 |  | 
 | 921 | void rand_initialize_disk(struct gendisk *disk) | 
 | 922 | { | 
 | 923 | 	struct timer_rand_state *state; | 
 | 924 |  | 
 | 925 | 	/* | 
 | 926 | 	 * If kmalloc returns null, we just won't use that entropy | 
 | 927 | 	 * source. | 
 | 928 | 	 */ | 
 | 929 | 	state = kmalloc(sizeof(struct timer_rand_state), GFP_KERNEL); | 
 | 930 | 	if (state) { | 
 | 931 | 		memset(state, 0, sizeof(struct timer_rand_state)); | 
 | 932 | 		disk->random = state; | 
 | 933 | 	} | 
 | 934 | } | 
 | 935 |  | 
 | 936 | static ssize_t | 
 | 937 | random_read(struct file * file, char __user * buf, size_t nbytes, loff_t *ppos) | 
 | 938 | { | 
 | 939 | 	ssize_t n, retval = 0, count = 0; | 
 | 940 |  | 
 | 941 | 	if (nbytes == 0) | 
 | 942 | 		return 0; | 
 | 943 |  | 
 | 944 | 	while (nbytes > 0) { | 
 | 945 | 		n = nbytes; | 
 | 946 | 		if (n > SEC_XFER_SIZE) | 
 | 947 | 			n = SEC_XFER_SIZE; | 
 | 948 |  | 
 | 949 | 		DEBUG_ENT("reading %d bits\n", n*8); | 
 | 950 |  | 
 | 951 | 		n = extract_entropy_user(&blocking_pool, buf, n); | 
 | 952 |  | 
 | 953 | 		DEBUG_ENT("read got %d bits (%d still needed)\n", | 
 | 954 | 			  n*8, (nbytes-n)*8); | 
 | 955 |  | 
 | 956 | 		if (n == 0) { | 
 | 957 | 			if (file->f_flags & O_NONBLOCK) { | 
 | 958 | 				retval = -EAGAIN; | 
 | 959 | 				break; | 
 | 960 | 			} | 
 | 961 |  | 
 | 962 | 			DEBUG_ENT("sleeping?\n"); | 
 | 963 |  | 
 | 964 | 			wait_event_interruptible(random_read_wait, | 
 | 965 | 				input_pool.entropy_count >= | 
 | 966 | 						 random_read_wakeup_thresh); | 
 | 967 |  | 
 | 968 | 			DEBUG_ENT("awake\n"); | 
 | 969 |  | 
 | 970 | 			if (signal_pending(current)) { | 
 | 971 | 				retval = -ERESTARTSYS; | 
 | 972 | 				break; | 
 | 973 | 			} | 
 | 974 |  | 
 | 975 | 			continue; | 
 | 976 | 		} | 
 | 977 |  | 
 | 978 | 		if (n < 0) { | 
 | 979 | 			retval = n; | 
 | 980 | 			break; | 
 | 981 | 		} | 
 | 982 | 		count += n; | 
 | 983 | 		buf += n; | 
 | 984 | 		nbytes -= n; | 
 | 985 | 		break;		/* This break makes the device work */ | 
 | 986 | 				/* like a named pipe */ | 
 | 987 | 	} | 
 | 988 |  | 
 | 989 | 	/* | 
 | 990 | 	 * If we gave the user some bytes, update the access time. | 
 | 991 | 	 */ | 
 | 992 | 	if (count) | 
 | 993 | 		file_accessed(file); | 
 | 994 |  | 
 | 995 | 	return (count ? count : retval); | 
 | 996 | } | 
 | 997 |  | 
 | 998 | static ssize_t | 
 | 999 | urandom_read(struct file * file, char __user * buf, | 
 | 1000 | 		      size_t nbytes, loff_t *ppos) | 
 | 1001 | { | 
 | 1002 | 	return extract_entropy_user(&nonblocking_pool, buf, nbytes); | 
 | 1003 | } | 
 | 1004 |  | 
 | 1005 | static unsigned int | 
 | 1006 | random_poll(struct file *file, poll_table * wait) | 
 | 1007 | { | 
 | 1008 | 	unsigned int mask; | 
 | 1009 |  | 
 | 1010 | 	poll_wait(file, &random_read_wait, wait); | 
 | 1011 | 	poll_wait(file, &random_write_wait, wait); | 
 | 1012 | 	mask = 0; | 
 | 1013 | 	if (input_pool.entropy_count >= random_read_wakeup_thresh) | 
 | 1014 | 		mask |= POLLIN | POLLRDNORM; | 
 | 1015 | 	if (input_pool.entropy_count < random_write_wakeup_thresh) | 
 | 1016 | 		mask |= POLLOUT | POLLWRNORM; | 
 | 1017 | 	return mask; | 
 | 1018 | } | 
 | 1019 |  | 
 | 1020 | static ssize_t | 
 | 1021 | random_write(struct file * file, const char __user * buffer, | 
 | 1022 | 	     size_t count, loff_t *ppos) | 
 | 1023 | { | 
 | 1024 | 	int ret = 0; | 
 | 1025 | 	size_t bytes; | 
 | 1026 | 	__u32 buf[16]; | 
 | 1027 | 	const char __user *p = buffer; | 
 | 1028 | 	size_t c = count; | 
 | 1029 |  | 
 | 1030 | 	while (c > 0) { | 
 | 1031 | 		bytes = min(c, sizeof(buf)); | 
 | 1032 |  | 
 | 1033 | 		bytes -= copy_from_user(&buf, p, bytes); | 
 | 1034 | 		if (!bytes) { | 
 | 1035 | 			ret = -EFAULT; | 
 | 1036 | 			break; | 
 | 1037 | 		} | 
 | 1038 | 		c -= bytes; | 
 | 1039 | 		p += bytes; | 
 | 1040 |  | 
 | 1041 | 		add_entropy_words(&input_pool, buf, (bytes + 3) / 4); | 
 | 1042 | 	} | 
 | 1043 | 	if (p == buffer) { | 
 | 1044 | 		return (ssize_t)ret; | 
 | 1045 | 	} else { | 
 | 1046 | 		struct inode *inode = file->f_dentry->d_inode; | 
 | 1047 | 	        inode->i_mtime = current_fs_time(inode->i_sb); | 
 | 1048 | 		mark_inode_dirty(inode); | 
 | 1049 | 		return (ssize_t)(p - buffer); | 
 | 1050 | 	} | 
 | 1051 | } | 
 | 1052 |  | 
 | 1053 | static int | 
 | 1054 | random_ioctl(struct inode * inode, struct file * file, | 
 | 1055 | 	     unsigned int cmd, unsigned long arg) | 
 | 1056 | { | 
 | 1057 | 	int size, ent_count; | 
 | 1058 | 	int __user *p = (int __user *)arg; | 
 | 1059 | 	int retval; | 
 | 1060 |  | 
 | 1061 | 	switch (cmd) { | 
 | 1062 | 	case RNDGETENTCNT: | 
 | 1063 | 		ent_count = input_pool.entropy_count; | 
 | 1064 | 		if (put_user(ent_count, p)) | 
 | 1065 | 			return -EFAULT; | 
 | 1066 | 		return 0; | 
 | 1067 | 	case RNDADDTOENTCNT: | 
 | 1068 | 		if (!capable(CAP_SYS_ADMIN)) | 
 | 1069 | 			return -EPERM; | 
 | 1070 | 		if (get_user(ent_count, p)) | 
 | 1071 | 			return -EFAULT; | 
 | 1072 | 		credit_entropy_store(&input_pool, ent_count); | 
 | 1073 | 		/* | 
 | 1074 | 		 * Wake up waiting processes if we have enough | 
 | 1075 | 		 * entropy. | 
 | 1076 | 		 */ | 
 | 1077 | 		if (input_pool.entropy_count >= random_read_wakeup_thresh) | 
 | 1078 | 			wake_up_interruptible(&random_read_wait); | 
 | 1079 | 		return 0; | 
 | 1080 | 	case RNDADDENTROPY: | 
 | 1081 | 		if (!capable(CAP_SYS_ADMIN)) | 
 | 1082 | 			return -EPERM; | 
 | 1083 | 		if (get_user(ent_count, p++)) | 
 | 1084 | 			return -EFAULT; | 
 | 1085 | 		if (ent_count < 0) | 
 | 1086 | 			return -EINVAL; | 
 | 1087 | 		if (get_user(size, p++)) | 
 | 1088 | 			return -EFAULT; | 
 | 1089 | 		retval = random_write(file, (const char __user *) p, | 
 | 1090 | 				      size, &file->f_pos); | 
 | 1091 | 		if (retval < 0) | 
 | 1092 | 			return retval; | 
 | 1093 | 		credit_entropy_store(&input_pool, ent_count); | 
 | 1094 | 		/* | 
 | 1095 | 		 * Wake up waiting processes if we have enough | 
 | 1096 | 		 * entropy. | 
 | 1097 | 		 */ | 
 | 1098 | 		if (input_pool.entropy_count >= random_read_wakeup_thresh) | 
 | 1099 | 			wake_up_interruptible(&random_read_wait); | 
 | 1100 | 		return 0; | 
 | 1101 | 	case RNDZAPENTCNT: | 
 | 1102 | 	case RNDCLEARPOOL: | 
 | 1103 | 		/* Clear the entropy pool counters. */ | 
 | 1104 | 		if (!capable(CAP_SYS_ADMIN)) | 
 | 1105 | 			return -EPERM; | 
 | 1106 | 		init_std_data(&input_pool); | 
 | 1107 | 		init_std_data(&blocking_pool); | 
 | 1108 | 		init_std_data(&nonblocking_pool); | 
 | 1109 | 		return 0; | 
 | 1110 | 	default: | 
 | 1111 | 		return -EINVAL; | 
 | 1112 | 	} | 
 | 1113 | } | 
 | 1114 |  | 
 | 1115 | struct file_operations random_fops = { | 
 | 1116 | 	.read  = random_read, | 
 | 1117 | 	.write = random_write, | 
 | 1118 | 	.poll  = random_poll, | 
 | 1119 | 	.ioctl = random_ioctl, | 
 | 1120 | }; | 
 | 1121 |  | 
 | 1122 | struct file_operations urandom_fops = { | 
 | 1123 | 	.read  = urandom_read, | 
 | 1124 | 	.write = random_write, | 
 | 1125 | 	.ioctl = random_ioctl, | 
 | 1126 | }; | 
 | 1127 |  | 
 | 1128 | /*************************************************************** | 
 | 1129 |  * Random UUID interface | 
 | 1130 |  * | 
 | 1131 |  * Used here for a Boot ID, but can be useful for other kernel | 
 | 1132 |  * drivers. | 
 | 1133 |  ***************************************************************/ | 
 | 1134 |  | 
 | 1135 | /* | 
 | 1136 |  * Generate random UUID | 
 | 1137 |  */ | 
 | 1138 | void generate_random_uuid(unsigned char uuid_out[16]) | 
 | 1139 | { | 
 | 1140 | 	get_random_bytes(uuid_out, 16); | 
 | 1141 | 	/* Set UUID version to 4 --- truely random generation */ | 
 | 1142 | 	uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40; | 
 | 1143 | 	/* Set the UUID variant to DCE */ | 
 | 1144 | 	uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80; | 
 | 1145 | } | 
 | 1146 |  | 
 | 1147 | EXPORT_SYMBOL(generate_random_uuid); | 
 | 1148 |  | 
 | 1149 | /******************************************************************** | 
 | 1150 |  * | 
 | 1151 |  * Sysctl interface | 
 | 1152 |  * | 
 | 1153 |  ********************************************************************/ | 
 | 1154 |  | 
 | 1155 | #ifdef CONFIG_SYSCTL | 
 | 1156 |  | 
 | 1157 | #include <linux/sysctl.h> | 
 | 1158 |  | 
 | 1159 | static int min_read_thresh = 8, min_write_thresh; | 
 | 1160 | static int max_read_thresh = INPUT_POOL_WORDS * 32; | 
 | 1161 | static int max_write_thresh = INPUT_POOL_WORDS * 32; | 
 | 1162 | static char sysctl_bootid[16]; | 
 | 1163 |  | 
 | 1164 | /* | 
 | 1165 |  * These functions is used to return both the bootid UUID, and random | 
 | 1166 |  * UUID.  The difference is in whether table->data is NULL; if it is, | 
 | 1167 |  * then a new UUID is generated and returned to the user. | 
 | 1168 |  * | 
 | 1169 |  * If the user accesses this via the proc interface, it will be returned | 
 | 1170 |  * as an ASCII string in the standard UUID format.  If accesses via the | 
 | 1171 |  * sysctl system call, it is returned as 16 bytes of binary data. | 
 | 1172 |  */ | 
 | 1173 | static int proc_do_uuid(ctl_table *table, int write, struct file *filp, | 
 | 1174 | 			void __user *buffer, size_t *lenp, loff_t *ppos) | 
 | 1175 | { | 
 | 1176 | 	ctl_table fake_table; | 
 | 1177 | 	unsigned char buf[64], tmp_uuid[16], *uuid; | 
 | 1178 |  | 
 | 1179 | 	uuid = table->data; | 
 | 1180 | 	if (!uuid) { | 
 | 1181 | 		uuid = tmp_uuid; | 
 | 1182 | 		uuid[8] = 0; | 
 | 1183 | 	} | 
 | 1184 | 	if (uuid[8] == 0) | 
 | 1185 | 		generate_random_uuid(uuid); | 
 | 1186 |  | 
 | 1187 | 	sprintf(buf, "%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-" | 
 | 1188 | 		"%02x%02x%02x%02x%02x%02x", | 
 | 1189 | 		uuid[0],  uuid[1],  uuid[2],  uuid[3], | 
 | 1190 | 		uuid[4],  uuid[5],  uuid[6],  uuid[7], | 
 | 1191 | 		uuid[8],  uuid[9],  uuid[10], uuid[11], | 
 | 1192 | 		uuid[12], uuid[13], uuid[14], uuid[15]); | 
 | 1193 | 	fake_table.data = buf; | 
 | 1194 | 	fake_table.maxlen = sizeof(buf); | 
 | 1195 |  | 
 | 1196 | 	return proc_dostring(&fake_table, write, filp, buffer, lenp, ppos); | 
 | 1197 | } | 
 | 1198 |  | 
 | 1199 | static int uuid_strategy(ctl_table *table, int __user *name, int nlen, | 
 | 1200 | 			 void __user *oldval, size_t __user *oldlenp, | 
 | 1201 | 			 void __user *newval, size_t newlen, void **context) | 
 | 1202 | { | 
 | 1203 | 	unsigned char tmp_uuid[16], *uuid; | 
 | 1204 | 	unsigned int len; | 
 | 1205 |  | 
 | 1206 | 	if (!oldval || !oldlenp) | 
 | 1207 | 		return 1; | 
 | 1208 |  | 
 | 1209 | 	uuid = table->data; | 
 | 1210 | 	if (!uuid) { | 
 | 1211 | 		uuid = tmp_uuid; | 
 | 1212 | 		uuid[8] = 0; | 
 | 1213 | 	} | 
 | 1214 | 	if (uuid[8] == 0) | 
 | 1215 | 		generate_random_uuid(uuid); | 
 | 1216 |  | 
 | 1217 | 	if (get_user(len, oldlenp)) | 
 | 1218 | 		return -EFAULT; | 
 | 1219 | 	if (len) { | 
 | 1220 | 		if (len > 16) | 
 | 1221 | 			len = 16; | 
 | 1222 | 		if (copy_to_user(oldval, uuid, len) || | 
 | 1223 | 		    put_user(len, oldlenp)) | 
 | 1224 | 			return -EFAULT; | 
 | 1225 | 	} | 
 | 1226 | 	return 1; | 
 | 1227 | } | 
 | 1228 |  | 
 | 1229 | static int sysctl_poolsize = INPUT_POOL_WORDS * 32; | 
 | 1230 | ctl_table random_table[] = { | 
 | 1231 | 	{ | 
 | 1232 | 		.ctl_name 	= RANDOM_POOLSIZE, | 
 | 1233 | 		.procname	= "poolsize", | 
 | 1234 | 		.data		= &sysctl_poolsize, | 
 | 1235 | 		.maxlen		= sizeof(int), | 
 | 1236 | 		.mode		= 0444, | 
 | 1237 | 		.proc_handler	= &proc_dointvec, | 
 | 1238 | 	}, | 
 | 1239 | 	{ | 
 | 1240 | 		.ctl_name	= RANDOM_ENTROPY_COUNT, | 
 | 1241 | 		.procname	= "entropy_avail", | 
 | 1242 | 		.maxlen		= sizeof(int), | 
 | 1243 | 		.mode		= 0444, | 
 | 1244 | 		.proc_handler	= &proc_dointvec, | 
 | 1245 | 		.data		= &input_pool.entropy_count, | 
 | 1246 | 	}, | 
 | 1247 | 	{ | 
 | 1248 | 		.ctl_name	= RANDOM_READ_THRESH, | 
 | 1249 | 		.procname	= "read_wakeup_threshold", | 
 | 1250 | 		.data		= &random_read_wakeup_thresh, | 
 | 1251 | 		.maxlen		= sizeof(int), | 
 | 1252 | 		.mode		= 0644, | 
 | 1253 | 		.proc_handler	= &proc_dointvec_minmax, | 
 | 1254 | 		.strategy	= &sysctl_intvec, | 
 | 1255 | 		.extra1		= &min_read_thresh, | 
 | 1256 | 		.extra2		= &max_read_thresh, | 
 | 1257 | 	}, | 
 | 1258 | 	{ | 
 | 1259 | 		.ctl_name	= RANDOM_WRITE_THRESH, | 
 | 1260 | 		.procname	= "write_wakeup_threshold", | 
 | 1261 | 		.data		= &random_write_wakeup_thresh, | 
 | 1262 | 		.maxlen		= sizeof(int), | 
 | 1263 | 		.mode		= 0644, | 
 | 1264 | 		.proc_handler	= &proc_dointvec_minmax, | 
 | 1265 | 		.strategy	= &sysctl_intvec, | 
 | 1266 | 		.extra1		= &min_write_thresh, | 
 | 1267 | 		.extra2		= &max_write_thresh, | 
 | 1268 | 	}, | 
 | 1269 | 	{ | 
 | 1270 | 		.ctl_name	= RANDOM_BOOT_ID, | 
 | 1271 | 		.procname	= "boot_id", | 
 | 1272 | 		.data		= &sysctl_bootid, | 
 | 1273 | 		.maxlen		= 16, | 
 | 1274 | 		.mode		= 0444, | 
 | 1275 | 		.proc_handler	= &proc_do_uuid, | 
 | 1276 | 		.strategy	= &uuid_strategy, | 
 | 1277 | 	}, | 
 | 1278 | 	{ | 
 | 1279 | 		.ctl_name	= RANDOM_UUID, | 
 | 1280 | 		.procname	= "uuid", | 
 | 1281 | 		.maxlen		= 16, | 
 | 1282 | 		.mode		= 0444, | 
 | 1283 | 		.proc_handler	= &proc_do_uuid, | 
 | 1284 | 		.strategy	= &uuid_strategy, | 
 | 1285 | 	}, | 
 | 1286 | 	{ .ctl_name = 0 } | 
 | 1287 | }; | 
 | 1288 | #endif 	/* CONFIG_SYSCTL */ | 
 | 1289 |  | 
 | 1290 | /******************************************************************** | 
 | 1291 |  * | 
 | 1292 |  * Random funtions for networking | 
 | 1293 |  * | 
 | 1294 |  ********************************************************************/ | 
 | 1295 |  | 
 | 1296 | /* | 
 | 1297 |  * TCP initial sequence number picking.  This uses the random number | 
 | 1298 |  * generator to pick an initial secret value.  This value is hashed | 
 | 1299 |  * along with the TCP endpoint information to provide a unique | 
 | 1300 |  * starting point for each pair of TCP endpoints.  This defeats | 
 | 1301 |  * attacks which rely on guessing the initial TCP sequence number. | 
 | 1302 |  * This algorithm was suggested by Steve Bellovin. | 
 | 1303 |  * | 
 | 1304 |  * Using a very strong hash was taking an appreciable amount of the total | 
 | 1305 |  * TCP connection establishment time, so this is a weaker hash, | 
 | 1306 |  * compensated for by changing the secret periodically. | 
 | 1307 |  */ | 
 | 1308 |  | 
 | 1309 | /* F, G and H are basic MD4 functions: selection, majority, parity */ | 
 | 1310 | #define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z)))) | 
 | 1311 | #define G(x, y, z) (((x) & (y)) + (((x) ^ (y)) & (z))) | 
 | 1312 | #define H(x, y, z) ((x) ^ (y) ^ (z)) | 
 | 1313 |  | 
 | 1314 | /* | 
 | 1315 |  * The generic round function.  The application is so specific that | 
 | 1316 |  * we don't bother protecting all the arguments with parens, as is generally | 
 | 1317 |  * good macro practice, in favor of extra legibility. | 
 | 1318 |  * Rotation is separate from addition to prevent recomputation | 
 | 1319 |  */ | 
 | 1320 | #define ROUND(f, a, b, c, d, x, s)	\ | 
 | 1321 | 	(a += f(b, c, d) + x, a = (a << s) | (a >> (32 - s))) | 
 | 1322 | #define K1 0 | 
 | 1323 | #define K2 013240474631UL | 
 | 1324 | #define K3 015666365641UL | 
 | 1325 |  | 
 | 1326 | #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) | 
 | 1327 |  | 
 | 1328 | static __u32 twothirdsMD4Transform (__u32 const buf[4], __u32 const in[12]) | 
 | 1329 | { | 
 | 1330 | 	__u32 a = buf[0], b = buf[1], c = buf[2], d = buf[3]; | 
 | 1331 |  | 
 | 1332 | 	/* Round 1 */ | 
 | 1333 | 	ROUND(F, a, b, c, d, in[ 0] + K1,  3); | 
 | 1334 | 	ROUND(F, d, a, b, c, in[ 1] + K1,  7); | 
 | 1335 | 	ROUND(F, c, d, a, b, in[ 2] + K1, 11); | 
 | 1336 | 	ROUND(F, b, c, d, a, in[ 3] + K1, 19); | 
 | 1337 | 	ROUND(F, a, b, c, d, in[ 4] + K1,  3); | 
 | 1338 | 	ROUND(F, d, a, b, c, in[ 5] + K1,  7); | 
 | 1339 | 	ROUND(F, c, d, a, b, in[ 6] + K1, 11); | 
 | 1340 | 	ROUND(F, b, c, d, a, in[ 7] + K1, 19); | 
 | 1341 | 	ROUND(F, a, b, c, d, in[ 8] + K1,  3); | 
 | 1342 | 	ROUND(F, d, a, b, c, in[ 9] + K1,  7); | 
 | 1343 | 	ROUND(F, c, d, a, b, in[10] + K1, 11); | 
 | 1344 | 	ROUND(F, b, c, d, a, in[11] + K1, 19); | 
 | 1345 |  | 
 | 1346 | 	/* Round 2 */ | 
 | 1347 | 	ROUND(G, a, b, c, d, in[ 1] + K2,  3); | 
 | 1348 | 	ROUND(G, d, a, b, c, in[ 3] + K2,  5); | 
 | 1349 | 	ROUND(G, c, d, a, b, in[ 5] + K2,  9); | 
 | 1350 | 	ROUND(G, b, c, d, a, in[ 7] + K2, 13); | 
 | 1351 | 	ROUND(G, a, b, c, d, in[ 9] + K2,  3); | 
 | 1352 | 	ROUND(G, d, a, b, c, in[11] + K2,  5); | 
 | 1353 | 	ROUND(G, c, d, a, b, in[ 0] + K2,  9); | 
 | 1354 | 	ROUND(G, b, c, d, a, in[ 2] + K2, 13); | 
 | 1355 | 	ROUND(G, a, b, c, d, in[ 4] + K2,  3); | 
 | 1356 | 	ROUND(G, d, a, b, c, in[ 6] + K2,  5); | 
 | 1357 | 	ROUND(G, c, d, a, b, in[ 8] + K2,  9); | 
 | 1358 | 	ROUND(G, b, c, d, a, in[10] + K2, 13); | 
 | 1359 |  | 
 | 1360 | 	/* Round 3 */ | 
 | 1361 | 	ROUND(H, a, b, c, d, in[ 3] + K3,  3); | 
 | 1362 | 	ROUND(H, d, a, b, c, in[ 7] + K3,  9); | 
 | 1363 | 	ROUND(H, c, d, a, b, in[11] + K3, 11); | 
 | 1364 | 	ROUND(H, b, c, d, a, in[ 2] + K3, 15); | 
 | 1365 | 	ROUND(H, a, b, c, d, in[ 6] + K3,  3); | 
 | 1366 | 	ROUND(H, d, a, b, c, in[10] + K3,  9); | 
 | 1367 | 	ROUND(H, c, d, a, b, in[ 1] + K3, 11); | 
 | 1368 | 	ROUND(H, b, c, d, a, in[ 5] + K3, 15); | 
 | 1369 | 	ROUND(H, a, b, c, d, in[ 9] + K3,  3); | 
 | 1370 | 	ROUND(H, d, a, b, c, in[ 0] + K3,  9); | 
 | 1371 | 	ROUND(H, c, d, a, b, in[ 4] + K3, 11); | 
 | 1372 | 	ROUND(H, b, c, d, a, in[ 8] + K3, 15); | 
 | 1373 |  | 
 | 1374 | 	return buf[1] + b; /* "most hashed" word */ | 
 | 1375 | 	/* Alternative: return sum of all words? */ | 
 | 1376 | } | 
 | 1377 | #endif | 
 | 1378 |  | 
 | 1379 | #undef ROUND | 
 | 1380 | #undef F | 
 | 1381 | #undef G | 
 | 1382 | #undef H | 
 | 1383 | #undef K1 | 
 | 1384 | #undef K2 | 
 | 1385 | #undef K3 | 
 | 1386 |  | 
 | 1387 | /* This should not be decreased so low that ISNs wrap too fast. */ | 
 | 1388 | #define REKEY_INTERVAL (300 * HZ) | 
 | 1389 | /* | 
 | 1390 |  * Bit layout of the tcp sequence numbers (before adding current time): | 
 | 1391 |  * bit 24-31: increased after every key exchange | 
 | 1392 |  * bit 0-23: hash(source,dest) | 
 | 1393 |  * | 
 | 1394 |  * The implementation is similar to the algorithm described | 
 | 1395 |  * in the Appendix of RFC 1185, except that | 
 | 1396 |  * - it uses a 1 MHz clock instead of a 250 kHz clock | 
 | 1397 |  * - it performs a rekey every 5 minutes, which is equivalent | 
 | 1398 |  * 	to a (source,dest) tulple dependent forward jump of the | 
 | 1399 |  * 	clock by 0..2^(HASH_BITS+1) | 
 | 1400 |  * | 
 | 1401 |  * Thus the average ISN wraparound time is 68 minutes instead of | 
 | 1402 |  * 4.55 hours. | 
 | 1403 |  * | 
 | 1404 |  * SMP cleanup and lock avoidance with poor man's RCU. | 
 | 1405 |  * 			Manfred Spraul <manfred@colorfullife.com> | 
 | 1406 |  * | 
 | 1407 |  */ | 
 | 1408 | #define COUNT_BITS 8 | 
 | 1409 | #define COUNT_MASK ((1 << COUNT_BITS) - 1) | 
 | 1410 | #define HASH_BITS 24 | 
 | 1411 | #define HASH_MASK ((1 << HASH_BITS) - 1) | 
 | 1412 |  | 
 | 1413 | static struct keydata { | 
 | 1414 | 	__u32 count; /* already shifted to the final position */ | 
 | 1415 | 	__u32 secret[12]; | 
 | 1416 | } ____cacheline_aligned ip_keydata[2]; | 
 | 1417 |  | 
 | 1418 | static unsigned int ip_cnt; | 
 | 1419 |  | 
 | 1420 | static void rekey_seq_generator(void *private_); | 
 | 1421 |  | 
 | 1422 | static DECLARE_WORK(rekey_work, rekey_seq_generator, NULL); | 
 | 1423 |  | 
 | 1424 | /* | 
 | 1425 |  * Lock avoidance: | 
 | 1426 |  * The ISN generation runs lockless - it's just a hash over random data. | 
 | 1427 |  * State changes happen every 5 minutes when the random key is replaced. | 
 | 1428 |  * Synchronization is performed by having two copies of the hash function | 
 | 1429 |  * state and rekey_seq_generator always updates the inactive copy. | 
 | 1430 |  * The copy is then activated by updating ip_cnt. | 
 | 1431 |  * The implementation breaks down if someone blocks the thread | 
 | 1432 |  * that processes SYN requests for more than 5 minutes. Should never | 
 | 1433 |  * happen, and even if that happens only a not perfectly compliant | 
 | 1434 |  * ISN is generated, nothing fatal. | 
 | 1435 |  */ | 
 | 1436 | static void rekey_seq_generator(void *private_) | 
 | 1437 | { | 
 | 1438 | 	struct keydata *keyptr = &ip_keydata[1 ^ (ip_cnt & 1)]; | 
 | 1439 |  | 
 | 1440 | 	get_random_bytes(keyptr->secret, sizeof(keyptr->secret)); | 
 | 1441 | 	keyptr->count = (ip_cnt & COUNT_MASK) << HASH_BITS; | 
 | 1442 | 	smp_wmb(); | 
 | 1443 | 	ip_cnt++; | 
 | 1444 | 	schedule_delayed_work(&rekey_work, REKEY_INTERVAL); | 
 | 1445 | } | 
 | 1446 |  | 
 | 1447 | static inline struct keydata *get_keyptr(void) | 
 | 1448 | { | 
 | 1449 | 	struct keydata *keyptr = &ip_keydata[ip_cnt & 1]; | 
 | 1450 |  | 
 | 1451 | 	smp_rmb(); | 
 | 1452 |  | 
 | 1453 | 	return keyptr; | 
 | 1454 | } | 
 | 1455 |  | 
 | 1456 | static __init int seqgen_init(void) | 
 | 1457 | { | 
 | 1458 | 	rekey_seq_generator(NULL); | 
 | 1459 | 	return 0; | 
 | 1460 | } | 
 | 1461 | late_initcall(seqgen_init); | 
 | 1462 |  | 
 | 1463 | #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) | 
 | 1464 | __u32 secure_tcpv6_sequence_number(__u32 *saddr, __u32 *daddr, | 
 | 1465 | 				   __u16 sport, __u16 dport) | 
 | 1466 | { | 
 | 1467 | 	struct timeval tv; | 
 | 1468 | 	__u32 seq; | 
 | 1469 | 	__u32 hash[12]; | 
 | 1470 | 	struct keydata *keyptr = get_keyptr(); | 
 | 1471 |  | 
 | 1472 | 	/* The procedure is the same as for IPv4, but addresses are longer. | 
 | 1473 | 	 * Thus we must use twothirdsMD4Transform. | 
 | 1474 | 	 */ | 
 | 1475 |  | 
 | 1476 | 	memcpy(hash, saddr, 16); | 
 | 1477 | 	hash[4]=(sport << 16) + dport; | 
 | 1478 | 	memcpy(&hash[5],keyptr->secret,sizeof(__u32) * 7); | 
 | 1479 |  | 
 | 1480 | 	seq = twothirdsMD4Transform(daddr, hash) & HASH_MASK; | 
 | 1481 | 	seq += keyptr->count; | 
 | 1482 |  | 
 | 1483 | 	do_gettimeofday(&tv); | 
 | 1484 | 	seq += tv.tv_usec + tv.tv_sec * 1000000; | 
 | 1485 |  | 
 | 1486 | 	return seq; | 
 | 1487 | } | 
 | 1488 | EXPORT_SYMBOL(secure_tcpv6_sequence_number); | 
 | 1489 | #endif | 
 | 1490 |  | 
 | 1491 | /*  The code below is shamelessly stolen from secure_tcp_sequence_number(). | 
 | 1492 |  *  All blames to Andrey V. Savochkin <saw@msu.ru>. | 
 | 1493 |  */ | 
 | 1494 | __u32 secure_ip_id(__u32 daddr) | 
 | 1495 | { | 
 | 1496 | 	struct keydata *keyptr; | 
 | 1497 | 	__u32 hash[4]; | 
 | 1498 |  | 
 | 1499 | 	keyptr = get_keyptr(); | 
 | 1500 |  | 
 | 1501 | 	/* | 
 | 1502 | 	 *  Pick a unique starting offset for each IP destination. | 
 | 1503 | 	 *  The dest ip address is placed in the starting vector, | 
 | 1504 | 	 *  which is then hashed with random data. | 
 | 1505 | 	 */ | 
 | 1506 | 	hash[0] = daddr; | 
 | 1507 | 	hash[1] = keyptr->secret[9]; | 
 | 1508 | 	hash[2] = keyptr->secret[10]; | 
 | 1509 | 	hash[3] = keyptr->secret[11]; | 
 | 1510 |  | 
 | 1511 | 	return half_md4_transform(hash, keyptr->secret); | 
 | 1512 | } | 
 | 1513 |  | 
 | 1514 | #ifdef CONFIG_INET | 
 | 1515 |  | 
 | 1516 | __u32 secure_tcp_sequence_number(__u32 saddr, __u32 daddr, | 
 | 1517 | 				 __u16 sport, __u16 dport) | 
 | 1518 | { | 
 | 1519 | 	struct timeval tv; | 
 | 1520 | 	__u32 seq; | 
 | 1521 | 	__u32 hash[4]; | 
 | 1522 | 	struct keydata *keyptr = get_keyptr(); | 
 | 1523 |  | 
 | 1524 | 	/* | 
 | 1525 | 	 *  Pick a unique starting offset for each TCP connection endpoints | 
 | 1526 | 	 *  (saddr, daddr, sport, dport). | 
 | 1527 | 	 *  Note that the words are placed into the starting vector, which is | 
 | 1528 | 	 *  then mixed with a partial MD4 over random data. | 
 | 1529 | 	 */ | 
 | 1530 | 	hash[0]=saddr; | 
 | 1531 | 	hash[1]=daddr; | 
 | 1532 | 	hash[2]=(sport << 16) + dport; | 
 | 1533 | 	hash[3]=keyptr->secret[11]; | 
 | 1534 |  | 
 | 1535 | 	seq = half_md4_transform(hash, keyptr->secret) & HASH_MASK; | 
 | 1536 | 	seq += keyptr->count; | 
 | 1537 | 	/* | 
 | 1538 | 	 *	As close as possible to RFC 793, which | 
 | 1539 | 	 *	suggests using a 250 kHz clock. | 
 | 1540 | 	 *	Further reading shows this assumes 2 Mb/s networks. | 
 | 1541 | 	 *	For 10 Mb/s Ethernet, a 1 MHz clock is appropriate. | 
 | 1542 | 	 *	That's funny, Linux has one built in!  Use it! | 
 | 1543 | 	 *	(Networks are faster now - should this be increased?) | 
 | 1544 | 	 */ | 
 | 1545 | 	do_gettimeofday(&tv); | 
 | 1546 | 	seq += tv.tv_usec + tv.tv_sec * 1000000; | 
 | 1547 | #if 0 | 
 | 1548 | 	printk("init_seq(%lx, %lx, %d, %d) = %d\n", | 
 | 1549 | 	       saddr, daddr, sport, dport, seq); | 
 | 1550 | #endif | 
 | 1551 | 	return seq; | 
 | 1552 | } | 
 | 1553 |  | 
 | 1554 | EXPORT_SYMBOL(secure_tcp_sequence_number); | 
 | 1555 |  | 
| Arnaldo Carvalho de Melo | a7f5e7f | 2005-12-13 23:25:31 -0800 | [diff] [blame] | 1556 | /* Generate secure starting point for ephemeral IPV4 transport port search */ | 
 | 1557 | u32 secure_ipv4_port_ephemeral(__u32 saddr, __u32 daddr, __u16 dport) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1558 | { | 
 | 1559 | 	struct keydata *keyptr = get_keyptr(); | 
 | 1560 | 	u32 hash[4]; | 
 | 1561 |  | 
 | 1562 | 	/* | 
 | 1563 | 	 *  Pick a unique starting offset for each ephemeral port search | 
 | 1564 | 	 *  (saddr, daddr, dport) and 48bits of random data. | 
 | 1565 | 	 */ | 
 | 1566 | 	hash[0] = saddr; | 
 | 1567 | 	hash[1] = daddr; | 
 | 1568 | 	hash[2] = dport ^ keyptr->secret[10]; | 
 | 1569 | 	hash[3] = keyptr->secret[11]; | 
 | 1570 |  | 
 | 1571 | 	return half_md4_transform(hash, keyptr->secret); | 
 | 1572 | } | 
 | 1573 |  | 
 | 1574 | #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) | 
| Arnaldo Carvalho de Melo | d8313f5 | 2005-12-13 23:25:44 -0800 | [diff] [blame] | 1575 | u32 secure_ipv6_port_ephemeral(const __u32 *saddr, const __u32 *daddr, __u16 dport) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1576 | { | 
 | 1577 | 	struct keydata *keyptr = get_keyptr(); | 
 | 1578 | 	u32 hash[12]; | 
 | 1579 |  | 
 | 1580 | 	memcpy(hash, saddr, 16); | 
 | 1581 | 	hash[4] = dport; | 
 | 1582 | 	memcpy(&hash[5],keyptr->secret,sizeof(__u32) * 7); | 
 | 1583 |  | 
 | 1584 | 	return twothirdsMD4Transform(daddr, hash); | 
 | 1585 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1586 | #endif | 
 | 1587 |  | 
| Arnaldo Carvalho de Melo | c4365c9 | 2005-08-09 20:12:30 -0700 | [diff] [blame] | 1588 | #if defined(CONFIG_IP_DCCP) || defined(CONFIG_IP_DCCP_MODULE) | 
 | 1589 | /* Similar to secure_tcp_sequence_number but generate a 48 bit value | 
 | 1590 |  * bit's 32-47 increase every key exchange | 
 | 1591 |  *       0-31  hash(source, dest) | 
 | 1592 |  */ | 
 | 1593 | u64 secure_dccp_sequence_number(__u32 saddr, __u32 daddr, | 
 | 1594 | 				__u16 sport, __u16 dport) | 
 | 1595 | { | 
 | 1596 | 	struct timeval tv; | 
 | 1597 | 	u64 seq; | 
 | 1598 | 	__u32 hash[4]; | 
 | 1599 | 	struct keydata *keyptr = get_keyptr(); | 
 | 1600 |  | 
 | 1601 | 	hash[0] = saddr; | 
 | 1602 | 	hash[1] = daddr; | 
 | 1603 | 	hash[2] = (sport << 16) + dport; | 
 | 1604 | 	hash[3] = keyptr->secret[11]; | 
 | 1605 |  | 
 | 1606 | 	seq = half_md4_transform(hash, keyptr->secret); | 
 | 1607 | 	seq |= ((u64)keyptr->count) << (32 - HASH_BITS); | 
 | 1608 |  | 
 | 1609 | 	do_gettimeofday(&tv); | 
 | 1610 | 	seq += tv.tv_usec + tv.tv_sec * 1000000; | 
 | 1611 | 	seq &= (1ull << 48) - 1; | 
 | 1612 | #if 0 | 
 | 1613 | 	printk("dccp init_seq(%lx, %lx, %d, %d) = %d\n", | 
 | 1614 | 	       saddr, daddr, sport, dport, seq); | 
 | 1615 | #endif | 
 | 1616 | 	return seq; | 
 | 1617 | } | 
 | 1618 |  | 
 | 1619 | EXPORT_SYMBOL(secure_dccp_sequence_number); | 
 | 1620 | #endif | 
 | 1621 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1622 | #endif /* CONFIG_INET */ | 
 | 1623 |  | 
 | 1624 |  | 
 | 1625 | /* | 
 | 1626 |  * Get a random word for internal kernel use only. Similar to urandom but | 
 | 1627 |  * with the goal of minimal entropy pool depletion. As a result, the random | 
 | 1628 |  * value is not cryptographically secure but for several uses the cost of | 
 | 1629 |  * depleting entropy is too high | 
 | 1630 |  */ | 
 | 1631 | unsigned int get_random_int(void) | 
 | 1632 | { | 
 | 1633 | 	/* | 
 | 1634 | 	 * Use IP's RNG. It suits our purpose perfectly: it re-keys itself | 
 | 1635 | 	 * every second, from the entropy pool (and thus creates a limited | 
 | 1636 | 	 * drain on it), and uses halfMD4Transform within the second. We | 
 | 1637 | 	 * also mix it with jiffies and the PID: | 
 | 1638 | 	 */ | 
 | 1639 | 	return secure_ip_id(current->pid + jiffies); | 
 | 1640 | } | 
 | 1641 |  | 
 | 1642 | /* | 
 | 1643 |  * randomize_range() returns a start address such that | 
 | 1644 |  * | 
 | 1645 |  *    [...... <range> .....] | 
 | 1646 |  *  start                  end | 
 | 1647 |  * | 
 | 1648 |  * a <range> with size "len" starting at the return value is inside in the | 
 | 1649 |  * area defined by [start, end], but is otherwise randomized. | 
 | 1650 |  */ | 
 | 1651 | unsigned long | 
 | 1652 | randomize_range(unsigned long start, unsigned long end, unsigned long len) | 
 | 1653 | { | 
 | 1654 | 	unsigned long range = end - len - start; | 
 | 1655 |  | 
 | 1656 | 	if (end <= start + len) | 
 | 1657 | 		return 0; | 
 | 1658 | 	return PAGE_ALIGN(get_random_int() % range + start); | 
 | 1659 | } |