Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * linux/arch/parisc/traps.c |
| 3 | * |
| 4 | * Copyright (C) 1991, 1992 Linus Torvalds |
| 5 | * Copyright (C) 1999, 2000 Philipp Rumpf <prumpf@tux.org> |
| 6 | */ |
| 7 | |
| 8 | /* |
| 9 | * 'Traps.c' handles hardware traps and faults after we have saved some |
| 10 | * state in 'asm.s'. |
| 11 | */ |
| 12 | |
| 13 | #include <linux/config.h> |
| 14 | #include <linux/sched.h> |
| 15 | #include <linux/kernel.h> |
| 16 | #include <linux/string.h> |
| 17 | #include <linux/errno.h> |
| 18 | #include <linux/ptrace.h> |
| 19 | #include <linux/timer.h> |
| 20 | #include <linux/mm.h> |
| 21 | #include <linux/module.h> |
| 22 | #include <linux/smp.h> |
| 23 | #include <linux/smp_lock.h> |
| 24 | #include <linux/spinlock.h> |
| 25 | #include <linux/init.h> |
| 26 | #include <linux/interrupt.h> |
| 27 | #include <linux/console.h> |
| 28 | #include <linux/kallsyms.h> |
| 29 | |
| 30 | #include <asm/assembly.h> |
| 31 | #include <asm/system.h> |
| 32 | #include <asm/uaccess.h> |
| 33 | #include <asm/io.h> |
| 34 | #include <asm/irq.h> |
| 35 | #include <asm/traps.h> |
| 36 | #include <asm/unaligned.h> |
| 37 | #include <asm/atomic.h> |
| 38 | #include <asm/smp.h> |
| 39 | #include <asm/pdc.h> |
| 40 | #include <asm/pdc_chassis.h> |
| 41 | #include <asm/unwind.h> |
| 42 | |
| 43 | #include "../math-emu/math-emu.h" /* for handle_fpe() */ |
| 44 | |
| 45 | #define PRINT_USER_FAULTS /* (turn this on if you want user faults to be */ |
| 46 | /* dumped to the console via printk) */ |
| 47 | |
| 48 | #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) |
| 49 | DEFINE_SPINLOCK(pa_dbit_lock); |
| 50 | #endif |
| 51 | |
| 52 | int printbinary(char *buf, unsigned long x, int nbits) |
| 53 | { |
| 54 | unsigned long mask = 1UL << (nbits - 1); |
| 55 | while (mask != 0) { |
| 56 | *buf++ = (mask & x ? '1' : '0'); |
| 57 | mask >>= 1; |
| 58 | } |
| 59 | *buf = '\0'; |
| 60 | |
| 61 | return nbits; |
| 62 | } |
| 63 | |
| 64 | #ifdef __LP64__ |
| 65 | #define RFMT "%016lx" |
| 66 | #else |
| 67 | #define RFMT "%08lx" |
| 68 | #endif |
| 69 | |
| 70 | void show_regs(struct pt_regs *regs) |
| 71 | { |
| 72 | int i; |
| 73 | char buf[128], *p; |
| 74 | char *level; |
| 75 | unsigned long cr30; |
| 76 | unsigned long cr31; |
Thibaut Varene | eba9172 | 2005-10-21 22:49:25 -0400 | [diff] [blame] | 77 | /* carlos says that gcc understands better memory in a struct, |
| 78 | * and it makes our life easier with fpregs -- T-Bone */ |
| 79 | struct { u32 sw[2]; } s; |
| 80 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 81 | level = user_mode(regs) ? KERN_DEBUG : KERN_CRIT; |
| 82 | |
| 83 | printk("%s\n", level); /* don't want to have that pretty register dump messed up */ |
| 84 | |
| 85 | printk("%s YZrvWESTHLNXBCVMcbcbcbcbOGFRQPDI\n", level); |
| 86 | printbinary(buf, regs->gr[0], 32); |
| 87 | printk("%sPSW: %s %s\n", level, buf, print_tainted()); |
| 88 | |
| 89 | for (i = 0; i < 32; i += 4) { |
| 90 | int j; |
| 91 | p = buf; |
| 92 | p += sprintf(p, "%sr%02d-%02d ", level, i, i + 3); |
| 93 | for (j = 0; j < 4; j++) { |
| 94 | p += sprintf(p, " " RFMT, (i+j) == 0 ? 0 : regs->gr[i + j]); |
| 95 | } |
| 96 | printk("%s\n", buf); |
| 97 | } |
| 98 | |
| 99 | for (i = 0; i < 8; i += 4) { |
| 100 | int j; |
| 101 | p = buf; |
| 102 | p += sprintf(p, "%ssr%d-%d ", level, i, i + 3); |
| 103 | for (j = 0; j < 4; j++) { |
| 104 | p += sprintf(p, " " RFMT, regs->sr[i + j]); |
| 105 | } |
| 106 | printk("%s\n", buf); |
| 107 | } |
| 108 | |
Thibaut Varene | eba9172 | 2005-10-21 22:49:25 -0400 | [diff] [blame] | 109 | /* FR are 64bit everywhere. Need to use asm to get the content |
| 110 | * of fpsr/fper1, and we assume that we won't have a FP Identify |
| 111 | * in our way, otherwise we're screwed. |
| 112 | * The fldd is used to restore the T-bit if there was one, as the |
| 113 | * store clears it anyway. |
| 114 | * BTW, PA2.0 book says "thou shall not use fstw on FPSR/FPERs". */ |
| 115 | __asm__ ( |
| 116 | "fstd %%fr0,0(%1) \n\t" |
| 117 | "fldd 0(%1),%%fr0 \n\t" |
| 118 | : "=m" (s) : "r" (&s) : "%r0" |
| 119 | ); |
| 120 | |
| 121 | printk("%s\n", level); |
| 122 | printk("%s VZOUICununcqcqcqcqcqcrmunTDVZOUI\n", level); |
| 123 | printbinary(buf, s.sw[0], 32); |
| 124 | printk("%sFPSR: %s\n", level, buf); |
| 125 | printk("%sFPER1: %08x\n", level, s.sw[1]); |
| 126 | |
| 127 | /* here we'll print fr0 again, tho it'll be meaningless */ |
| 128 | for (i = 0; i < 32; i += 4) { |
| 129 | int j; |
| 130 | p = buf; |
| 131 | p += sprintf(p, "%sfr%02d-%02d ", level, i, i + 3); |
| 132 | for (j = 0; j < 4; j++) |
| 133 | p += sprintf(p, " %016llx", (i+j) == 0 ? 0 : regs->fr[i+j]); |
| 134 | printk("%s\n", buf); |
| 135 | } |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 136 | |
| 137 | cr30 = mfctl(30); |
| 138 | cr31 = mfctl(31); |
| 139 | printk("%s\n", level); |
| 140 | printk("%sIASQ: " RFMT " " RFMT " IAOQ: " RFMT " " RFMT "\n", |
| 141 | level, regs->iasq[0], regs->iasq[1], regs->iaoq[0], regs->iaoq[1]); |
| 142 | printk("%s IIR: %08lx ISR: " RFMT " IOR: " RFMT "\n", |
| 143 | level, regs->iir, regs->isr, regs->ior); |
| 144 | printk("%s CPU: %8d CR30: " RFMT " CR31: " RFMT "\n", |
| 145 | level, current_thread_info()->cpu, cr30, cr31); |
| 146 | printk("%s ORIG_R28: " RFMT "\n", level, regs->orig_r28); |
| 147 | printk(level); |
| 148 | print_symbol(" IAOQ[0]: %s\n", regs->iaoq[0]); |
| 149 | printk(level); |
| 150 | print_symbol(" IAOQ[1]: %s\n", regs->iaoq[1]); |
| 151 | printk(level); |
| 152 | print_symbol(" RP(r2): %s\n", regs->gr[2]); |
| 153 | } |
| 154 | |
| 155 | |
| 156 | void dump_stack(void) |
| 157 | { |
| 158 | show_stack(NULL, NULL); |
| 159 | } |
| 160 | |
| 161 | EXPORT_SYMBOL(dump_stack); |
| 162 | |
| 163 | static void do_show_stack(struct unwind_frame_info *info) |
| 164 | { |
| 165 | int i = 1; |
| 166 | |
| 167 | printk("Backtrace:\n"); |
| 168 | while (i <= 16) { |
| 169 | if (unwind_once(info) < 0 || info->ip == 0) |
| 170 | break; |
| 171 | |
| 172 | if (__kernel_text_address(info->ip)) { |
| 173 | printk(" [<" RFMT ">] ", info->ip); |
| 174 | #ifdef CONFIG_KALLSYMS |
| 175 | print_symbol("%s\n", info->ip); |
| 176 | #else |
| 177 | if ((i & 0x03) == 0) |
| 178 | printk("\n"); |
| 179 | #endif |
| 180 | i++; |
| 181 | } |
| 182 | } |
| 183 | printk("\n"); |
| 184 | } |
| 185 | |
| 186 | void show_stack(struct task_struct *task, unsigned long *s) |
| 187 | { |
| 188 | struct unwind_frame_info info; |
| 189 | |
| 190 | if (!task) { |
| 191 | unsigned long sp; |
| 192 | struct pt_regs *r; |
| 193 | |
| 194 | HERE: |
| 195 | asm volatile ("copy %%r30, %0" : "=r"(sp)); |
Helge Deller | cb6fc18 | 2006-01-17 12:40:40 -0700 | [diff] [blame^] | 196 | r = kzalloc(sizeof(struct pt_regs), GFP_KERNEL); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 197 | if (!r) |
| 198 | return; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 199 | r->iaoq[0] = (unsigned long)&&HERE; |
| 200 | r->gr[2] = (unsigned long)__builtin_return_address(0); |
| 201 | r->gr[30] = sp; |
| 202 | unwind_frame_init(&info, current, r); |
| 203 | kfree(r); |
| 204 | } else { |
| 205 | unwind_frame_init_from_blocked_task(&info, task); |
| 206 | } |
| 207 | |
| 208 | do_show_stack(&info); |
| 209 | } |
| 210 | |
| 211 | void die_if_kernel(char *str, struct pt_regs *regs, long err) |
| 212 | { |
| 213 | if (user_mode(regs)) { |
| 214 | if (err == 0) |
| 215 | return; /* STFU */ |
| 216 | |
| 217 | printk(KERN_CRIT "%s (pid %d): %s (code %ld) at " RFMT "\n", |
| 218 | current->comm, current->pid, str, err, regs->iaoq[0]); |
| 219 | #ifdef PRINT_USER_FAULTS |
| 220 | /* XXX for debugging only */ |
| 221 | show_regs(regs); |
| 222 | #endif |
| 223 | return; |
| 224 | } |
| 225 | |
| 226 | oops_in_progress = 1; |
| 227 | |
| 228 | /* Amuse the user in a SPARC fashion */ |
| 229 | printk( |
| 230 | " _______________________________ \n" |
| 231 | " < Your System ate a SPARC! Gah! >\n" |
| 232 | " ------------------------------- \n" |
| 233 | " \\ ^__^\n" |
| 234 | " \\ (xx)\\_______\n" |
| 235 | " (__)\\ )\\/\\\n" |
| 236 | " U ||----w |\n" |
| 237 | " || ||\n"); |
| 238 | |
| 239 | /* unlock the pdc lock if necessary */ |
| 240 | pdc_emergency_unlock(); |
| 241 | |
| 242 | /* maybe the kernel hasn't booted very far yet and hasn't been able |
| 243 | * to initialize the serial or STI console. In that case we should |
| 244 | * re-enable the pdc console, so that the user will be able to |
| 245 | * identify the problem. */ |
| 246 | if (!console_drivers) |
| 247 | pdc_console_restart(); |
| 248 | |
| 249 | printk(KERN_CRIT "%s (pid %d): %s (code %ld)\n", |
| 250 | current->comm, current->pid, str, err); |
| 251 | show_regs(regs); |
| 252 | |
| 253 | /* Wot's wrong wif bein' racy? */ |
| 254 | if (current->thread.flags & PARISC_KERNEL_DEATH) { |
| 255 | printk(KERN_CRIT "%s() recursion detected.\n", __FUNCTION__); |
| 256 | local_irq_enable(); |
| 257 | while (1); |
| 258 | } |
| 259 | |
| 260 | current->thread.flags |= PARISC_KERNEL_DEATH; |
| 261 | do_exit(SIGSEGV); |
| 262 | } |
| 263 | |
| 264 | int syscall_ipi(int (*syscall) (struct pt_regs *), struct pt_regs *regs) |
| 265 | { |
| 266 | return syscall(regs); |
| 267 | } |
| 268 | |
| 269 | /* gdb uses break 4,8 */ |
| 270 | #define GDB_BREAK_INSN 0x10004 |
| 271 | void handle_gdb_break(struct pt_regs *regs, int wot) |
| 272 | { |
| 273 | struct siginfo si; |
| 274 | |
| 275 | si.si_code = wot; |
| 276 | si.si_addr = (void __user *) (regs->iaoq[0] & ~3); |
| 277 | si.si_signo = SIGTRAP; |
| 278 | si.si_errno = 0; |
| 279 | force_sig_info(SIGTRAP, &si, current); |
| 280 | } |
| 281 | |
| 282 | void handle_break(unsigned iir, struct pt_regs *regs) |
| 283 | { |
| 284 | struct siginfo si; |
| 285 | |
| 286 | switch(iir) { |
| 287 | case 0x00: |
| 288 | #ifdef PRINT_USER_FAULTS |
| 289 | printk(KERN_DEBUG "break 0,0: pid=%d command='%s'\n", |
| 290 | current->pid, current->comm); |
| 291 | #endif |
| 292 | die_if_kernel("Breakpoint", regs, 0); |
| 293 | #ifdef PRINT_USER_FAULTS |
| 294 | show_regs(regs); |
| 295 | #endif |
| 296 | si.si_code = TRAP_BRKPT; |
| 297 | si.si_addr = (void __user *) (regs->iaoq[0] & ~3); |
| 298 | si.si_signo = SIGTRAP; |
| 299 | force_sig_info(SIGTRAP, &si, current); |
| 300 | break; |
| 301 | |
| 302 | case GDB_BREAK_INSN: |
| 303 | die_if_kernel("Breakpoint", regs, 0); |
| 304 | handle_gdb_break(regs, TRAP_BRKPT); |
| 305 | break; |
| 306 | |
| 307 | default: |
| 308 | #ifdef PRINT_USER_FAULTS |
| 309 | printk(KERN_DEBUG "break %#08x: pid=%d command='%s'\n", |
| 310 | iir, current->pid, current->comm); |
| 311 | show_regs(regs); |
| 312 | #endif |
| 313 | si.si_signo = SIGTRAP; |
| 314 | si.si_code = TRAP_BRKPT; |
| 315 | si.si_addr = (void __user *) (regs->iaoq[0] & ~3); |
| 316 | force_sig_info(SIGTRAP, &si, current); |
| 317 | return; |
| 318 | } |
| 319 | } |
| 320 | |
| 321 | |
| 322 | int handle_toc(void) |
| 323 | { |
| 324 | printk(KERN_CRIT "TOC call.\n"); |
| 325 | return 0; |
| 326 | } |
| 327 | |
| 328 | static void default_trap(int code, struct pt_regs *regs) |
| 329 | { |
| 330 | printk(KERN_ERR "Trap %d on CPU %d\n", code, smp_processor_id()); |
| 331 | show_regs(regs); |
| 332 | } |
| 333 | |
| 334 | void (*cpu_lpmc) (int code, struct pt_regs *regs) = default_trap; |
| 335 | |
| 336 | |
| 337 | void transfer_pim_to_trap_frame(struct pt_regs *regs) |
| 338 | { |
| 339 | register int i; |
| 340 | extern unsigned int hpmc_pim_data[]; |
| 341 | struct pdc_hpmc_pim_11 *pim_narrow; |
| 342 | struct pdc_hpmc_pim_20 *pim_wide; |
| 343 | |
| 344 | if (boot_cpu_data.cpu_type >= pcxu) { |
| 345 | |
| 346 | pim_wide = (struct pdc_hpmc_pim_20 *)hpmc_pim_data; |
| 347 | |
| 348 | /* |
| 349 | * Note: The following code will probably generate a |
| 350 | * bunch of truncation error warnings from the compiler. |
| 351 | * Could be handled with an ifdef, but perhaps there |
| 352 | * is a better way. |
| 353 | */ |
| 354 | |
| 355 | regs->gr[0] = pim_wide->cr[22]; |
| 356 | |
| 357 | for (i = 1; i < 32; i++) |
| 358 | regs->gr[i] = pim_wide->gr[i]; |
| 359 | |
| 360 | for (i = 0; i < 32; i++) |
| 361 | regs->fr[i] = pim_wide->fr[i]; |
| 362 | |
| 363 | for (i = 0; i < 8; i++) |
| 364 | regs->sr[i] = pim_wide->sr[i]; |
| 365 | |
| 366 | regs->iasq[0] = pim_wide->cr[17]; |
| 367 | regs->iasq[1] = pim_wide->iasq_back; |
| 368 | regs->iaoq[0] = pim_wide->cr[18]; |
| 369 | regs->iaoq[1] = pim_wide->iaoq_back; |
| 370 | |
| 371 | regs->sar = pim_wide->cr[11]; |
| 372 | regs->iir = pim_wide->cr[19]; |
| 373 | regs->isr = pim_wide->cr[20]; |
| 374 | regs->ior = pim_wide->cr[21]; |
| 375 | } |
| 376 | else { |
| 377 | pim_narrow = (struct pdc_hpmc_pim_11 *)hpmc_pim_data; |
| 378 | |
| 379 | regs->gr[0] = pim_narrow->cr[22]; |
| 380 | |
| 381 | for (i = 1; i < 32; i++) |
| 382 | regs->gr[i] = pim_narrow->gr[i]; |
| 383 | |
| 384 | for (i = 0; i < 32; i++) |
| 385 | regs->fr[i] = pim_narrow->fr[i]; |
| 386 | |
| 387 | for (i = 0; i < 8; i++) |
| 388 | regs->sr[i] = pim_narrow->sr[i]; |
| 389 | |
| 390 | regs->iasq[0] = pim_narrow->cr[17]; |
| 391 | regs->iasq[1] = pim_narrow->iasq_back; |
| 392 | regs->iaoq[0] = pim_narrow->cr[18]; |
| 393 | regs->iaoq[1] = pim_narrow->iaoq_back; |
| 394 | |
| 395 | regs->sar = pim_narrow->cr[11]; |
| 396 | regs->iir = pim_narrow->cr[19]; |
| 397 | regs->isr = pim_narrow->cr[20]; |
| 398 | regs->ior = pim_narrow->cr[21]; |
| 399 | } |
| 400 | |
| 401 | /* |
| 402 | * The following fields only have meaning if we came through |
| 403 | * another path. So just zero them here. |
| 404 | */ |
| 405 | |
| 406 | regs->ksp = 0; |
| 407 | regs->kpc = 0; |
| 408 | regs->orig_r28 = 0; |
| 409 | } |
| 410 | |
| 411 | |
| 412 | /* |
| 413 | * This routine is called as a last resort when everything else |
| 414 | * has gone clearly wrong. We get called for faults in kernel space, |
| 415 | * and HPMC's. |
| 416 | */ |
| 417 | void parisc_terminate(char *msg, struct pt_regs *regs, int code, unsigned long offset) |
| 418 | { |
| 419 | static DEFINE_SPINLOCK(terminate_lock); |
| 420 | |
| 421 | oops_in_progress = 1; |
| 422 | |
| 423 | set_eiem(0); |
| 424 | local_irq_disable(); |
| 425 | spin_lock(&terminate_lock); |
| 426 | |
| 427 | /* unlock the pdc lock if necessary */ |
| 428 | pdc_emergency_unlock(); |
| 429 | |
| 430 | /* restart pdc console if necessary */ |
| 431 | if (!console_drivers) |
| 432 | pdc_console_restart(); |
| 433 | |
| 434 | /* Not all paths will gutter the processor... */ |
| 435 | switch(code){ |
| 436 | |
| 437 | case 1: |
| 438 | transfer_pim_to_trap_frame(regs); |
| 439 | break; |
| 440 | |
| 441 | default: |
| 442 | /* Fall through */ |
| 443 | break; |
| 444 | |
| 445 | } |
| 446 | |
| 447 | { |
| 448 | /* show_stack(NULL, (unsigned long *)regs->gr[30]); */ |
| 449 | struct unwind_frame_info info; |
| 450 | unwind_frame_init(&info, current, regs); |
| 451 | do_show_stack(&info); |
| 452 | } |
| 453 | |
| 454 | printk("\n"); |
| 455 | printk(KERN_CRIT "%s: Code=%d regs=%p (Addr=" RFMT ")\n", |
| 456 | msg, code, regs, offset); |
| 457 | show_regs(regs); |
| 458 | |
| 459 | spin_unlock(&terminate_lock); |
| 460 | |
| 461 | /* put soft power button back under hardware control; |
| 462 | * if the user had pressed it once at any time, the |
| 463 | * system will shut down immediately right here. */ |
| 464 | pdc_soft_power_button(0); |
| 465 | |
| 466 | /* Call kernel panic() so reboot timeouts work properly |
| 467 | * FIXME: This function should be on the list of |
| 468 | * panic notifiers, and we should call panic |
| 469 | * directly from the location that we wish. |
| 470 | * e.g. We should not call panic from |
| 471 | * parisc_terminate, but rather the oter way around. |
| 472 | * This hack works, prints the panic message twice, |
| 473 | * and it enables reboot timers! |
| 474 | */ |
| 475 | panic(msg); |
| 476 | } |
| 477 | |
| 478 | void handle_interruption(int code, struct pt_regs *regs) |
| 479 | { |
| 480 | unsigned long fault_address = 0; |
| 481 | unsigned long fault_space = 0; |
| 482 | struct siginfo si; |
| 483 | |
| 484 | if (code == 1) |
| 485 | pdc_console_restart(); /* switch back to pdc if HPMC */ |
| 486 | else |
| 487 | local_irq_enable(); |
| 488 | |
| 489 | /* Security check: |
| 490 | * If the priority level is still user, and the |
| 491 | * faulting space is not equal to the active space |
| 492 | * then the user is attempting something in a space |
| 493 | * that does not belong to them. Kill the process. |
| 494 | * |
| 495 | * This is normally the situation when the user |
| 496 | * attempts to jump into the kernel space at the |
| 497 | * wrong offset, be it at the gateway page or a |
| 498 | * random location. |
| 499 | * |
| 500 | * We cannot normally signal the process because it |
| 501 | * could *be* on the gateway page, and processes |
| 502 | * executing on the gateway page can't have signals |
| 503 | * delivered. |
| 504 | * |
| 505 | * We merely readjust the address into the users |
| 506 | * space, at a destination address of zero, and |
| 507 | * allow processing to continue. |
| 508 | */ |
| 509 | if (((unsigned long)regs->iaoq[0] & 3) && |
| 510 | ((unsigned long)regs->iasq[0] != (unsigned long)regs->sr[7])) { |
| 511 | /* Kill the user process later */ |
| 512 | regs->iaoq[0] = 0 | 3; |
| 513 | regs->iaoq[1] = regs->iaoq[0] + 4; |
| 514 | regs->iasq[0] = regs->iasq[0] = regs->sr[7]; |
| 515 | regs->gr[0] &= ~PSW_B; |
| 516 | return; |
| 517 | } |
| 518 | |
| 519 | #if 0 |
| 520 | printk(KERN_CRIT "Interruption # %d\n", code); |
| 521 | #endif |
| 522 | |
| 523 | switch(code) { |
| 524 | |
| 525 | case 1: |
| 526 | /* High-priority machine check (HPMC) */ |
| 527 | |
| 528 | /* set up a new led state on systems shipped with a LED State panel */ |
| 529 | pdc_chassis_send_status(PDC_CHASSIS_DIRECT_HPMC); |
| 530 | |
| 531 | parisc_terminate("High Priority Machine Check (HPMC)", |
| 532 | regs, code, 0); |
| 533 | /* NOT REACHED */ |
| 534 | |
| 535 | case 2: |
| 536 | /* Power failure interrupt */ |
| 537 | printk(KERN_CRIT "Power failure interrupt !\n"); |
| 538 | return; |
| 539 | |
| 540 | case 3: |
| 541 | /* Recovery counter trap */ |
| 542 | regs->gr[0] &= ~PSW_R; |
| 543 | if (user_space(regs)) |
| 544 | handle_gdb_break(regs, TRAP_TRACE); |
| 545 | /* else this must be the start of a syscall - just let it run */ |
| 546 | return; |
| 547 | |
| 548 | case 5: |
| 549 | /* Low-priority machine check */ |
| 550 | pdc_chassis_send_status(PDC_CHASSIS_DIRECT_LPMC); |
| 551 | |
| 552 | flush_all_caches(); |
| 553 | cpu_lpmc(5, regs); |
| 554 | return; |
| 555 | |
| 556 | case 6: |
| 557 | /* Instruction TLB miss fault/Instruction page fault */ |
| 558 | fault_address = regs->iaoq[0]; |
| 559 | fault_space = regs->iasq[0]; |
| 560 | break; |
| 561 | |
| 562 | case 8: |
| 563 | /* Illegal instruction trap */ |
| 564 | die_if_kernel("Illegal instruction", regs, code); |
| 565 | si.si_code = ILL_ILLOPC; |
| 566 | goto give_sigill; |
| 567 | |
| 568 | case 9: |
| 569 | /* Break instruction trap */ |
| 570 | handle_break(regs->iir,regs); |
| 571 | return; |
| 572 | |
| 573 | case 10: |
| 574 | /* Privileged operation trap */ |
| 575 | die_if_kernel("Privileged operation", regs, code); |
| 576 | si.si_code = ILL_PRVOPC; |
| 577 | goto give_sigill; |
| 578 | |
| 579 | case 11: |
| 580 | /* Privileged register trap */ |
| 581 | if ((regs->iir & 0xffdfffe0) == 0x034008a0) { |
| 582 | |
| 583 | /* This is a MFCTL cr26/cr27 to gr instruction. |
| 584 | * PCXS traps on this, so we need to emulate it. |
| 585 | */ |
| 586 | |
| 587 | if (regs->iir & 0x00200000) |
| 588 | regs->gr[regs->iir & 0x1f] = mfctl(27); |
| 589 | else |
| 590 | regs->gr[regs->iir & 0x1f] = mfctl(26); |
| 591 | |
| 592 | regs->iaoq[0] = regs->iaoq[1]; |
| 593 | regs->iaoq[1] += 4; |
| 594 | regs->iasq[0] = regs->iasq[1]; |
| 595 | return; |
| 596 | } |
| 597 | |
| 598 | die_if_kernel("Privileged register usage", regs, code); |
| 599 | si.si_code = ILL_PRVREG; |
| 600 | give_sigill: |
| 601 | si.si_signo = SIGILL; |
| 602 | si.si_errno = 0; |
| 603 | si.si_addr = (void __user *) regs->iaoq[0]; |
| 604 | force_sig_info(SIGILL, &si, current); |
| 605 | return; |
| 606 | |
| 607 | case 12: |
| 608 | /* Overflow Trap, let the userland signal handler do the cleanup */ |
| 609 | si.si_signo = SIGFPE; |
| 610 | si.si_code = FPE_INTOVF; |
| 611 | si.si_addr = (void __user *) regs->iaoq[0]; |
| 612 | force_sig_info(SIGFPE, &si, current); |
| 613 | return; |
| 614 | |
| 615 | case 13: |
| 616 | /* Conditional Trap |
| 617 | The condition succees in an instruction which traps |
| 618 | on condition */ |
| 619 | if(user_mode(regs)){ |
| 620 | si.si_signo = SIGFPE; |
| 621 | /* Set to zero, and let the userspace app figure it out from |
| 622 | the insn pointed to by si_addr */ |
| 623 | si.si_code = 0; |
| 624 | si.si_addr = (void __user *) regs->iaoq[0]; |
| 625 | force_sig_info(SIGFPE, &si, current); |
| 626 | return; |
| 627 | } |
| 628 | /* The kernel doesn't want to handle condition codes */ |
| 629 | break; |
| 630 | |
| 631 | case 14: |
| 632 | /* Assist Exception Trap, i.e. floating point exception. */ |
| 633 | die_if_kernel("Floating point exception", regs, 0); /* quiet */ |
| 634 | handle_fpe(regs); |
| 635 | return; |
| 636 | |
| 637 | case 15: |
| 638 | /* Data TLB miss fault/Data page fault */ |
| 639 | /* Fall through */ |
| 640 | case 16: |
| 641 | /* Non-access instruction TLB miss fault */ |
| 642 | /* The instruction TLB entry needed for the target address of the FIC |
| 643 | is absent, and hardware can't find it, so we get to cleanup */ |
| 644 | /* Fall through */ |
| 645 | case 17: |
| 646 | /* Non-access data TLB miss fault/Non-access data page fault */ |
| 647 | /* FIXME: |
| 648 | Still need to add slow path emulation code here! |
| 649 | If the insn used a non-shadow register, then the tlb |
| 650 | handlers could not have their side-effect (e.g. probe |
| 651 | writing to a target register) emulated since rfir would |
| 652 | erase the changes to said register. Instead we have to |
| 653 | setup everything, call this function we are in, and emulate |
| 654 | by hand. Technically we need to emulate: |
| 655 | fdc,fdce,pdc,"fic,4f",prober,probeir,probew, probeiw |
| 656 | */ |
| 657 | fault_address = regs->ior; |
| 658 | fault_space = regs->isr; |
| 659 | break; |
| 660 | |
| 661 | case 18: |
| 662 | /* PCXS only -- later cpu's split this into types 26,27 & 28 */ |
| 663 | /* Check for unaligned access */ |
| 664 | if (check_unaligned(regs)) { |
| 665 | handle_unaligned(regs); |
| 666 | return; |
| 667 | } |
| 668 | /* Fall Through */ |
| 669 | case 26: |
| 670 | /* PCXL: Data memory access rights trap */ |
| 671 | fault_address = regs->ior; |
| 672 | fault_space = regs->isr; |
| 673 | break; |
| 674 | |
| 675 | case 19: |
| 676 | /* Data memory break trap */ |
| 677 | regs->gr[0] |= PSW_X; /* So we can single-step over the trap */ |
| 678 | /* fall thru */ |
| 679 | case 21: |
| 680 | /* Page reference trap */ |
| 681 | handle_gdb_break(regs, TRAP_HWBKPT); |
| 682 | return; |
| 683 | |
| 684 | case 25: |
| 685 | /* Taken branch trap */ |
| 686 | regs->gr[0] &= ~PSW_T; |
| 687 | if (user_space(regs)) |
| 688 | handle_gdb_break(regs, TRAP_BRANCH); |
| 689 | /* else this must be the start of a syscall - just let it |
| 690 | * run. |
| 691 | */ |
| 692 | return; |
| 693 | |
| 694 | case 7: |
| 695 | /* Instruction access rights */ |
| 696 | /* PCXL: Instruction memory protection trap */ |
| 697 | |
| 698 | /* |
| 699 | * This could be caused by either: 1) a process attempting |
| 700 | * to execute within a vma that does not have execute |
| 701 | * permission, or 2) an access rights violation caused by a |
| 702 | * flush only translation set up by ptep_get_and_clear(). |
| 703 | * So we check the vma permissions to differentiate the two. |
| 704 | * If the vma indicates we have execute permission, then |
| 705 | * the cause is the latter one. In this case, we need to |
| 706 | * call do_page_fault() to fix the problem. |
| 707 | */ |
| 708 | |
| 709 | if (user_mode(regs)) { |
| 710 | struct vm_area_struct *vma; |
| 711 | |
| 712 | down_read(¤t->mm->mmap_sem); |
| 713 | vma = find_vma(current->mm,regs->iaoq[0]); |
| 714 | if (vma && (regs->iaoq[0] >= vma->vm_start) |
| 715 | && (vma->vm_flags & VM_EXEC)) { |
| 716 | |
| 717 | fault_address = regs->iaoq[0]; |
| 718 | fault_space = regs->iasq[0]; |
| 719 | |
| 720 | up_read(¤t->mm->mmap_sem); |
| 721 | break; /* call do_page_fault() */ |
| 722 | } |
| 723 | up_read(¤t->mm->mmap_sem); |
| 724 | } |
| 725 | /* Fall Through */ |
| 726 | case 27: |
| 727 | /* Data memory protection ID trap */ |
| 728 | die_if_kernel("Protection id trap", regs, code); |
| 729 | si.si_code = SEGV_MAPERR; |
| 730 | si.si_signo = SIGSEGV; |
| 731 | si.si_errno = 0; |
| 732 | if (code == 7) |
| 733 | si.si_addr = (void __user *) regs->iaoq[0]; |
| 734 | else |
| 735 | si.si_addr = (void __user *) regs->ior; |
| 736 | force_sig_info(SIGSEGV, &si, current); |
| 737 | return; |
| 738 | |
| 739 | case 28: |
| 740 | /* Unaligned data reference trap */ |
| 741 | handle_unaligned(regs); |
| 742 | return; |
| 743 | |
| 744 | default: |
| 745 | if (user_mode(regs)) { |
| 746 | #ifdef PRINT_USER_FAULTS |
| 747 | printk(KERN_DEBUG "\nhandle_interruption() pid=%d command='%s'\n", |
| 748 | current->pid, current->comm); |
| 749 | show_regs(regs); |
| 750 | #endif |
| 751 | /* SIGBUS, for lack of a better one. */ |
| 752 | si.si_signo = SIGBUS; |
| 753 | si.si_code = BUS_OBJERR; |
| 754 | si.si_errno = 0; |
| 755 | si.si_addr = (void __user *) regs->ior; |
| 756 | force_sig_info(SIGBUS, &si, current); |
| 757 | return; |
| 758 | } |
| 759 | pdc_chassis_send_status(PDC_CHASSIS_DIRECT_PANIC); |
| 760 | |
| 761 | parisc_terminate("Unexpected interruption", regs, code, 0); |
| 762 | /* NOT REACHED */ |
| 763 | } |
| 764 | |
| 765 | if (user_mode(regs)) { |
| 766 | if ((fault_space >> SPACEID_SHIFT) != (regs->sr[7] >> SPACEID_SHIFT)) { |
| 767 | #ifdef PRINT_USER_FAULTS |
| 768 | if (fault_space == 0) |
| 769 | printk(KERN_DEBUG "User Fault on Kernel Space "); |
| 770 | else |
| 771 | printk(KERN_DEBUG "User Fault (long pointer) (fault %d) ", |
| 772 | code); |
| 773 | printk("pid=%d command='%s'\n", current->pid, current->comm); |
| 774 | show_regs(regs); |
| 775 | #endif |
| 776 | si.si_signo = SIGSEGV; |
| 777 | si.si_errno = 0; |
| 778 | si.si_code = SEGV_MAPERR; |
| 779 | si.si_addr = (void __user *) regs->ior; |
| 780 | force_sig_info(SIGSEGV, &si, current); |
| 781 | return; |
| 782 | } |
| 783 | } |
| 784 | else { |
| 785 | |
| 786 | /* |
| 787 | * The kernel should never fault on its own address space. |
| 788 | */ |
| 789 | |
| 790 | if (fault_space == 0) |
| 791 | { |
| 792 | pdc_chassis_send_status(PDC_CHASSIS_DIRECT_PANIC); |
| 793 | parisc_terminate("Kernel Fault", regs, code, fault_address); |
| 794 | |
| 795 | } |
| 796 | } |
| 797 | |
| 798 | do_page_fault(regs, code, fault_address); |
| 799 | } |
| 800 | |
| 801 | |
| 802 | int __init check_ivt(void *iva) |
| 803 | { |
| 804 | int i; |
| 805 | u32 check = 0; |
| 806 | u32 *ivap; |
| 807 | u32 *hpmcp; |
| 808 | u32 length; |
| 809 | extern void os_hpmc(void); |
| 810 | extern void os_hpmc_end(void); |
| 811 | |
| 812 | if (strcmp((char *)iva, "cows can fly")) |
| 813 | return -1; |
| 814 | |
| 815 | ivap = (u32 *)iva; |
| 816 | |
| 817 | for (i = 0; i < 8; i++) |
| 818 | *ivap++ = 0; |
| 819 | |
| 820 | /* Compute Checksum for HPMC handler */ |
| 821 | |
| 822 | length = (u32)((unsigned long)os_hpmc_end - (unsigned long)os_hpmc); |
| 823 | ivap[7] = length; |
| 824 | |
| 825 | hpmcp = (u32 *)os_hpmc; |
| 826 | |
| 827 | for (i=0; i<length/4; i++) |
| 828 | check += *hpmcp++; |
| 829 | |
| 830 | for (i=0; i<8; i++) |
| 831 | check += ivap[i]; |
| 832 | |
| 833 | ivap[5] = -check; |
| 834 | |
| 835 | return 0; |
| 836 | } |
| 837 | |
| 838 | #ifndef __LP64__ |
| 839 | extern const void fault_vector_11; |
| 840 | #endif |
| 841 | extern const void fault_vector_20; |
| 842 | |
| 843 | void __init trap_init(void) |
| 844 | { |
| 845 | void *iva; |
| 846 | |
| 847 | if (boot_cpu_data.cpu_type >= pcxu) |
| 848 | iva = (void *) &fault_vector_20; |
| 849 | else |
| 850 | #ifdef __LP64__ |
| 851 | panic("Can't boot 64-bit OS on PA1.1 processor!"); |
| 852 | #else |
| 853 | iva = (void *) &fault_vector_11; |
| 854 | #endif |
| 855 | |
| 856 | if (check_ivt(iva)) |
| 857 | panic("IVT invalid"); |
| 858 | } |