| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * Implement CPU time clocks for the POSIX clock interface. | 
|  | 3 | */ | 
|  | 4 |  | 
|  | 5 | #include <linux/sched.h> | 
|  | 6 | #include <linux/posix-timers.h> | 
|  | 7 | #include <asm/uaccess.h> | 
|  | 8 | #include <linux/errno.h> | 
|  | 9 |  | 
|  | 10 | static int check_clock(clockid_t which_clock) | 
|  | 11 | { | 
|  | 12 | int error = 0; | 
|  | 13 | struct task_struct *p; | 
|  | 14 | const pid_t pid = CPUCLOCK_PID(which_clock); | 
|  | 15 |  | 
|  | 16 | if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX) | 
|  | 17 | return -EINVAL; | 
|  | 18 |  | 
|  | 19 | if (pid == 0) | 
|  | 20 | return 0; | 
|  | 21 |  | 
|  | 22 | read_lock(&tasklist_lock); | 
|  | 23 | p = find_task_by_pid(pid); | 
|  | 24 | if (!p || (CPUCLOCK_PERTHREAD(which_clock) ? | 
|  | 25 | p->tgid != current->tgid : p->tgid != pid)) { | 
|  | 26 | error = -EINVAL; | 
|  | 27 | } | 
|  | 28 | read_unlock(&tasklist_lock); | 
|  | 29 |  | 
|  | 30 | return error; | 
|  | 31 | } | 
|  | 32 |  | 
|  | 33 | static inline union cpu_time_count | 
|  | 34 | timespec_to_sample(clockid_t which_clock, const struct timespec *tp) | 
|  | 35 | { | 
|  | 36 | union cpu_time_count ret; | 
|  | 37 | ret.sched = 0;		/* high half always zero when .cpu used */ | 
|  | 38 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { | 
|  | 39 | ret.sched = tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec; | 
|  | 40 | } else { | 
|  | 41 | ret.cpu = timespec_to_cputime(tp); | 
|  | 42 | } | 
|  | 43 | return ret; | 
|  | 44 | } | 
|  | 45 |  | 
|  | 46 | static void sample_to_timespec(clockid_t which_clock, | 
|  | 47 | union cpu_time_count cpu, | 
|  | 48 | struct timespec *tp) | 
|  | 49 | { | 
|  | 50 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { | 
|  | 51 | tp->tv_sec = div_long_long_rem(cpu.sched, | 
|  | 52 | NSEC_PER_SEC, &tp->tv_nsec); | 
|  | 53 | } else { | 
|  | 54 | cputime_to_timespec(cpu.cpu, tp); | 
|  | 55 | } | 
|  | 56 | } | 
|  | 57 |  | 
|  | 58 | static inline int cpu_time_before(clockid_t which_clock, | 
|  | 59 | union cpu_time_count now, | 
|  | 60 | union cpu_time_count then) | 
|  | 61 | { | 
|  | 62 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { | 
|  | 63 | return now.sched < then.sched; | 
|  | 64 | }  else { | 
|  | 65 | return cputime_lt(now.cpu, then.cpu); | 
|  | 66 | } | 
|  | 67 | } | 
|  | 68 | static inline void cpu_time_add(clockid_t which_clock, | 
|  | 69 | union cpu_time_count *acc, | 
|  | 70 | union cpu_time_count val) | 
|  | 71 | { | 
|  | 72 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { | 
|  | 73 | acc->sched += val.sched; | 
|  | 74 | }  else { | 
|  | 75 | acc->cpu = cputime_add(acc->cpu, val.cpu); | 
|  | 76 | } | 
|  | 77 | } | 
|  | 78 | static inline union cpu_time_count cpu_time_sub(clockid_t which_clock, | 
|  | 79 | union cpu_time_count a, | 
|  | 80 | union cpu_time_count b) | 
|  | 81 | { | 
|  | 82 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { | 
|  | 83 | a.sched -= b.sched; | 
|  | 84 | }  else { | 
|  | 85 | a.cpu = cputime_sub(a.cpu, b.cpu); | 
|  | 86 | } | 
|  | 87 | return a; | 
|  | 88 | } | 
|  | 89 |  | 
|  | 90 | /* | 
|  | 91 | * Update expiry time from increment, and increase overrun count, | 
|  | 92 | * given the current clock sample. | 
|  | 93 | */ | 
|  | 94 | static inline void bump_cpu_timer(struct k_itimer *timer, | 
|  | 95 | union cpu_time_count now) | 
|  | 96 | { | 
|  | 97 | int i; | 
|  | 98 |  | 
|  | 99 | if (timer->it.cpu.incr.sched == 0) | 
|  | 100 | return; | 
|  | 101 |  | 
|  | 102 | if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) { | 
|  | 103 | unsigned long long delta, incr; | 
|  | 104 |  | 
|  | 105 | if (now.sched < timer->it.cpu.expires.sched) | 
|  | 106 | return; | 
|  | 107 | incr = timer->it.cpu.incr.sched; | 
|  | 108 | delta = now.sched + incr - timer->it.cpu.expires.sched; | 
|  | 109 | /* Don't use (incr*2 < delta), incr*2 might overflow. */ | 
|  | 110 | for (i = 0; incr < delta - incr; i++) | 
|  | 111 | incr = incr << 1; | 
|  | 112 | for (; i >= 0; incr >>= 1, i--) { | 
|  | 113 | if (delta <= incr) | 
|  | 114 | continue; | 
|  | 115 | timer->it.cpu.expires.sched += incr; | 
|  | 116 | timer->it_overrun += 1 << i; | 
|  | 117 | delta -= incr; | 
|  | 118 | } | 
|  | 119 | } else { | 
|  | 120 | cputime_t delta, incr; | 
|  | 121 |  | 
|  | 122 | if (cputime_lt(now.cpu, timer->it.cpu.expires.cpu)) | 
|  | 123 | return; | 
|  | 124 | incr = timer->it.cpu.incr.cpu; | 
|  | 125 | delta = cputime_sub(cputime_add(now.cpu, incr), | 
|  | 126 | timer->it.cpu.expires.cpu); | 
|  | 127 | /* Don't use (incr*2 < delta), incr*2 might overflow. */ | 
|  | 128 | for (i = 0; cputime_lt(incr, cputime_sub(delta, incr)); i++) | 
|  | 129 | incr = cputime_add(incr, incr); | 
|  | 130 | for (; i >= 0; incr = cputime_halve(incr), i--) { | 
|  | 131 | if (cputime_le(delta, incr)) | 
|  | 132 | continue; | 
|  | 133 | timer->it.cpu.expires.cpu = | 
|  | 134 | cputime_add(timer->it.cpu.expires.cpu, incr); | 
|  | 135 | timer->it_overrun += 1 << i; | 
|  | 136 | delta = cputime_sub(delta, incr); | 
|  | 137 | } | 
|  | 138 | } | 
|  | 139 | } | 
|  | 140 |  | 
|  | 141 | static inline cputime_t prof_ticks(struct task_struct *p) | 
|  | 142 | { | 
|  | 143 | return cputime_add(p->utime, p->stime); | 
|  | 144 | } | 
|  | 145 | static inline cputime_t virt_ticks(struct task_struct *p) | 
|  | 146 | { | 
|  | 147 | return p->utime; | 
|  | 148 | } | 
|  | 149 | static inline unsigned long long sched_ns(struct task_struct *p) | 
|  | 150 | { | 
|  | 151 | return (p == current) ? current_sched_time(p) : p->sched_time; | 
|  | 152 | } | 
|  | 153 |  | 
|  | 154 | int posix_cpu_clock_getres(clockid_t which_clock, struct timespec *tp) | 
|  | 155 | { | 
|  | 156 | int error = check_clock(which_clock); | 
|  | 157 | if (!error) { | 
|  | 158 | tp->tv_sec = 0; | 
|  | 159 | tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ); | 
|  | 160 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { | 
|  | 161 | /* | 
|  | 162 | * If sched_clock is using a cycle counter, we | 
|  | 163 | * don't have any idea of its true resolution | 
|  | 164 | * exported, but it is much more than 1s/HZ. | 
|  | 165 | */ | 
|  | 166 | tp->tv_nsec = 1; | 
|  | 167 | } | 
|  | 168 | } | 
|  | 169 | return error; | 
|  | 170 | } | 
|  | 171 |  | 
|  | 172 | int posix_cpu_clock_set(clockid_t which_clock, const struct timespec *tp) | 
|  | 173 | { | 
|  | 174 | /* | 
|  | 175 | * You can never reset a CPU clock, but we check for other errors | 
|  | 176 | * in the call before failing with EPERM. | 
|  | 177 | */ | 
|  | 178 | int error = check_clock(which_clock); | 
|  | 179 | if (error == 0) { | 
|  | 180 | error = -EPERM; | 
|  | 181 | } | 
|  | 182 | return error; | 
|  | 183 | } | 
|  | 184 |  | 
|  | 185 |  | 
|  | 186 | /* | 
|  | 187 | * Sample a per-thread clock for the given task. | 
|  | 188 | */ | 
|  | 189 | static int cpu_clock_sample(clockid_t which_clock, struct task_struct *p, | 
|  | 190 | union cpu_time_count *cpu) | 
|  | 191 | { | 
|  | 192 | switch (CPUCLOCK_WHICH(which_clock)) { | 
|  | 193 | default: | 
|  | 194 | return -EINVAL; | 
|  | 195 | case CPUCLOCK_PROF: | 
|  | 196 | cpu->cpu = prof_ticks(p); | 
|  | 197 | break; | 
|  | 198 | case CPUCLOCK_VIRT: | 
|  | 199 | cpu->cpu = virt_ticks(p); | 
|  | 200 | break; | 
|  | 201 | case CPUCLOCK_SCHED: | 
|  | 202 | cpu->sched = sched_ns(p); | 
|  | 203 | break; | 
|  | 204 | } | 
|  | 205 | return 0; | 
|  | 206 | } | 
|  | 207 |  | 
|  | 208 | /* | 
|  | 209 | * Sample a process (thread group) clock for the given group_leader task. | 
|  | 210 | * Must be called with tasklist_lock held for reading. | 
|  | 211 | * Must be called with tasklist_lock held for reading, and p->sighand->siglock. | 
|  | 212 | */ | 
|  | 213 | static int cpu_clock_sample_group_locked(unsigned int clock_idx, | 
|  | 214 | struct task_struct *p, | 
|  | 215 | union cpu_time_count *cpu) | 
|  | 216 | { | 
|  | 217 | struct task_struct *t = p; | 
|  | 218 | switch (clock_idx) { | 
|  | 219 | default: | 
|  | 220 | return -EINVAL; | 
|  | 221 | case CPUCLOCK_PROF: | 
|  | 222 | cpu->cpu = cputime_add(p->signal->utime, p->signal->stime); | 
|  | 223 | do { | 
|  | 224 | cpu->cpu = cputime_add(cpu->cpu, prof_ticks(t)); | 
|  | 225 | t = next_thread(t); | 
|  | 226 | } while (t != p); | 
|  | 227 | break; | 
|  | 228 | case CPUCLOCK_VIRT: | 
|  | 229 | cpu->cpu = p->signal->utime; | 
|  | 230 | do { | 
|  | 231 | cpu->cpu = cputime_add(cpu->cpu, virt_ticks(t)); | 
|  | 232 | t = next_thread(t); | 
|  | 233 | } while (t != p); | 
|  | 234 | break; | 
|  | 235 | case CPUCLOCK_SCHED: | 
|  | 236 | cpu->sched = p->signal->sched_time; | 
|  | 237 | /* Add in each other live thread.  */ | 
|  | 238 | while ((t = next_thread(t)) != p) { | 
|  | 239 | cpu->sched += t->sched_time; | 
|  | 240 | } | 
|  | 241 | if (p->tgid == current->tgid) { | 
|  | 242 | /* | 
|  | 243 | * We're sampling ourselves, so include the | 
|  | 244 | * cycles not yet banked.  We still omit | 
|  | 245 | * other threads running on other CPUs, | 
|  | 246 | * so the total can always be behind as | 
|  | 247 | * much as max(nthreads-1,ncpus) * (NSEC_PER_SEC/HZ). | 
|  | 248 | */ | 
|  | 249 | cpu->sched += current_sched_time(current); | 
|  | 250 | } else { | 
|  | 251 | cpu->sched += p->sched_time; | 
|  | 252 | } | 
|  | 253 | break; | 
|  | 254 | } | 
|  | 255 | return 0; | 
|  | 256 | } | 
|  | 257 |  | 
|  | 258 | /* | 
|  | 259 | * Sample a process (thread group) clock for the given group_leader task. | 
|  | 260 | * Must be called with tasklist_lock held for reading. | 
|  | 261 | */ | 
|  | 262 | static int cpu_clock_sample_group(clockid_t which_clock, | 
|  | 263 | struct task_struct *p, | 
|  | 264 | union cpu_time_count *cpu) | 
|  | 265 | { | 
|  | 266 | int ret; | 
|  | 267 | unsigned long flags; | 
|  | 268 | spin_lock_irqsave(&p->sighand->siglock, flags); | 
|  | 269 | ret = cpu_clock_sample_group_locked(CPUCLOCK_WHICH(which_clock), p, | 
|  | 270 | cpu); | 
|  | 271 | spin_unlock_irqrestore(&p->sighand->siglock, flags); | 
|  | 272 | return ret; | 
|  | 273 | } | 
|  | 274 |  | 
|  | 275 |  | 
|  | 276 | int posix_cpu_clock_get(clockid_t which_clock, struct timespec *tp) | 
|  | 277 | { | 
|  | 278 | const pid_t pid = CPUCLOCK_PID(which_clock); | 
|  | 279 | int error = -EINVAL; | 
|  | 280 | union cpu_time_count rtn; | 
|  | 281 |  | 
|  | 282 | if (pid == 0) { | 
|  | 283 | /* | 
|  | 284 | * Special case constant value for our own clocks. | 
|  | 285 | * We don't have to do any lookup to find ourselves. | 
|  | 286 | */ | 
|  | 287 | if (CPUCLOCK_PERTHREAD(which_clock)) { | 
|  | 288 | /* | 
|  | 289 | * Sampling just ourselves we can do with no locking. | 
|  | 290 | */ | 
|  | 291 | error = cpu_clock_sample(which_clock, | 
|  | 292 | current, &rtn); | 
|  | 293 | } else { | 
|  | 294 | read_lock(&tasklist_lock); | 
|  | 295 | error = cpu_clock_sample_group(which_clock, | 
|  | 296 | current, &rtn); | 
|  | 297 | read_unlock(&tasklist_lock); | 
|  | 298 | } | 
|  | 299 | } else { | 
|  | 300 | /* | 
|  | 301 | * Find the given PID, and validate that the caller | 
|  | 302 | * should be able to see it. | 
|  | 303 | */ | 
|  | 304 | struct task_struct *p; | 
|  | 305 | read_lock(&tasklist_lock); | 
|  | 306 | p = find_task_by_pid(pid); | 
|  | 307 | if (p) { | 
|  | 308 | if (CPUCLOCK_PERTHREAD(which_clock)) { | 
|  | 309 | if (p->tgid == current->tgid) { | 
|  | 310 | error = cpu_clock_sample(which_clock, | 
|  | 311 | p, &rtn); | 
|  | 312 | } | 
|  | 313 | } else if (p->tgid == pid && p->signal) { | 
|  | 314 | error = cpu_clock_sample_group(which_clock, | 
|  | 315 | p, &rtn); | 
|  | 316 | } | 
|  | 317 | } | 
|  | 318 | read_unlock(&tasklist_lock); | 
|  | 319 | } | 
|  | 320 |  | 
|  | 321 | if (error) | 
|  | 322 | return error; | 
|  | 323 | sample_to_timespec(which_clock, rtn, tp); | 
|  | 324 | return 0; | 
|  | 325 | } | 
|  | 326 |  | 
|  | 327 |  | 
|  | 328 | /* | 
|  | 329 | * Validate the clockid_t for a new CPU-clock timer, and initialize the timer. | 
|  | 330 | * This is called from sys_timer_create with the new timer already locked. | 
|  | 331 | */ | 
|  | 332 | int posix_cpu_timer_create(struct k_itimer *new_timer) | 
|  | 333 | { | 
|  | 334 | int ret = 0; | 
|  | 335 | const pid_t pid = CPUCLOCK_PID(new_timer->it_clock); | 
|  | 336 | struct task_struct *p; | 
|  | 337 |  | 
|  | 338 | if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX) | 
|  | 339 | return -EINVAL; | 
|  | 340 |  | 
|  | 341 | INIT_LIST_HEAD(&new_timer->it.cpu.entry); | 
|  | 342 | new_timer->it.cpu.incr.sched = 0; | 
|  | 343 | new_timer->it.cpu.expires.sched = 0; | 
|  | 344 |  | 
|  | 345 | read_lock(&tasklist_lock); | 
|  | 346 | if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) { | 
|  | 347 | if (pid == 0) { | 
|  | 348 | p = current; | 
|  | 349 | } else { | 
|  | 350 | p = find_task_by_pid(pid); | 
|  | 351 | if (p && p->tgid != current->tgid) | 
|  | 352 | p = NULL; | 
|  | 353 | } | 
|  | 354 | } else { | 
|  | 355 | if (pid == 0) { | 
|  | 356 | p = current->group_leader; | 
|  | 357 | } else { | 
|  | 358 | p = find_task_by_pid(pid); | 
|  | 359 | if (p && p->tgid != pid) | 
|  | 360 | p = NULL; | 
|  | 361 | } | 
|  | 362 | } | 
|  | 363 | new_timer->it.cpu.task = p; | 
|  | 364 | if (p) { | 
|  | 365 | get_task_struct(p); | 
|  | 366 | } else { | 
|  | 367 | ret = -EINVAL; | 
|  | 368 | } | 
|  | 369 | read_unlock(&tasklist_lock); | 
|  | 370 |  | 
|  | 371 | return ret; | 
|  | 372 | } | 
|  | 373 |  | 
|  | 374 | /* | 
|  | 375 | * Clean up a CPU-clock timer that is about to be destroyed. | 
|  | 376 | * This is called from timer deletion with the timer already locked. | 
|  | 377 | * If we return TIMER_RETRY, it's necessary to release the timer's lock | 
|  | 378 | * and try again.  (This happens when the timer is in the middle of firing.) | 
|  | 379 | */ | 
|  | 380 | int posix_cpu_timer_del(struct k_itimer *timer) | 
|  | 381 | { | 
|  | 382 | struct task_struct *p = timer->it.cpu.task; | 
|  | 383 |  | 
|  | 384 | if (timer->it.cpu.firing) | 
|  | 385 | return TIMER_RETRY; | 
|  | 386 |  | 
|  | 387 | if (unlikely(p == NULL)) | 
|  | 388 | return 0; | 
|  | 389 |  | 
|  | 390 | if (!list_empty(&timer->it.cpu.entry)) { | 
|  | 391 | read_lock(&tasklist_lock); | 
|  | 392 | if (unlikely(p->signal == NULL)) { | 
|  | 393 | /* | 
|  | 394 | * We raced with the reaping of the task. | 
|  | 395 | * The deletion should have cleared us off the list. | 
|  | 396 | */ | 
|  | 397 | BUG_ON(!list_empty(&timer->it.cpu.entry)); | 
|  | 398 | } else { | 
|  | 399 | /* | 
|  | 400 | * Take us off the task's timer list. | 
|  | 401 | */ | 
|  | 402 | spin_lock(&p->sighand->siglock); | 
|  | 403 | list_del(&timer->it.cpu.entry); | 
|  | 404 | spin_unlock(&p->sighand->siglock); | 
|  | 405 | } | 
|  | 406 | read_unlock(&tasklist_lock); | 
|  | 407 | } | 
|  | 408 | put_task_struct(p); | 
|  | 409 |  | 
|  | 410 | return 0; | 
|  | 411 | } | 
|  | 412 |  | 
|  | 413 | /* | 
|  | 414 | * Clean out CPU timers still ticking when a thread exited.  The task | 
|  | 415 | * pointer is cleared, and the expiry time is replaced with the residual | 
|  | 416 | * time for later timer_gettime calls to return. | 
|  | 417 | * This must be called with the siglock held. | 
|  | 418 | */ | 
|  | 419 | static void cleanup_timers(struct list_head *head, | 
|  | 420 | cputime_t utime, cputime_t stime, | 
|  | 421 | unsigned long long sched_time) | 
|  | 422 | { | 
|  | 423 | struct cpu_timer_list *timer, *next; | 
|  | 424 | cputime_t ptime = cputime_add(utime, stime); | 
|  | 425 |  | 
|  | 426 | list_for_each_entry_safe(timer, next, head, entry) { | 
|  | 427 | timer->task = NULL; | 
|  | 428 | list_del_init(&timer->entry); | 
|  | 429 | if (cputime_lt(timer->expires.cpu, ptime)) { | 
|  | 430 | timer->expires.cpu = cputime_zero; | 
|  | 431 | } else { | 
|  | 432 | timer->expires.cpu = cputime_sub(timer->expires.cpu, | 
|  | 433 | ptime); | 
|  | 434 | } | 
|  | 435 | } | 
|  | 436 |  | 
|  | 437 | ++head; | 
|  | 438 | list_for_each_entry_safe(timer, next, head, entry) { | 
|  | 439 | timer->task = NULL; | 
|  | 440 | list_del_init(&timer->entry); | 
|  | 441 | if (cputime_lt(timer->expires.cpu, utime)) { | 
|  | 442 | timer->expires.cpu = cputime_zero; | 
|  | 443 | } else { | 
|  | 444 | timer->expires.cpu = cputime_sub(timer->expires.cpu, | 
|  | 445 | utime); | 
|  | 446 | } | 
|  | 447 | } | 
|  | 448 |  | 
|  | 449 | ++head; | 
|  | 450 | list_for_each_entry_safe(timer, next, head, entry) { | 
|  | 451 | timer->task = NULL; | 
|  | 452 | list_del_init(&timer->entry); | 
|  | 453 | if (timer->expires.sched < sched_time) { | 
|  | 454 | timer->expires.sched = 0; | 
|  | 455 | } else { | 
|  | 456 | timer->expires.sched -= sched_time; | 
|  | 457 | } | 
|  | 458 | } | 
|  | 459 | } | 
|  | 460 |  | 
|  | 461 | /* | 
|  | 462 | * These are both called with the siglock held, when the current thread | 
|  | 463 | * is being reaped.  When the final (leader) thread in the group is reaped, | 
|  | 464 | * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit. | 
|  | 465 | */ | 
|  | 466 | void posix_cpu_timers_exit(struct task_struct *tsk) | 
|  | 467 | { | 
|  | 468 | cleanup_timers(tsk->cpu_timers, | 
|  | 469 | tsk->utime, tsk->stime, tsk->sched_time); | 
|  | 470 |  | 
|  | 471 | } | 
|  | 472 | void posix_cpu_timers_exit_group(struct task_struct *tsk) | 
|  | 473 | { | 
|  | 474 | cleanup_timers(tsk->signal->cpu_timers, | 
|  | 475 | cputime_add(tsk->utime, tsk->signal->utime), | 
|  | 476 | cputime_add(tsk->stime, tsk->signal->stime), | 
|  | 477 | tsk->sched_time + tsk->signal->sched_time); | 
|  | 478 | } | 
|  | 479 |  | 
|  | 480 |  | 
|  | 481 | /* | 
|  | 482 | * Set the expiry times of all the threads in the process so one of them | 
|  | 483 | * will go off before the process cumulative expiry total is reached. | 
|  | 484 | */ | 
|  | 485 | static void process_timer_rebalance(struct task_struct *p, | 
|  | 486 | unsigned int clock_idx, | 
|  | 487 | union cpu_time_count expires, | 
|  | 488 | union cpu_time_count val) | 
|  | 489 | { | 
|  | 490 | cputime_t ticks, left; | 
|  | 491 | unsigned long long ns, nsleft; | 
|  | 492 | struct task_struct *t = p; | 
|  | 493 | unsigned int nthreads = atomic_read(&p->signal->live); | 
|  | 494 |  | 
|  | 495 | switch (clock_idx) { | 
|  | 496 | default: | 
|  | 497 | BUG(); | 
|  | 498 | break; | 
|  | 499 | case CPUCLOCK_PROF: | 
|  | 500 | left = cputime_div(cputime_sub(expires.cpu, val.cpu), | 
|  | 501 | nthreads); | 
|  | 502 | do { | 
|  | 503 | if (!unlikely(t->exit_state)) { | 
|  | 504 | ticks = cputime_add(prof_ticks(t), left); | 
|  | 505 | if (cputime_eq(t->it_prof_expires, | 
|  | 506 | cputime_zero) || | 
|  | 507 | cputime_gt(t->it_prof_expires, ticks)) { | 
|  | 508 | t->it_prof_expires = ticks; | 
|  | 509 | } | 
|  | 510 | } | 
|  | 511 | t = next_thread(t); | 
|  | 512 | } while (t != p); | 
|  | 513 | break; | 
|  | 514 | case CPUCLOCK_VIRT: | 
|  | 515 | left = cputime_div(cputime_sub(expires.cpu, val.cpu), | 
|  | 516 | nthreads); | 
|  | 517 | do { | 
|  | 518 | if (!unlikely(t->exit_state)) { | 
|  | 519 | ticks = cputime_add(virt_ticks(t), left); | 
|  | 520 | if (cputime_eq(t->it_virt_expires, | 
|  | 521 | cputime_zero) || | 
|  | 522 | cputime_gt(t->it_virt_expires, ticks)) { | 
|  | 523 | t->it_virt_expires = ticks; | 
|  | 524 | } | 
|  | 525 | } | 
|  | 526 | t = next_thread(t); | 
|  | 527 | } while (t != p); | 
|  | 528 | break; | 
|  | 529 | case CPUCLOCK_SCHED: | 
|  | 530 | nsleft = expires.sched - val.sched; | 
|  | 531 | do_div(nsleft, nthreads); | 
|  | 532 | do { | 
|  | 533 | if (!unlikely(t->exit_state)) { | 
|  | 534 | ns = t->sched_time + nsleft; | 
|  | 535 | if (t->it_sched_expires == 0 || | 
|  | 536 | t->it_sched_expires > ns) { | 
|  | 537 | t->it_sched_expires = ns; | 
|  | 538 | } | 
|  | 539 | } | 
|  | 540 | t = next_thread(t); | 
|  | 541 | } while (t != p); | 
|  | 542 | break; | 
|  | 543 | } | 
|  | 544 | } | 
|  | 545 |  | 
|  | 546 | static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now) | 
|  | 547 | { | 
|  | 548 | /* | 
|  | 549 | * That's all for this thread or process. | 
|  | 550 | * We leave our residual in expires to be reported. | 
|  | 551 | */ | 
|  | 552 | put_task_struct(timer->it.cpu.task); | 
|  | 553 | timer->it.cpu.task = NULL; | 
|  | 554 | timer->it.cpu.expires = cpu_time_sub(timer->it_clock, | 
|  | 555 | timer->it.cpu.expires, | 
|  | 556 | now); | 
|  | 557 | } | 
|  | 558 |  | 
|  | 559 | /* | 
|  | 560 | * Insert the timer on the appropriate list before any timers that | 
|  | 561 | * expire later.  This must be called with the tasklist_lock held | 
|  | 562 | * for reading, and interrupts disabled. | 
|  | 563 | */ | 
|  | 564 | static void arm_timer(struct k_itimer *timer, union cpu_time_count now) | 
|  | 565 | { | 
|  | 566 | struct task_struct *p = timer->it.cpu.task; | 
|  | 567 | struct list_head *head, *listpos; | 
|  | 568 | struct cpu_timer_list *const nt = &timer->it.cpu; | 
|  | 569 | struct cpu_timer_list *next; | 
|  | 570 | unsigned long i; | 
|  | 571 |  | 
|  | 572 | head = (CPUCLOCK_PERTHREAD(timer->it_clock) ? | 
|  | 573 | p->cpu_timers : p->signal->cpu_timers); | 
|  | 574 | head += CPUCLOCK_WHICH(timer->it_clock); | 
|  | 575 |  | 
|  | 576 | BUG_ON(!irqs_disabled()); | 
|  | 577 | spin_lock(&p->sighand->siglock); | 
|  | 578 |  | 
|  | 579 | listpos = head; | 
|  | 580 | if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) { | 
|  | 581 | list_for_each_entry(next, head, entry) { | 
|  | 582 | if (next->expires.sched > nt->expires.sched) { | 
|  | 583 | listpos = &next->entry; | 
|  | 584 | break; | 
|  | 585 | } | 
|  | 586 | } | 
|  | 587 | } else { | 
|  | 588 | list_for_each_entry(next, head, entry) { | 
|  | 589 | if (cputime_gt(next->expires.cpu, nt->expires.cpu)) { | 
|  | 590 | listpos = &next->entry; | 
|  | 591 | break; | 
|  | 592 | } | 
|  | 593 | } | 
|  | 594 | } | 
|  | 595 | list_add(&nt->entry, listpos); | 
|  | 596 |  | 
|  | 597 | if (listpos == head) { | 
|  | 598 | /* | 
|  | 599 | * We are the new earliest-expiring timer. | 
|  | 600 | * If we are a thread timer, there can always | 
|  | 601 | * be a process timer telling us to stop earlier. | 
|  | 602 | */ | 
|  | 603 |  | 
|  | 604 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { | 
|  | 605 | switch (CPUCLOCK_WHICH(timer->it_clock)) { | 
|  | 606 | default: | 
|  | 607 | BUG(); | 
|  | 608 | case CPUCLOCK_PROF: | 
|  | 609 | if (cputime_eq(p->it_prof_expires, | 
|  | 610 | cputime_zero) || | 
|  | 611 | cputime_gt(p->it_prof_expires, | 
|  | 612 | nt->expires.cpu)) | 
|  | 613 | p->it_prof_expires = nt->expires.cpu; | 
|  | 614 | break; | 
|  | 615 | case CPUCLOCK_VIRT: | 
|  | 616 | if (cputime_eq(p->it_virt_expires, | 
|  | 617 | cputime_zero) || | 
|  | 618 | cputime_gt(p->it_virt_expires, | 
|  | 619 | nt->expires.cpu)) | 
|  | 620 | p->it_virt_expires = nt->expires.cpu; | 
|  | 621 | break; | 
|  | 622 | case CPUCLOCK_SCHED: | 
|  | 623 | if (p->it_sched_expires == 0 || | 
|  | 624 | p->it_sched_expires > nt->expires.sched) | 
|  | 625 | p->it_sched_expires = nt->expires.sched; | 
|  | 626 | break; | 
|  | 627 | } | 
|  | 628 | } else { | 
|  | 629 | /* | 
|  | 630 | * For a process timer, we must balance | 
|  | 631 | * all the live threads' expirations. | 
|  | 632 | */ | 
|  | 633 | switch (CPUCLOCK_WHICH(timer->it_clock)) { | 
|  | 634 | default: | 
|  | 635 | BUG(); | 
|  | 636 | case CPUCLOCK_VIRT: | 
|  | 637 | if (!cputime_eq(p->signal->it_virt_expires, | 
|  | 638 | cputime_zero) && | 
|  | 639 | cputime_lt(p->signal->it_virt_expires, | 
|  | 640 | timer->it.cpu.expires.cpu)) | 
|  | 641 | break; | 
|  | 642 | goto rebalance; | 
|  | 643 | case CPUCLOCK_PROF: | 
|  | 644 | if (!cputime_eq(p->signal->it_prof_expires, | 
|  | 645 | cputime_zero) && | 
|  | 646 | cputime_lt(p->signal->it_prof_expires, | 
|  | 647 | timer->it.cpu.expires.cpu)) | 
|  | 648 | break; | 
|  | 649 | i = p->signal->rlim[RLIMIT_CPU].rlim_cur; | 
|  | 650 | if (i != RLIM_INFINITY && | 
|  | 651 | i <= cputime_to_secs(timer->it.cpu.expires.cpu)) | 
|  | 652 | break; | 
|  | 653 | goto rebalance; | 
|  | 654 | case CPUCLOCK_SCHED: | 
|  | 655 | rebalance: | 
|  | 656 | process_timer_rebalance( | 
|  | 657 | timer->it.cpu.task, | 
|  | 658 | CPUCLOCK_WHICH(timer->it_clock), | 
|  | 659 | timer->it.cpu.expires, now); | 
|  | 660 | break; | 
|  | 661 | } | 
|  | 662 | } | 
|  | 663 | } | 
|  | 664 |  | 
|  | 665 | spin_unlock(&p->sighand->siglock); | 
|  | 666 | } | 
|  | 667 |  | 
|  | 668 | /* | 
|  | 669 | * The timer is locked, fire it and arrange for its reload. | 
|  | 670 | */ | 
|  | 671 | static void cpu_timer_fire(struct k_itimer *timer) | 
|  | 672 | { | 
|  | 673 | if (unlikely(timer->sigq == NULL)) { | 
|  | 674 | /* | 
|  | 675 | * This a special case for clock_nanosleep, | 
|  | 676 | * not a normal timer from sys_timer_create. | 
|  | 677 | */ | 
|  | 678 | wake_up_process(timer->it_process); | 
|  | 679 | timer->it.cpu.expires.sched = 0; | 
|  | 680 | } else if (timer->it.cpu.incr.sched == 0) { | 
|  | 681 | /* | 
|  | 682 | * One-shot timer.  Clear it as soon as it's fired. | 
|  | 683 | */ | 
|  | 684 | posix_timer_event(timer, 0); | 
|  | 685 | timer->it.cpu.expires.sched = 0; | 
|  | 686 | } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) { | 
|  | 687 | /* | 
|  | 688 | * The signal did not get queued because the signal | 
|  | 689 | * was ignored, so we won't get any callback to | 
|  | 690 | * reload the timer.  But we need to keep it | 
|  | 691 | * ticking in case the signal is deliverable next time. | 
|  | 692 | */ | 
|  | 693 | posix_cpu_timer_schedule(timer); | 
|  | 694 | } | 
|  | 695 | } | 
|  | 696 |  | 
|  | 697 | /* | 
|  | 698 | * Guts of sys_timer_settime for CPU timers. | 
|  | 699 | * This is called with the timer locked and interrupts disabled. | 
|  | 700 | * If we return TIMER_RETRY, it's necessary to release the timer's lock | 
|  | 701 | * and try again.  (This happens when the timer is in the middle of firing.) | 
|  | 702 | */ | 
|  | 703 | int posix_cpu_timer_set(struct k_itimer *timer, int flags, | 
|  | 704 | struct itimerspec *new, struct itimerspec *old) | 
|  | 705 | { | 
|  | 706 | struct task_struct *p = timer->it.cpu.task; | 
|  | 707 | union cpu_time_count old_expires, new_expires, val; | 
|  | 708 | int ret; | 
|  | 709 |  | 
|  | 710 | if (unlikely(p == NULL)) { | 
|  | 711 | /* | 
|  | 712 | * Timer refers to a dead task's clock. | 
|  | 713 | */ | 
|  | 714 | return -ESRCH; | 
|  | 715 | } | 
|  | 716 |  | 
|  | 717 | new_expires = timespec_to_sample(timer->it_clock, &new->it_value); | 
|  | 718 |  | 
|  | 719 | read_lock(&tasklist_lock); | 
|  | 720 | /* | 
|  | 721 | * We need the tasklist_lock to protect against reaping that | 
|  | 722 | * clears p->signal.  If p has just been reaped, we can no | 
|  | 723 | * longer get any information about it at all. | 
|  | 724 | */ | 
|  | 725 | if (unlikely(p->signal == NULL)) { | 
|  | 726 | read_unlock(&tasklist_lock); | 
|  | 727 | put_task_struct(p); | 
|  | 728 | timer->it.cpu.task = NULL; | 
|  | 729 | return -ESRCH; | 
|  | 730 | } | 
|  | 731 |  | 
|  | 732 | /* | 
|  | 733 | * Disarm any old timer after extracting its expiry time. | 
|  | 734 | */ | 
|  | 735 | BUG_ON(!irqs_disabled()); | 
|  | 736 | spin_lock(&p->sighand->siglock); | 
|  | 737 | old_expires = timer->it.cpu.expires; | 
|  | 738 | list_del_init(&timer->it.cpu.entry); | 
|  | 739 | spin_unlock(&p->sighand->siglock); | 
|  | 740 |  | 
|  | 741 | /* | 
|  | 742 | * We need to sample the current value to convert the new | 
|  | 743 | * value from to relative and absolute, and to convert the | 
|  | 744 | * old value from absolute to relative.  To set a process | 
|  | 745 | * timer, we need a sample to balance the thread expiry | 
|  | 746 | * times (in arm_timer).  With an absolute time, we must | 
|  | 747 | * check if it's already passed.  In short, we need a sample. | 
|  | 748 | */ | 
|  | 749 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { | 
|  | 750 | cpu_clock_sample(timer->it_clock, p, &val); | 
|  | 751 | } else { | 
|  | 752 | cpu_clock_sample_group(timer->it_clock, p, &val); | 
|  | 753 | } | 
|  | 754 |  | 
|  | 755 | if (old) { | 
|  | 756 | if (old_expires.sched == 0) { | 
|  | 757 | old->it_value.tv_sec = 0; | 
|  | 758 | old->it_value.tv_nsec = 0; | 
|  | 759 | } else { | 
|  | 760 | /* | 
|  | 761 | * Update the timer in case it has | 
|  | 762 | * overrun already.  If it has, | 
|  | 763 | * we'll report it as having overrun | 
|  | 764 | * and with the next reloaded timer | 
|  | 765 | * already ticking, though we are | 
|  | 766 | * swallowing that pending | 
|  | 767 | * notification here to install the | 
|  | 768 | * new setting. | 
|  | 769 | */ | 
|  | 770 | bump_cpu_timer(timer, val); | 
|  | 771 | if (cpu_time_before(timer->it_clock, val, | 
|  | 772 | timer->it.cpu.expires)) { | 
|  | 773 | old_expires = cpu_time_sub( | 
|  | 774 | timer->it_clock, | 
|  | 775 | timer->it.cpu.expires, val); | 
|  | 776 | sample_to_timespec(timer->it_clock, | 
|  | 777 | old_expires, | 
|  | 778 | &old->it_value); | 
|  | 779 | } else { | 
|  | 780 | old->it_value.tv_nsec = 1; | 
|  | 781 | old->it_value.tv_sec = 0; | 
|  | 782 | } | 
|  | 783 | } | 
|  | 784 | } | 
|  | 785 |  | 
|  | 786 | if (unlikely(timer->it.cpu.firing)) { | 
|  | 787 | /* | 
|  | 788 | * We are colliding with the timer actually firing. | 
|  | 789 | * Punt after filling in the timer's old value, and | 
|  | 790 | * disable this firing since we are already reporting | 
|  | 791 | * it as an overrun (thanks to bump_cpu_timer above). | 
|  | 792 | */ | 
|  | 793 | read_unlock(&tasklist_lock); | 
|  | 794 | timer->it.cpu.firing = -1; | 
|  | 795 | ret = TIMER_RETRY; | 
|  | 796 | goto out; | 
|  | 797 | } | 
|  | 798 |  | 
|  | 799 | if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) { | 
|  | 800 | cpu_time_add(timer->it_clock, &new_expires, val); | 
|  | 801 | } | 
|  | 802 |  | 
|  | 803 | /* | 
|  | 804 | * Install the new expiry time (or zero). | 
|  | 805 | * For a timer with no notification action, we don't actually | 
|  | 806 | * arm the timer (we'll just fake it for timer_gettime). | 
|  | 807 | */ | 
|  | 808 | timer->it.cpu.expires = new_expires; | 
|  | 809 | if (new_expires.sched != 0 && | 
|  | 810 | (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE && | 
|  | 811 | cpu_time_before(timer->it_clock, val, new_expires)) { | 
|  | 812 | arm_timer(timer, val); | 
|  | 813 | } | 
|  | 814 |  | 
|  | 815 | read_unlock(&tasklist_lock); | 
|  | 816 |  | 
|  | 817 | /* | 
|  | 818 | * Install the new reload setting, and | 
|  | 819 | * set up the signal and overrun bookkeeping. | 
|  | 820 | */ | 
|  | 821 | timer->it.cpu.incr = timespec_to_sample(timer->it_clock, | 
|  | 822 | &new->it_interval); | 
|  | 823 |  | 
|  | 824 | /* | 
|  | 825 | * This acts as a modification timestamp for the timer, | 
|  | 826 | * so any automatic reload attempt will punt on seeing | 
|  | 827 | * that we have reset the timer manually. | 
|  | 828 | */ | 
|  | 829 | timer->it_requeue_pending = (timer->it_requeue_pending + 2) & | 
|  | 830 | ~REQUEUE_PENDING; | 
|  | 831 | timer->it_overrun_last = 0; | 
|  | 832 | timer->it_overrun = -1; | 
|  | 833 |  | 
|  | 834 | if (new_expires.sched != 0 && | 
|  | 835 | (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE && | 
|  | 836 | !cpu_time_before(timer->it_clock, val, new_expires)) { | 
|  | 837 | /* | 
|  | 838 | * The designated time already passed, so we notify | 
|  | 839 | * immediately, even if the thread never runs to | 
|  | 840 | * accumulate more time on this clock. | 
|  | 841 | */ | 
|  | 842 | cpu_timer_fire(timer); | 
|  | 843 | } | 
|  | 844 |  | 
|  | 845 | ret = 0; | 
|  | 846 | out: | 
|  | 847 | if (old) { | 
|  | 848 | sample_to_timespec(timer->it_clock, | 
|  | 849 | timer->it.cpu.incr, &old->it_interval); | 
|  | 850 | } | 
|  | 851 | return ret; | 
|  | 852 | } | 
|  | 853 |  | 
|  | 854 | void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp) | 
|  | 855 | { | 
|  | 856 | union cpu_time_count now; | 
|  | 857 | struct task_struct *p = timer->it.cpu.task; | 
|  | 858 | int clear_dead; | 
|  | 859 |  | 
|  | 860 | /* | 
|  | 861 | * Easy part: convert the reload time. | 
|  | 862 | */ | 
|  | 863 | sample_to_timespec(timer->it_clock, | 
|  | 864 | timer->it.cpu.incr, &itp->it_interval); | 
|  | 865 |  | 
|  | 866 | if (timer->it.cpu.expires.sched == 0) {	/* Timer not armed at all.  */ | 
|  | 867 | itp->it_value.tv_sec = itp->it_value.tv_nsec = 0; | 
|  | 868 | return; | 
|  | 869 | } | 
|  | 870 |  | 
|  | 871 | if (unlikely(p == NULL)) { | 
|  | 872 | /* | 
|  | 873 | * This task already died and the timer will never fire. | 
|  | 874 | * In this case, expires is actually the dead value. | 
|  | 875 | */ | 
|  | 876 | dead: | 
|  | 877 | sample_to_timespec(timer->it_clock, timer->it.cpu.expires, | 
|  | 878 | &itp->it_value); | 
|  | 879 | return; | 
|  | 880 | } | 
|  | 881 |  | 
|  | 882 | /* | 
|  | 883 | * Sample the clock to take the difference with the expiry time. | 
|  | 884 | */ | 
|  | 885 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { | 
|  | 886 | cpu_clock_sample(timer->it_clock, p, &now); | 
|  | 887 | clear_dead = p->exit_state; | 
|  | 888 | } else { | 
|  | 889 | read_lock(&tasklist_lock); | 
|  | 890 | if (unlikely(p->signal == NULL)) { | 
|  | 891 | /* | 
|  | 892 | * The process has been reaped. | 
|  | 893 | * We can't even collect a sample any more. | 
|  | 894 | * Call the timer disarmed, nothing else to do. | 
|  | 895 | */ | 
|  | 896 | put_task_struct(p); | 
|  | 897 | timer->it.cpu.task = NULL; | 
|  | 898 | timer->it.cpu.expires.sched = 0; | 
|  | 899 | read_unlock(&tasklist_lock); | 
|  | 900 | goto dead; | 
|  | 901 | } else { | 
|  | 902 | cpu_clock_sample_group(timer->it_clock, p, &now); | 
|  | 903 | clear_dead = (unlikely(p->exit_state) && | 
|  | 904 | thread_group_empty(p)); | 
|  | 905 | } | 
|  | 906 | read_unlock(&tasklist_lock); | 
|  | 907 | } | 
|  | 908 |  | 
|  | 909 | if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) { | 
|  | 910 | if (timer->it.cpu.incr.sched == 0 && | 
|  | 911 | cpu_time_before(timer->it_clock, | 
|  | 912 | timer->it.cpu.expires, now)) { | 
|  | 913 | /* | 
|  | 914 | * Do-nothing timer expired and has no reload, | 
|  | 915 | * so it's as if it was never set. | 
|  | 916 | */ | 
|  | 917 | timer->it.cpu.expires.sched = 0; | 
|  | 918 | itp->it_value.tv_sec = itp->it_value.tv_nsec = 0; | 
|  | 919 | return; | 
|  | 920 | } | 
|  | 921 | /* | 
|  | 922 | * Account for any expirations and reloads that should | 
|  | 923 | * have happened. | 
|  | 924 | */ | 
|  | 925 | bump_cpu_timer(timer, now); | 
|  | 926 | } | 
|  | 927 |  | 
|  | 928 | if (unlikely(clear_dead)) { | 
|  | 929 | /* | 
|  | 930 | * We've noticed that the thread is dead, but | 
|  | 931 | * not yet reaped.  Take this opportunity to | 
|  | 932 | * drop our task ref. | 
|  | 933 | */ | 
|  | 934 | clear_dead_task(timer, now); | 
|  | 935 | goto dead; | 
|  | 936 | } | 
|  | 937 |  | 
|  | 938 | if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) { | 
|  | 939 | sample_to_timespec(timer->it_clock, | 
|  | 940 | cpu_time_sub(timer->it_clock, | 
|  | 941 | timer->it.cpu.expires, now), | 
|  | 942 | &itp->it_value); | 
|  | 943 | } else { | 
|  | 944 | /* | 
|  | 945 | * The timer should have expired already, but the firing | 
|  | 946 | * hasn't taken place yet.  Say it's just about to expire. | 
|  | 947 | */ | 
|  | 948 | itp->it_value.tv_nsec = 1; | 
|  | 949 | itp->it_value.tv_sec = 0; | 
|  | 950 | } | 
|  | 951 | } | 
|  | 952 |  | 
|  | 953 | /* | 
|  | 954 | * Check for any per-thread CPU timers that have fired and move them off | 
|  | 955 | * the tsk->cpu_timers[N] list onto the firing list.  Here we update the | 
|  | 956 | * tsk->it_*_expires values to reflect the remaining thread CPU timers. | 
|  | 957 | */ | 
|  | 958 | static void check_thread_timers(struct task_struct *tsk, | 
|  | 959 | struct list_head *firing) | 
|  | 960 | { | 
|  | 961 | struct list_head *timers = tsk->cpu_timers; | 
|  | 962 |  | 
|  | 963 | tsk->it_prof_expires = cputime_zero; | 
|  | 964 | while (!list_empty(timers)) { | 
|  | 965 | struct cpu_timer_list *t = list_entry(timers->next, | 
|  | 966 | struct cpu_timer_list, | 
|  | 967 | entry); | 
|  | 968 | if (cputime_lt(prof_ticks(tsk), t->expires.cpu)) { | 
|  | 969 | tsk->it_prof_expires = t->expires.cpu; | 
|  | 970 | break; | 
|  | 971 | } | 
|  | 972 | t->firing = 1; | 
|  | 973 | list_move_tail(&t->entry, firing); | 
|  | 974 | } | 
|  | 975 |  | 
|  | 976 | ++timers; | 
|  | 977 | tsk->it_virt_expires = cputime_zero; | 
|  | 978 | while (!list_empty(timers)) { | 
|  | 979 | struct cpu_timer_list *t = list_entry(timers->next, | 
|  | 980 | struct cpu_timer_list, | 
|  | 981 | entry); | 
|  | 982 | if (cputime_lt(virt_ticks(tsk), t->expires.cpu)) { | 
|  | 983 | tsk->it_virt_expires = t->expires.cpu; | 
|  | 984 | break; | 
|  | 985 | } | 
|  | 986 | t->firing = 1; | 
|  | 987 | list_move_tail(&t->entry, firing); | 
|  | 988 | } | 
|  | 989 |  | 
|  | 990 | ++timers; | 
|  | 991 | tsk->it_sched_expires = 0; | 
|  | 992 | while (!list_empty(timers)) { | 
|  | 993 | struct cpu_timer_list *t = list_entry(timers->next, | 
|  | 994 | struct cpu_timer_list, | 
|  | 995 | entry); | 
|  | 996 | if (tsk->sched_time < t->expires.sched) { | 
|  | 997 | tsk->it_sched_expires = t->expires.sched; | 
|  | 998 | break; | 
|  | 999 | } | 
|  | 1000 | t->firing = 1; | 
|  | 1001 | list_move_tail(&t->entry, firing); | 
|  | 1002 | } | 
|  | 1003 | } | 
|  | 1004 |  | 
|  | 1005 | /* | 
|  | 1006 | * Check for any per-thread CPU timers that have fired and move them | 
|  | 1007 | * off the tsk->*_timers list onto the firing list.  Per-thread timers | 
|  | 1008 | * have already been taken off. | 
|  | 1009 | */ | 
|  | 1010 | static void check_process_timers(struct task_struct *tsk, | 
|  | 1011 | struct list_head *firing) | 
|  | 1012 | { | 
|  | 1013 | struct signal_struct *const sig = tsk->signal; | 
|  | 1014 | cputime_t utime, stime, ptime, virt_expires, prof_expires; | 
|  | 1015 | unsigned long long sched_time, sched_expires; | 
|  | 1016 | struct task_struct *t; | 
|  | 1017 | struct list_head *timers = sig->cpu_timers; | 
|  | 1018 |  | 
|  | 1019 | /* | 
|  | 1020 | * Don't sample the current process CPU clocks if there are no timers. | 
|  | 1021 | */ | 
|  | 1022 | if (list_empty(&timers[CPUCLOCK_PROF]) && | 
|  | 1023 | cputime_eq(sig->it_prof_expires, cputime_zero) && | 
|  | 1024 | sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY && | 
|  | 1025 | list_empty(&timers[CPUCLOCK_VIRT]) && | 
|  | 1026 | cputime_eq(sig->it_virt_expires, cputime_zero) && | 
|  | 1027 | list_empty(&timers[CPUCLOCK_SCHED])) | 
|  | 1028 | return; | 
|  | 1029 |  | 
|  | 1030 | /* | 
|  | 1031 | * Collect the current process totals. | 
|  | 1032 | */ | 
|  | 1033 | utime = sig->utime; | 
|  | 1034 | stime = sig->stime; | 
|  | 1035 | sched_time = sig->sched_time; | 
|  | 1036 | t = tsk; | 
|  | 1037 | do { | 
|  | 1038 | utime = cputime_add(utime, t->utime); | 
|  | 1039 | stime = cputime_add(stime, t->stime); | 
|  | 1040 | sched_time += t->sched_time; | 
|  | 1041 | t = next_thread(t); | 
|  | 1042 | } while (t != tsk); | 
|  | 1043 | ptime = cputime_add(utime, stime); | 
|  | 1044 |  | 
|  | 1045 | prof_expires = cputime_zero; | 
|  | 1046 | while (!list_empty(timers)) { | 
|  | 1047 | struct cpu_timer_list *t = list_entry(timers->next, | 
|  | 1048 | struct cpu_timer_list, | 
|  | 1049 | entry); | 
|  | 1050 | if (cputime_lt(ptime, t->expires.cpu)) { | 
|  | 1051 | prof_expires = t->expires.cpu; | 
|  | 1052 | break; | 
|  | 1053 | } | 
|  | 1054 | t->firing = 1; | 
|  | 1055 | list_move_tail(&t->entry, firing); | 
|  | 1056 | } | 
|  | 1057 |  | 
|  | 1058 | ++timers; | 
|  | 1059 | virt_expires = cputime_zero; | 
|  | 1060 | while (!list_empty(timers)) { | 
|  | 1061 | struct cpu_timer_list *t = list_entry(timers->next, | 
|  | 1062 | struct cpu_timer_list, | 
|  | 1063 | entry); | 
|  | 1064 | if (cputime_lt(utime, t->expires.cpu)) { | 
|  | 1065 | virt_expires = t->expires.cpu; | 
|  | 1066 | break; | 
|  | 1067 | } | 
|  | 1068 | t->firing = 1; | 
|  | 1069 | list_move_tail(&t->entry, firing); | 
|  | 1070 | } | 
|  | 1071 |  | 
|  | 1072 | ++timers; | 
|  | 1073 | sched_expires = 0; | 
|  | 1074 | while (!list_empty(timers)) { | 
|  | 1075 | struct cpu_timer_list *t = list_entry(timers->next, | 
|  | 1076 | struct cpu_timer_list, | 
|  | 1077 | entry); | 
|  | 1078 | if (sched_time < t->expires.sched) { | 
|  | 1079 | sched_expires = t->expires.sched; | 
|  | 1080 | break; | 
|  | 1081 | } | 
|  | 1082 | t->firing = 1; | 
|  | 1083 | list_move_tail(&t->entry, firing); | 
|  | 1084 | } | 
|  | 1085 |  | 
|  | 1086 | /* | 
|  | 1087 | * Check for the special case process timers. | 
|  | 1088 | */ | 
|  | 1089 | if (!cputime_eq(sig->it_prof_expires, cputime_zero)) { | 
|  | 1090 | if (cputime_ge(ptime, sig->it_prof_expires)) { | 
|  | 1091 | /* ITIMER_PROF fires and reloads.  */ | 
|  | 1092 | sig->it_prof_expires = sig->it_prof_incr; | 
|  | 1093 | if (!cputime_eq(sig->it_prof_expires, cputime_zero)) { | 
|  | 1094 | sig->it_prof_expires = cputime_add( | 
|  | 1095 | sig->it_prof_expires, ptime); | 
|  | 1096 | } | 
|  | 1097 | __group_send_sig_info(SIGPROF, SEND_SIG_PRIV, tsk); | 
|  | 1098 | } | 
|  | 1099 | if (!cputime_eq(sig->it_prof_expires, cputime_zero) && | 
|  | 1100 | (cputime_eq(prof_expires, cputime_zero) || | 
|  | 1101 | cputime_lt(sig->it_prof_expires, prof_expires))) { | 
|  | 1102 | prof_expires = sig->it_prof_expires; | 
|  | 1103 | } | 
|  | 1104 | } | 
|  | 1105 | if (!cputime_eq(sig->it_virt_expires, cputime_zero)) { | 
|  | 1106 | if (cputime_ge(utime, sig->it_virt_expires)) { | 
|  | 1107 | /* ITIMER_VIRTUAL fires and reloads.  */ | 
|  | 1108 | sig->it_virt_expires = sig->it_virt_incr; | 
|  | 1109 | if (!cputime_eq(sig->it_virt_expires, cputime_zero)) { | 
|  | 1110 | sig->it_virt_expires = cputime_add( | 
|  | 1111 | sig->it_virt_expires, utime); | 
|  | 1112 | } | 
|  | 1113 | __group_send_sig_info(SIGVTALRM, SEND_SIG_PRIV, tsk); | 
|  | 1114 | } | 
|  | 1115 | if (!cputime_eq(sig->it_virt_expires, cputime_zero) && | 
|  | 1116 | (cputime_eq(virt_expires, cputime_zero) || | 
|  | 1117 | cputime_lt(sig->it_virt_expires, virt_expires))) { | 
|  | 1118 | virt_expires = sig->it_virt_expires; | 
|  | 1119 | } | 
|  | 1120 | } | 
|  | 1121 | if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) { | 
|  | 1122 | unsigned long psecs = cputime_to_secs(ptime); | 
|  | 1123 | cputime_t x; | 
|  | 1124 | if (psecs >= sig->rlim[RLIMIT_CPU].rlim_max) { | 
|  | 1125 | /* | 
|  | 1126 | * At the hard limit, we just die. | 
|  | 1127 | * No need to calculate anything else now. | 
|  | 1128 | */ | 
|  | 1129 | __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); | 
|  | 1130 | return; | 
|  | 1131 | } | 
|  | 1132 | if (psecs >= sig->rlim[RLIMIT_CPU].rlim_cur) { | 
|  | 1133 | /* | 
|  | 1134 | * At the soft limit, send a SIGXCPU every second. | 
|  | 1135 | */ | 
|  | 1136 | __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); | 
|  | 1137 | if (sig->rlim[RLIMIT_CPU].rlim_cur | 
|  | 1138 | < sig->rlim[RLIMIT_CPU].rlim_max) { | 
|  | 1139 | sig->rlim[RLIMIT_CPU].rlim_cur++; | 
|  | 1140 | } | 
|  | 1141 | } | 
|  | 1142 | x = secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur); | 
|  | 1143 | if (cputime_eq(prof_expires, cputime_zero) || | 
|  | 1144 | cputime_lt(x, prof_expires)) { | 
|  | 1145 | prof_expires = x; | 
|  | 1146 | } | 
|  | 1147 | } | 
|  | 1148 |  | 
|  | 1149 | if (!cputime_eq(prof_expires, cputime_zero) || | 
|  | 1150 | !cputime_eq(virt_expires, cputime_zero) || | 
|  | 1151 | sched_expires != 0) { | 
|  | 1152 | /* | 
|  | 1153 | * Rebalance the threads' expiry times for the remaining | 
|  | 1154 | * process CPU timers. | 
|  | 1155 | */ | 
|  | 1156 |  | 
|  | 1157 | cputime_t prof_left, virt_left, ticks; | 
|  | 1158 | unsigned long long sched_left, sched; | 
|  | 1159 | const unsigned int nthreads = atomic_read(&sig->live); | 
|  | 1160 |  | 
|  | 1161 | prof_left = cputime_sub(prof_expires, utime); | 
|  | 1162 | prof_left = cputime_sub(prof_left, stime); | 
|  | 1163 | prof_left = cputime_div(prof_left, nthreads); | 
|  | 1164 | virt_left = cputime_sub(virt_expires, utime); | 
|  | 1165 | virt_left = cputime_div(virt_left, nthreads); | 
|  | 1166 | if (sched_expires) { | 
|  | 1167 | sched_left = sched_expires - sched_time; | 
|  | 1168 | do_div(sched_left, nthreads); | 
|  | 1169 | } else { | 
|  | 1170 | sched_left = 0; | 
|  | 1171 | } | 
|  | 1172 | t = tsk; | 
|  | 1173 | do { | 
|  | 1174 | ticks = cputime_add(cputime_add(t->utime, t->stime), | 
|  | 1175 | prof_left); | 
|  | 1176 | if (!cputime_eq(prof_expires, cputime_zero) && | 
|  | 1177 | (cputime_eq(t->it_prof_expires, cputime_zero) || | 
|  | 1178 | cputime_gt(t->it_prof_expires, ticks))) { | 
|  | 1179 | t->it_prof_expires = ticks; | 
|  | 1180 | } | 
|  | 1181 |  | 
|  | 1182 | ticks = cputime_add(t->utime, virt_left); | 
|  | 1183 | if (!cputime_eq(virt_expires, cputime_zero) && | 
|  | 1184 | (cputime_eq(t->it_virt_expires, cputime_zero) || | 
|  | 1185 | cputime_gt(t->it_virt_expires, ticks))) { | 
|  | 1186 | t->it_virt_expires = ticks; | 
|  | 1187 | } | 
|  | 1188 |  | 
|  | 1189 | sched = t->sched_time + sched_left; | 
|  | 1190 | if (sched_expires && (t->it_sched_expires == 0 || | 
|  | 1191 | t->it_sched_expires > sched)) { | 
|  | 1192 | t->it_sched_expires = sched; | 
|  | 1193 | } | 
|  | 1194 |  | 
|  | 1195 | do { | 
|  | 1196 | t = next_thread(t); | 
|  | 1197 | } while (unlikely(t->exit_state)); | 
|  | 1198 | } while (t != tsk); | 
|  | 1199 | } | 
|  | 1200 | } | 
|  | 1201 |  | 
|  | 1202 | /* | 
|  | 1203 | * This is called from the signal code (via do_schedule_next_timer) | 
|  | 1204 | * when the last timer signal was delivered and we have to reload the timer. | 
|  | 1205 | */ | 
|  | 1206 | void posix_cpu_timer_schedule(struct k_itimer *timer) | 
|  | 1207 | { | 
|  | 1208 | struct task_struct *p = timer->it.cpu.task; | 
|  | 1209 | union cpu_time_count now; | 
|  | 1210 |  | 
|  | 1211 | if (unlikely(p == NULL)) | 
|  | 1212 | /* | 
|  | 1213 | * The task was cleaned up already, no future firings. | 
|  | 1214 | */ | 
|  | 1215 | return; | 
|  | 1216 |  | 
|  | 1217 | /* | 
|  | 1218 | * Fetch the current sample and update the timer's expiry time. | 
|  | 1219 | */ | 
|  | 1220 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { | 
|  | 1221 | cpu_clock_sample(timer->it_clock, p, &now); | 
|  | 1222 | bump_cpu_timer(timer, now); | 
|  | 1223 | if (unlikely(p->exit_state)) { | 
|  | 1224 | clear_dead_task(timer, now); | 
|  | 1225 | return; | 
|  | 1226 | } | 
|  | 1227 | read_lock(&tasklist_lock); /* arm_timer needs it.  */ | 
|  | 1228 | } else { | 
|  | 1229 | read_lock(&tasklist_lock); | 
|  | 1230 | if (unlikely(p->signal == NULL)) { | 
|  | 1231 | /* | 
|  | 1232 | * The process has been reaped. | 
|  | 1233 | * We can't even collect a sample any more. | 
|  | 1234 | */ | 
|  | 1235 | put_task_struct(p); | 
|  | 1236 | timer->it.cpu.task = p = NULL; | 
|  | 1237 | timer->it.cpu.expires.sched = 0; | 
|  | 1238 | read_unlock(&tasklist_lock); | 
|  | 1239 | return; | 
|  | 1240 | } else if (unlikely(p->exit_state) && thread_group_empty(p)) { | 
|  | 1241 | /* | 
|  | 1242 | * We've noticed that the thread is dead, but | 
|  | 1243 | * not yet reaped.  Take this opportunity to | 
|  | 1244 | * drop our task ref. | 
|  | 1245 | */ | 
|  | 1246 | clear_dead_task(timer, now); | 
|  | 1247 | read_unlock(&tasklist_lock); | 
|  | 1248 | return; | 
|  | 1249 | } | 
|  | 1250 | cpu_clock_sample_group(timer->it_clock, p, &now); | 
|  | 1251 | bump_cpu_timer(timer, now); | 
|  | 1252 | /* Leave the tasklist_lock locked for the call below.  */ | 
|  | 1253 | } | 
|  | 1254 |  | 
|  | 1255 | /* | 
|  | 1256 | * Now re-arm for the new expiry time. | 
|  | 1257 | */ | 
|  | 1258 | arm_timer(timer, now); | 
|  | 1259 |  | 
|  | 1260 | read_unlock(&tasklist_lock); | 
|  | 1261 | } | 
|  | 1262 |  | 
|  | 1263 | /* | 
|  | 1264 | * This is called from the timer interrupt handler.  The irq handler has | 
|  | 1265 | * already updated our counts.  We need to check if any timers fire now. | 
|  | 1266 | * Interrupts are disabled. | 
|  | 1267 | */ | 
|  | 1268 | void run_posix_cpu_timers(struct task_struct *tsk) | 
|  | 1269 | { | 
|  | 1270 | LIST_HEAD(firing); | 
|  | 1271 | struct k_itimer *timer, *next; | 
|  | 1272 |  | 
|  | 1273 | BUG_ON(!irqs_disabled()); | 
|  | 1274 |  | 
|  | 1275 | #define UNEXPIRED(clock) \ | 
|  | 1276 | (cputime_eq(tsk->it_##clock##_expires, cputime_zero) || \ | 
|  | 1277 | cputime_lt(clock##_ticks(tsk), tsk->it_##clock##_expires)) | 
|  | 1278 |  | 
|  | 1279 | if (UNEXPIRED(prof) && UNEXPIRED(virt) && | 
|  | 1280 | (tsk->it_sched_expires == 0 || | 
|  | 1281 | tsk->sched_time < tsk->it_sched_expires)) | 
|  | 1282 | return; | 
|  | 1283 |  | 
|  | 1284 | #undef	UNEXPIRED | 
|  | 1285 |  | 
|  | 1286 | BUG_ON(tsk->exit_state); | 
|  | 1287 |  | 
|  | 1288 | /* | 
|  | 1289 | * Double-check with locks held. | 
|  | 1290 | */ | 
|  | 1291 | read_lock(&tasklist_lock); | 
|  | 1292 | spin_lock(&tsk->sighand->siglock); | 
|  | 1293 |  | 
|  | 1294 | /* | 
|  | 1295 | * Here we take off tsk->cpu_timers[N] and tsk->signal->cpu_timers[N] | 
|  | 1296 | * all the timers that are firing, and put them on the firing list. | 
|  | 1297 | */ | 
|  | 1298 | check_thread_timers(tsk, &firing); | 
|  | 1299 | check_process_timers(tsk, &firing); | 
|  | 1300 |  | 
|  | 1301 | /* | 
|  | 1302 | * We must release these locks before taking any timer's lock. | 
|  | 1303 | * There is a potential race with timer deletion here, as the | 
|  | 1304 | * siglock now protects our private firing list.  We have set | 
|  | 1305 | * the firing flag in each timer, so that a deletion attempt | 
|  | 1306 | * that gets the timer lock before we do will give it up and | 
|  | 1307 | * spin until we've taken care of that timer below. | 
|  | 1308 | */ | 
|  | 1309 | spin_unlock(&tsk->sighand->siglock); | 
|  | 1310 | read_unlock(&tasklist_lock); | 
|  | 1311 |  | 
|  | 1312 | /* | 
|  | 1313 | * Now that all the timers on our list have the firing flag, | 
|  | 1314 | * noone will touch their list entries but us.  We'll take | 
|  | 1315 | * each timer's lock before clearing its firing flag, so no | 
|  | 1316 | * timer call will interfere. | 
|  | 1317 | */ | 
|  | 1318 | list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) { | 
|  | 1319 | int firing; | 
|  | 1320 | spin_lock(&timer->it_lock); | 
|  | 1321 | list_del_init(&timer->it.cpu.entry); | 
|  | 1322 | firing = timer->it.cpu.firing; | 
|  | 1323 | timer->it.cpu.firing = 0; | 
|  | 1324 | /* | 
|  | 1325 | * The firing flag is -1 if we collided with a reset | 
|  | 1326 | * of the timer, which already reported this | 
|  | 1327 | * almost-firing as an overrun.  So don't generate an event. | 
|  | 1328 | */ | 
|  | 1329 | if (likely(firing >= 0)) { | 
|  | 1330 | cpu_timer_fire(timer); | 
|  | 1331 | } | 
|  | 1332 | spin_unlock(&timer->it_lock); | 
|  | 1333 | } | 
|  | 1334 | } | 
|  | 1335 |  | 
|  | 1336 | /* | 
|  | 1337 | * Set one of the process-wide special case CPU timers. | 
|  | 1338 | * The tasklist_lock and tsk->sighand->siglock must be held by the caller. | 
|  | 1339 | * The oldval argument is null for the RLIMIT_CPU timer, where *newval is | 
|  | 1340 | * absolute; non-null for ITIMER_*, where *newval is relative and we update | 
|  | 1341 | * it to be absolute, *oldval is absolute and we update it to be relative. | 
|  | 1342 | */ | 
|  | 1343 | void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx, | 
|  | 1344 | cputime_t *newval, cputime_t *oldval) | 
|  | 1345 | { | 
|  | 1346 | union cpu_time_count now; | 
|  | 1347 | struct list_head *head; | 
|  | 1348 |  | 
|  | 1349 | BUG_ON(clock_idx == CPUCLOCK_SCHED); | 
|  | 1350 | cpu_clock_sample_group_locked(clock_idx, tsk, &now); | 
|  | 1351 |  | 
|  | 1352 | if (oldval) { | 
|  | 1353 | if (!cputime_eq(*oldval, cputime_zero)) { | 
|  | 1354 | if (cputime_le(*oldval, now.cpu)) { | 
|  | 1355 | /* Just about to fire. */ | 
|  | 1356 | *oldval = jiffies_to_cputime(1); | 
|  | 1357 | } else { | 
|  | 1358 | *oldval = cputime_sub(*oldval, now.cpu); | 
|  | 1359 | } | 
|  | 1360 | } | 
|  | 1361 |  | 
|  | 1362 | if (cputime_eq(*newval, cputime_zero)) | 
|  | 1363 | return; | 
|  | 1364 | *newval = cputime_add(*newval, now.cpu); | 
|  | 1365 |  | 
|  | 1366 | /* | 
|  | 1367 | * If the RLIMIT_CPU timer will expire before the | 
|  | 1368 | * ITIMER_PROF timer, we have nothing else to do. | 
|  | 1369 | */ | 
|  | 1370 | if (tsk->signal->rlim[RLIMIT_CPU].rlim_cur | 
|  | 1371 | < cputime_to_secs(*newval)) | 
|  | 1372 | return; | 
|  | 1373 | } | 
|  | 1374 |  | 
|  | 1375 | /* | 
|  | 1376 | * Check whether there are any process timers already set to fire | 
|  | 1377 | * before this one.  If so, we don't have anything more to do. | 
|  | 1378 | */ | 
|  | 1379 | head = &tsk->signal->cpu_timers[clock_idx]; | 
|  | 1380 | if (list_empty(head) || | 
|  | 1381 | cputime_ge(list_entry(head->next, | 
|  | 1382 | struct cpu_timer_list, entry)->expires.cpu, | 
|  | 1383 | *newval)) { | 
|  | 1384 | /* | 
|  | 1385 | * Rejigger each thread's expiry time so that one will | 
|  | 1386 | * notice before we hit the process-cumulative expiry time. | 
|  | 1387 | */ | 
|  | 1388 | union cpu_time_count expires = { .sched = 0 }; | 
|  | 1389 | expires.cpu = *newval; | 
|  | 1390 | process_timer_rebalance(tsk, clock_idx, expires, now); | 
|  | 1391 | } | 
|  | 1392 | } | 
|  | 1393 |  | 
|  | 1394 | static long posix_cpu_clock_nanosleep_restart(struct restart_block *); | 
|  | 1395 |  | 
|  | 1396 | int posix_cpu_nsleep(clockid_t which_clock, int flags, | 
|  | 1397 | struct timespec *rqtp) | 
|  | 1398 | { | 
|  | 1399 | struct restart_block *restart_block = | 
|  | 1400 | ¤t_thread_info()->restart_block; | 
|  | 1401 | struct k_itimer timer; | 
|  | 1402 | int error; | 
|  | 1403 |  | 
|  | 1404 | /* | 
|  | 1405 | * Diagnose required errors first. | 
|  | 1406 | */ | 
|  | 1407 | if (CPUCLOCK_PERTHREAD(which_clock) && | 
|  | 1408 | (CPUCLOCK_PID(which_clock) == 0 || | 
|  | 1409 | CPUCLOCK_PID(which_clock) == current->pid)) | 
|  | 1410 | return -EINVAL; | 
|  | 1411 |  | 
|  | 1412 | /* | 
|  | 1413 | * Set up a temporary timer and then wait for it to go off. | 
|  | 1414 | */ | 
|  | 1415 | memset(&timer, 0, sizeof timer); | 
|  | 1416 | spin_lock_init(&timer.it_lock); | 
|  | 1417 | timer.it_clock = which_clock; | 
|  | 1418 | timer.it_overrun = -1; | 
|  | 1419 | error = posix_cpu_timer_create(&timer); | 
|  | 1420 | timer.it_process = current; | 
|  | 1421 | if (!error) { | 
|  | 1422 | struct timespec __user *rmtp; | 
|  | 1423 | static struct itimerspec zero_it; | 
|  | 1424 | struct itimerspec it = { .it_value = *rqtp, | 
|  | 1425 | .it_interval = {} }; | 
|  | 1426 |  | 
|  | 1427 | spin_lock_irq(&timer.it_lock); | 
|  | 1428 | error = posix_cpu_timer_set(&timer, flags, &it, NULL); | 
|  | 1429 | if (error) { | 
|  | 1430 | spin_unlock_irq(&timer.it_lock); | 
|  | 1431 | return error; | 
|  | 1432 | } | 
|  | 1433 |  | 
|  | 1434 | while (!signal_pending(current)) { | 
|  | 1435 | if (timer.it.cpu.expires.sched == 0) { | 
|  | 1436 | /* | 
|  | 1437 | * Our timer fired and was reset. | 
|  | 1438 | */ | 
|  | 1439 | spin_unlock_irq(&timer.it_lock); | 
|  | 1440 | return 0; | 
|  | 1441 | } | 
|  | 1442 |  | 
|  | 1443 | /* | 
|  | 1444 | * Block until cpu_timer_fire (or a signal) wakes us. | 
|  | 1445 | */ | 
|  | 1446 | __set_current_state(TASK_INTERRUPTIBLE); | 
|  | 1447 | spin_unlock_irq(&timer.it_lock); | 
|  | 1448 | schedule(); | 
|  | 1449 | spin_lock_irq(&timer.it_lock); | 
|  | 1450 | } | 
|  | 1451 |  | 
|  | 1452 | /* | 
|  | 1453 | * We were interrupted by a signal. | 
|  | 1454 | */ | 
|  | 1455 | sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp); | 
|  | 1456 | posix_cpu_timer_set(&timer, 0, &zero_it, &it); | 
|  | 1457 | spin_unlock_irq(&timer.it_lock); | 
|  | 1458 |  | 
|  | 1459 | if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) { | 
|  | 1460 | /* | 
|  | 1461 | * It actually did fire already. | 
|  | 1462 | */ | 
|  | 1463 | return 0; | 
|  | 1464 | } | 
|  | 1465 |  | 
|  | 1466 | /* | 
|  | 1467 | * Report back to the user the time still remaining. | 
|  | 1468 | */ | 
|  | 1469 | rmtp = (struct timespec __user *) restart_block->arg1; | 
|  | 1470 | if (rmtp != NULL && !(flags & TIMER_ABSTIME) && | 
|  | 1471 | copy_to_user(rmtp, &it.it_value, sizeof *rmtp)) | 
|  | 1472 | return -EFAULT; | 
|  | 1473 |  | 
|  | 1474 | restart_block->fn = posix_cpu_clock_nanosleep_restart; | 
|  | 1475 | /* Caller already set restart_block->arg1 */ | 
|  | 1476 | restart_block->arg0 = which_clock; | 
|  | 1477 | restart_block->arg2 = rqtp->tv_sec; | 
|  | 1478 | restart_block->arg3 = rqtp->tv_nsec; | 
|  | 1479 |  | 
|  | 1480 | error = -ERESTART_RESTARTBLOCK; | 
|  | 1481 | } | 
|  | 1482 |  | 
|  | 1483 | return error; | 
|  | 1484 | } | 
|  | 1485 |  | 
|  | 1486 | static long | 
|  | 1487 | posix_cpu_clock_nanosleep_restart(struct restart_block *restart_block) | 
|  | 1488 | { | 
|  | 1489 | clockid_t which_clock = restart_block->arg0; | 
|  | 1490 | struct timespec t = { .tv_sec = restart_block->arg2, | 
|  | 1491 | .tv_nsec = restart_block->arg3 }; | 
|  | 1492 | restart_block->fn = do_no_restart_syscall; | 
|  | 1493 | return posix_cpu_nsleep(which_clock, TIMER_ABSTIME, &t); | 
|  | 1494 | } | 
|  | 1495 |  | 
|  | 1496 |  | 
|  | 1497 | #define PROCESS_CLOCK	MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED) | 
|  | 1498 | #define THREAD_CLOCK	MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED) | 
|  | 1499 |  | 
|  | 1500 | static int process_cpu_clock_getres(clockid_t which_clock, struct timespec *tp) | 
|  | 1501 | { | 
|  | 1502 | return posix_cpu_clock_getres(PROCESS_CLOCK, tp); | 
|  | 1503 | } | 
|  | 1504 | static int process_cpu_clock_get(clockid_t which_clock, struct timespec *tp) | 
|  | 1505 | { | 
|  | 1506 | return posix_cpu_clock_get(PROCESS_CLOCK, tp); | 
|  | 1507 | } | 
|  | 1508 | static int process_cpu_timer_create(struct k_itimer *timer) | 
|  | 1509 | { | 
|  | 1510 | timer->it_clock = PROCESS_CLOCK; | 
|  | 1511 | return posix_cpu_timer_create(timer); | 
|  | 1512 | } | 
|  | 1513 | static int process_cpu_nsleep(clockid_t which_clock, int flags, | 
|  | 1514 | struct timespec *rqtp) | 
|  | 1515 | { | 
|  | 1516 | return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp); | 
|  | 1517 | } | 
|  | 1518 | static int thread_cpu_clock_getres(clockid_t which_clock, struct timespec *tp) | 
|  | 1519 | { | 
|  | 1520 | return posix_cpu_clock_getres(THREAD_CLOCK, tp); | 
|  | 1521 | } | 
|  | 1522 | static int thread_cpu_clock_get(clockid_t which_clock, struct timespec *tp) | 
|  | 1523 | { | 
|  | 1524 | return posix_cpu_clock_get(THREAD_CLOCK, tp); | 
|  | 1525 | } | 
|  | 1526 | static int thread_cpu_timer_create(struct k_itimer *timer) | 
|  | 1527 | { | 
|  | 1528 | timer->it_clock = THREAD_CLOCK; | 
|  | 1529 | return posix_cpu_timer_create(timer); | 
|  | 1530 | } | 
|  | 1531 | static int thread_cpu_nsleep(clockid_t which_clock, int flags, | 
|  | 1532 | struct timespec *rqtp) | 
|  | 1533 | { | 
|  | 1534 | return -EINVAL; | 
|  | 1535 | } | 
|  | 1536 |  | 
|  | 1537 | static __init int init_posix_cpu_timers(void) | 
|  | 1538 | { | 
|  | 1539 | struct k_clock process = { | 
|  | 1540 | .clock_getres = process_cpu_clock_getres, | 
|  | 1541 | .clock_get = process_cpu_clock_get, | 
|  | 1542 | .clock_set = do_posix_clock_nosettime, | 
|  | 1543 | .timer_create = process_cpu_timer_create, | 
|  | 1544 | .nsleep = process_cpu_nsleep, | 
|  | 1545 | }; | 
|  | 1546 | struct k_clock thread = { | 
|  | 1547 | .clock_getres = thread_cpu_clock_getres, | 
|  | 1548 | .clock_get = thread_cpu_clock_get, | 
|  | 1549 | .clock_set = do_posix_clock_nosettime, | 
|  | 1550 | .timer_create = thread_cpu_timer_create, | 
|  | 1551 | .nsleep = thread_cpu_nsleep, | 
|  | 1552 | }; | 
|  | 1553 |  | 
|  | 1554 | register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process); | 
|  | 1555 | register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread); | 
|  | 1556 |  | 
|  | 1557 | return 0; | 
|  | 1558 | } | 
|  | 1559 | __initcall(init_posix_cpu_timers); |