| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | *  linux/kernel/timer.c | 
|  | 3 | * | 
|  | 4 | *  Kernel internal timers, kernel timekeeping, basic process system calls | 
|  | 5 | * | 
|  | 6 | *  Copyright (C) 1991, 1992  Linus Torvalds | 
|  | 7 | * | 
|  | 8 | *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better. | 
|  | 9 | * | 
|  | 10 | *  1997-09-10  Updated NTP code according to technical memorandum Jan '96 | 
|  | 11 | *              "A Kernel Model for Precision Timekeeping" by Dave Mills | 
|  | 12 | *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to | 
|  | 13 | *              serialize accesses to xtime/lost_ticks). | 
|  | 14 | *                              Copyright (C) 1998  Andrea Arcangeli | 
|  | 15 | *  1999-03-10  Improved NTP compatibility by Ulrich Windl | 
|  | 16 | *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love | 
|  | 17 | *  2000-10-05  Implemented scalable SMP per-CPU timer handling. | 
|  | 18 | *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar | 
|  | 19 | *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar | 
|  | 20 | */ | 
|  | 21 |  | 
|  | 22 | #include <linux/kernel_stat.h> | 
|  | 23 | #include <linux/module.h> | 
|  | 24 | #include <linux/interrupt.h> | 
|  | 25 | #include <linux/percpu.h> | 
|  | 26 | #include <linux/init.h> | 
|  | 27 | #include <linux/mm.h> | 
|  | 28 | #include <linux/swap.h> | 
|  | 29 | #include <linux/notifier.h> | 
|  | 30 | #include <linux/thread_info.h> | 
|  | 31 | #include <linux/time.h> | 
|  | 32 | #include <linux/jiffies.h> | 
|  | 33 | #include <linux/posix-timers.h> | 
|  | 34 | #include <linux/cpu.h> | 
|  | 35 | #include <linux/syscalls.h> | 
|  | 36 |  | 
|  | 37 | #include <asm/uaccess.h> | 
|  | 38 | #include <asm/unistd.h> | 
|  | 39 | #include <asm/div64.h> | 
|  | 40 | #include <asm/timex.h> | 
|  | 41 | #include <asm/io.h> | 
|  | 42 |  | 
|  | 43 | #ifdef CONFIG_TIME_INTERPOLATION | 
|  | 44 | static void time_interpolator_update(long delta_nsec); | 
|  | 45 | #else | 
|  | 46 | #define time_interpolator_update(x) | 
|  | 47 | #endif | 
|  | 48 |  | 
|  | 49 | /* | 
|  | 50 | * per-CPU timer vector definitions: | 
|  | 51 | */ | 
|  | 52 |  | 
|  | 53 | #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6) | 
|  | 54 | #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8) | 
|  | 55 | #define TVN_SIZE (1 << TVN_BITS) | 
|  | 56 | #define TVR_SIZE (1 << TVR_BITS) | 
|  | 57 | #define TVN_MASK (TVN_SIZE - 1) | 
|  | 58 | #define TVR_MASK (TVR_SIZE - 1) | 
|  | 59 |  | 
|  | 60 | typedef struct tvec_s { | 
|  | 61 | struct list_head vec[TVN_SIZE]; | 
|  | 62 | } tvec_t; | 
|  | 63 |  | 
|  | 64 | typedef struct tvec_root_s { | 
|  | 65 | struct list_head vec[TVR_SIZE]; | 
|  | 66 | } tvec_root_t; | 
|  | 67 |  | 
|  | 68 | struct tvec_t_base_s { | 
|  | 69 | spinlock_t lock; | 
|  | 70 | unsigned long timer_jiffies; | 
|  | 71 | struct timer_list *running_timer; | 
|  | 72 | tvec_root_t tv1; | 
|  | 73 | tvec_t tv2; | 
|  | 74 | tvec_t tv3; | 
|  | 75 | tvec_t tv4; | 
|  | 76 | tvec_t tv5; | 
|  | 77 | } ____cacheline_aligned_in_smp; | 
|  | 78 |  | 
|  | 79 | typedef struct tvec_t_base_s tvec_base_t; | 
|  | 80 |  | 
|  | 81 | static inline void set_running_timer(tvec_base_t *base, | 
|  | 82 | struct timer_list *timer) | 
|  | 83 | { | 
|  | 84 | #ifdef CONFIG_SMP | 
|  | 85 | base->running_timer = timer; | 
|  | 86 | #endif | 
|  | 87 | } | 
|  | 88 |  | 
|  | 89 | /* Fake initialization */ | 
|  | 90 | static DEFINE_PER_CPU(tvec_base_t, tvec_bases) = { SPIN_LOCK_UNLOCKED }; | 
|  | 91 |  | 
|  | 92 | static void check_timer_failed(struct timer_list *timer) | 
|  | 93 | { | 
|  | 94 | static int whine_count; | 
|  | 95 | if (whine_count < 16) { | 
|  | 96 | whine_count++; | 
|  | 97 | printk("Uninitialised timer!\n"); | 
|  | 98 | printk("This is just a warning.  Your computer is OK\n"); | 
|  | 99 | printk("function=0x%p, data=0x%lx\n", | 
|  | 100 | timer->function, timer->data); | 
|  | 101 | dump_stack(); | 
|  | 102 | } | 
|  | 103 | /* | 
|  | 104 | * Now fix it up | 
|  | 105 | */ | 
|  | 106 | spin_lock_init(&timer->lock); | 
|  | 107 | timer->magic = TIMER_MAGIC; | 
|  | 108 | } | 
|  | 109 |  | 
|  | 110 | static inline void check_timer(struct timer_list *timer) | 
|  | 111 | { | 
|  | 112 | if (timer->magic != TIMER_MAGIC) | 
|  | 113 | check_timer_failed(timer); | 
|  | 114 | } | 
|  | 115 |  | 
|  | 116 |  | 
|  | 117 | static void internal_add_timer(tvec_base_t *base, struct timer_list *timer) | 
|  | 118 | { | 
|  | 119 | unsigned long expires = timer->expires; | 
|  | 120 | unsigned long idx = expires - base->timer_jiffies; | 
|  | 121 | struct list_head *vec; | 
|  | 122 |  | 
|  | 123 | if (idx < TVR_SIZE) { | 
|  | 124 | int i = expires & TVR_MASK; | 
|  | 125 | vec = base->tv1.vec + i; | 
|  | 126 | } else if (idx < 1 << (TVR_BITS + TVN_BITS)) { | 
|  | 127 | int i = (expires >> TVR_BITS) & TVN_MASK; | 
|  | 128 | vec = base->tv2.vec + i; | 
|  | 129 | } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) { | 
|  | 130 | int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK; | 
|  | 131 | vec = base->tv3.vec + i; | 
|  | 132 | } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) { | 
|  | 133 | int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK; | 
|  | 134 | vec = base->tv4.vec + i; | 
|  | 135 | } else if ((signed long) idx < 0) { | 
|  | 136 | /* | 
|  | 137 | * Can happen if you add a timer with expires == jiffies, | 
|  | 138 | * or you set a timer to go off in the past | 
|  | 139 | */ | 
|  | 140 | vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK); | 
|  | 141 | } else { | 
|  | 142 | int i; | 
|  | 143 | /* If the timeout is larger than 0xffffffff on 64-bit | 
|  | 144 | * architectures then we use the maximum timeout: | 
|  | 145 | */ | 
|  | 146 | if (idx > 0xffffffffUL) { | 
|  | 147 | idx = 0xffffffffUL; | 
|  | 148 | expires = idx + base->timer_jiffies; | 
|  | 149 | } | 
|  | 150 | i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK; | 
|  | 151 | vec = base->tv5.vec + i; | 
|  | 152 | } | 
|  | 153 | /* | 
|  | 154 | * Timers are FIFO: | 
|  | 155 | */ | 
|  | 156 | list_add_tail(&timer->entry, vec); | 
|  | 157 | } | 
|  | 158 |  | 
|  | 159 | int __mod_timer(struct timer_list *timer, unsigned long expires) | 
|  | 160 | { | 
|  | 161 | tvec_base_t *old_base, *new_base; | 
|  | 162 | unsigned long flags; | 
|  | 163 | int ret = 0; | 
|  | 164 |  | 
|  | 165 | BUG_ON(!timer->function); | 
|  | 166 |  | 
|  | 167 | check_timer(timer); | 
|  | 168 |  | 
|  | 169 | spin_lock_irqsave(&timer->lock, flags); | 
|  | 170 | new_base = &__get_cpu_var(tvec_bases); | 
|  | 171 | repeat: | 
|  | 172 | old_base = timer->base; | 
|  | 173 |  | 
|  | 174 | /* | 
|  | 175 | * Prevent deadlocks via ordering by old_base < new_base. | 
|  | 176 | */ | 
|  | 177 | if (old_base && (new_base != old_base)) { | 
|  | 178 | if (old_base < new_base) { | 
|  | 179 | spin_lock(&new_base->lock); | 
|  | 180 | spin_lock(&old_base->lock); | 
|  | 181 | } else { | 
|  | 182 | spin_lock(&old_base->lock); | 
|  | 183 | spin_lock(&new_base->lock); | 
|  | 184 | } | 
|  | 185 | /* | 
|  | 186 | * The timer base might have been cancelled while we were | 
|  | 187 | * trying to take the lock(s): | 
|  | 188 | */ | 
|  | 189 | if (timer->base != old_base) { | 
|  | 190 | spin_unlock(&new_base->lock); | 
|  | 191 | spin_unlock(&old_base->lock); | 
|  | 192 | goto repeat; | 
|  | 193 | } | 
|  | 194 | } else { | 
|  | 195 | spin_lock(&new_base->lock); | 
|  | 196 | if (timer->base != old_base) { | 
|  | 197 | spin_unlock(&new_base->lock); | 
|  | 198 | goto repeat; | 
|  | 199 | } | 
|  | 200 | } | 
|  | 201 |  | 
|  | 202 | /* | 
|  | 203 | * Delete the previous timeout (if there was any), and install | 
|  | 204 | * the new one: | 
|  | 205 | */ | 
|  | 206 | if (old_base) { | 
|  | 207 | list_del(&timer->entry); | 
|  | 208 | ret = 1; | 
|  | 209 | } | 
|  | 210 | timer->expires = expires; | 
|  | 211 | internal_add_timer(new_base, timer); | 
|  | 212 | timer->base = new_base; | 
|  | 213 |  | 
|  | 214 | if (old_base && (new_base != old_base)) | 
|  | 215 | spin_unlock(&old_base->lock); | 
|  | 216 | spin_unlock(&new_base->lock); | 
|  | 217 | spin_unlock_irqrestore(&timer->lock, flags); | 
|  | 218 |  | 
|  | 219 | return ret; | 
|  | 220 | } | 
|  | 221 |  | 
|  | 222 | EXPORT_SYMBOL(__mod_timer); | 
|  | 223 |  | 
|  | 224 | /*** | 
|  | 225 | * add_timer_on - start a timer on a particular CPU | 
|  | 226 | * @timer: the timer to be added | 
|  | 227 | * @cpu: the CPU to start it on | 
|  | 228 | * | 
|  | 229 | * This is not very scalable on SMP. Double adds are not possible. | 
|  | 230 | */ | 
|  | 231 | void add_timer_on(struct timer_list *timer, int cpu) | 
|  | 232 | { | 
|  | 233 | tvec_base_t *base = &per_cpu(tvec_bases, cpu); | 
|  | 234 | unsigned long flags; | 
|  | 235 |  | 
|  | 236 | BUG_ON(timer_pending(timer) || !timer->function); | 
|  | 237 |  | 
|  | 238 | check_timer(timer); | 
|  | 239 |  | 
|  | 240 | spin_lock_irqsave(&base->lock, flags); | 
|  | 241 | internal_add_timer(base, timer); | 
|  | 242 | timer->base = base; | 
|  | 243 | spin_unlock_irqrestore(&base->lock, flags); | 
|  | 244 | } | 
|  | 245 |  | 
|  | 246 |  | 
|  | 247 | /*** | 
|  | 248 | * mod_timer - modify a timer's timeout | 
|  | 249 | * @timer: the timer to be modified | 
|  | 250 | * | 
|  | 251 | * mod_timer is a more efficient way to update the expire field of an | 
|  | 252 | * active timer (if the timer is inactive it will be activated) | 
|  | 253 | * | 
|  | 254 | * mod_timer(timer, expires) is equivalent to: | 
|  | 255 | * | 
|  | 256 | *     del_timer(timer); timer->expires = expires; add_timer(timer); | 
|  | 257 | * | 
|  | 258 | * Note that if there are multiple unserialized concurrent users of the | 
|  | 259 | * same timer, then mod_timer() is the only safe way to modify the timeout, | 
|  | 260 | * since add_timer() cannot modify an already running timer. | 
|  | 261 | * | 
|  | 262 | * The function returns whether it has modified a pending timer or not. | 
|  | 263 | * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an | 
|  | 264 | * active timer returns 1.) | 
|  | 265 | */ | 
|  | 266 | int mod_timer(struct timer_list *timer, unsigned long expires) | 
|  | 267 | { | 
|  | 268 | BUG_ON(!timer->function); | 
|  | 269 |  | 
|  | 270 | check_timer(timer); | 
|  | 271 |  | 
|  | 272 | /* | 
|  | 273 | * This is a common optimization triggered by the | 
|  | 274 | * networking code - if the timer is re-modified | 
|  | 275 | * to be the same thing then just return: | 
|  | 276 | */ | 
|  | 277 | if (timer->expires == expires && timer_pending(timer)) | 
|  | 278 | return 1; | 
|  | 279 |  | 
|  | 280 | return __mod_timer(timer, expires); | 
|  | 281 | } | 
|  | 282 |  | 
|  | 283 | EXPORT_SYMBOL(mod_timer); | 
|  | 284 |  | 
|  | 285 | /*** | 
|  | 286 | * del_timer - deactive a timer. | 
|  | 287 | * @timer: the timer to be deactivated | 
|  | 288 | * | 
|  | 289 | * del_timer() deactivates a timer - this works on both active and inactive | 
|  | 290 | * timers. | 
|  | 291 | * | 
|  | 292 | * The function returns whether it has deactivated a pending timer or not. | 
|  | 293 | * (ie. del_timer() of an inactive timer returns 0, del_timer() of an | 
|  | 294 | * active timer returns 1.) | 
|  | 295 | */ | 
|  | 296 | int del_timer(struct timer_list *timer) | 
|  | 297 | { | 
|  | 298 | unsigned long flags; | 
|  | 299 | tvec_base_t *base; | 
|  | 300 |  | 
|  | 301 | check_timer(timer); | 
|  | 302 |  | 
|  | 303 | repeat: | 
|  | 304 | base = timer->base; | 
|  | 305 | if (!base) | 
|  | 306 | return 0; | 
|  | 307 | spin_lock_irqsave(&base->lock, flags); | 
|  | 308 | if (base != timer->base) { | 
|  | 309 | spin_unlock_irqrestore(&base->lock, flags); | 
|  | 310 | goto repeat; | 
|  | 311 | } | 
|  | 312 | list_del(&timer->entry); | 
|  | 313 | /* Need to make sure that anybody who sees a NULL base also sees the list ops */ | 
|  | 314 | smp_wmb(); | 
|  | 315 | timer->base = NULL; | 
|  | 316 | spin_unlock_irqrestore(&base->lock, flags); | 
|  | 317 |  | 
|  | 318 | return 1; | 
|  | 319 | } | 
|  | 320 |  | 
|  | 321 | EXPORT_SYMBOL(del_timer); | 
|  | 322 |  | 
|  | 323 | #ifdef CONFIG_SMP | 
|  | 324 | /*** | 
|  | 325 | * del_timer_sync - deactivate a timer and wait for the handler to finish. | 
|  | 326 | * @timer: the timer to be deactivated | 
|  | 327 | * | 
|  | 328 | * This function only differs from del_timer() on SMP: besides deactivating | 
|  | 329 | * the timer it also makes sure the handler has finished executing on other | 
|  | 330 | * CPUs. | 
|  | 331 | * | 
|  | 332 | * Synchronization rules: callers must prevent restarting of the timer, | 
|  | 333 | * otherwise this function is meaningless. It must not be called from | 
|  | 334 | * interrupt contexts. The caller must not hold locks which would prevent | 
|  | 335 | * completion of the timer's handler.  Upon exit the timer is not queued and | 
|  | 336 | * the handler is not running on any CPU. | 
|  | 337 | * | 
|  | 338 | * The function returns whether it has deactivated a pending timer or not. | 
|  | 339 | * | 
|  | 340 | * del_timer_sync() is slow and complicated because it copes with timer | 
|  | 341 | * handlers which re-arm the timer (periodic timers).  If the timer handler | 
|  | 342 | * is known to not do this (a single shot timer) then use | 
|  | 343 | * del_singleshot_timer_sync() instead. | 
|  | 344 | */ | 
|  | 345 | int del_timer_sync(struct timer_list *timer) | 
|  | 346 | { | 
|  | 347 | tvec_base_t *base; | 
|  | 348 | int i, ret = 0; | 
|  | 349 |  | 
|  | 350 | check_timer(timer); | 
|  | 351 |  | 
|  | 352 | del_again: | 
|  | 353 | ret += del_timer(timer); | 
|  | 354 |  | 
|  | 355 | for_each_online_cpu(i) { | 
|  | 356 | base = &per_cpu(tvec_bases, i); | 
|  | 357 | if (base->running_timer == timer) { | 
|  | 358 | while (base->running_timer == timer) { | 
|  | 359 | cpu_relax(); | 
|  | 360 | preempt_check_resched(); | 
|  | 361 | } | 
|  | 362 | break; | 
|  | 363 | } | 
|  | 364 | } | 
|  | 365 | smp_rmb(); | 
|  | 366 | if (timer_pending(timer)) | 
|  | 367 | goto del_again; | 
|  | 368 |  | 
|  | 369 | return ret; | 
|  | 370 | } | 
|  | 371 | EXPORT_SYMBOL(del_timer_sync); | 
|  | 372 |  | 
|  | 373 | /*** | 
|  | 374 | * del_singleshot_timer_sync - deactivate a non-recursive timer | 
|  | 375 | * @timer: the timer to be deactivated | 
|  | 376 | * | 
|  | 377 | * This function is an optimization of del_timer_sync for the case where the | 
|  | 378 | * caller can guarantee the timer does not reschedule itself in its timer | 
|  | 379 | * function. | 
|  | 380 | * | 
|  | 381 | * Synchronization rules: callers must prevent restarting of the timer, | 
|  | 382 | * otherwise this function is meaningless. It must not be called from | 
|  | 383 | * interrupt contexts. The caller must not hold locks which wold prevent | 
|  | 384 | * completion of the timer's handler.  Upon exit the timer is not queued and | 
|  | 385 | * the handler is not running on any CPU. | 
|  | 386 | * | 
|  | 387 | * The function returns whether it has deactivated a pending timer or not. | 
|  | 388 | */ | 
|  | 389 | int del_singleshot_timer_sync(struct timer_list *timer) | 
|  | 390 | { | 
|  | 391 | int ret = del_timer(timer); | 
|  | 392 |  | 
|  | 393 | if (!ret) { | 
|  | 394 | ret = del_timer_sync(timer); | 
|  | 395 | BUG_ON(ret); | 
|  | 396 | } | 
|  | 397 |  | 
|  | 398 | return ret; | 
|  | 399 | } | 
|  | 400 | EXPORT_SYMBOL(del_singleshot_timer_sync); | 
|  | 401 | #endif | 
|  | 402 |  | 
|  | 403 | static int cascade(tvec_base_t *base, tvec_t *tv, int index) | 
|  | 404 | { | 
|  | 405 | /* cascade all the timers from tv up one level */ | 
|  | 406 | struct list_head *head, *curr; | 
|  | 407 |  | 
|  | 408 | head = tv->vec + index; | 
|  | 409 | curr = head->next; | 
|  | 410 | /* | 
|  | 411 | * We are removing _all_ timers from the list, so we don't  have to | 
|  | 412 | * detach them individually, just clear the list afterwards. | 
|  | 413 | */ | 
|  | 414 | while (curr != head) { | 
|  | 415 | struct timer_list *tmp; | 
|  | 416 |  | 
|  | 417 | tmp = list_entry(curr, struct timer_list, entry); | 
|  | 418 | BUG_ON(tmp->base != base); | 
|  | 419 | curr = curr->next; | 
|  | 420 | internal_add_timer(base, tmp); | 
|  | 421 | } | 
|  | 422 | INIT_LIST_HEAD(head); | 
|  | 423 |  | 
|  | 424 | return index; | 
|  | 425 | } | 
|  | 426 |  | 
|  | 427 | /*** | 
|  | 428 | * __run_timers - run all expired timers (if any) on this CPU. | 
|  | 429 | * @base: the timer vector to be processed. | 
|  | 430 | * | 
|  | 431 | * This function cascades all vectors and executes all expired timer | 
|  | 432 | * vectors. | 
|  | 433 | */ | 
|  | 434 | #define INDEX(N) (base->timer_jiffies >> (TVR_BITS + N * TVN_BITS)) & TVN_MASK | 
|  | 435 |  | 
|  | 436 | static inline void __run_timers(tvec_base_t *base) | 
|  | 437 | { | 
|  | 438 | struct timer_list *timer; | 
|  | 439 |  | 
|  | 440 | spin_lock_irq(&base->lock); | 
|  | 441 | while (time_after_eq(jiffies, base->timer_jiffies)) { | 
|  | 442 | struct list_head work_list = LIST_HEAD_INIT(work_list); | 
|  | 443 | struct list_head *head = &work_list; | 
|  | 444 | int index = base->timer_jiffies & TVR_MASK; | 
|  | 445 |  | 
|  | 446 | /* | 
|  | 447 | * Cascade timers: | 
|  | 448 | */ | 
|  | 449 | if (!index && | 
|  | 450 | (!cascade(base, &base->tv2, INDEX(0))) && | 
|  | 451 | (!cascade(base, &base->tv3, INDEX(1))) && | 
|  | 452 | !cascade(base, &base->tv4, INDEX(2))) | 
|  | 453 | cascade(base, &base->tv5, INDEX(3)); | 
|  | 454 | ++base->timer_jiffies; | 
|  | 455 | list_splice_init(base->tv1.vec + index, &work_list); | 
|  | 456 | repeat: | 
|  | 457 | if (!list_empty(head)) { | 
|  | 458 | void (*fn)(unsigned long); | 
|  | 459 | unsigned long data; | 
|  | 460 |  | 
|  | 461 | timer = list_entry(head->next,struct timer_list,entry); | 
|  | 462 | fn = timer->function; | 
|  | 463 | data = timer->data; | 
|  | 464 |  | 
|  | 465 | list_del(&timer->entry); | 
|  | 466 | set_running_timer(base, timer); | 
|  | 467 | smp_wmb(); | 
|  | 468 | timer->base = NULL; | 
|  | 469 | spin_unlock_irq(&base->lock); | 
|  | 470 | { | 
|  | 471 | u32 preempt_count = preempt_count(); | 
|  | 472 | fn(data); | 
|  | 473 | if (preempt_count != preempt_count()) { | 
|  | 474 | printk("huh, entered %p with %08x, exited with %08x?\n", fn, preempt_count, preempt_count()); | 
|  | 475 | BUG(); | 
|  | 476 | } | 
|  | 477 | } | 
|  | 478 | spin_lock_irq(&base->lock); | 
|  | 479 | goto repeat; | 
|  | 480 | } | 
|  | 481 | } | 
|  | 482 | set_running_timer(base, NULL); | 
|  | 483 | spin_unlock_irq(&base->lock); | 
|  | 484 | } | 
|  | 485 |  | 
|  | 486 | #ifdef CONFIG_NO_IDLE_HZ | 
|  | 487 | /* | 
|  | 488 | * Find out when the next timer event is due to happen. This | 
|  | 489 | * is used on S/390 to stop all activity when a cpus is idle. | 
|  | 490 | * This functions needs to be called disabled. | 
|  | 491 | */ | 
|  | 492 | unsigned long next_timer_interrupt(void) | 
|  | 493 | { | 
|  | 494 | tvec_base_t *base; | 
|  | 495 | struct list_head *list; | 
|  | 496 | struct timer_list *nte; | 
|  | 497 | unsigned long expires; | 
|  | 498 | tvec_t *varray[4]; | 
|  | 499 | int i, j; | 
|  | 500 |  | 
|  | 501 | base = &__get_cpu_var(tvec_bases); | 
|  | 502 | spin_lock(&base->lock); | 
|  | 503 | expires = base->timer_jiffies + (LONG_MAX >> 1); | 
|  | 504 | list = 0; | 
|  | 505 |  | 
|  | 506 | /* Look for timer events in tv1. */ | 
|  | 507 | j = base->timer_jiffies & TVR_MASK; | 
|  | 508 | do { | 
|  | 509 | list_for_each_entry(nte, base->tv1.vec + j, entry) { | 
|  | 510 | expires = nte->expires; | 
|  | 511 | if (j < (base->timer_jiffies & TVR_MASK)) | 
|  | 512 | list = base->tv2.vec + (INDEX(0)); | 
|  | 513 | goto found; | 
|  | 514 | } | 
|  | 515 | j = (j + 1) & TVR_MASK; | 
|  | 516 | } while (j != (base->timer_jiffies & TVR_MASK)); | 
|  | 517 |  | 
|  | 518 | /* Check tv2-tv5. */ | 
|  | 519 | varray[0] = &base->tv2; | 
|  | 520 | varray[1] = &base->tv3; | 
|  | 521 | varray[2] = &base->tv4; | 
|  | 522 | varray[3] = &base->tv5; | 
|  | 523 | for (i = 0; i < 4; i++) { | 
|  | 524 | j = INDEX(i); | 
|  | 525 | do { | 
|  | 526 | if (list_empty(varray[i]->vec + j)) { | 
|  | 527 | j = (j + 1) & TVN_MASK; | 
|  | 528 | continue; | 
|  | 529 | } | 
|  | 530 | list_for_each_entry(nte, varray[i]->vec + j, entry) | 
|  | 531 | if (time_before(nte->expires, expires)) | 
|  | 532 | expires = nte->expires; | 
|  | 533 | if (j < (INDEX(i)) && i < 3) | 
|  | 534 | list = varray[i + 1]->vec + (INDEX(i + 1)); | 
|  | 535 | goto found; | 
|  | 536 | } while (j != (INDEX(i))); | 
|  | 537 | } | 
|  | 538 | found: | 
|  | 539 | if (list) { | 
|  | 540 | /* | 
|  | 541 | * The search wrapped. We need to look at the next list | 
|  | 542 | * from next tv element that would cascade into tv element | 
|  | 543 | * where we found the timer element. | 
|  | 544 | */ | 
|  | 545 | list_for_each_entry(nte, list, entry) { | 
|  | 546 | if (time_before(nte->expires, expires)) | 
|  | 547 | expires = nte->expires; | 
|  | 548 | } | 
|  | 549 | } | 
|  | 550 | spin_unlock(&base->lock); | 
|  | 551 | return expires; | 
|  | 552 | } | 
|  | 553 | #endif | 
|  | 554 |  | 
|  | 555 | /******************************************************************/ | 
|  | 556 |  | 
|  | 557 | /* | 
|  | 558 | * Timekeeping variables | 
|  | 559 | */ | 
|  | 560 | unsigned long tick_usec = TICK_USEC; 		/* USER_HZ period (usec) */ | 
|  | 561 | unsigned long tick_nsec = TICK_NSEC;		/* ACTHZ period (nsec) */ | 
|  | 562 |  | 
|  | 563 | /* | 
|  | 564 | * The current time | 
|  | 565 | * wall_to_monotonic is what we need to add to xtime (or xtime corrected | 
|  | 566 | * for sub jiffie times) to get to monotonic time.  Monotonic is pegged | 
|  | 567 | * at zero at system boot time, so wall_to_monotonic will be negative, | 
|  | 568 | * however, we will ALWAYS keep the tv_nsec part positive so we can use | 
|  | 569 | * the usual normalization. | 
|  | 570 | */ | 
|  | 571 | struct timespec xtime __attribute__ ((aligned (16))); | 
|  | 572 | struct timespec wall_to_monotonic __attribute__ ((aligned (16))); | 
|  | 573 |  | 
|  | 574 | EXPORT_SYMBOL(xtime); | 
|  | 575 |  | 
|  | 576 | /* Don't completely fail for HZ > 500.  */ | 
|  | 577 | int tickadj = 500/HZ ? : 1;		/* microsecs */ | 
|  | 578 |  | 
|  | 579 |  | 
|  | 580 | /* | 
|  | 581 | * phase-lock loop variables | 
|  | 582 | */ | 
|  | 583 | /* TIME_ERROR prevents overwriting the CMOS clock */ | 
|  | 584 | int time_state = TIME_OK;		/* clock synchronization status	*/ | 
|  | 585 | int time_status = STA_UNSYNC;		/* clock status bits		*/ | 
|  | 586 | long time_offset;			/* time adjustment (us)		*/ | 
|  | 587 | long time_constant = 2;			/* pll time constant		*/ | 
|  | 588 | long time_tolerance = MAXFREQ;		/* frequency tolerance (ppm)	*/ | 
|  | 589 | long time_precision = 1;		/* clock precision (us)		*/ | 
|  | 590 | long time_maxerror = NTP_PHASE_LIMIT;	/* maximum error (us)		*/ | 
|  | 591 | long time_esterror = NTP_PHASE_LIMIT;	/* estimated error (us)		*/ | 
|  | 592 | static long time_phase;			/* phase offset (scaled us)	*/ | 
|  | 593 | long time_freq = (((NSEC_PER_SEC + HZ/2) % HZ - HZ/2) << SHIFT_USEC) / NSEC_PER_USEC; | 
|  | 594 | /* frequency offset (scaled ppm)*/ | 
|  | 595 | static long time_adj;			/* tick adjust (scaled 1 / HZ)	*/ | 
|  | 596 | long time_reftime;			/* time at last adjustment (s)	*/ | 
|  | 597 | long time_adjust; | 
|  | 598 | long time_next_adjust; | 
|  | 599 |  | 
|  | 600 | /* | 
|  | 601 | * this routine handles the overflow of the microsecond field | 
|  | 602 | * | 
|  | 603 | * The tricky bits of code to handle the accurate clock support | 
|  | 604 | * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame. | 
|  | 605 | * They were originally developed for SUN and DEC kernels. | 
|  | 606 | * All the kudos should go to Dave for this stuff. | 
|  | 607 | * | 
|  | 608 | */ | 
|  | 609 | static void second_overflow(void) | 
|  | 610 | { | 
|  | 611 | long ltemp; | 
|  | 612 |  | 
|  | 613 | /* Bump the maxerror field */ | 
|  | 614 | time_maxerror += time_tolerance >> SHIFT_USEC; | 
|  | 615 | if ( time_maxerror > NTP_PHASE_LIMIT ) { | 
|  | 616 | time_maxerror = NTP_PHASE_LIMIT; | 
|  | 617 | time_status |= STA_UNSYNC; | 
|  | 618 | } | 
|  | 619 |  | 
|  | 620 | /* | 
|  | 621 | * Leap second processing. If in leap-insert state at | 
|  | 622 | * the end of the day, the system clock is set back one | 
|  | 623 | * second; if in leap-delete state, the system clock is | 
|  | 624 | * set ahead one second. The microtime() routine or | 
|  | 625 | * external clock driver will insure that reported time | 
|  | 626 | * is always monotonic. The ugly divides should be | 
|  | 627 | * replaced. | 
|  | 628 | */ | 
|  | 629 | switch (time_state) { | 
|  | 630 |  | 
|  | 631 | case TIME_OK: | 
|  | 632 | if (time_status & STA_INS) | 
|  | 633 | time_state = TIME_INS; | 
|  | 634 | else if (time_status & STA_DEL) | 
|  | 635 | time_state = TIME_DEL; | 
|  | 636 | break; | 
|  | 637 |  | 
|  | 638 | case TIME_INS: | 
|  | 639 | if (xtime.tv_sec % 86400 == 0) { | 
|  | 640 | xtime.tv_sec--; | 
|  | 641 | wall_to_monotonic.tv_sec++; | 
|  | 642 | /* The timer interpolator will make time change gradually instead | 
|  | 643 | * of an immediate jump by one second. | 
|  | 644 | */ | 
|  | 645 | time_interpolator_update(-NSEC_PER_SEC); | 
|  | 646 | time_state = TIME_OOP; | 
|  | 647 | clock_was_set(); | 
|  | 648 | printk(KERN_NOTICE "Clock: inserting leap second 23:59:60 UTC\n"); | 
|  | 649 | } | 
|  | 650 | break; | 
|  | 651 |  | 
|  | 652 | case TIME_DEL: | 
|  | 653 | if ((xtime.tv_sec + 1) % 86400 == 0) { | 
|  | 654 | xtime.tv_sec++; | 
|  | 655 | wall_to_monotonic.tv_sec--; | 
|  | 656 | /* Use of time interpolator for a gradual change of time */ | 
|  | 657 | time_interpolator_update(NSEC_PER_SEC); | 
|  | 658 | time_state = TIME_WAIT; | 
|  | 659 | clock_was_set(); | 
|  | 660 | printk(KERN_NOTICE "Clock: deleting leap second 23:59:59 UTC\n"); | 
|  | 661 | } | 
|  | 662 | break; | 
|  | 663 |  | 
|  | 664 | case TIME_OOP: | 
|  | 665 | time_state = TIME_WAIT; | 
|  | 666 | break; | 
|  | 667 |  | 
|  | 668 | case TIME_WAIT: | 
|  | 669 | if (!(time_status & (STA_INS | STA_DEL))) | 
|  | 670 | time_state = TIME_OK; | 
|  | 671 | } | 
|  | 672 |  | 
|  | 673 | /* | 
|  | 674 | * Compute the phase adjustment for the next second. In | 
|  | 675 | * PLL mode, the offset is reduced by a fixed factor | 
|  | 676 | * times the time constant. In FLL mode the offset is | 
|  | 677 | * used directly. In either mode, the maximum phase | 
|  | 678 | * adjustment for each second is clamped so as to spread | 
|  | 679 | * the adjustment over not more than the number of | 
|  | 680 | * seconds between updates. | 
|  | 681 | */ | 
|  | 682 | if (time_offset < 0) { | 
|  | 683 | ltemp = -time_offset; | 
|  | 684 | if (!(time_status & STA_FLL)) | 
|  | 685 | ltemp >>= SHIFT_KG + time_constant; | 
|  | 686 | if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE) | 
|  | 687 | ltemp = (MAXPHASE / MINSEC) << SHIFT_UPDATE; | 
|  | 688 | time_offset += ltemp; | 
|  | 689 | time_adj = -ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE); | 
|  | 690 | } else { | 
|  | 691 | ltemp = time_offset; | 
|  | 692 | if (!(time_status & STA_FLL)) | 
|  | 693 | ltemp >>= SHIFT_KG + time_constant; | 
|  | 694 | if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE) | 
|  | 695 | ltemp = (MAXPHASE / MINSEC) << SHIFT_UPDATE; | 
|  | 696 | time_offset -= ltemp; | 
|  | 697 | time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE); | 
|  | 698 | } | 
|  | 699 |  | 
|  | 700 | /* | 
|  | 701 | * Compute the frequency estimate and additional phase | 
|  | 702 | * adjustment due to frequency error for the next | 
|  | 703 | * second. When the PPS signal is engaged, gnaw on the | 
|  | 704 | * watchdog counter and update the frequency computed by | 
|  | 705 | * the pll and the PPS signal. | 
|  | 706 | */ | 
|  | 707 | pps_valid++; | 
|  | 708 | if (pps_valid == PPS_VALID) {	/* PPS signal lost */ | 
|  | 709 | pps_jitter = MAXTIME; | 
|  | 710 | pps_stabil = MAXFREQ; | 
|  | 711 | time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | | 
|  | 712 | STA_PPSWANDER | STA_PPSERROR); | 
|  | 713 | } | 
|  | 714 | ltemp = time_freq + pps_freq; | 
|  | 715 | if (ltemp < 0) | 
|  | 716 | time_adj -= -ltemp >> | 
|  | 717 | (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE); | 
|  | 718 | else | 
|  | 719 | time_adj += ltemp >> | 
|  | 720 | (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE); | 
|  | 721 |  | 
|  | 722 | #if HZ == 100 | 
|  | 723 | /* Compensate for (HZ==100) != (1 << SHIFT_HZ). | 
|  | 724 | * Add 25% and 3.125% to get 128.125; => only 0.125% error (p. 14) | 
|  | 725 | */ | 
|  | 726 | if (time_adj < 0) | 
|  | 727 | time_adj -= (-time_adj >> 2) + (-time_adj >> 5); | 
|  | 728 | else | 
|  | 729 | time_adj += (time_adj >> 2) + (time_adj >> 5); | 
|  | 730 | #endif | 
|  | 731 | #if HZ == 1000 | 
|  | 732 | /* Compensate for (HZ==1000) != (1 << SHIFT_HZ). | 
|  | 733 | * Add 1.5625% and 0.78125% to get 1023.4375; => only 0.05% error (p. 14) | 
|  | 734 | */ | 
|  | 735 | if (time_adj < 0) | 
|  | 736 | time_adj -= (-time_adj >> 6) + (-time_adj >> 7); | 
|  | 737 | else | 
|  | 738 | time_adj += (time_adj >> 6) + (time_adj >> 7); | 
|  | 739 | #endif | 
|  | 740 | } | 
|  | 741 |  | 
|  | 742 | /* in the NTP reference this is called "hardclock()" */ | 
|  | 743 | static void update_wall_time_one_tick(void) | 
|  | 744 | { | 
|  | 745 | long time_adjust_step, delta_nsec; | 
|  | 746 |  | 
|  | 747 | if ( (time_adjust_step = time_adjust) != 0 ) { | 
|  | 748 | /* We are doing an adjtime thing. | 
|  | 749 | * | 
|  | 750 | * Prepare time_adjust_step to be within bounds. | 
|  | 751 | * Note that a positive time_adjust means we want the clock | 
|  | 752 | * to run faster. | 
|  | 753 | * | 
|  | 754 | * Limit the amount of the step to be in the range | 
|  | 755 | * -tickadj .. +tickadj | 
|  | 756 | */ | 
|  | 757 | if (time_adjust > tickadj) | 
|  | 758 | time_adjust_step = tickadj; | 
|  | 759 | else if (time_adjust < -tickadj) | 
|  | 760 | time_adjust_step = -tickadj; | 
|  | 761 |  | 
|  | 762 | /* Reduce by this step the amount of time left  */ | 
|  | 763 | time_adjust -= time_adjust_step; | 
|  | 764 | } | 
|  | 765 | delta_nsec = tick_nsec + time_adjust_step * 1000; | 
|  | 766 | /* | 
|  | 767 | * Advance the phase, once it gets to one microsecond, then | 
|  | 768 | * advance the tick more. | 
|  | 769 | */ | 
|  | 770 | time_phase += time_adj; | 
|  | 771 | if (time_phase <= -FINENSEC) { | 
|  | 772 | long ltemp = -time_phase >> (SHIFT_SCALE - 10); | 
|  | 773 | time_phase += ltemp << (SHIFT_SCALE - 10); | 
|  | 774 | delta_nsec -= ltemp; | 
|  | 775 | } | 
|  | 776 | else if (time_phase >= FINENSEC) { | 
|  | 777 | long ltemp = time_phase >> (SHIFT_SCALE - 10); | 
|  | 778 | time_phase -= ltemp << (SHIFT_SCALE - 10); | 
|  | 779 | delta_nsec += ltemp; | 
|  | 780 | } | 
|  | 781 | xtime.tv_nsec += delta_nsec; | 
|  | 782 | time_interpolator_update(delta_nsec); | 
|  | 783 |  | 
|  | 784 | /* Changes by adjtime() do not take effect till next tick. */ | 
|  | 785 | if (time_next_adjust != 0) { | 
|  | 786 | time_adjust = time_next_adjust; | 
|  | 787 | time_next_adjust = 0; | 
|  | 788 | } | 
|  | 789 | } | 
|  | 790 |  | 
|  | 791 | /* | 
|  | 792 | * Using a loop looks inefficient, but "ticks" is | 
|  | 793 | * usually just one (we shouldn't be losing ticks, | 
|  | 794 | * we're doing this this way mainly for interrupt | 
|  | 795 | * latency reasons, not because we think we'll | 
|  | 796 | * have lots of lost timer ticks | 
|  | 797 | */ | 
|  | 798 | static void update_wall_time(unsigned long ticks) | 
|  | 799 | { | 
|  | 800 | do { | 
|  | 801 | ticks--; | 
|  | 802 | update_wall_time_one_tick(); | 
|  | 803 | if (xtime.tv_nsec >= 1000000000) { | 
|  | 804 | xtime.tv_nsec -= 1000000000; | 
|  | 805 | xtime.tv_sec++; | 
|  | 806 | second_overflow(); | 
|  | 807 | } | 
|  | 808 | } while (ticks); | 
|  | 809 | } | 
|  | 810 |  | 
|  | 811 | /* | 
|  | 812 | * Called from the timer interrupt handler to charge one tick to the current | 
|  | 813 | * process.  user_tick is 1 if the tick is user time, 0 for system. | 
|  | 814 | */ | 
|  | 815 | void update_process_times(int user_tick) | 
|  | 816 | { | 
|  | 817 | struct task_struct *p = current; | 
|  | 818 | int cpu = smp_processor_id(); | 
|  | 819 |  | 
|  | 820 | /* Note: this timer irq context must be accounted for as well. */ | 
|  | 821 | if (user_tick) | 
|  | 822 | account_user_time(p, jiffies_to_cputime(1)); | 
|  | 823 | else | 
|  | 824 | account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1)); | 
|  | 825 | run_local_timers(); | 
|  | 826 | if (rcu_pending(cpu)) | 
|  | 827 | rcu_check_callbacks(cpu, user_tick); | 
|  | 828 | scheduler_tick(); | 
|  | 829 | run_posix_cpu_timers(p); | 
|  | 830 | } | 
|  | 831 |  | 
|  | 832 | /* | 
|  | 833 | * Nr of active tasks - counted in fixed-point numbers | 
|  | 834 | */ | 
|  | 835 | static unsigned long count_active_tasks(void) | 
|  | 836 | { | 
|  | 837 | return (nr_running() + nr_uninterruptible()) * FIXED_1; | 
|  | 838 | } | 
|  | 839 |  | 
|  | 840 | /* | 
|  | 841 | * Hmm.. Changed this, as the GNU make sources (load.c) seems to | 
|  | 842 | * imply that avenrun[] is the standard name for this kind of thing. | 
|  | 843 | * Nothing else seems to be standardized: the fractional size etc | 
|  | 844 | * all seem to differ on different machines. | 
|  | 845 | * | 
|  | 846 | * Requires xtime_lock to access. | 
|  | 847 | */ | 
|  | 848 | unsigned long avenrun[3]; | 
|  | 849 |  | 
|  | 850 | EXPORT_SYMBOL(avenrun); | 
|  | 851 |  | 
|  | 852 | /* | 
|  | 853 | * calc_load - given tick count, update the avenrun load estimates. | 
|  | 854 | * This is called while holding a write_lock on xtime_lock. | 
|  | 855 | */ | 
|  | 856 | static inline void calc_load(unsigned long ticks) | 
|  | 857 | { | 
|  | 858 | unsigned long active_tasks; /* fixed-point */ | 
|  | 859 | static int count = LOAD_FREQ; | 
|  | 860 |  | 
|  | 861 | count -= ticks; | 
|  | 862 | if (count < 0) { | 
|  | 863 | count += LOAD_FREQ; | 
|  | 864 | active_tasks = count_active_tasks(); | 
|  | 865 | CALC_LOAD(avenrun[0], EXP_1, active_tasks); | 
|  | 866 | CALC_LOAD(avenrun[1], EXP_5, active_tasks); | 
|  | 867 | CALC_LOAD(avenrun[2], EXP_15, active_tasks); | 
|  | 868 | } | 
|  | 869 | } | 
|  | 870 |  | 
|  | 871 | /* jiffies at the most recent update of wall time */ | 
|  | 872 | unsigned long wall_jiffies = INITIAL_JIFFIES; | 
|  | 873 |  | 
|  | 874 | /* | 
|  | 875 | * This read-write spinlock protects us from races in SMP while | 
|  | 876 | * playing with xtime and avenrun. | 
|  | 877 | */ | 
|  | 878 | #ifndef ARCH_HAVE_XTIME_LOCK | 
|  | 879 | seqlock_t xtime_lock __cacheline_aligned_in_smp = SEQLOCK_UNLOCKED; | 
|  | 880 |  | 
|  | 881 | EXPORT_SYMBOL(xtime_lock); | 
|  | 882 | #endif | 
|  | 883 |  | 
|  | 884 | /* | 
|  | 885 | * This function runs timers and the timer-tq in bottom half context. | 
|  | 886 | */ | 
|  | 887 | static void run_timer_softirq(struct softirq_action *h) | 
|  | 888 | { | 
|  | 889 | tvec_base_t *base = &__get_cpu_var(tvec_bases); | 
|  | 890 |  | 
|  | 891 | if (time_after_eq(jiffies, base->timer_jiffies)) | 
|  | 892 | __run_timers(base); | 
|  | 893 | } | 
|  | 894 |  | 
|  | 895 | /* | 
|  | 896 | * Called by the local, per-CPU timer interrupt on SMP. | 
|  | 897 | */ | 
|  | 898 | void run_local_timers(void) | 
|  | 899 | { | 
|  | 900 | raise_softirq(TIMER_SOFTIRQ); | 
|  | 901 | } | 
|  | 902 |  | 
|  | 903 | /* | 
|  | 904 | * Called by the timer interrupt. xtime_lock must already be taken | 
|  | 905 | * by the timer IRQ! | 
|  | 906 | */ | 
|  | 907 | static inline void update_times(void) | 
|  | 908 | { | 
|  | 909 | unsigned long ticks; | 
|  | 910 |  | 
|  | 911 | ticks = jiffies - wall_jiffies; | 
|  | 912 | if (ticks) { | 
|  | 913 | wall_jiffies += ticks; | 
|  | 914 | update_wall_time(ticks); | 
|  | 915 | } | 
|  | 916 | calc_load(ticks); | 
|  | 917 | } | 
|  | 918 |  | 
|  | 919 | /* | 
|  | 920 | * The 64-bit jiffies value is not atomic - you MUST NOT read it | 
|  | 921 | * without sampling the sequence number in xtime_lock. | 
|  | 922 | * jiffies is defined in the linker script... | 
|  | 923 | */ | 
|  | 924 |  | 
|  | 925 | void do_timer(struct pt_regs *regs) | 
|  | 926 | { | 
|  | 927 | jiffies_64++; | 
|  | 928 | update_times(); | 
|  | 929 | } | 
|  | 930 |  | 
|  | 931 | #ifdef __ARCH_WANT_SYS_ALARM | 
|  | 932 |  | 
|  | 933 | /* | 
|  | 934 | * For backwards compatibility?  This can be done in libc so Alpha | 
|  | 935 | * and all newer ports shouldn't need it. | 
|  | 936 | */ | 
|  | 937 | asmlinkage unsigned long sys_alarm(unsigned int seconds) | 
|  | 938 | { | 
|  | 939 | struct itimerval it_new, it_old; | 
|  | 940 | unsigned int oldalarm; | 
|  | 941 |  | 
|  | 942 | it_new.it_interval.tv_sec = it_new.it_interval.tv_usec = 0; | 
|  | 943 | it_new.it_value.tv_sec = seconds; | 
|  | 944 | it_new.it_value.tv_usec = 0; | 
|  | 945 | do_setitimer(ITIMER_REAL, &it_new, &it_old); | 
|  | 946 | oldalarm = it_old.it_value.tv_sec; | 
|  | 947 | /* ehhh.. We can't return 0 if we have an alarm pending.. */ | 
|  | 948 | /* And we'd better return too much than too little anyway */ | 
|  | 949 | if ((!oldalarm && it_old.it_value.tv_usec) || it_old.it_value.tv_usec >= 500000) | 
|  | 950 | oldalarm++; | 
|  | 951 | return oldalarm; | 
|  | 952 | } | 
|  | 953 |  | 
|  | 954 | #endif | 
|  | 955 |  | 
|  | 956 | #ifndef __alpha__ | 
|  | 957 |  | 
|  | 958 | /* | 
|  | 959 | * The Alpha uses getxpid, getxuid, and getxgid instead.  Maybe this | 
|  | 960 | * should be moved into arch/i386 instead? | 
|  | 961 | */ | 
|  | 962 |  | 
|  | 963 | /** | 
|  | 964 | * sys_getpid - return the thread group id of the current process | 
|  | 965 | * | 
|  | 966 | * Note, despite the name, this returns the tgid not the pid.  The tgid and | 
|  | 967 | * the pid are identical unless CLONE_THREAD was specified on clone() in | 
|  | 968 | * which case the tgid is the same in all threads of the same group. | 
|  | 969 | * | 
|  | 970 | * This is SMP safe as current->tgid does not change. | 
|  | 971 | */ | 
|  | 972 | asmlinkage long sys_getpid(void) | 
|  | 973 | { | 
|  | 974 | return current->tgid; | 
|  | 975 | } | 
|  | 976 |  | 
|  | 977 | /* | 
|  | 978 | * Accessing ->group_leader->real_parent is not SMP-safe, it could | 
|  | 979 | * change from under us. However, rather than getting any lock | 
|  | 980 | * we can use an optimistic algorithm: get the parent | 
|  | 981 | * pid, and go back and check that the parent is still | 
|  | 982 | * the same. If it has changed (which is extremely unlikely | 
|  | 983 | * indeed), we just try again.. | 
|  | 984 | * | 
|  | 985 | * NOTE! This depends on the fact that even if we _do_ | 
|  | 986 | * get an old value of "parent", we can happily dereference | 
|  | 987 | * the pointer (it was and remains a dereferencable kernel pointer | 
|  | 988 | * no matter what): we just can't necessarily trust the result | 
|  | 989 | * until we know that the parent pointer is valid. | 
|  | 990 | * | 
|  | 991 | * NOTE2: ->group_leader never changes from under us. | 
|  | 992 | */ | 
|  | 993 | asmlinkage long sys_getppid(void) | 
|  | 994 | { | 
|  | 995 | int pid; | 
|  | 996 | struct task_struct *me = current; | 
|  | 997 | struct task_struct *parent; | 
|  | 998 |  | 
|  | 999 | parent = me->group_leader->real_parent; | 
|  | 1000 | for (;;) { | 
|  | 1001 | pid = parent->tgid; | 
|  | 1002 | #ifdef CONFIG_SMP | 
|  | 1003 | { | 
|  | 1004 | struct task_struct *old = parent; | 
|  | 1005 |  | 
|  | 1006 | /* | 
|  | 1007 | * Make sure we read the pid before re-reading the | 
|  | 1008 | * parent pointer: | 
|  | 1009 | */ | 
| akpm@osdl.org | d59dd46 | 2005-05-01 08:58:47 -0700 | [diff] [blame] | 1010 | smp_rmb(); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1011 | parent = me->group_leader->real_parent; | 
|  | 1012 | if (old != parent) | 
|  | 1013 | continue; | 
|  | 1014 | } | 
|  | 1015 | #endif | 
|  | 1016 | break; | 
|  | 1017 | } | 
|  | 1018 | return pid; | 
|  | 1019 | } | 
|  | 1020 |  | 
|  | 1021 | asmlinkage long sys_getuid(void) | 
|  | 1022 | { | 
|  | 1023 | /* Only we change this so SMP safe */ | 
|  | 1024 | return current->uid; | 
|  | 1025 | } | 
|  | 1026 |  | 
|  | 1027 | asmlinkage long sys_geteuid(void) | 
|  | 1028 | { | 
|  | 1029 | /* Only we change this so SMP safe */ | 
|  | 1030 | return current->euid; | 
|  | 1031 | } | 
|  | 1032 |  | 
|  | 1033 | asmlinkage long sys_getgid(void) | 
|  | 1034 | { | 
|  | 1035 | /* Only we change this so SMP safe */ | 
|  | 1036 | return current->gid; | 
|  | 1037 | } | 
|  | 1038 |  | 
|  | 1039 | asmlinkage long sys_getegid(void) | 
|  | 1040 | { | 
|  | 1041 | /* Only we change this so SMP safe */ | 
|  | 1042 | return  current->egid; | 
|  | 1043 | } | 
|  | 1044 |  | 
|  | 1045 | #endif | 
|  | 1046 |  | 
|  | 1047 | static void process_timeout(unsigned long __data) | 
|  | 1048 | { | 
|  | 1049 | wake_up_process((task_t *)__data); | 
|  | 1050 | } | 
|  | 1051 |  | 
|  | 1052 | /** | 
|  | 1053 | * schedule_timeout - sleep until timeout | 
|  | 1054 | * @timeout: timeout value in jiffies | 
|  | 1055 | * | 
|  | 1056 | * Make the current task sleep until @timeout jiffies have | 
|  | 1057 | * elapsed. The routine will return immediately unless | 
|  | 1058 | * the current task state has been set (see set_current_state()). | 
|  | 1059 | * | 
|  | 1060 | * You can set the task state as follows - | 
|  | 1061 | * | 
|  | 1062 | * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to | 
|  | 1063 | * pass before the routine returns. The routine will return 0 | 
|  | 1064 | * | 
|  | 1065 | * %TASK_INTERRUPTIBLE - the routine may return early if a signal is | 
|  | 1066 | * delivered to the current task. In this case the remaining time | 
|  | 1067 | * in jiffies will be returned, or 0 if the timer expired in time | 
|  | 1068 | * | 
|  | 1069 | * The current task state is guaranteed to be TASK_RUNNING when this | 
|  | 1070 | * routine returns. | 
|  | 1071 | * | 
|  | 1072 | * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule | 
|  | 1073 | * the CPU away without a bound on the timeout. In this case the return | 
|  | 1074 | * value will be %MAX_SCHEDULE_TIMEOUT. | 
|  | 1075 | * | 
|  | 1076 | * In all cases the return value is guaranteed to be non-negative. | 
|  | 1077 | */ | 
|  | 1078 | fastcall signed long __sched schedule_timeout(signed long timeout) | 
|  | 1079 | { | 
|  | 1080 | struct timer_list timer; | 
|  | 1081 | unsigned long expire; | 
|  | 1082 |  | 
|  | 1083 | switch (timeout) | 
|  | 1084 | { | 
|  | 1085 | case MAX_SCHEDULE_TIMEOUT: | 
|  | 1086 | /* | 
|  | 1087 | * These two special cases are useful to be comfortable | 
|  | 1088 | * in the caller. Nothing more. We could take | 
|  | 1089 | * MAX_SCHEDULE_TIMEOUT from one of the negative value | 
|  | 1090 | * but I' d like to return a valid offset (>=0) to allow | 
|  | 1091 | * the caller to do everything it want with the retval. | 
|  | 1092 | */ | 
|  | 1093 | schedule(); | 
|  | 1094 | goto out; | 
|  | 1095 | default: | 
|  | 1096 | /* | 
|  | 1097 | * Another bit of PARANOID. Note that the retval will be | 
|  | 1098 | * 0 since no piece of kernel is supposed to do a check | 
|  | 1099 | * for a negative retval of schedule_timeout() (since it | 
|  | 1100 | * should never happens anyway). You just have the printk() | 
|  | 1101 | * that will tell you if something is gone wrong and where. | 
|  | 1102 | */ | 
|  | 1103 | if (timeout < 0) | 
|  | 1104 | { | 
|  | 1105 | printk(KERN_ERR "schedule_timeout: wrong timeout " | 
|  | 1106 | "value %lx from %p\n", timeout, | 
|  | 1107 | __builtin_return_address(0)); | 
|  | 1108 | current->state = TASK_RUNNING; | 
|  | 1109 | goto out; | 
|  | 1110 | } | 
|  | 1111 | } | 
|  | 1112 |  | 
|  | 1113 | expire = timeout + jiffies; | 
|  | 1114 |  | 
|  | 1115 | init_timer(&timer); | 
|  | 1116 | timer.expires = expire; | 
|  | 1117 | timer.data = (unsigned long) current; | 
|  | 1118 | timer.function = process_timeout; | 
|  | 1119 |  | 
|  | 1120 | add_timer(&timer); | 
|  | 1121 | schedule(); | 
|  | 1122 | del_singleshot_timer_sync(&timer); | 
|  | 1123 |  | 
|  | 1124 | timeout = expire - jiffies; | 
|  | 1125 |  | 
|  | 1126 | out: | 
|  | 1127 | return timeout < 0 ? 0 : timeout; | 
|  | 1128 | } | 
|  | 1129 |  | 
|  | 1130 | EXPORT_SYMBOL(schedule_timeout); | 
|  | 1131 |  | 
|  | 1132 | /* Thread ID - the internal kernel "pid" */ | 
|  | 1133 | asmlinkage long sys_gettid(void) | 
|  | 1134 | { | 
|  | 1135 | return current->pid; | 
|  | 1136 | } | 
|  | 1137 |  | 
|  | 1138 | static long __sched nanosleep_restart(struct restart_block *restart) | 
|  | 1139 | { | 
|  | 1140 | unsigned long expire = restart->arg0, now = jiffies; | 
|  | 1141 | struct timespec __user *rmtp = (struct timespec __user *) restart->arg1; | 
|  | 1142 | long ret; | 
|  | 1143 |  | 
|  | 1144 | /* Did it expire while we handled signals? */ | 
|  | 1145 | if (!time_after(expire, now)) | 
|  | 1146 | return 0; | 
|  | 1147 |  | 
|  | 1148 | current->state = TASK_INTERRUPTIBLE; | 
|  | 1149 | expire = schedule_timeout(expire - now); | 
|  | 1150 |  | 
|  | 1151 | ret = 0; | 
|  | 1152 | if (expire) { | 
|  | 1153 | struct timespec t; | 
|  | 1154 | jiffies_to_timespec(expire, &t); | 
|  | 1155 |  | 
|  | 1156 | ret = -ERESTART_RESTARTBLOCK; | 
|  | 1157 | if (rmtp && copy_to_user(rmtp, &t, sizeof(t))) | 
|  | 1158 | ret = -EFAULT; | 
|  | 1159 | /* The 'restart' block is already filled in */ | 
|  | 1160 | } | 
|  | 1161 | return ret; | 
|  | 1162 | } | 
|  | 1163 |  | 
|  | 1164 | asmlinkage long sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp) | 
|  | 1165 | { | 
|  | 1166 | struct timespec t; | 
|  | 1167 | unsigned long expire; | 
|  | 1168 | long ret; | 
|  | 1169 |  | 
|  | 1170 | if (copy_from_user(&t, rqtp, sizeof(t))) | 
|  | 1171 | return -EFAULT; | 
|  | 1172 |  | 
|  | 1173 | if ((t.tv_nsec >= 1000000000L) || (t.tv_nsec < 0) || (t.tv_sec < 0)) | 
|  | 1174 | return -EINVAL; | 
|  | 1175 |  | 
|  | 1176 | expire = timespec_to_jiffies(&t) + (t.tv_sec || t.tv_nsec); | 
|  | 1177 | current->state = TASK_INTERRUPTIBLE; | 
|  | 1178 | expire = schedule_timeout(expire); | 
|  | 1179 |  | 
|  | 1180 | ret = 0; | 
|  | 1181 | if (expire) { | 
|  | 1182 | struct restart_block *restart; | 
|  | 1183 | jiffies_to_timespec(expire, &t); | 
|  | 1184 | if (rmtp && copy_to_user(rmtp, &t, sizeof(t))) | 
|  | 1185 | return -EFAULT; | 
|  | 1186 |  | 
|  | 1187 | restart = ¤t_thread_info()->restart_block; | 
|  | 1188 | restart->fn = nanosleep_restart; | 
|  | 1189 | restart->arg0 = jiffies + expire; | 
|  | 1190 | restart->arg1 = (unsigned long) rmtp; | 
|  | 1191 | ret = -ERESTART_RESTARTBLOCK; | 
|  | 1192 | } | 
|  | 1193 | return ret; | 
|  | 1194 | } | 
|  | 1195 |  | 
|  | 1196 | /* | 
|  | 1197 | * sys_sysinfo - fill in sysinfo struct | 
|  | 1198 | */ | 
|  | 1199 | asmlinkage long sys_sysinfo(struct sysinfo __user *info) | 
|  | 1200 | { | 
|  | 1201 | struct sysinfo val; | 
|  | 1202 | unsigned long mem_total, sav_total; | 
|  | 1203 | unsigned int mem_unit, bitcount; | 
|  | 1204 | unsigned long seq; | 
|  | 1205 |  | 
|  | 1206 | memset((char *)&val, 0, sizeof(struct sysinfo)); | 
|  | 1207 |  | 
|  | 1208 | do { | 
|  | 1209 | struct timespec tp; | 
|  | 1210 | seq = read_seqbegin(&xtime_lock); | 
|  | 1211 |  | 
|  | 1212 | /* | 
|  | 1213 | * This is annoying.  The below is the same thing | 
|  | 1214 | * posix_get_clock_monotonic() does, but it wants to | 
|  | 1215 | * take the lock which we want to cover the loads stuff | 
|  | 1216 | * too. | 
|  | 1217 | */ | 
|  | 1218 |  | 
|  | 1219 | getnstimeofday(&tp); | 
|  | 1220 | tp.tv_sec += wall_to_monotonic.tv_sec; | 
|  | 1221 | tp.tv_nsec += wall_to_monotonic.tv_nsec; | 
|  | 1222 | if (tp.tv_nsec - NSEC_PER_SEC >= 0) { | 
|  | 1223 | tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC; | 
|  | 1224 | tp.tv_sec++; | 
|  | 1225 | } | 
|  | 1226 | val.uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0); | 
|  | 1227 |  | 
|  | 1228 | val.loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT); | 
|  | 1229 | val.loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT); | 
|  | 1230 | val.loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT); | 
|  | 1231 |  | 
|  | 1232 | val.procs = nr_threads; | 
|  | 1233 | } while (read_seqretry(&xtime_lock, seq)); | 
|  | 1234 |  | 
|  | 1235 | si_meminfo(&val); | 
|  | 1236 | si_swapinfo(&val); | 
|  | 1237 |  | 
|  | 1238 | /* | 
|  | 1239 | * If the sum of all the available memory (i.e. ram + swap) | 
|  | 1240 | * is less than can be stored in a 32 bit unsigned long then | 
|  | 1241 | * we can be binary compatible with 2.2.x kernels.  If not, | 
|  | 1242 | * well, in that case 2.2.x was broken anyways... | 
|  | 1243 | * | 
|  | 1244 | *  -Erik Andersen <andersee@debian.org> | 
|  | 1245 | */ | 
|  | 1246 |  | 
|  | 1247 | mem_total = val.totalram + val.totalswap; | 
|  | 1248 | if (mem_total < val.totalram || mem_total < val.totalswap) | 
|  | 1249 | goto out; | 
|  | 1250 | bitcount = 0; | 
|  | 1251 | mem_unit = val.mem_unit; | 
|  | 1252 | while (mem_unit > 1) { | 
|  | 1253 | bitcount++; | 
|  | 1254 | mem_unit >>= 1; | 
|  | 1255 | sav_total = mem_total; | 
|  | 1256 | mem_total <<= 1; | 
|  | 1257 | if (mem_total < sav_total) | 
|  | 1258 | goto out; | 
|  | 1259 | } | 
|  | 1260 |  | 
|  | 1261 | /* | 
|  | 1262 | * If mem_total did not overflow, multiply all memory values by | 
|  | 1263 | * val.mem_unit and set it to 1.  This leaves things compatible | 
|  | 1264 | * with 2.2.x, and also retains compatibility with earlier 2.4.x | 
|  | 1265 | * kernels... | 
|  | 1266 | */ | 
|  | 1267 |  | 
|  | 1268 | val.mem_unit = 1; | 
|  | 1269 | val.totalram <<= bitcount; | 
|  | 1270 | val.freeram <<= bitcount; | 
|  | 1271 | val.sharedram <<= bitcount; | 
|  | 1272 | val.bufferram <<= bitcount; | 
|  | 1273 | val.totalswap <<= bitcount; | 
|  | 1274 | val.freeswap <<= bitcount; | 
|  | 1275 | val.totalhigh <<= bitcount; | 
|  | 1276 | val.freehigh <<= bitcount; | 
|  | 1277 |  | 
|  | 1278 | out: | 
|  | 1279 | if (copy_to_user(info, &val, sizeof(struct sysinfo))) | 
|  | 1280 | return -EFAULT; | 
|  | 1281 |  | 
|  | 1282 | return 0; | 
|  | 1283 | } | 
|  | 1284 |  | 
|  | 1285 | static void __devinit init_timers_cpu(int cpu) | 
|  | 1286 | { | 
|  | 1287 | int j; | 
|  | 1288 | tvec_base_t *base; | 
|  | 1289 |  | 
|  | 1290 | base = &per_cpu(tvec_bases, cpu); | 
|  | 1291 | spin_lock_init(&base->lock); | 
|  | 1292 | for (j = 0; j < TVN_SIZE; j++) { | 
|  | 1293 | INIT_LIST_HEAD(base->tv5.vec + j); | 
|  | 1294 | INIT_LIST_HEAD(base->tv4.vec + j); | 
|  | 1295 | INIT_LIST_HEAD(base->tv3.vec + j); | 
|  | 1296 | INIT_LIST_HEAD(base->tv2.vec + j); | 
|  | 1297 | } | 
|  | 1298 | for (j = 0; j < TVR_SIZE; j++) | 
|  | 1299 | INIT_LIST_HEAD(base->tv1.vec + j); | 
|  | 1300 |  | 
|  | 1301 | base->timer_jiffies = jiffies; | 
|  | 1302 | } | 
|  | 1303 |  | 
|  | 1304 | #ifdef CONFIG_HOTPLUG_CPU | 
|  | 1305 | static int migrate_timer_list(tvec_base_t *new_base, struct list_head *head) | 
|  | 1306 | { | 
|  | 1307 | struct timer_list *timer; | 
|  | 1308 |  | 
|  | 1309 | while (!list_empty(head)) { | 
|  | 1310 | timer = list_entry(head->next, struct timer_list, entry); | 
|  | 1311 | /* We're locking backwards from __mod_timer order here, | 
|  | 1312 | beware deadlock. */ | 
|  | 1313 | if (!spin_trylock(&timer->lock)) | 
|  | 1314 | return 0; | 
|  | 1315 | list_del(&timer->entry); | 
|  | 1316 | internal_add_timer(new_base, timer); | 
|  | 1317 | timer->base = new_base; | 
|  | 1318 | spin_unlock(&timer->lock); | 
|  | 1319 | } | 
|  | 1320 | return 1; | 
|  | 1321 | } | 
|  | 1322 |  | 
|  | 1323 | static void __devinit migrate_timers(int cpu) | 
|  | 1324 | { | 
|  | 1325 | tvec_base_t *old_base; | 
|  | 1326 | tvec_base_t *new_base; | 
|  | 1327 | int i; | 
|  | 1328 |  | 
|  | 1329 | BUG_ON(cpu_online(cpu)); | 
|  | 1330 | old_base = &per_cpu(tvec_bases, cpu); | 
|  | 1331 | new_base = &get_cpu_var(tvec_bases); | 
|  | 1332 |  | 
|  | 1333 | local_irq_disable(); | 
|  | 1334 | again: | 
|  | 1335 | /* Prevent deadlocks via ordering by old_base < new_base. */ | 
|  | 1336 | if (old_base < new_base) { | 
|  | 1337 | spin_lock(&new_base->lock); | 
|  | 1338 | spin_lock(&old_base->lock); | 
|  | 1339 | } else { | 
|  | 1340 | spin_lock(&old_base->lock); | 
|  | 1341 | spin_lock(&new_base->lock); | 
|  | 1342 | } | 
|  | 1343 |  | 
|  | 1344 | if (old_base->running_timer) | 
|  | 1345 | BUG(); | 
|  | 1346 | for (i = 0; i < TVR_SIZE; i++) | 
|  | 1347 | if (!migrate_timer_list(new_base, old_base->tv1.vec + i)) | 
|  | 1348 | goto unlock_again; | 
|  | 1349 | for (i = 0; i < TVN_SIZE; i++) | 
|  | 1350 | if (!migrate_timer_list(new_base, old_base->tv2.vec + i) | 
|  | 1351 | || !migrate_timer_list(new_base, old_base->tv3.vec + i) | 
|  | 1352 | || !migrate_timer_list(new_base, old_base->tv4.vec + i) | 
|  | 1353 | || !migrate_timer_list(new_base, old_base->tv5.vec + i)) | 
|  | 1354 | goto unlock_again; | 
|  | 1355 | spin_unlock(&old_base->lock); | 
|  | 1356 | spin_unlock(&new_base->lock); | 
|  | 1357 | local_irq_enable(); | 
|  | 1358 | put_cpu_var(tvec_bases); | 
|  | 1359 | return; | 
|  | 1360 |  | 
|  | 1361 | unlock_again: | 
|  | 1362 | /* Avoid deadlock with __mod_timer, by backing off. */ | 
|  | 1363 | spin_unlock(&old_base->lock); | 
|  | 1364 | spin_unlock(&new_base->lock); | 
|  | 1365 | cpu_relax(); | 
|  | 1366 | goto again; | 
|  | 1367 | } | 
|  | 1368 | #endif /* CONFIG_HOTPLUG_CPU */ | 
|  | 1369 |  | 
|  | 1370 | static int __devinit timer_cpu_notify(struct notifier_block *self, | 
|  | 1371 | unsigned long action, void *hcpu) | 
|  | 1372 | { | 
|  | 1373 | long cpu = (long)hcpu; | 
|  | 1374 | switch(action) { | 
|  | 1375 | case CPU_UP_PREPARE: | 
|  | 1376 | init_timers_cpu(cpu); | 
|  | 1377 | break; | 
|  | 1378 | #ifdef CONFIG_HOTPLUG_CPU | 
|  | 1379 | case CPU_DEAD: | 
|  | 1380 | migrate_timers(cpu); | 
|  | 1381 | break; | 
|  | 1382 | #endif | 
|  | 1383 | default: | 
|  | 1384 | break; | 
|  | 1385 | } | 
|  | 1386 | return NOTIFY_OK; | 
|  | 1387 | } | 
|  | 1388 |  | 
|  | 1389 | static struct notifier_block __devinitdata timers_nb = { | 
|  | 1390 | .notifier_call	= timer_cpu_notify, | 
|  | 1391 | }; | 
|  | 1392 |  | 
|  | 1393 |  | 
|  | 1394 | void __init init_timers(void) | 
|  | 1395 | { | 
|  | 1396 | timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE, | 
|  | 1397 | (void *)(long)smp_processor_id()); | 
|  | 1398 | register_cpu_notifier(&timers_nb); | 
|  | 1399 | open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL); | 
|  | 1400 | } | 
|  | 1401 |  | 
|  | 1402 | #ifdef CONFIG_TIME_INTERPOLATION | 
|  | 1403 |  | 
|  | 1404 | struct time_interpolator *time_interpolator; | 
|  | 1405 | static struct time_interpolator *time_interpolator_list; | 
|  | 1406 | static DEFINE_SPINLOCK(time_interpolator_lock); | 
|  | 1407 |  | 
|  | 1408 | static inline u64 time_interpolator_get_cycles(unsigned int src) | 
|  | 1409 | { | 
|  | 1410 | unsigned long (*x)(void); | 
|  | 1411 |  | 
|  | 1412 | switch (src) | 
|  | 1413 | { | 
|  | 1414 | case TIME_SOURCE_FUNCTION: | 
|  | 1415 | x = time_interpolator->addr; | 
|  | 1416 | return x(); | 
|  | 1417 |  | 
|  | 1418 | case TIME_SOURCE_MMIO64	: | 
|  | 1419 | return readq((void __iomem *) time_interpolator->addr); | 
|  | 1420 |  | 
|  | 1421 | case TIME_SOURCE_MMIO32	: | 
|  | 1422 | return readl((void __iomem *) time_interpolator->addr); | 
|  | 1423 |  | 
|  | 1424 | default: return get_cycles(); | 
|  | 1425 | } | 
|  | 1426 | } | 
|  | 1427 |  | 
|  | 1428 | static inline u64 time_interpolator_get_counter(void) | 
|  | 1429 | { | 
|  | 1430 | unsigned int src = time_interpolator->source; | 
|  | 1431 |  | 
|  | 1432 | if (time_interpolator->jitter) | 
|  | 1433 | { | 
|  | 1434 | u64 lcycle; | 
|  | 1435 | u64 now; | 
|  | 1436 |  | 
|  | 1437 | do { | 
|  | 1438 | lcycle = time_interpolator->last_cycle; | 
|  | 1439 | now = time_interpolator_get_cycles(src); | 
|  | 1440 | if (lcycle && time_after(lcycle, now)) | 
|  | 1441 | return lcycle; | 
|  | 1442 | /* Keep track of the last timer value returned. The use of cmpxchg here | 
|  | 1443 | * will cause contention in an SMP environment. | 
|  | 1444 | */ | 
|  | 1445 | } while (unlikely(cmpxchg(&time_interpolator->last_cycle, lcycle, now) != lcycle)); | 
|  | 1446 | return now; | 
|  | 1447 | } | 
|  | 1448 | else | 
|  | 1449 | return time_interpolator_get_cycles(src); | 
|  | 1450 | } | 
|  | 1451 |  | 
|  | 1452 | void time_interpolator_reset(void) | 
|  | 1453 | { | 
|  | 1454 | time_interpolator->offset = 0; | 
|  | 1455 | time_interpolator->last_counter = time_interpolator_get_counter(); | 
|  | 1456 | } | 
|  | 1457 |  | 
|  | 1458 | #define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift) | 
|  | 1459 |  | 
|  | 1460 | unsigned long time_interpolator_get_offset(void) | 
|  | 1461 | { | 
|  | 1462 | /* If we do not have a time interpolator set up then just return zero */ | 
|  | 1463 | if (!time_interpolator) | 
|  | 1464 | return 0; | 
|  | 1465 |  | 
|  | 1466 | return time_interpolator->offset + | 
|  | 1467 | GET_TI_NSECS(time_interpolator_get_counter(), time_interpolator); | 
|  | 1468 | } | 
|  | 1469 |  | 
|  | 1470 | #define INTERPOLATOR_ADJUST 65536 | 
|  | 1471 | #define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST | 
|  | 1472 |  | 
|  | 1473 | static void time_interpolator_update(long delta_nsec) | 
|  | 1474 | { | 
|  | 1475 | u64 counter; | 
|  | 1476 | unsigned long offset; | 
|  | 1477 |  | 
|  | 1478 | /* If there is no time interpolator set up then do nothing */ | 
|  | 1479 | if (!time_interpolator) | 
|  | 1480 | return; | 
|  | 1481 |  | 
|  | 1482 | /* The interpolator compensates for late ticks by accumulating | 
|  | 1483 | * the late time in time_interpolator->offset. A tick earlier than | 
|  | 1484 | * expected will lead to a reset of the offset and a corresponding | 
|  | 1485 | * jump of the clock forward. Again this only works if the | 
|  | 1486 | * interpolator clock is running slightly slower than the regular clock | 
|  | 1487 | * and the tuning logic insures that. | 
|  | 1488 | */ | 
|  | 1489 |  | 
|  | 1490 | counter = time_interpolator_get_counter(); | 
|  | 1491 | offset = time_interpolator->offset + GET_TI_NSECS(counter, time_interpolator); | 
|  | 1492 |  | 
|  | 1493 | if (delta_nsec < 0 || (unsigned long) delta_nsec < offset) | 
|  | 1494 | time_interpolator->offset = offset - delta_nsec; | 
|  | 1495 | else { | 
|  | 1496 | time_interpolator->skips++; | 
|  | 1497 | time_interpolator->ns_skipped += delta_nsec - offset; | 
|  | 1498 | time_interpolator->offset = 0; | 
|  | 1499 | } | 
|  | 1500 | time_interpolator->last_counter = counter; | 
|  | 1501 |  | 
|  | 1502 | /* Tuning logic for time interpolator invoked every minute or so. | 
|  | 1503 | * Decrease interpolator clock speed if no skips occurred and an offset is carried. | 
|  | 1504 | * Increase interpolator clock speed if we skip too much time. | 
|  | 1505 | */ | 
|  | 1506 | if (jiffies % INTERPOLATOR_ADJUST == 0) | 
|  | 1507 | { | 
|  | 1508 | if (time_interpolator->skips == 0 && time_interpolator->offset > TICK_NSEC) | 
|  | 1509 | time_interpolator->nsec_per_cyc--; | 
|  | 1510 | if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && time_interpolator->offset == 0) | 
|  | 1511 | time_interpolator->nsec_per_cyc++; | 
|  | 1512 | time_interpolator->skips = 0; | 
|  | 1513 | time_interpolator->ns_skipped = 0; | 
|  | 1514 | } | 
|  | 1515 | } | 
|  | 1516 |  | 
|  | 1517 | static inline int | 
|  | 1518 | is_better_time_interpolator(struct time_interpolator *new) | 
|  | 1519 | { | 
|  | 1520 | if (!time_interpolator) | 
|  | 1521 | return 1; | 
|  | 1522 | return new->frequency > 2*time_interpolator->frequency || | 
|  | 1523 | (unsigned long)new->drift < (unsigned long)time_interpolator->drift; | 
|  | 1524 | } | 
|  | 1525 |  | 
|  | 1526 | void | 
|  | 1527 | register_time_interpolator(struct time_interpolator *ti) | 
|  | 1528 | { | 
|  | 1529 | unsigned long flags; | 
|  | 1530 |  | 
|  | 1531 | /* Sanity check */ | 
|  | 1532 | if (ti->frequency == 0 || ti->mask == 0) | 
|  | 1533 | BUG(); | 
|  | 1534 |  | 
|  | 1535 | ti->nsec_per_cyc = ((u64)NSEC_PER_SEC << ti->shift) / ti->frequency; | 
|  | 1536 | spin_lock(&time_interpolator_lock); | 
|  | 1537 | write_seqlock_irqsave(&xtime_lock, flags); | 
|  | 1538 | if (is_better_time_interpolator(ti)) { | 
|  | 1539 | time_interpolator = ti; | 
|  | 1540 | time_interpolator_reset(); | 
|  | 1541 | } | 
|  | 1542 | write_sequnlock_irqrestore(&xtime_lock, flags); | 
|  | 1543 |  | 
|  | 1544 | ti->next = time_interpolator_list; | 
|  | 1545 | time_interpolator_list = ti; | 
|  | 1546 | spin_unlock(&time_interpolator_lock); | 
|  | 1547 | } | 
|  | 1548 |  | 
|  | 1549 | void | 
|  | 1550 | unregister_time_interpolator(struct time_interpolator *ti) | 
|  | 1551 | { | 
|  | 1552 | struct time_interpolator *curr, **prev; | 
|  | 1553 | unsigned long flags; | 
|  | 1554 |  | 
|  | 1555 | spin_lock(&time_interpolator_lock); | 
|  | 1556 | prev = &time_interpolator_list; | 
|  | 1557 | for (curr = *prev; curr; curr = curr->next) { | 
|  | 1558 | if (curr == ti) { | 
|  | 1559 | *prev = curr->next; | 
|  | 1560 | break; | 
|  | 1561 | } | 
|  | 1562 | prev = &curr->next; | 
|  | 1563 | } | 
|  | 1564 |  | 
|  | 1565 | write_seqlock_irqsave(&xtime_lock, flags); | 
|  | 1566 | if (ti == time_interpolator) { | 
|  | 1567 | /* we lost the best time-interpolator: */ | 
|  | 1568 | time_interpolator = NULL; | 
|  | 1569 | /* find the next-best interpolator */ | 
|  | 1570 | for (curr = time_interpolator_list; curr; curr = curr->next) | 
|  | 1571 | if (is_better_time_interpolator(curr)) | 
|  | 1572 | time_interpolator = curr; | 
|  | 1573 | time_interpolator_reset(); | 
|  | 1574 | } | 
|  | 1575 | write_sequnlock_irqrestore(&xtime_lock, flags); | 
|  | 1576 | spin_unlock(&time_interpolator_lock); | 
|  | 1577 | } | 
|  | 1578 | #endif /* CONFIG_TIME_INTERPOLATION */ | 
|  | 1579 |  | 
|  | 1580 | /** | 
|  | 1581 | * msleep - sleep safely even with waitqueue interruptions | 
|  | 1582 | * @msecs: Time in milliseconds to sleep for | 
|  | 1583 | */ | 
|  | 1584 | void msleep(unsigned int msecs) | 
|  | 1585 | { | 
|  | 1586 | unsigned long timeout = msecs_to_jiffies(msecs) + 1; | 
|  | 1587 |  | 
|  | 1588 | while (timeout) { | 
|  | 1589 | set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | 1590 | timeout = schedule_timeout(timeout); | 
|  | 1591 | } | 
|  | 1592 | } | 
|  | 1593 |  | 
|  | 1594 | EXPORT_SYMBOL(msleep); | 
|  | 1595 |  | 
|  | 1596 | /** | 
|  | 1597 | * msleep_interruptible - sleep waiting for waitqueue interruptions | 
|  | 1598 | * @msecs: Time in milliseconds to sleep for | 
|  | 1599 | */ | 
|  | 1600 | unsigned long msleep_interruptible(unsigned int msecs) | 
|  | 1601 | { | 
|  | 1602 | unsigned long timeout = msecs_to_jiffies(msecs) + 1; | 
|  | 1603 |  | 
|  | 1604 | while (timeout && !signal_pending(current)) { | 
|  | 1605 | set_current_state(TASK_INTERRUPTIBLE); | 
|  | 1606 | timeout = schedule_timeout(timeout); | 
|  | 1607 | } | 
|  | 1608 | return jiffies_to_msecs(timeout); | 
|  | 1609 | } | 
|  | 1610 |  | 
|  | 1611 | EXPORT_SYMBOL(msleep_interruptible); |